FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A Two-Level Model-Driven Engineering

Approach for Reengineering
CI/CD Pipelines

André Flores

[BPORTO

FEU FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Mestrado em Engenharia Informética e Computacao

Supervisor: Jicome Cunha

Co-supervisor: Hugo Gido

July 23, 2024

A Two-Level Model-Driven Engineering Approach for
Reengineering C1/CD Pipelines

André Flores

Mestrado em Engenharia Informética e Computagao

Approved in oral examination by the committee:

President: Jodo Pascoal Faria
Referee: Alexandre Braganca

Supervisor: Jicome Cunha

July 23, 2024

Resumo

A integracio, entrega, e implantagdo continuas (CI/CD) facilitam o desenvolvimento colaborativo
de software e melhora a qualidade do produto. A pratica ganhou popularidade com a metodologia
de eXtreme Programming e tem visto uma adocao crescente nos dltimos anos.

Existem muitas plataformas de CI/CD disponiveis para automatizar workflows de desenvolvi-
mento de software, e cada uma delas possui vantagens e desvantagens, dependendo dos projetos
de software individuais. Muitos projetos de software utilizam vérias plataformas CI/CD simul-
taneamente ou migram entre elas, a procura de funcionalidade, escalabilidade ou melhores pregos.
Essas plataformas frequentemente t€m uma curva de aprendizagem elevada, principalmente dev-
ido a sua sintaxe, e os engenheiros de software relatam dificuldades ao migrar entre plataformas.
A migracdo entre plataformas também pode ser um processo demorado.

Este trabalho tem como objetivo usar engenharia dirigida por modelos para facilitar a migracao
de pipelines de CI/CD entre plataformas. Isso serd feito usando dois niveis de meta-modelos
de pipelines CI/CD, um independente de plataforma e um especifico a plataforma, para mapear
funcionalidades comuns entre plataformas.

O resultado final ¢ uma metodologia de migracdo que compila pipelines de CI/CD de uma
plataforma para outra. A abordagem ¢ inspirada pelo modelo de ferradura tradicional da reengen-
haria, que abstrai artefactos de pipelines existentes para um modelo detalhado que serve de rep-
resentacio intermédia. Pipelines semanticamente equivalentes podem ser geradas a partir deste
modelo noutras plataformas de CI/CD. Para ser de ainda mais ttil, a nossa abordagem também
permite juntar varios pipelines de CI/CD de plataformas diferentes num tnico pipeline.

Para avaliar a abordagem, comparamos a execucio do pipeline de CI/CD original com a do
pipeline que geramos noutra plataforma depois do processo de migracdo. Além disso, também
testamos migrar o pipeline gerado de volta para a sua plataforma original, com intuito de verificar
se houve alteracdes semanticas. Verificamos que a nossa abordagem é capaz de gerar pipelines
com execucdo equivalente aos da plataforma original. Em muitos casos, os pipelines gerados
podem ser migrados de volta para a plataforma original sem alteracdo seméantica.

Palavras-Chave: Engenharia Dirigida por Modelos, Reengenharia, Engenharia Reversa, Inte-
gracdo Continua, Entrega Continua, Implantacdo Continua, DevOps, CI/CD

Classificacio ACM: Software e a sua engenharia — Notacoes e ferramentas de software —
Linguagens de descricao de sistemas — Linguagens de modelacio de sistemas; Metodologias
de computacao — Modelacao e simulacao — Desenvolvimento e analise de modelos

Abstract

Continuous integration, delivery, and deployment facilitates collaborative software development
and improves product quality. The practice gained popularity with the eXtreme Programming
methodology and has seen increased adoption in recent years.

There are many CI/CD platforms available to automate software development workflows, and
each of them has advantages and disadvantages depending on the individual software projects.
Many software projects use multiple CI/CD platforms simultaneously or migrate between plat-
forms, chasing functionality, scalability, or better pricing. These platforms often have a high
learning curve, primarily due to the different syntaxes, and developers report difficulties when
migrating between platforms. Migration can also be a lengthy process.

This work aims to leverage model-driven engineering to facilitate the migration of CI/CD
pipelines between platforms. This will be done using two levels of CI/CD pipeline meta-models,
platform-independent and platform-specific, to map common functionality between platforms.

The result is a migration methodology that can compile CI/CD pipelines from one platform
to another. The approach is inspired by the traditional reengineering horseshoe model, which
abstracts existing pipeline artifacts into a comprehensive model as an intermediate representation.
Semantic-equivalent pipelines can be generated from this model in any novel CI/CD tool. To be
of even greater use, the migration approach also allows users to merge multiple CI/CD pipelines
from various platforms into a single pipeline.

To evaluate the correctness of the approach, we compare the execution of the original CI/CD
pipeline with the one of the generated pipeline in another platform after going through a migration
process. Moreover, we also execute double round-trips through our migration software, where
we attempt to transform the generated CI/CD pipeline back into the original platform to see if
it is equivalent to the original CI/CD pipeline. We find that our approach is capable of generat-
ing pipelines with equivalent execution to the ones in the original platform. In many cases, the
generated pipelines can be migrated back into their original platform without semantic alteration.

Keywords: Model-Driven Engineering, Reengineering, Reverse Engineering, Continuous Inte-
gration, Continuous Delivery, Continuous Deployment, DevOps, CI/CD

ACM Classification: Software and its engineering — Software notations and tools — System
description languages — System modeling languages; Computing methodologies — Model-
ing and simulation — Model development and analysis

1

Acknowledgments

First and foremost, I would like to thank Professor Jicome Cunha and Hugo Gido for their guid-
ance throughout the entire dissertation process.

I would also like to thank Professors Vasco Amaral, Gregor Engels, and Stefan Sauer for their
expertise in model-driven engineering and Alexandre Oliveira for his help with modeling CI/CD
platforms.

André Flores

il

“If I had more time, I would have written a shorter letter.”

Cicero

v

Contents

1 Introduction
1.1 Problem Definition
1.2 Objectives
1.3 Contributions
1.4 Document Structure
2 State of the Art
2.1 Backgroundon CI/CD
2.2 Migration Support from CI/CD Platform Providers
2.2.1 Automated Migrations . .
2.2.2 Manual Migrations
2.3 Model-Driven Engineering
2.3.1 From Abstractionto Modeling
2.3.2 Model-Driven Software Engineering
2.3.3 Modeling Languages . . .
234 Meta-Modeling
2.3.5 Model Transformations . .
2.3.6 Model-Driven Software Reengineering
2.3.7 Model-Driven Engineering Technologies
2.4 RelatedWork
3 Understanding CI/CD Usage in Practice
3.1 Methodology
3.1.1 Collecting Repositories Using the GitHub RESTAPI
3.1.2 Searching Repositories for Current CI/CD Usage
3.1.3 Analyzing CI/CD Usage of Repositories Over Time
32 Results.
3.2.1 The Increasing Relevance of CI/CD
3.2.2 The Usage of Different CI/CD Platforms
3.2.3 The Change Rate of CI/CD Platforms
33 RelatedWork
34 Threatsto Validity
3.5 Implications for Transpiler Design
4 Overview of the Approach to CI/CD Pipeline Migration
4.1 Automatic Migration Tool
4.2 Execution Example

N B W N =

~N 39

10
11
11
12
12
14
15
17

24
24
24
25
27
28
28
28
30
32
34
35

CONTENTS

5 From CI/CD Concepts to Meta-Models
5.1 Creating the Platform-Specific Meta-Models
5.2 Creating the Platform-Independent Meta-Model
52.1 Pipeline
522 Triggers e e
523 Jobs . ..o e
524 Agentsand Services
525 Matrices e e e e
526 StEPS e e
5277 Parameters e e
5.2.8 Expressions and Variables
5.2.9 Core Differences Between Platforms
6 Implementing the Reengineering Process
6.1 Text-to-Model Transformations
6.2 Model Validations
6.3 Model-to-Model Transformations
6.3.1 Migrating Pipeline Platforms
6.3.2 Merging Multiple Pipelines
6.4 Model-to-Text Transformations
7 The Transformations DSL
7.1 The Transformations DSL Meta-Model
7.2 The Transformations DSL Grammar and Parser
7.3 From the Transformations DSLto ATL
8 ACICDTrip - A Tool for CI/CD Reengineering
8.1 Running Eclipse Technologies in Standalone Mode
8.1.1 ATL e
8.12 ECL,ETLandEML
8.2 CLI Architecture e e
8.2.1 AbstractReverseEngineer
8.2.2 AbstractForwardEngineer
8.2.3 AbstractTransformer
824 OtherClasses o i i i e
9 Evaluation
9.1 Evaluating ACICDTrip in Practice
9.1.1 TheProcess e
9.1.2 Results e
9.2 Evaluating ACICDTrip for a Large Number of Pipelines
9.2.1 TheProcess e
922 Results
9.3 AddressingRQ2.
9.4 AddressingRQ3 L
9.5 Threatsto Validity

10 Conclusions and Future Work

vi

52
52
53
54
54
55
56

58
59
61
62

63
63
64
64
65
65
65
65
66

68
68
68
71
75
75
78
78
79
80

81

CONTENTS

References

A Platform-Specific Meta-Model Figures

vii

82

99

List of Figures

2.1

3.1
32
33
34
3.5

3.6

4.1
4.2
4.3

4.4

5.1

6.1

7.1
7.2

8.1

8.2

9.1

Example of syntax comparison guide from a CI/CD platform company [100]. . . 9
Data collection process. ot 25
Number of active repositories where each platform was detected by year. 29
Mean time in days to first CI/CD platform detection by repository creation year. . 29

CI/CD platform stack transitions from repositories solely using Travis CI in 2019. 30
Percentage of active repositories using at most a given number of platforms in a
givenyear by year. e e e e e e e e 30
Percentage of snapshots with changes in the CI/CD platform stack from the pre-
vious snapshot by year, considering all repositories (figure 3.6a) and the set of

repositories active from 2012 to 2023 (figure 3.6b). 31
(a) Percentage of snapshots with changes in the CI/CD platform stack from the
previous snapshot by year (all repositories). 31

(b) Percentage of snapshots with changes in the CI/CD platform stack from the
previous snapshot by year for the set of repositories active from 2012 to

2023 (n=8296). e 31
Automatic CI/CD migrationtool. 36
CI/CD pipeline reengineering process. « . o v v v v v v v v v vt o .. 37
CircleCI model and PIM representations of input pipeline script. 39
(a) CircleCI model of the inputscript. 39
(b) PIMofinputscript. 39
PIM and GHA model representations of output pipeline. 39
(a) PIM after TDSL transformations. 39
(®) OutputGHAmodel. 39
Truncated PIMM (missing Expressions, VariableDeclaration, and enumerated
classes). e e 42
PIM-to-GHA transformations. 55
TDSL reengineering process. v v v v v v v v e e e e e e 59
TDSL meta-model. 59
AbstractEngineer class diagrams. 00000 66
(a) AbstractReverseEngineer class diagram. 66
(b) AbstractForwardEngineer class diagram. 66
AbstractTransformer class diagram. 67
CircleCI and GitHub cleaned pipeline logs comparison. 70

viii

LIST OF FIGURES ix

9.2

Al
A2
A3

(a) CircleCI Python project example logs (abridged). 70
(b) GHA Python project example logs (abridged). 70
Example of a GHA pipeline (figure 9.2a) being migrated to CircleClI (figure 9.2b)

and then back into GHA (figure 9.2c). 77
(@) Input GHA pipelinescript. oL 77
(b) Intermediate CircleCI pipeline script. 77
(c) Output GHA pipeline script. 77
CircleCI meta-model. 99
GHA meta-model. 100

Jenkins meta-model. 100

List of Tables

2.1

3.1
3.2

33
34

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

7.1
7.2
7.3

DevOps phases proposed by Zhu et al. [157]. 17
CI/CD platforms that can be identified and analyzed. 26
CI/CD platforms that cannot be identified due to the lack of clearly identifiable

artifacts. L. 26
Libraries introducing unnecessary complexity. 26
Deprecated platforms lacking documentation. 26
Pipeline PIMM classes and properties. 42
Pipeline class mappings. 43
Trigger PIMM classes and properties. 44
Trigger class mappings. 44
Job PIMM classes and properties. oo 45
ScriptJob class mappings. 46
PipelineCallJob class mappings., . 46
Agent and DockerContainer PIMM classes and properties. 46
Agentclass mappings. 47
Matrix PIMM classes and properties. 48
Step PIMM classes and properties. 49
Command class mappings.o oottt 50
ConditionalStep class mappings., 50
Cache class mappings. o oot 50
Artifact class mappings. 50
Checkout class mappings. oo v v vttt 50
Plugin class mappings. 50
Parameter PIMM classes and properties. 51
Input class mappings. L 51
Output class mappings. o i e e 51
TDSL PIMTransformations. 60
TDSL PSMTransformations. 61
TDSL ATLSecript. 61

List of Listings

1.1
1.2
4.1
4.2
4.3
6.1
7.1
7.2
9.1
9.2
9.3
94
9.5
9.6
9.7

High-level example of a C/CD pipeline. 1
Example of a CI/CD pipeline in GHA. Adapted from GitHub [138]. 2
CircleCLinput SCript. o o e e e e e e e e e 38
TDSL script for migration. L L 39
GHA output SCript. e e e 40
GHA-to-CircleCI Model Constraint Example. 53
TDSLexample. 58
TDSL entry parserrule. Lo 62
Java Project TDSL script. 71
NET Project TDSL script. oo o 0ot 72
Monorepo Project Backend TDSL script. 72
Monorepo Project Frontend TDSL script. 73
NodelJS Project TDSL script. o o v it s 74
Python Project TDSL script. 75
Double Round-Trip TDSL script. o 76

X1

Abbreviations and Symbols

API
AST
ATL
CAMEL
CD

CI

CLI
DevOps
DSL
DSML
ECL
EGL
EMF
EML
EMOF
ETL
FuSaFoMo
GAI
GHA
GMF
GPML
IDE
IoT
JSON
LCEP
M2M
M2T
MDE
MDSE
MLS
MOF
NPM
OCL
OMG
0SS
PIM
PIMM
PSM

Application Programming Interface
Abstract Syntax Tree

ATL Transformation Language
Cloud Application Modelling Execution Language
Continuous Delivery/Deployment
Continuous Integration

Command Line Interface
Development & Operations
Domain-Specific Language
Domain-Specific Modeling Language
Epsilon Comparison Language
Epsilon Generation Language
Eclipse Modeling Framework
Epsilon Merging Language

Essencial MOF

Epsilon Transformation Language
Functional Safety Formal Model
GitHub Actions Importer

GitHub Actions

Eclipse Graphical Modeling Framework
General-Purpose Modeling Language
Integrated Development Environment
Internet-of-Things

JavaScript Object Notation
Low-Code Engineering Platform
Model-to-Model

Model-to-Text

Model-Driven Engineering
Model-Driven Software Engineering
Modeling Language Suite

Meta Object Facility

Node Package Manager

Object Constraint Language

Object Management Group
Open-Source Software
Platform-Independent Model
Platform-Independent Meta-Model
Platform-Specific Model

Xii

ABBREVIATIONS AND SYMBOLS

PSMM
QA
QVT
SDLC
SLR
RQ
T2M
TCS
TOSCA
UML
VM
XP

Platform-Specific Meta-Model
Quality Assurance
Query/View/Transformations
Software Development Life Cycle
Systematic Literature Review
Research Question

Text-to-Model

Textual Concrete Syntax
Topology and Orchestration Specification for Cloud Application
Universal Modeling Language
Virtual Machine

eXtreme Programming

Xiil

L= Y N O

Chapter 1

Introduction

Continuous Integration, Delivery, and Deployment (CI/CD) means that changes to a program’s
code are consistently integrated into the current system and deployed to a production environment
with little delay. These changes should only be integrated if, after adding the code, the system can
be built from scratch and pass all required tests [11, 76].

Practicing CI/CD implies activities like frequent code commits and builds, automated building
and testing, immediately fixing a broken build, etc. [52, 40, 131, 127, 6]. These activities are
organized into CI/CD pipelines [121, 139, 72, 12, 150]. Listing 1.1 is an example of a high-level
definition of such a pipeline.

on pull request creation:
- run static analysis on code
- build project
- run unit tests
— run acceptance tests
- output static analysis, unit and acceptance test results, and unit test

< coverage report

Listing 1.1: High-level example of a CI/CD pipeline.

CI/CD brings several benefits. These include reduction of cost and risk of work integration
in distributed teams, increased software reliability, reduced time to market, improved customer
satisfaction, and enhanced productivity [52, 131, 40, 24, 6].

CI/CD pipelines are implemented using CI/CD platforms. These CI/CD platforms support
the automated building, testing, and deployment of software. They also offer other features like
integration with the code-hosting platform and package marketplaces where users can search for
extensions that improve functionality or usability (differing platforms have different terminology
for packages, e.g. Plugins in Jenkins, Actions in GitHub Actions (GHA), Orbs in CircleCI) [29,
48, 93].

20

21

22

23

24

25

26

Introduction 2

name: 'Link Checker: All English'

The ‘on" key lets you define the events that trigger the workflow.
on:
push:
branches:

- main

The "jobs key groups together all the jobs that run in the workflow file.
jobs:
check-links:
runs—-on: ubuntu-latest
The ‘steps’ key groups together all the steps that will run as part of the
— job.
steps:
The ‘uses’ key tells the job to retrieve the action named
< actions/checkout .
- name: Checkout

uses: actions/checkout@v4

- name: Gather files changed
uses: trilom/file-changes—-action
with:
fileOutput: 'Jjson'

The ‘run’ key tells the job to execute a command on the runner.
- name: Link check (warnings, changed files)
run: ./script/rendered-content-link-checker.mjs --language en --max 100

— ——-check-anchors —--check-images —--verbose —--list S$HOME/files.json

Listing 1.2: Example of a CI/CD pipeline in GHA. Adapted from GitHub [138].

There are many CI/CD platforms available on the market. The Cloud Native Computing Foun-
dation’s curated list of CI/CD platforms numbers sixty-one, and it is not complete [133]. Recently,
more CI/CD platforms have been emerging [121, 127].

Often, CI/CD platforms are configured as code in a configuration file written in their domain-
specific language (DSL), as seen in listing 1.2. These configuration files are stored with the rest of

the project’s code.

1.1 Problem Definition

A project is not limited to using just one CI/CD platform at a time (co-usage) or always sticking
to the same platform. Over its lifetime, a project can change the CI/CD platforms it uses. This
process, referred to as migration, involves taking the CI/CD pipeline modeled in the current CI/CD

platform/platforms and translating it into the new one(s).

1.2 Objectives 3

There are diverse motives for migrating CI/CD platforms. In their study of the reasons for
the changes in the CI/CD landscape [121], Mazrae et al. interview twenty-two respondents with
experience setting up, managing, or maintaining the CI/CD process of projects. They query their
interviewees on what motivated CI/CD platform migrations in their projects. They found that the
interviewees were motivated by better integration with the code-hosting platform, better features,
and reduced platform co-usage.

The study of GitHub repositories detailed in chapter 3 reveals a significant change rate in the
CI/CD platform stacks of projects over time, meaning migrations are commonplace. Furthermore,
it also finds a significant amount of co-usage of CI/CD platforms. Considering that one of the main
motivators for migration is decreasing the amount of co-usage, this could mean many projects are
looking to migrate.

Migrations are often hard to execute. CI/CD platforms have a high learning curve, there are
fundamental differences between platforms, configuring CI/CD is trial-and-error by nature, and
some features may be missing for continuous deployment. The syntax of the new tool is high-
lighted as a problem [121]. CI/CD implementations for complex projects can take around five
weeks to migrate. If the implementation must support multiple projects, the timeline can shift to
months [77].

While migration is taking place, projects can experience reduced productivity due to not only
the effort being expended in the migration but also because CI/CD processes can break down
during the process. This hardship in migrating CI/CD can also lead projects to stay with a given
platform after it stops being optimal for their use case.

In summary, there is a constant need to change CI/CD platforms. How can we aid CI/CD

developers to migrate their pipelines?

1.2 Objectives

This work’s objective is to support developers in migrating CI/CD platforms. The objective is to
make migration easier and faster, helping developers keep up productivity and reduce lock-in to a
platform.

In practice, this is done through a CI/CD pipeline transpiler designed using model-driven
engineering (MDE). With this transpiler, we want to automate the CI/CD migration process as
much as possible. This is part of an ongoing effort to improve developers’ experience with CI/CD
by leveraging MDE to interact with CI/CD in a platform-independent manner.

This work should answer the following research questions (RQs).

RQ1. What are the main core concepts shared by and unique to the different CI/CD platforms?

Our goal for RQ1 is to examine various CI/CD platforms and develop a meta-model capable
of representing their core concepts. We intend to create an abstraction that transcends the

specifics of individual languages. We answer this RQ in section 5.2.

Introduction 4

RQ2. Can a platform-independent meta-model be the basis for the accurate translation of CI/CD

pipelines between platforms?

For RQ2, our goal is to evaluate the capability of our meta-model to represent real-world
pipelines. Using model transformations, it should be possible to parse a CI/CD pipeline in a
given platform to a platform-independent model. Afterward, we should be able to generate
a CI/CD pipeline in a possibly different platform from the original one. We answer RQ2 in

section 9.3.

RQ3. Can CI/CD pipeline migration be fully automated?

For RQ3, we intend to ascertain if a fully developed transpiler based on our approach could

be used to completely automate CI/CD migrations. Section 9.4 provides an answer to this

RQ.

1.3 Contributions

Our main contribution is a platform-independent meta-model (PIMM) for CI/CD pipelines. This
meta-model can abstract CI/CD pipelines away from their implementation platform with enough
detail to allow accurate migration of CI/CD platforms. Moreover, we also created platform-
specific meta-models (PSMMs) for three popular CI/CD platforms: GHA, CircleCl, and declara-
tive Jenkins.

Furthermore, we also contribute model transformations that implement a reengineering pro-
cess that migrates CI/CD pipeline platforms. We can parse CI/CD scripts into platform-specific
model (PSM) instances, transform that PSM into a platform-independent model (PIM), transform
the PIM into a PSM of a different CI/CD platform, and generate a CI/CD pipeline script in that
platform from the PSM.

We created a transformations DSL (TDSL) so users can interact with our models through-
out the reengineering process. The TDSL simplifies model transformations relevant to migrating
CI/CD platforms (e.g., changing platform-specific plugins) by allowing the user to specify the
transformation using a syntax inspired by natural language.

The reengineering process and the TDSL are integrated into a command-line interface (CLI)
that functions independently from the Eclipse Integrated Development Environment (IDE) (com-
monly used to both develop and run MDE software, this is detailed in section 2.3.7). This ensures
our approach is valuable to users even if they are not familiar with MDE technologies.

Lastly, this work has been featured in part in three separate articles submitted for publication:
“Chronicles of CI/CD: A Deep Dive into its Usage Over Time” by Gido et al. [57], “A Meta-Model
to Support the Migration and Evolution of CI/CD Pipelines” by Gido et al. [56], and “A Two-Level
Model-Driven Approach for Reengineering CI/CD Pipelines” by Flores et al. [51].

1.4 Document Structure 5

1.4 Document Structure

The rest of this document is structured as follows.

Chapter 2 gives further background information on CI/CD and presents current migration sup-
port given by CI/CD platform providers. Furthermore, it also details model-driven engineering
concepts relevant to this work. Lastly, it includes related work.

Chapter 3 details a study of around 600,000 GitHub repositories that was done to discover
trends in CI/CD usage. It focuses on the most popular platforms, co-usage of platforms, and
migrations between platforms.

Chapter 4 presents an overview of the solution and an example of its execution.

Chapter 5 details the process of finding common characteristics to various CI/CD platforms
and creating the PIMM. This chapter also addresses RQ1.

Chapter 6 details how we implement the reengineering process outlined in chapter 4

Chapter 7 details the implementation of the TDSL, used to complement automatic migration
functionality.

Chapter 8 details the architecture of the proposed tool.

Chapter 9 details the evaluation of the solution and addresses RQ2 and RQ3.

Chapter 10 concludes with a discussion of the results and future work.

Chapter 2

State of the Art

This chapter details the current state of CI/CD and of model-driven engineering.

Section 2.1 goes into the emergence of CI/CD and its relevance in software engineering.

Section 2.2 lays out support given by CI/CD platform providers on migrating CI/CD platforms.
It includes both automated and manual migration support.

Section 2.3 gives background information on MDE. It includes the motivation for using mod-
eling in software engineering, details on models and model transformations, and how models and
model transformations can be used in software reengineering.

Section 2.4 includes related work regarding MDE and CI/CD.

2.1 Background on CI/CD

In the late 90s, Beck proposed the eXtreme Programming (XP) methodology for software devel-
opment to address shortcomings of the waterfall model [11].

The waterfall model, the more traditional approach to software development that was first
described in 1970 [122, 113], is static and approaches software development linearly and se-
quentially, completing one activity before the other [3]. It can be said to involve four phases:
requirement analysis, design, implementation, testing, and operation and maintenance [3].

Due to its rigid nature, the use of waterfall generates well-known problems. These include
but are not limited to reduced ability to deal with change, increased rework, and unpredictable
software quality due to late testing [113, 128].

According to Beck, waterfall arose from the measurement that the cost of changing software
increased dramatically. However, the software community made strides to reduce this change cost
by introducing relational databases, modular programming, and information hiding. With this in
mind, there was no need for the software engineering community to be beholden to Waterfall [11].

As an Agile process [103], XP embraces change throughout the software development lifecy-
cle (SDLC). To achieve this, XP uses shorter development cycles. XP also “turns the conventional
software process side-ways”, executing the four constituent phases of Waterfall a little at a time

during the development cycle instead of sequentially [11].

2.2 Migration Support from CI/CD Platform Providers 7

XP aims to increase communication, improve software quality, improve customer feedback,
and create smaller and more frequent software releases, shortening time to market [11].

When Beck presented XP, he outlined thirteen constituent practices: planning game, small
releases, metaphor, simple design, tests, refactoring, pair programming, collective ownership,
on-site customer, 40-hour work weeks, open workspace, just rules, and continuous integration
(CD [11].

Later, Humble and Farley extended the philosophy behind CI into software deployment.
Continuous Delivery/Deployment (CD) expresses the steps to deploy software as a deployment
pipeline. This pipeline automates the steps that take successfully integrated code and put a new
software version into production, increasing release frequency [6, 76]. Together, CI and CD form
CI/CD [6].

Circa 2007, DevOps was introduced [109]. A portmanteau of Development and Operations,
DevOps is a development methodology that bridges the gap between these two areas by emphasiz-
ing communication and collaboration, CI/CD, and quality assurance (QA) [78]. CI/CD pipelines
are at the core of DevOps [10].

Agile practices like XP have seen a significant adoption rate since they were introduced [91,
107] and DevOps’s importance to organizations has been increasing [109]. In its annual reports
on the state of DevOps, Puppet has found that high-performing organizations enabled by DevOps
deploy code thirty times faster than their lower-performing peers [110]. They also have fewer
failures on deployments and recover from failure much faster [111, 112]. Moreover, CI/CD has
also become an essential part of cloud-computing [6].

With XP’s and DevOps’s increasing popularity, CI/CD has seen greater relevance in software
development for companies or open-source software (OSS) communities since it ensures integrity

and control over changes made to the software project [127, 121, 73].

2.2 Migration Support from CI/CD Platform Providers

This section details support for CI/CD migrations that is currently offered to practitioners, whether
in the form of an automated migration tool (section 2.2.1) or manual migration guides (sec-
tion 2.2.2).

Of the CI/CD platforms listed by the Cloud Foundation [133], only the ones that had ever
achieved over 1% market share (figure 3.2) in the study detailed in chapter 3 were analyzed.
These number eleven: AppVeyor [5], CircleCI [28], Codefresh [30], Concourse [34], Drone [38],
GHA [61], Gitlab CI/CD [63], GoCD [64], Jenkins [80], Kubernetes [86], and Travis CI [136].

2.2.1 Automated Migrations

Only one of the aforementioned CI/CD platforms has an available tool for automated migration.
GitHub provides a tool called GitHub Actions Importer (GAI) to plan and automate migrations
to GHA [8]. Its goal is to achieve an 80% conversion rate for every workflow, but this depends on

the makeup of each pipeline. The tool extends to the GitHub CLI and runs on a Docker container.

State of the Art 8

GALI supports migration from seven CI/CD platforms: Azure DevOps, Bamboo, Bitbucket
Pipelines, CircleCI, GitLab, Jenkins, and Travis CI. The user connects GAI to the existing CI/CD
platform platform by supplying access credentials.

GAI can audit existing pipelines (to determine how complete and complex an automated mi-
gration can be), forecast the usage time of GHA by the transformed pipeline, dry-run a migration,
and create a pull request with the migrated pipeline in the GitHub repository.

GATI’s functionality can be extended with the use of custom transformers. The transformers
can migrate items that GAI cannot migrate automatically. It can also change references to runners,
virtual machines (VMs) where a pipeline is executed, and environment variables. Transformers
are defined in a DSL built on top of Ruby.

There are limitations to GAI’s functionality. These vary with the CI/CD being migrated from
but are usually related to functionality that cannot be mapped one-to-one in GHA, unknown pack-
ages being used in the original pipeline, unsupported functionality in GHA, and secret environment

variables.

2.2.2 Manual Migrations

Of the eleven providers analyzed, only four provide guidance on migrating to their CI/CD plat-
form. These are: CircleCI, Codefresh, GHA, and Gitlab CI/CD.

The guides mostly center on comparing syntaxes between migrating platforms. These com-
parisons focus on basic common functionality or key differences between platforms and rarely
provide help for more complex CI/CD pipelines [77, 62, 81, 94, 114]. Figure 2.1 is an example of
such guidance.

Cases where the platform providers offer more detailed guides are laid out below. GHA does

not provide any support more detailed than what was already specified.

CircleCI

CircleClI provides a detailed methodology on migrating CI/CD platforms [77]. The method in-
cludes various phases: assessment, planning, preparation, testing, and migration. They provide a
rough time frame for migration: less than one week for a simple project and around five weeks for

a complex one.

Codefresh

Codefresh offers a superset of Jenkins capabilities [81]. Codefresh has a detailed guide on migrat-
ing from Jenkins pipelines. This guide includes feature, architecture, and installation comparisons
between the two platforms and general advice on creating Codefresh pipelines. There are detailed
instructions on migrating Jenkins freestyle jobs, pipelines, credentials, pipelines that create Docker
images, pipelines that deploy to Kubernetes, shared libraries, checking out source code, and step

conditions. There is also a guide on co-usage with Jenkins while the migration is happening. This

2.2 Migration Support from CI/CD Platform Providers 9

GitHub CircleCl

name: My GitHub Actions Workflow

n: ubuntu-latest

St

Figure 2.1: Example of syntax comparison guide from a CI/CD platform company [100].

guide includes instructions on how to run Codefresh pipelines from Jenkins jobs and how to run
Jenkins jobs from Codefresh pipelines.
Codefresh can also run Actions available in the GitHub Actions Marketplace [62]. This could

ease the transition process to GHA.

Gitlab CI/CD

Gitlab gives pointers to manage organizational change and technical questions to consider before
a migration [114].

Advice on organizational changes includes setting and communicating clear migration goals,
ensuring alignment from the relevant leadership teams, educating users on changes, finding ways
to sequence or delay parts of the migration, not leaving the CI/CD pipeline in a partially-migrated
state for too long, and not moving the CI/CD pipeline as-is, instead taking advantage of new
functionality and updating the implementation.

The suggested technical questions center on the number of projects using the pipeline, the git

branching strategy, the tools used to build and test code, security scanners, and deployment.

State of the Art 10

2.3 Model-Driven Engineering

This section lays the background for model-driven engineering. It details what modeling is (sec-
tion 2.3.1), model-driven software engineering (section 2.3.2), modeling languages (section 2.3.3),
meta-modeling (section 2.3.4), model transformations (section 2.3.5), Model-Driven Software

Reengineering (section 2.3.6), and technologies used in MDE (section 2.3.7).

2.3.1 From Abstraction to Modeling

Abstraction is a natural behavior of the human mind. It can be defined as the capability of finding
the commonality in many different observations and thus generating a mental representation [18].

To be able to abstract is to simultaneously [18]:

 generalize specific features of real objects (generalization)
* classify objects into coherent clusters (classification)

* aggregate objects into more complex ones (aggregation)

In science and technology, abstraction is often referred to as modeling. A model is “a sim-
plified or partial representation of reality, defined in order to accomplish a task or to reach an
agreement on a topic” [18]. This also means a model will never describe reality in its entirety.
Notable models in science include the Bohr model of the atom [14, 18].

Models perform at least two roles regarding abstraction [18]:

* Reduction - models only reflect a portion of the original object’s properties

* Mapping - models are based on an original object, which is taken as a prototype of a cate-

gory of individuals and is abstracted and generalized to a model
Models can also be classified regarding their purpose [18]. They can be:

* Descriptive - for describing the reality of a system or context
* Prescriptive - for determining the scope and detail at which to study a problem

* Defining - for defining how a system shall be implemented

Models are meant to describe two main dimensions of a system: the static (or structural) and
the dynamic (or behavioral). Static models focus on the static parts of the system, its managed data,
and architecture. Dynamic models describe the behavior of the system by showing the execution
sequence of actions and algorithms, collaborations among system components, and changes to the
internal state of components and applications [18].

Since the human mind can process nothing without abstraction, it can be said that “everything
is a model” [18].

2.3 Model-Driven Engineering 11

2.3.2 Model-Driven Software Engineering

Model-Driven Software Engineering (MDSE), or simply Model-Driven Engineering (MDE), is a
“methodology for applying the advantages of modeling to software engineering activities” [18].
According to Sendall and Kozaczynski, MDE’s objective is “to increase productivity and reduce
time-to-market by enabling development and using concepts closer to the problem domain at
hand” [125].

MDE’s core concepts are models and transformations (manipulation operations on models).
According to Brambilla et al. [18], if one were to adapt Niklaus Wirth’s equation [151], Algorithms
+ Data Structures = Programs to the MDE context, it would read: Models + Transformations =
Software.

Model-driven engineering strictly adheres to the “everything is a model” philosophy. This goes
beyond pure development activities and encompasses other model-based tasks of a complete soft-
ware engineering process. To practice MDE, one often uses an IDE that supports defining models

and transformations and compilers or interpreters that can make the final software artifacts [18].

2.3.3 Modeling Languages

Modeling languages are one of the principal components of MDE. A modeling language lets
designers specify the models for their systems in graphical or textual representations. Modeling
languages are formally defined, and designers must comply with their syntax when modelling [18].

Modeling languages can be classified as [18]:

* Domain-Specific Modeling Languages (DSMLs) - designed specifically for a certain do-

main, context, or company to ease the description of things in that domain

* General-Purpose Modeling Languages (GPMLs) - represent tools that can be applied to

any sector or domain for modeling purposes

It is also possible to distinguish modeling languages according to their level of abstraction.

The distinction between static and dynamic models also highlights the importance of having
different viewpoints on the same system. Multi-viewpoint modeling is a cornerstone of MDE,
leading to the building of various models to describe the same system. These multiple models
may use different modeling languages. Although it is possible to define a design composed of
models in several independent languages, it is more convenient to explore a suite of languages that
have a common foundation and are aware of each other. Thus, GPMLs typically include several
coordinated notations that complement each other. These GPMLs are known as Modeling Lan-
guage Suites (MLSs). The most known example of an MLS is the Universal Modeling Language
(UML) [18].

In this case, we have defined a DSML to model CI/CD pipelines. These pipeline models
will be descriptive and dynamic, as they represent the behavior of the CI/CD pipelines. This will
allow us to migrate pipelines between CI/CD platforms by focusing on what they do instead of

platform-specific elements.

State of the Art 12

2.3.4 Meta-Modeling

A natural extension of the definition of objects as instances of a model is to define the models
themselves as instances of more abstract models. The more abstract models, called meta-models,
highlight the properties of models themselves and, in a practical sense, constitute the definition of
a modeling language, as they provide the capability of describing the whole class of models that
can be represented by that language [18].

Following this chain of reasoning, one can create models that describe objects, meta-models
that describe models, and meta-meta-models that describe meta-models. While it is theoretically
possible to define infinite levels of meta-modeling, it has been shown that meta-meta-models can
be defined based on themselves, providing little benefit to going beyond this level of abstrac-
tion [18].

While, when referring to an object in MDE, we say that an object is an instance of a model,
when referring to a model, we say it conforms to a meta-model [18].

Meta-models can be used for [18]:

¢ defining new languages for modeling or programming
* defining new modeling languages for exchanging and storing information

* defining new properties or features to be associated with existing information (metadata)

This work will use a meta-model to represent CI/CD pipelines in a platform-independent man-
ner, providing an abstraction from the CI/CD pipeline implementations of specific platforms. This

platform-independent meta-model will define the abstract syntax for our DSML.

2.3.5 Model Transformations

Besides models, transformations are the other crucial ingredient of MDE. They allow for the defi-
nition of mappings between different models [18]. According to Sendall and Kozaczynski, model
transformations are “the heart and soul of model-driven software development” [125].
While transformations are applied at the model level, they are defined at the meta-model level.
Transformations can be further classified as model-to-model (M2M) transformations, model-

to-text (M2T) transformations, and text-to-model (T2M) transformations.

Model-to-Model Transformations

Generally, M2M transformations take one or more models as input and return one or more models
as output. In most cases, one-to-one transformations are sufficient, with one input and one output
model. However, there are also situations where many-to-one, one-to-many, or many-to-many

transformations are required, like merging models [18].

2.3 Model-Driven Engineering 13

M2M transformations can also be classified as endogenous or exogenous. Endogenous trans-
formations are transformations between models conforming to the same meta-model, while ex-
ogenous transformations are between models conforming to different meta-models [96, 18]. En-
dogenous transformations are also referred to as rephrasing, and exogenous transformations as
translating [96, 140].

Examples of endogenous transformations include optimization, refactoring, simplifica-
tion/normalization, and component adaptation. Exogenous transformations can be synthesis, re-
verse engineering, or migration [96].

Endogenous M2M transformations can be made in-place, where the input and output model
are the same, or out-place, where the output model is created from scratch. By definition, exoge-
nous transformations can only be out-place [96].

We use one-to-one exogenous and endogenous M2M transformations as part of a pipeline that
transforms a platform-specific pipeline model into a platform-independent model and then into a
different platform-specific model. We also use many-to-one transformations to merge platform-

independent models as part of an effort to help developers consolidate pipeline technologies.

Text-to-Model and Model-to-Text Transformations

Text-to-model and model-to-text transformations automate the derivation of models from text and
text from models respectively [18].

Text-to-model transformations are used in reverse engineering to obtain a higher-level system
representation. By using them, it is possible to parse text, like code, into a model [18].

Text-to-model transformations depend greatly on the complexity of both the model being gen-
erated and the grammar of the text that is being parsed. For simple grammars and models, T2M
transformations can be executed using embedded translation, i.e., generating the model directly
from the text parser. More complex grammars and models may require multi-step transforma-
tions.

The primary purpose of M2T transformations in MDE is code generation. MDE’s objective
is to obtain a working system out of models. Since current execution platforms are mostly code-
based, this implies transitioning the model to code level. M2T transformations can also generate
other artifacts, like test cases or deployment scripts [18].

When implementing M2T transformations, there are several points to consider. M2T trans-
formations vary in how much code is generated since it may not be possible to generate the code
entirely from the model, what code is generated, generally code in high-level languages is prefer-
able for better readability, and how the code is generated since there are multiple technologies to
accomplish this [18].

Code generation can be described as a vertical transition from models with a higher level of
abstraction to lower-level artifacts. These different levels of abstraction imply a gap that must be

filled since not all specifics of the underlying platforms may be representable in the models [18].

State of the Art 14

This missing information has to be filled by the modeler using model augmentations, applying
the convention-over-configuration principle for code generation, or leaving the specification open
on the model level and entering the details at the code level [18].

These three approaches each have their pros and cons. Model augmentations allow detailed
tweaking of the derived implementations by spending more effort preparing the models for code
generation. The convention-over-configuration approach forgoes this effort, but the derived im-
plementations can only be optimized at the code level. There is space for a hybrid of the model
augmentation and convention-over-configuration approaches. The last approach implies only par-
tial implementation generation, meaning the developer must complete the code themselves, which
could lead to inconsistencies [18].

We use T2M and M2T transformations to integrate our transpiler directly with the CI/CD
platforms by working with text files in their DSLs.

2.3.6 Model-Driven Software Reengineering

Chikofsky and Cross define software reengineering as “the examination and alteration of software
systems to reconstitute it in new form and the subsequent implementation of the new form” [26,
92]. The process starts with the source code of the current system and ends with the source code
of the new system. This process can involve just translating code from one language into another
or also redesigning and determining the requirements in legacy systems, comparing them to new
system requirements, and removing unneeded elements [92, 120].

Software reengineering involves a set of subpractices, namely, forward and reverse engineer-
ing, re-documentation, restructuring, and translation [146, 92]. Reverse engineering is “the pro-
cess of analyzing a subject system to identify the system’s components and their interrelationships
and create representations of the system in another form or at a higher level of abstraction” [120].
Forward engineering is the traditional approach to software development, starting with the con-
ceptual design of a system and moving down through the abstraction levels until we have an
implementation [92, 120].

In essence, software reengineering implies abstracting a system’s implementation into a
higher-level representation of that system (reverse engineering), applying transformations to that
representation, and refining that representation into a new implementation (forward engineering).
These steps map well to previously discussed MDE concepts: the higher-level system represen-
tation is a model, reverse engineering is a T2M transformation, changes to the model are M2M
transformations, and forward engineering is an M2T transformation. MDE approaches to software
reengineering have been gaining traction, as they can automate a significant part of the process [49,
13,117, 108, 137].

This work will involve reengineering CI/CD pipelines using as a basis the CI/CD pipeline
meta-model mentioned before. T2M transformations will generate a CI/CD pipeline model in-
stance, those pipeline models will undergo M2M transformations, and M2T transformations will

allow code generation in a different CI/CD platform.

2.3 Model-Driven Engineering 15

2.3.7 Model-Driven Engineering Technologies

Model-driven engineering relies on technologies that support the development of models, their
transformation, and their integration in the SDLC [18]. Jicome-Guerrero et al. list various MDE
technologies and categorize them according to the elements of MDE they address [79]. Those are

listed in the following sections.

Meta-Modeling Languages

Meta Object Facility (MOF) A language intended to model classes provided by the Object Man-
agement Group (OMG). Due to its complexity, a subset of MOF is understood to be enough

for most use cases [98].
Essencial MOF (EMOF) A subset of MOF with less complexity, also provided by the OMG [98].

Ecore A part of the meta-modeling architecture of the Eclipse Modeling Framework (EMF),
which provides the Eclipse IDE with meta-modeling capabilities. Ecore is a meta-model
language that provides object-oriented concepts for creating meta-models and a subset of
MOF [41].

Object Constraint Language (OCL) Used to define rules to determine if a model is well-
formed. It can be used with any MOF meta-model [106, 141].

MetaDepth Modeling language that supports an arbitrary number of meta-levels. This makes it
useful for defining multi-level languages [97].

Development Environments

OMG Meta-modeling Architecture Includes both MOF and UML since UML is defined with
MOF [98].

Eclipse/Eclipse Modeling Framework The modeling project intended to support MDE in
Eclipse. The EMF provides the basic mechanisms to handle meta-models [67].

Epsilon A family of scripting languages and tools for automating common model-based software

engineering tasks [44].

Graphical Editors

Eclipse Graphical Modeling Framework (GMF) An Eclipse plugin that supports the develop-
ment of graphical model editors from meta-models [15].

Graphiti Used to create highly sophisticated editors with support for EMF [147].

State of the Art 16

Sirius An Eclipse project that allows the development of graphical modeling editors, leveraging
Eclipse technologies like EMF and GMF. It is highly adaptable and supports blended mod-
eling. Relies on Acceleo and other projects to facilitate establishing relationships between

model data and its graphical representation [126].

Textual Editors

Xtext An EMF-based framework to create textual modeling languages. It associates a textual
representation with the meta-model. It provides mechanisms that allow the editing and ma-
nipulation of textual models. Includes a language for defining grammar and an application
programming interface (API) for defining different aspects of a DSL. Automatically gener-

ates a parser, static analyzer, code formatter, code generator, etc., for the defined DSL [154].

EMFText An Eclipse plugin that allows defining a textual syntax for an Ecore meta-model. It can
generate code without any EMFText dependencies. Allows automatic generation of default

syntax and complete analysis of syntax to warn of potential problems [43].

Textual Concrete Syntax (TCS) A component of Eclipse Generative Modeling Technologies
that allows the specification of a textual syntax for DSL, attaching syntactic information
to meta-models. Offers an Eclipse editor that supports syntax highlighting, a schema, and

hyperlinks per each DSL syntax represented in the DSL [134].

Model Transformations

Atlas Transformation Language (ATL) A hybrid model transformation language that imple-
ments imperative and declarative paradigms. An ATL transformation is composed of rules
defining how the target model elements are created and initialized from the elements of the

source model [105].

Query/View/Transformations (QVT) A family of languages the OMG provides that allow for
the definition of transformations. There are two end-user languages, QVT Operational Map-

pings and QVT Relations, and a low-level language, QVT Core [1].

Epsilon Transformation Language (ETL)/Epsilon Merging Language (EML) A part of the
Epsilon family of scripting languages to interact with models. ETL and EML are used to
define M2M transformations in a rule-based and modular manner. EML can merge various
models. To achieve this, the models must first be compared using the Epsilon Comparison
Language (ECL). Elements determined to be matching are then merged according to the
defined rules [102, 101].

2.4 Related Work 17

Table 2.1: DevOps phases proposed by Zhu et al. [157].

Phase Description

Development | Involves planning and developing software.

Integration Core of the DevOps lifecycle. Committing new changes to the source code.
Testing Automatic testing tools.

Monitoring Performance monitoring and recording of the application.

Feedback Gathering, analyzing, and using clients’ software usage feedback.
Deployment | Deployment of the code to the production environment.

Operations Automating all release operation processes.

Code Generation Languages

Acceleo An implementation of OMG’s MOF-to-Text standard, part of the Eclipse M2T project.
Allows easy code generation, high personalization capacity, interoperability, and traceability

management. Uses a template mechanism [2].
Java Emitter Templates A tool to generate output files from an input model using templates [143].

Xpand Can generate code based on DSL models defined with Xtext. It is a statically typed
template language [142].

Epsilon Generation Language (EGL) A template-based model-to-text language for textual ar-

tifacts from models [45].

2.4 Related Work

As part of the same ongoing effort to improve CI/CD developer experience using MDE as this
work, Gido et al. conducted a systematic literature review (SLR) of model-driven approaches to
DevOps [53]. The SLR finds relevant papers and categorizes them according to the phases of
DevOps they cover. These phases, proposed by Zhu et al. [157], are Development, Integration,
Testing, Monitoring, Feedback, Deployment, and Operations. More detail about the phases can be
found in table 2.1.

From the relevant papers identified by Gifo et al., only the ones about the Integration, Testing,
Deployment, and Operation phases were analyzed. This was because attempts to model the other
DevOps phases, Development, Monitoring, and Feedback, were irrelevant to this study’s focus,
CI/CD pipelines.

Colantoni et al. [32] propose DevOpsML, a modeling language for DevOps platforms and pro-
cesses to support documentation implemented with EMF. In their work, they recognize the increas-
ing interest in the integration of DevOps and MDE practices in low-code engineering platforms
(LCEPs) and the tension between the often non-technical LCEP users and the current DevOps
processes that are considered on a more technological level.

DevOpsML uses three meta-models: a platform meta-model to define platforms by their tools

and interfaces; a process meta-model that describes DevOps processes like CI/CD pipelines; and

State of the Art 18

a linking meta-model, capable of linking process to process, platform to platform, and process to
platform.

This work is related to ours, as Colantoni et al. create a meta-model that can describe the
DevOps process. However, DevOpsML differs from the meta-model used in this work because
it tries to model DevOps itself instead of CI/CD pipelines. This increased abstraction and scope
would make it harder to directly execute transformations from PSMs to a PIM. This is not an issue
for Colantoni et al., as the initial version of DevOpsML is intended to support documentation.

El Khalyly et al. [42] propose a DevOps meta-model and an Internet-of-Things (IoT) meta-
model. The DevOps meta-model has a high degree of abstraction, while the IoT meta-model is
more detailed. The authors claim a dependency from the IoT meta-model to the DevOps meta-
model, as DevOps tools are “in service of Internet of Things ecosystem to guarantee the continuous
integration, delivery and deployment of programs”.

El Khalyly et al.’s work is related to ours as their DevOps meta-model addresses CI/CD
pipelines. However, their meta-model has a much higher degree of abstraction. This is because El
Khalyly et al.’s meta-model is part of a broader effort to standardize IoT systems, while ours is the
basis for a CI/CD pipeline reengineering process.

Melchor et al. [95] present a model-driven framework for defining data science pipelines in-
dependent of a particular execution platform and tools implemented with EMF. This framework
separates the pipeline definition into two different modeling layers: a conceptual layer, where a
data scientist specifies all the data and operations to be carried out by the pipeline, and an organi-
zational layer, where a data engineer can specify the execution environment where the operations
will be implemented. This approach allows the usage of different tools, which improves replica-
bility, the automation of process execution, improving reproducibility, and the definition of model
verification rules, providing intentionality restrictions.

This paper is relevant as Melchor et al. model data science pipelines, a topic adjacent to
CI/CD pipelines, in a platform-independent manner. Like them, we use two modeling layers to
represent pipelines. However, their modeling layers, conceptual and organizational, describe what
the pipeline does and the infrastructure it is executed on, respectively. As such, both meta-models
have a similar level of abstraction, and there are no transformations between models conform-
ing to them. Our modeling layers, platform-specific and platform-independent, seek to represent
the pipeline wholly, and we execute vertical transformation from platform-specific to platform-
independent and vice-versa.

Van den Heuvel et al. [71] introduce ChainOps, a model-driven DevOps approach for the
blockchain. They focus on modeling smart contracts, computations in the form of executable
code that promise to simplify trade ecosystems where parties may remain anonymous. They claim
their model addresses concerns with trustworthiness, enables non-technical end-users, and reduces
blockchain environment lock-in. They can apply M2T transformations to generate code for various
blockchain technologies. ChainOps is based on the AstraKode Blockchain Modeler, a software-
as-a-service modeling platform for blockchain technologies.

2.4 Related Work 19

Van den Heuvel et al.’s work has a similar goal to ours. Both seek to use modeling to enable
users with less platform-specific knowledge, reducing platform lock-in. Like us, Van den Heuvel
et al. also do this by generating platform-specific code from a higher-abstraction-level model
through M2T transformations. The approaches differ as Van den Heuvel et al. focus only on
blockchain projects and CD. We seek to model CI/CD for any project.

Colantoni et al. [33] present a work in progress for modeling CD pipelines based on JavaScript
Object Notation (JSON). This work is separate from their aforementioned DevOpsML [32].

They use a previously developed approach, JSONSchemaDSL, to semi-automatically generate
JSON-based DSLs specified through a JSONSchema. JSONSchemaDSL generates an EMF meta-
model, an Xtext grammar, and a Sirius graphical representation. With this, Colantoni et al. allow
blended modeling, “the activity of interacting seamlessly with a single model through multiple
notations, allowing a certain degree of temporary inconsistencies” [27], of JSON-based DSLs.

This approach is applied to Keptn, a CD platform, through its JSON-based DSL, Shipyard,
leading to the modeling of CD pipelines.

Colantoni et al.’s work is the most similar to ours, as JSONSchemaDSL can generate meta-
models for CI/CD pipelines of JSON-based CI/CD platforms. However, these meta-models are
all platform-specific. Our approach includes meta-models like the ones Colantoni et al. generate,
but it also includes platform-independent ones that serve as the basis for pipeline migration. This
cannot be done using JSONSchemaDSL.

Diillmann et al. [39] propose a model-driven DSL-based CI/CD pipeline definition and anal-
ysis framework. Their work involves the creation of a meta-model for the Jenkins pipeline lan-
guage. The DSL is aimed at facilitating interoperability and transformation between different
formats. Through their approach, the authors analyzed 1,000 publicly available Jenkins files and
successfully represented 70% of those files without any loss of information.

In contrast, our PIMM is not specific to a CI/CD language and was designed to abstract away
from the intricacies of individual platforms. Our Jenkins meta-model is also more detailed. Fur-
thermore, we tested our PIMM for its ability to represent CI/CD pipelines and for tasks extending
beyond mere representation, such as reengineering pipelines across platforms.

Pulgar et al. [115] introduce a meta-model heavily influenced by GHA. Their goal is to ensure
that each modification to a pipeline is valuable. To validate their approach, the authors utilized
three open-source projects. Additionally, the authors created justification diagrams intended for
sharing with the development team.

In contrast, our PIMM offers greater abstraction from specific CI/CD tools and encompasses
more features than those of the authors. Moreover, we conduct different types of validations
compared to Pulgar et al., as our primary focus lies in utilizing our meta-model to reengineer and
develop pipelines.

Ferry et al. [47] present ENACT, a model-driven DevOps framework for trustworthy smart IoT
systems. ENACT includes a continuous delivery toolkit with two enablers: an orchestration and

continuous deployment enabler and a test emulation and simulation enabler. The first enabler has

State of the Art 20

a DSML that can support the automatic deployment of software components over IoT, edge, and
cloud resources.

Babar et al. [9] model DevOps deployment choices to enable enterprises to devise a DevOps
approach suitable to their requirements while considering possible process reconfigurations. Their
approach enables the modeling of trade-offs of alternative deployment options [16]. Babar et al.’s
work allows modeling CI/CD pipelines, but only in a very high-level manner.

Bordeleau et al. [16] identify requirements of a modeling framework for DevOps through a
case study. This framework would be composed of processes, methods, and tools. They identify
general, description, analysis, and simulation (to support continuous framework improvement)
requirements. The modeling framework envisioned by Bordeleau et al. would serve to support
organizations in putting DevOps processes into practice.

Waurster et al. [153] propose the Essential Deployment Meta-Model to enable a common under-
standing of declarative deployment models by facilitating the comparison, selection, and migration
of platforms.

Kumar and Goyal [87] propose ADOC, a conceptual model for automated DevSecOps, De-
vOps embedded with security controls providing continuous security assurance, for OSS over the
cloud. ADOC is based on a continuous security conceptual framework described in the article.
There are three components to ADOC: the ADOC Engine, an end-to-end automated workflow
with a set of practices and embedded security assurance controls; the OSS suite, the propellant for
this ADOC Engine; and the cloud infrastructure and technologies to power ADOC.

These works are related to ours, as they attempt to use MDE to improve the user experience of
DevOps processes like CI/CD. However, they go about this by supporting organizations in making
DevOps-related decisions. Our work aims to improve the DevOps experience by simplifying the
migration process between CI/CD platforms. As such, we attempt to model CI/CD pipelines
themselves instead of more abstract DevOps processes.

TOSCA [104, 148], short for Topology and Orchestration Specification for Cloud Applica-
tions, is an emerging standard. Its main goal is to enhance the portability and management of
cloud applications. It can be used to model and automate DevOps for cloud applications.

MODAC]Iouds [37] is a European project undertaken to simplify cloud services using MDE.
One of its goals is to support developers in building and deploying applications to multi-clouds
across the full cloud stack. MODAC]Iouds includes MODACloudML, a set of DSLs to support the
design of multi-cloud applications with guaranteed quality of service.

MELODIC [74] allows modeling, deploying, and optimizing multi-cloud applications. The
application is modeled using the Cloud Application Modelling Execution Language (CAMEL)
and business process models. The CAMEL application model is transformed into a Constraint
Programming Model for mathematical optimization of the deployment [33].

MORE [25] is a model-driven approach to automate a system’s initial deployment and dynamic
configuration. MORE includes a model to specify the high-level view of a system in the form of a

desired deployment topology. This topology is then transformed into executable code for Puppet,

2.4 Related Work 21

an infrastructure deployment and management platform [116], to get virtual machines, physical
machines, and containers [123].

TOSCA, MODACIouds, MELODIC, and MORE are related to our work as they can model
deployment configurations for cloud projects, an element of CI/CD. These approaches are also
capable of generating deployment code from the models. Our approach differs from these as we
also attempt to model continuous integration. We also want our approach to be viable for non-
cloud applications. As such, we base our PIM on different CI/CD platforms.

Sandobalin [123] develops a DSL called ARGON that can model cloud infrastructure; the
model then allows the generation of scripts of different configuration management tools for CD
through model-to-text transformations. Sandobalin’s infrastructure meta-model abstracts the ca-
pabilities of cloud computing.

Ketfi and Belkhatir [84] propose DY VA, a unified framework for dynamic deployment and re-
configuration of component-based software systems. The framework is based on their hierarchical
meta-model, a PIM, that provides an abstract view of a component model. Then, this meta-model
can be personalized into a specific component model. Changes in this personalized model, a PSM,
trigger the deployment or the reconfiguration process.

Casale et al. [21] propose using MDE to support QA in data-intensive software systems. Their
tool, DICE QA, would be capable of modeling big data applications. DICE QA covers simulation,
verification, and architectural optimization. DICE could also generate code and performance,
reliability, and safety models.

Kirchhof et al. [85] present MontiThings, a modeling infrastructure for systematic engineer-
ing of IoT applications. MontiThings is an extension of MontiArc, an architecture description
language.

Song et al. [129] create a model-based tool, GeneSIS, to generate deployment plans for IoT
devices without human interaction. The tool takes a PSM as an input and transforms it into a PIM.
Using the PIM and constraint solving, the tool then assigns deployment plans to devices in the
PIM. Lastly, the PIM is transformed into the PSMs necessary for device deployment.

Hugues et al. [75] propose TwinOps, a process that unifies model-based engineering, digital
twins, and DevOps in one workflow that can be used to improve the engineering of cyber-physical
systems. DevOps practices are combined with model-based code generation to facilitate deploy-
ments.

Meyers et al. [99] present an MDE framework that supports continuous testing and fast devel-
opment iterations in safety-critical systems. Their framework is based on two DSLs. The first is
a formal modeling language, the Functional Safety Formal Model (FuSaFoMo), that allows en-
gineers to build a formal architectural description of a system. The second is a contract-based
requirements language that can link to FuSaFoMo and specify system behavior. Test cases can be
generated from these contracts to verify system behavior.

Rivera et al. [119] propose Urano, a tool for automating the deployment process that uses UML
to specify software architecture and the deployment process. From graphical UML specifications,

Urano generates textual specifications in Amelia, a DSL specifically conceived for specifying and

State of the Art 22

executing deployment workflows for distributed software systems. The Amelia specification can
then be compiled into a Java-based application that automatically performs deployment opera-
tions [82].

Silva et al. [35] propose OpenTOSCA for IoT, a TOSCA-based system to deploy IoT applica-
tions fully automatically. This approach requires low-level technical details to function. Silva et
al.’s work is an approach to CD in IoT systems.

Wettinger et al. [148] present a methodology for using TOSCA to describe DevOps artifacts
by crawling knowledge repositories. From the TOSCA description, Wettinger et al. can deploy
application topology using OpenTOSCA.

Ribeiro et al. [118] present a model-based solution to deploy software in the cloud automat-
ically. Their solution uses UML models. After all required deployment information about the
cloud provider and repository has been input into the model, the solution generates an automatic
deployment. The deployment code is written in Ruby and for Chef, an infrastructure deployment
platform [23].

Artac et al. [7] propose DICER, a framework to support the model-driven continuous design
and deployment of data-intensive applications. DICER’s architecture comprises two main compo-
nents: the Modeling Environment and the Deployment Service. In the Modeling Environment, the
user specifies infrastructure elements. This model is transformed into a TOSCA-compliant model
and then a deployable TOSCA YAML blueprint. The Deployment Service receives the TOSCA
YAML blueprint and handles it using Chef.

Alipour and Liu [4] propose a model-driven methodology to facilitate multi-cloud deploy-
ment of applications. They use abstraction levels: platform-independent and platform-specific.
Model transformations transform the platform-independent model into platform-specific ones and
then into deployment configurations. Alipour and Liu use this to create a consistent auto-scaling
strategy across multiple cloud platforms.

Brabra et al. [17] propose a model-driven methodology to automatically transform TOSCA
models of cloud resources and their orchestration into artifacts of specific DevOps platforms like
Docker. Casale et al.’s RADON project [20] seeks to develop a model-driven DevOps framework
for creating and managing microservice-based applications. Challita et al. [22] analyze the con-
ceptual similarities between TOSCA and the Open Cloud Computing Interface, which focuses
on standardizing an API for infrastructure-as-a-service providers and create a tool to fully deploy
and manage cloud applications based on the two studied technologies. Ferry et al. [46] propose
CloudMF for model-driven management of multi-cloud applications through the use of a DSL.
Guerriero et al. [68] introduce SPACE4Cloud, a DevOps integrated environment for model-driven
design-time quality of service assessment and optimization, and runtime capacity allocation of
Cloud applications. Weerasiri et al. [144] present a model-driven framework for interoperable
cloud resources management. This is done through high-level domain-specific models that de-
scribe elementary and federated cloud resources and a pluggable architecture to transform these
into lower-level resource descriptions and management rules. In a separate work, [145], Weerasiri

et al. also propose a visual notation for representing and managing cloud resources.

2.4 Related Work 23

These works are related to ours as they use MDE to facilitate the deployment or testing of
applications, elements of CI/CD. Many also involve reengineering, using methodologies similar
to ours by having two modeling levels, platform-specific and platform-independent.

However, they differ from ours in that they attempt to model the architecture of the applications
themselves and then generate deployment configurations for them. We are not directly concerned
with application architecture as we model already existing CI/CD pipelines. This difference also
reveals itself in the platforms we support, as we focus on GHA, CircleCI, and Jenkins. Overall,

the models they use are static, while ours are dynamic.

Chapter 3

Understanding CI/CD Usage in Practice

In this chapter, we seek to better understand CI/CD usage in practice. This will help us understand
how common platform migrations are and what are the most relevant platforms for the PIMM to
support. To achieve this, we designed a study that involved mining public software repositories
hosted on GitHub over a period of almost 12 years.

GitHub is the most widely used version control and software hosting service [152]. As of
2023, over 100 million developers used GitHub, and the platform hosted over 284 million public
repositories [88]. GitHub also provides an API to collect information from its software reposi-
tories. With this API, it is possible to search repositories inside GitHub using parameters such
as keywords in their name and README, size, number of stars, followers, and forks [124]. The
insights collected using the API help understand various developer behaviors and have been used
in several studies [69, 70, 65, 90, 19, 57].

In section 3.1, we present the methodology used for this work. This methodology includes
how we found the CI platforms for this study, what information we have collected from the repos-
itories and how it is related to our research questions, how we used the GitHub API to collect
information from the repositories, and how we organized the data collected from the said reposi-
tories. Section 3.2 showcases and analyzes the mining results. Section 3.3 presents several works
related to this one. Those works focus on mining information about several DevOps aspects in
various software repositories. Section 3.4 discusses the threats to the validity of our work. Finally,

section 3.5 presents the study’s conclusions.

3.1 Methodology

This section details the process followed to collect the data for the analysis. Figure 3.1 presents

an overall view detailed in the following paragraphs.

3.1.1 Collecting Repositories Using the GitHub REST API

The initial data collection phase involved assembling a representative sample of GitHub reposi-

tories reflective of real-world projects. To achieve this, school projects and smaller repositories

24

3.1 Methodology 25

Collecting repositories
using the GitHub REST API

J7

Searching repositories for Found 200,023 repositories
current CI/CD usage with CI/CD

J7

Analyzing CI/CD usage
of repositories over time

J Collected 612,557 repositories

} Analyzed 197,410 repositories

Figure 3.1: Data collection process.

were excluded, employing a methodology inspired by prior research projects [31]. That is, the
focus was on repositories with a certain level of popularity. Ultimately, only repositories with 10
or more stars were collected.

The sampling process encompassed retrieving 1,000 repositories every week from January 1,
2012, to October 18, 2023. This timeframe was selected because the concept of DevOps gained
prominence around that period. This assertion is supported by the emergence of the first compre-
hensive survey on the state of DevOps by Puppet Labs in the same year [109].

Afterward, we removed duplicated repositories from the dataset. This approach yielded
612,557 repositories spanning the specified date range. The entire dataset of repositories is

provided for reference [59]. The source code used to create this dataset is also available [54].

3.1.2 Searching Repositories for Current CI/CD Usage

Following the collection phase, we sought to discern the platforms employed in each repository.
We used a list of 61 CI/CD platforms curated by the Cloud Native Computing Foundation [133],
established by the Linux Foundation, to determine which CI/CD platforms we would search for.

Identifying CI/CD Platforms

We identified pertinent artifacts and patterns for each platform in the list, enabling automatic
recognition of repositories utilizing those platforms. Each platform was identified using one of
two heuristics: i) some platforms use files with a particular extension; ii) for the others, specific
types of files (e.g., YAML files) had to be inspected for content specific to the underlying platform.

From this process, we divided the 61 into four different categories: i) 39 platforms that could
be identified (table 3.1); ii) 10 which could not be identified since there was not a clear artifact

to use (table 3.2); iii) 4 platforms that required the use of specific code to be identified as they

Understanding CI/CD Usage in Practice

documentation that made it impossible to recognize (table 3.4).

are libraries embedded in the code (table 3.3); and iv) 1 deprecated platform with no current

Table 3.1: CI/CD platforms that can be identified and analyzed.

Agola App Veyor ArgoCD Bytebase
Cartographer CircleCI Cloud 66 Skycap | Cloudbees Codeship
Devtron Flipt GitLab Google Cloud Build
Helmwave Travis Jenkins JenkinsX
Keptn Liquibase Mergify OctopusDeploy
OpenKruise OpsMx Ortelius Screwdriver
Semaphore TeamCity werf Woodpecker CI
GitHubActions | Codefresh XL Deploy Drone
Flagger Harness.io Flux GoCD
Concourse Kubernetes | AWS CodePipeline

Table 3.2: CI/CD platforms that cannot be identified due to the lack of clearly identifiable artifacts.

Akuity Bamboo
Buildkite | Bunnyshell
CAEPE Keploy
Northflank | OpenGitOps
Ozone Spacelift

Table 3.3: Libraries introducing unnecessary complexity.

Brigade k6
OpenFeature | Unleash

Table 3.4: Deprecated platforms lacking documentation.

| D2iQ Dispatch

Searching Repositories for CI/CD Platform Artifacts

We analyzed the latest available commit of all 612,557 repositories retrieved in section 3.1.1.

This analysis involved retrieving the complete file tree of each repository as well as the con-
tents of any file that could include content that identified a CI/CD platform being used.

With this data, we searched for the 39 CI/CD platforms we could identify using the previously
described methodology. We found a total of 200,023 repositories using one or more CI/CD plat-
forms in their latest commit. The comprehensive dataset containing the repositories, the SHA of
the commit we analyzed, and the corresponding platforms is also available for further examina-
tion [58]. The code used to create this dataset and the figures generated with the data are also
available [54].

3.1 Methodology 27

3.1.3 Analyzing CI/CD Usage of Repositories Over Time

Having identified 200,023 repositories with CI/CD, we investigated their CI/CD usage over time.
This involved retrieving snapshots of the repositories at a given time interval.

These snapshots are retrieved using commits in the repository. For each commit, we retrieve
the required data to identify CI/CD platforms (as described in section 3.1.2).

For this analysis, we discarded any repositories that were created after July 16, 2023 (so they

were older than 90 days). This gave us a sample of 197,504 repositories.

Determining the Snapshot Interval

To determine the ideal sampling interval for the snapshots, we ran a test on a random sample
of 10,000 repositories (from the 197,504 repositories with CI/CD and older than 90 days). We
retrieved snapshots at 90-day, 180-day, and 365-day intervals for each repository of the 10,000
repositories. Each snapshot was then searched for CI/CD platforms.

The goal was to determine the number of changes in the CI/CD platform stack that would be
lost by increasing the retrieval interval, a change being any difference in the CI/CD stack compared
to the previous snapshot. For the sample, there were 14039 stack changes at a 90-day sampling
interval, 11958 changes at a 180-day sampling interval, and 9962 changes at a 365-day sampling
interval. From a 90-day to a 180-day rate, there was a 14.8% decrease in the detected changes,
and from a 180-day to a 365-day rate, there was a 16.7% decrease in detected changes.

Based on these results, the analysis used a 90-day sampling rate. A lower sampling interval,
or retrieving all commits for each repository, was not feasible due to GitHub API rate limits and

the time for the study.

Retrieving Snapshots of Repositories

For each selected repository, the first commit was retrieved. A sequential iterative process was
employed, where the latest commit (if one existed) was retrieved for each 90-day interval starting
from January 1, 2012, or the repository’s first commit push date, whichever was later. This process
continued until the repository’s last update at the time of retrieval. All commits were retrieved from
the default branch of the repository.
We examined the snapshot commits using the same methodology described in section 3.1.2.
In this process, 19 repositories could not be analyzed because they had either been deleted or

gone private in the time since we identified them. This left us with 197,485 repositories.

Cleaning the Data

After all repositories were processed, the retrieved data was cleaned. Any snapshots from before
January 1, 2012, were discarded (we use the commit date for this instead of the date the commit
was pushed to GitHub), and the last snapshot of each repository was set to the one used in the

previous analysis. For some snapshots, the GitHub API could not return a file tree. Another

Understanding CI/CD Usage in Practice 28

attempt was made to process these snapshots to eliminate any momentary API malfunction. Lastly,
each snapshot’s date and detected platforms were checked against the detected platforms’ launch
dates, and snapshots where a platform was detected before it was launched were removed. If a
repository was left without snapshots at the end of these cleaning steps, it was discarded.

From an initial 197,485 repositories selected for temporal analysis, we finished with the CI/CD
platform use history of 197,410. For the 75 repositories whose CI/CD platform history could not
be cleaned, the reasons are as follows: another 39 repositories could not be cleaned because they
had either been deleted or gone private, and 36 were discarded because they had no snapshots at
the end of the cleaning steps.

The comprehensive dataset containing the repositories and the corresponding snapshots and
platforms is also made available for further examination [60]. The code used to create this dataset

and the figures generated with the data are also available [55].

3.2 Results

Having retrieved and cleaned repository data, we analyzed it to get a better perspective of CI/CD
usage. In section 3.2.1, we detail CI/CD’s increasing relevance. Section 3.2.2 details the usage
of different CI/CD platforms and section 3.2.3 details how often repositories change CI/CD tech-

nologies.

3.2.1 The Increasing Relevance of CI/CD

Overall, we found an increase in CI/CD usage from 2012 to 2023. This can be seen in figure 3.2
where, even though a repository may use more than one CI/CD platform, we can detect a general
increase in the number of active repositories using CI/CD over the years (an active repository is
a repository with at least one commit in a given calendar year). Moreover, as seen in figure 3.3,
CI/CD platforms are being integrated into the development workflow sooner as time goes on. The
sharp decreases in 2022 and 2023 come from all analyzed repositories having at least one CI/CD
platform in 2023.

This reveals an increase in the relevance of CI/CD over time, as not only are more projects
using it, but they are also integrating it earlier into their lifetime. This decrease in time to CI/CD
integration may also indicate that less complex and smaller projects are using CI/CD. This could
mean these projects do not have a full-time DevOps developer, which would underline the need to

make CI/CD pipeline changes more efficient, as the projects have fewer resources.

3.2.2 The Usage of Different CI/CD Platforms

Figure 3.2 shows two significant trends in CI/CD, Travis, and GHA. Travis usage steadily in-
creased from 2012 until it peaked in 2019 with 73,284 repositories (36.6%). Since 2019, Travis’s
usage has been declining. This coincides with the rapid adoption of GHA; from 2019 to 2020,
there was a 502.8% growth in the number of repositories using GHA, and from 2020 to 2021,

3.2 Results 29

Technology
[AppVeyor
Il CircleCl
] Codefresh
I Concourse
Drone
H GitHubActions
B GitLab
I GoCD
Jenkins
¥ Kubernetes
B Other (<1.0%)
1 Travis

150,000

100,000

50,000 -

of repositories

o~ m < n O ~ [ce) o O o~ m

— — — — — — —~ — o~ o~ o~ o~

o O o O O O o o O O O o

o~ o~ o o~ o~ o~ o o o~ o~ o~ o
Year

Figure 3.2: Number of active repositories where each platform was detected by year.
600
500
400
300
200

100

Mean time to first technology (days)

o

N [s2] < Yo} © ~ [ee) [« o — N 3]

— — — — — - — — N [aN) N N

o o o o o o o o

N N N N N N N N N N N N
Year of repository creation

Figure 3.3: Mean time in days to first CI/CD platform detection by repository creation year.

there was an 86.6% growth. Of the 36,587 repositories that used Travis in 2019 and were still
active in 2023, 59.7% were using GHA and not Travis in 2023, 21.1% used Travis and not GHA,
and 16.9% used both. Of the 87,582 repositories using GHA in 2023, 45.4% had no snapshots
from before 2020. The exodus from Travis and the influx from newer repositories have been the
main drivers for GHA’s growth.

Figure 3.4 shows the top 10 CI/CD stack transitions from repositories that solely used Travis
in 2019. While many stopped being active, 22.9% moved from Travis to GHA. If we consider
only the ones active, this means 53.7% of all active Travis projects moved to GHA.

A repository may use more than one platform at a time. As seen in figure 3.5, this is quite
common. In the last 4 years, each year, more than 23,000 projects have included more than one
platform, which accounts for about 20% of all projects (the platforms used in a repository in a

given year are the union of the platforms of the snapshots retrieved in that year).

Understanding CI/CD Usage in Practice 30

Inactive|(2023)I(n=30836)

GitHUDAG

Other 2023 (n=1234)
CircleCI(2023)-(n=297)-

Coficours itHubActions 23 (n=131)-
%r@lﬂ?aﬂg (2023) (n=73)

GitHu 'onstﬂergi 2023)(n=119)-
Drone+GitHo ions (2023) (n=133)

CirdeCI+GitHu ons(2023) (n=171)-
GitHubActions+GoCD (202 =119)-

Figure 3.4: CI/CD platform stack transitions from repositories solely using Travis CI in 2019.

From this data, there is an observable migration in the CI/CD platforms used over the years.
Taking into account Mazrae et al.’s reporting that one of the main reasons for migrating CI/CD
platforms is to diminish co-usage [121], the significant number of projects co-using platforms
could also represent a large number of users looking to migrate. This, too, substantiates the need

to provide support to developers migrating CI/CD.

of technologies
100 mo
Bl
80 = g
- 4
g ms
+ 60
o M6
g w7
[
40 8
o
W9
M 10
20 11
o 12
W 13
0
o~ m < n o ~ [ce) o O — N m
- — — — — — — — o~ o N o~
o o O O O O o o O O O o
o~ o (o] N N N o (o] (o] NN o

Figure 3.5: Percentage of active repositories using at most a given number of platforms in a given
year by year.

3.2.3 The Change Rate of CI/CD Platforms

As figure 3.6a shows, the percentage of snapshots with CI/CD changes compared to the previous
snapshot grows steadily from 2013 (2.3%) to 2019 (6.9%) and peaks in 2020 (12.2%) and 2021

3.2 Results 31

Percentage of snapshots
Percentage of snapshots

o
N
o
N

o
P
o
N

(a) Percentage of snapshots with changes in the CI/CD (b) Percentage of snapshots with changes in the CI/CD

platform stack from the previous snapshot by year (all platform stack from the previous snapshot by year

repositories). for the set of repositories active from 2012 to 2023
(n=8296).

Figure 3.6: Percentage of snapshots with changes in the CI/CD platform stack from the previous
snapshot by year, considering all repositories (figure 3.6a) and the set of repositories active from
2012 to 2023 (figure 3.6b).

(12.6%), coinciding with GHA’s explosive growth phase. Since 2021, this number has remained
stable at almost 8%.

This is a very significant result since it shows that every year, between 2.3% (in 2013) and
12.6% (in 2021) of all snapshots include some change in the CI/CD platforms used. This repre-
sents a very significant amount of platform shift, with all the known issues with that. Moreover, it
is essential to notice that this is constant over time, and there is no reason to think this may change
in the near future. This means the research community can significantly contribute to aiding all
these teams when they migrate and evolve their systems.

If we limit this analysis to a subset of active repositories from 2012 to 2023, that is, reposito-
ries for which we would retrieve CI/CD platform information for every year from 2021 to 2023
following the previously described methodology, we find interesting results. As figure 3.6b shows,
similar trends can be observed but with higher change percentages over time. For this analysis, all
snapshots for each repository before the first where we detected CI/CD platforms were discarded.
This was done to eliminate a project’s first choice of platforms from the analysis.

The percentage of CI/CD platform stack changes is significant and is consistently higher in
long-running projects, meaning projects continuously look for platforms that better fit their work-
flow. Although one could expect some stability over the years for mature projects, this is not the

case, as seen in the data. This reinforces the need to provide support for these changes.

Understanding CI/CD Usage in Practice 32

3.3 Related Work

Xu et al. [155] introduce the idea of mining container image repositories for configuration and
other deployment information of software systems. The authors also showcase the opportunities
based on concrete software engineering tasks that can benefit from mining image repositories.
They also summarize the challenges of analyzing image repositories and the approaches to address
them.

Xu et al.’s work is related to this study as they, too, mine software repositories to discover
information about the deployment of software systems. The works differ as they focus on the
technologies used for deployment while we give a broader overview of the usage of CI/CD plat-
forms.

Mazrae et al. [121] present a qualitative study of CI/CD platform usage, co-usage, and migra-
tion based on in-depth interviews. They identify reasons for using specific platforms, reasons for
co-using CI/CD platforms in the same project, and migrations executed by the interviewees. Their
study reveals a clear trend in migration from Travis to GHA.

Mazrae et al.’s work and ours are related as they seek to better understand the usage and
migration of different CI/CD platforms. The studies differ in their methodology, but some of our
study’s conclusions align with Mazrae et al.

Goldazeh et al. [65] conduct a qualitative analysis of the usage of seven popular CI platforms
in the GitHub repositories of 91,810 active Node Package Manager (NPM) packages having used
at least one CI service over a period of nine years. Their findings include the fall of Travis, the
rapid rise of GHA, and the co-usage of multiple CI platforms.

Decan et al. [36] study GHA use in nearly 70,000 GitHub repositories. They find that 43.9%
of repositories use GHA workflows. They also characterize these repositories according to which
jobs, steps, and reusable Actions are used and how.

Calefato et al. [19] study MLOps (DevOps but focused on machine learning projects) practices
in GitHub repositoriesTheir preliminary results suggest that the adoption of MLOps workflows is
somewhat limited.

Our research shares a similar objective to these studies and also mines GitHub repositories.
However, we expand beyond the scope of the referenced papers. We conducted an analysis using a
larger dataset comprising 612,557 repositories sourced from more diverse origins, encompassing
a wider array of project types and programming languages. We also search for a wider array of
CI/CD platforms. Moreover, our study was conducted more recently.

Zahedi et al. [156] present an empirical study exploring continuous software engineering from
the practitioners’ perspective by mining discussions from Q&A websites. The authors analyzed
12,989 questions and answers posted on Stack Overflow. The authors then used topic modeling to
derive the dominant topics in this domain. They then identify and discuss critical challenges.

Zahedi et al.’s work relates to this study as they seek to better understand continuous soft-

ware practices. However, the analyses differ in their approach, as we mine GitHub repositories

3.3 Related Work 33

for empirical data and they analyze questions and answers on Stack Overflow, which are more
subjective.

Liu et al. [90] mine 84,475 open-source Android applications from GitHub, Bitbucket, and
GitLab to search for CI/CD adoption. They find only around 10% applications leverage CI/CD
platforms, a small number of applications (291) adopt multiple CI/CD platforms, nearly half of the
applications that adopt CI/CD platforms do not really use them, and CI/CD platforms are useful
to improve project popularity.

Liu et al.’s objectives and approach are similar to ours. However, our analysis is done with a
more significant sample of 612,557 repositories, and we do not limit ourselves to Android appli-
cations. We also delve into CI/CD platform migration.

Hilton et al. [72] studied CI by mining 34,544 OSS projects on GitHub and surveying 442
developers. They found many OSS teams that do not use CI. Of the ones that use CI, 90% used
Travis. They find popular projects are more likely to use CI and that the median time for CI
adoption is one year. Beller et al. [12], through an analysis of GitHub, found that Travis had
seen a sharp increase in usage up to 2017, being used by one-third of popular projects. Vasilescu
et al. [139] studied 1,884 GitHub projects in 2014. They found Travis usage in 918 repositories
(48.7%).

These studies all share similar goals to ours as they investigate the landscape of CI/CD usage.
Our findings, from the low CI/CD usage rate in the early to mid-2010s to the early dominance of
Travis, align with theirs. However, their studies are all dated, the most recent being from 2017.

Widder et al. [150] conducted a qualitative study of 7,276 GitHub projects that had migrated
away from Travis. They found that a project’s dominant language is an important predictor for
Travis abandonment. They also found more complex projects were less likely to migrate from
Travis. In a follow-up [149], they investigate the pain points of Travis.

Widder et al.’s works are related to ours as they address one of the most significant shifts in
CI/CD platform usage we discovered; the exodus from Travis CI. Otherwise, the studies differ in
goals and methodology.

Lamba et al. [89] study the spread of CI/CD in NPM package repositories. Their analysis is
done through repository badges, a recent innovation on code hosting platforms. They search for
12 CI/CD platforms in 168,510 NPM package repositories hosted on GitHub. Their study focuses
on how CI/CD platforms gain market share.

While our works are related, as they both study CI/CD usage in repositories, they have key
differences. Lamba et al. analyze repository badges while we analyze commits. We also have a
broader scope as we study more repositories and more platforms.

There are several industry resources on the usage of CI/CD. JetBrains [135] provides results
from yearly surveys of developers about the developer ecosystem from 2017 to 2023. Their results
show Jenkins as the most popular CI/CD platform until 2022 when GHA takes over. They also
reveal the increasing relevance of CI/CD. The Continuous Delivery Foundation, a project of the
Linux Foundation, [132] provides a report on the state of CD. They find that 84% of developers
participated in DevOps-related activities as of Q1 2023. They also find that, on average, developers

Understanding CI/CD Usage in Practice 34

use 4.5 DevOps-related platforms used by developers concurrently (this number remained stable
from 2019 to 2023). Stack Overflow’s annual developer surveys [130] show an increase in CI/CD
and DevOps usage year-over-year.

These studies’ results generally align with ours, from the prominence of GHA, the increase
in CI/CD usage, and the co-usage of several platforms. However, Jenkins had a much smaller

representation in our data than in JetBrains’s surveys. We address this is section 3.4.

3.4 Threats to Validity

There are multiple threats to the validity of the study, which are addressed in the following para-
graphs.

The study focuses on open-source software and, in particular, on projects hosted on GitHub.
Thus, the sampling does not include other kinds of software (e.g., proprietary). Conclusions can-
not be generalized to these other kinds of software projects. Nevertheless, many companies also
have their software on GitHub, and one may expect workers from these companies to use similar
platforms in other projects. Moreover, others have reached similar conclusions by interviewing
developers [65].

Since only GitHub was used, it cannot be said that these results apply to projects in other
code repository services. However, there is no reason to consider projects hosted on GitHub to
be significantly different from other projects in other repository services. Still regarding the use
of GitHub as the source of the software projects analyzed, GHA is predominant. One of the main
reasons for this may be related to the use of GitHub as the source of projects. However, GitLab
CI/CD was also detected, the CI/CD platform used by another repository service (GitLab).

The sample repositories were collected by getting the 1,000 results sent by the GitHub API,
doing it every week in the time frame. This resulted in more than 600,000 repositories, from
which more than 200,000 have CI/CD. Although more repositories could have been collected, this
would increase the time to retrieve them in a way that would make the work unfeasible. Moreover,
the query did not impose any restriction on the results, except for the 10 stars used to have some
“quality” metric for the projects. Thus, the repositories retrieved should not be biased in any other
way.

Only platforms that could be identified through files in the repository were considered. Indeed,
from the 61 platforms identified by the Cloud Native Computing Foundation, 14 platforms could
not be identified (plus 1 deprecated). Nevertheless, 64% of all platforms could be identified.

Some platforms are detected through file contents, and there is no guarantee that a random file
will not have a specific string inside that matches. However, the defined content would only make
sense in the platform context. This probably did not happen. In any case, if it happened, it was for
a minimal number of files that should not change the overall conclusions of the work.

There is an assumption that the presence of CI/CD artifacts (e.g., configuration files) means the
underlying project is using such a platform. However, this may not be the case as some artifacts

may be left forgotten from older usages.

3.5 Implications for Transpiler Design 35

3.5 Implications for Transpiler Design

Besides substantiating the need for a tool like the one we propose, this study helped us make
several decisions regarding the CI/CD pipeline transpiler.

We determined to base our PIMM on some of the most popular CI/CD platforms. We chose
GHA, CircleClI, and Jenkins. From the study, GHA is by far the most popular CI/CD platform,
and CircleClI has had a significant user base for several years. Jenkins is also a very popular CI/CD
platform [135] (even if we under-detect it, as addressed in section 3.4).

The existence of so many repositories co-using CI/CD platforms also led us to prototype an
approach to merge CI/CD pipelines from several platforms using our PIMM.

Chapter 4

Overview of the Approach to CI/CD
Pipeline Migration

In this chapter, we present our methodology for CI/CD pipeline migration. As described in sec-
tion 4.1, this methodology is a reengineering process that makes use of two modeling levels and a

DSL. In section 4.2, we present an example of pipeline migration using our methodology.

4.1 Automatic Migration Tool

The best way to support developers in migrating CI/CD would be to automate translating their
existing pipeline into the new syntax as much as possible. This would speed up the migration,

helping keep up productivity and reducing lock-in to any platform.

input) output Platform B
Transpiler . .)
configuration file

Platform A
configuration file

Select platform B

Figure 4.1: Automatic CI/CD migration tool.

Our goal is to create a transpiler for CI/CD pipelines that would function as described in
figure 4.1. A user would input a CI/CD pipeline written in the DSL of a given platform A and
choose the platform they want to migrate that pipeline into (platform B). The program would have
two modes. Normal mode would migrate all the elements of the pipeline it could; this mode
should be seen as a helper to the migration process. Strict mode would only migrate a pipeline if
it was possible to generate a semantically equivalent pipeline in the new platform. Otherwise, the

program exits with an error.

36

4.1 Automatic Migration Tool 37

3

Platform A meta-model Platform-independent
meta-model

‘ Platform B meta-model J

A i conforms to /:\
1 conforms to model-to-model 4 ' model-to-model conforms to'!
| I transformation [>{ Platform-independent] transformation H
2 model . 6

L9

model-to-model
transformation

I| Platform B model

model-to-text I
transformation

1 text-to-model

transformation model-to-model model-to-model

transformation v transformation Platform B

configuration file

Platform A
configuration file

Figure 4.2: CI/CD pipeline reengineering process.

To this end, this work intends to leverage model-driven engineering by creating a PIMM that
defines a modeling language for CI/CD pipelines. The PIMM would serve as the basis for a
complete reengineering process in automatic CI/CD migration, shown in figure 4.2 as a horseshoe
model [83]. Such a meta-model would need to allow modeling pipelines with low-level detail to
make translation between platforms possible.

To improve migration functionality, users should be able to interact with the models during the
migration process. We propose a Transformations DSL (TDSL) that lets users make changes that
the tool cannot make on its own, much like the GAI DSL.

The tool’s logic will be implemented using model transformations following the method base
for migration methods specified by Grieger et al. [66]. Text-to-model transformations (I) will
convert an input pipeline configuration file (1) to a PSM (2). That PSM will be transformed into a
PIM (3) that conforms to the PIMM (4) through M2M transformations (II). We will then transform
the PIM to a PSM for a different pipeline platform (5). The translated configuration file (6) will be
generated from the new PSM through M2T transformations (III). The user can interact with this
process with the TDSL to perform M2M transformations on the PIM and PSMs (IV). Strict mode
will be implemented using a model validation on the input PSM (2).

Using two modeling levels, platform-specific and platform-independent, modularizes the
reengineering process. Without this, T2M and M2T transformations would need to handle differ-
ences between platforms and the PIMM and change the pipeline representation from a text file to
a model. This double responsibility would result in overly complex transformations that could not
be iterated on easily.

The TDSL is also implemented through a reengineering process. TDSL scripts are transformed
into a TDSL model. That TDSL model is transformed into ATL transformation rules, which are
then compiled.

As one of the main motivators for migration is to consolidate CI/CD platforms [121], we also
propose a way to merge multiple input pipelines into one output pipeline. This, together with
the previously mentioned functionality, should allow developers to lessen the overhead of using
multiple CI/CD platforms.

Overview of the Approach to CI/CD Pipeline Migration 38

version: 2.1

orbs:

python: circleci/python@2.1.1

workflows:
sample:

jobs: [build-and-test]

jobs:
build-and-test:
docker:
- image: cimg/python:3.10.5
steps:
— checkout
- python/install-packages: {pkg—manager: "pip"}

- run: {name: "Run tests", command: "pytest"}

Listing 4.1: CircleCI input script.

Chapter 5 details the creation of the PSMMs and the PIMM. Chapter 6 details the implementa-
tion of the reengineering process. Chapter 7 details the implementation of the TDSL. In chapter 8,

we detail how we integrate all of these transformations into one cohesive CLI.

4.2 Execution Example

This section details the reengineering pipeline using the concrete example of migrating listing 4.1°s
CircleClI pipeline (1) to GHA.

A T2M transformation (I) generates the CircleCI model (2) shown in figure 4.3a. Model-to-
model transformations (II) will then migrate that pipeline to a PIM (4), shown in figure 4.3b (this
figure shows significantly less detail than figure 4.3a, this is only due to the Eclipse IDE showing
the remaining PIM elements in different views).

This migration requires the use of the TDSL file from listing 4.2. This file applies three
transformations (IV) on the PIM. Firstly, it adds a manual trigger to the pipeline, as GHA requires
at least one trigger for a valid pipeline. Afterward, it sets the Docker container’s options so the
pipeline uses the root user so GHA can use it. Lastly, it replaces the call to a CircleCI orb with a
command to install Python packages. Figure 4.4a shows the PIM after the TDSL transformations
have been applied. The PIM is then transformed to a GHA model (6), as shown in figure 4.4b.

The last step is to run an M2T transformation (III) to output the GHA pipeline script (7) from
listing 4.3.

4.2 Execution Example 39

vy pIatfl-:rrrll:/resnurce)’instancesfM}r.xmi . @ platform:/resource/instances/Myxmi
v Z'FSI'EER? Jth 4 Pipeline sample
T EMENCE an i i
P w <= Script Job build-and-test

~ <4 lob build-and-test

< Checkout Step % Linux Agent

> 4 Orb Reference Step install-packages 4 Checkout
w < Run Step on_success < Plugin python
4 String Literal pytest <+ Command Run tests

4 String Literal Run tests
~w < Docker Executor
» 4 Docker Container
v 4 Workflow sample
v 4 Worlflow Defined Job Configuration build-and-test
4 build-and-test

(a) CircleCI model of the input script. (b) PIM of input script.

Figure 4.3: CircleCI model and PIM representations of input pipeline script.

while {
add trigger when "input.triggers->isEmpty ()" manual
set container options when "true" to '—--user root'

replace step 2 on 'build-and-test' with command {

script 'pip install -r requirements.txt'

Listing 4.2: TDSL script for migration.

w @ platform:/resource/instances/My.xmi ~ & platform:/resource/instances/My.xmi

w < Pipeline sample v 4 Workflow

< Manual Trigger 4 String Literal sample
~ 4 Script Job build-and-test 4 Workflow Dispatch Trigger

4 Linux Agent w4 Script Job build-and-test
% String Literal build-and-test

4 Checkout v 4 Agent
% Command 4 String Literal ubuntu-latest
4 Command Run tests v 4 Container
4 String Literal cimg/python:3.10.3
% String Literal --user root
v <4 Package

4 String Literal actions/checkout@wv4
w 4 Command

4 String Literal pip install -r requirements.tet
w 4 Command

4% String Literal Run tests

4 String Literal pytest

(a) PIM after TDSL transformations. (b) Output GHA model.

Figure 4.4: PIM and GHA model representations of output pipeline.

Overview of the Approach to CI/CD Pipeline Migration

40

name: "sample"

on:

workflow_dispatch:

jobs:
build-and-test:
name: "build-and-test"
runs-on:
- "ubuntu-latest™"
container:

image: "cimg/python:3.10.5"

options: "--user root"
steps:
- uses: "actions/checkout@v4"

— run: "pip install -r requirements.txt"
run: "pytest"

name: "Run tests"

Listing 4.3: GHA output script.

Chapter 5

From CI/CD Concepts to Meta-Models

This chapter details the meta-models used by the transpiler and their creation process. Section 5.1
details the creation of the PSMMs. Section 5.2 addresses RQ1 and details how we design the

PIMM to accurately represent CI/CD pipelines in a platform-independent manner.

5.1 Creating the Platform-Specific Meta-Models

We started development by researching three CI/CD platforms that represent the current CI/CD
usage [57, 65, 135]. These are GHA [61], CircleCI [28], and Jenkins [80]. All of these platforms’
providers make a configuration reference available for them. We used these references as the basis
for the PSMMs.

The references allowed us to determine the features of each platform, as well as its valid
configurations. With this, we can create a basic PSMM. After having a basic PSMM, we searched
for commonalities between its classes to establish inheritance relationships. This lets us simplify
the models by reducing redundancy.

Appendix A contains truncated versions of the finalized PSMMs used in the reengineering

process. The full version can be found at [50].

5.2 Creating the Platform-Independent Meta-Model

The first research question prompts us to discover what concepts are core and common to differ-
ent CI/CD platforms. We found that the studied platforms all share many traits and focused on
designing a PIMM (figure 5.1) that could represent the diverse platforms’ pipelines.

There are several points to consider when specifying concepts and properties for the PIMM [18].
For each PIMM class, we must determine intrinsic and extrinsic properties, i.e., properties that
refer to basic objects and properties that refer to objects of other meta-model classes, respectively.
This includes deciding which properties should truly belong to a class and which should be aggre-
gated into another class that will become an extrinsic property. If this is done incorrectly, it could

lead to a meta-model that is hard to work on and evolve.

41

From CI/CD Concepts to Meta-Models 42

(0.1 agent

| —

‘ B nput
= type INPUT_TYPE - STRING
2 anobject

[0. incudes

l 0] excludes

| B Mauix | |) Matiasis | | [MatrixCombination

S faifast : EBooleanObject 5% name : Vari

(52 cells : Expression

0V inputs .

0.7 services

o image : Expression

0.4 efseRun

[1.] thenRu

E scriptiob

=] | | rusttigger | 5 ScheduledTrigger

5 tagGlobs - Estring =)

Figure 5.1: Truncated PIMM (missing Expressions, VariableDeclaration, and enumerated
classes).

The arity of each property is also key. If it is wrong, the meta-model will not be an accurate
abstraction of the CI/CD platform’s pipeline and make it so PSMs are malformed.

Lastly, we must also decide whether an extrinsic property will be contained within its referring
object or not. This is important as it will determine whether the referred object can outlive the
referring object in case of deletion.

Sections 5.2.1 to 5.2.8 detail the core CI/CD platform concepts, how they are represented in
the PIMM, and how the PIMM concepts map to the various PSMMs’ concepts. Section 5.2.9

details core differences between the platforms.

5.2.1 Pipeline

All studied CI/CD platforms are based on the concept of a Pipeline. This Pipeline aggregates the
various actions users want to execute when a certain event occurs. Platforms also let users specify

certain configurations with a pipeline-wide scope.

Table 5.1: Pipeline PIMM classes and properties.

Concepts Intrinsic Properties Extrinsic Properties
name type arity name type arity
name EString 0..1 agent Agent 0..1
timeoutMinutes | ElntegerObject | 0..1 inputs Input *
.. outputs Output *
PipelineBlock environmentVariables | Assignment
workingDirectory Expression | 0..1
shell Expression | 0..1
Pipeline triggers Trigger *
extends jobStreams Job *
PipelineBlock

5.2 Creating the Platform-Independent Meta-Model 43

The Pipeline is the main concept of the PIMM as it represents each CI/CD script and, as such,
references every other model element either directly or indirectly.

As seen in table 5.1, Pipelines can have triggers that specify the events that start their execu-
tion (detailed in section 5.2.2), and jobStreams, that specify the Jobs that make up the Pipeline
(detailed in section 5.2.3).

Moreover, Pipelines inherit multiple properties from the PipelineBlock abstract class, which
groups common functionality of Pipelines and Jobs:

* a name, which serves only for display purposes
* timeoutMinutes, which define a maximum execution time for the PipelineBlock

* inputs and outputs, detailed in section 5.2.7, that are used so a PipelineBlock can be called
by another PipelineBlock

* default environmentVariables, workingDirectory, and shell, that can be overridden in child

elements

* an agent, to specify the default VM where the PipelineBlock is executed

Table 5.2 maps the Pipeline concept to the various PSMs’ concepts.

Table 5.2: Pipeline class mappings.

Meta-model Class
GHA Workflow
Jenkins Pipeline
CircleCI Workflow

5.2.2 Triggers

Triggers define events that start the execution of a Pipeline.

GHA, Jenkins, and CircleClI all support this functionality, but their implementations differ. In
GHA, all trigger configuration is done in the pipeline script. In Jenkins and CircleClI, the vast
majority of configuration is part of the platform’s settings and not included in the pipeline script.
This is due to the tighter platform integration of GHA with GitHub. Still, all platforms end up
supporting the same functionality.

In spite of not being able to generate pipeline scripts with configurations for other kinds of
triggers in CircleCI and Jenkins, these are still included in the PIMM due to their relevance in
the domain. In theory, integration with the CircleCI and Jenkins platforms could let us configure
Triggers from their PSMs even if we cannot generate a script with them.

As seen in table 5.3, there are various kinds of Triggers supported by the PIMM.

* PushTriggers start pipeline execution when a commit is pushed. The branchGlobs prop-

erty lets users restrict the git tags where this happens through the use of glob patterns.

From CI/CD Concepts to Meta-Models 44

Table 5.3: Trigger PIMM classes and properties.

Concepts Intrinsic Properties Extrinsic Properties
name type | arity | name | type | arity

Trigger branchGlobs | EString *
PushTrigger tagGlobs EString *

extends
Trigger

PullRequestTrigger

extends
Trigger

ManualTrigger

extends
Trigger

ScheduledTrigger crons EString | 1.*

extends
Trigger

* PullRequestTriggers start pipeline execution when a pull request is created.
* ManualTriggers let the user execute the pipeline without a repository event.

* ScheduledTriggers execute the pipeline at set intervals, defined by the crons property.

All Triggers have a branchGlobs property that lets users restrict the git branches where the
Trigger applies.

There are far more events that can trigger pipelines. However, as the transpiler is not currently
integrated with the CircleCI and Jenkins platforms, Trigger migration is limited. Because of this,
these other events are not supported by the PIMM. Table 5.4 maps the PIMM’s Triggers to the

equivalent PSM classes.

Table 5.4: Trigger class mappings.

Meta-model Classes
GHA StandardEventTrigger, WorkflowRunTrigger, PullRequestTrigger
PullRequestTargetTrigger, PushTrigger, ScheduleTrigger
WorkflowCallTrigger, WorkflowDispatchTrigger

Jenkins ScheduledTrigger, PollingTrigger, UpstreamTrigger
CircleCI ScheduleTrigger
5.2.3 Jobs

A Job is a set of instructions that are run sequentially as a single execution block of the pipeline.
Table 5.5 shows the PIMM’s Job classes.

5.2 Creating the Platform-Independent Meta-Model 45

Table 5.5: Job PIMM classes and properties.

Concepts Intrinsic Properties Extrinsic Properties
name type arity name type arity
id EString 1 ifCondition Expression 0..1
Job maxAttempts | ElntegerObject | 0..1 services DockerContainer *
extends allowFailure | EBooleanObject | 0..1 matrix Matrix 0..1
PipelineBlock previous Job *
next Job *
ScriptJob steps Step *
extends
Job
PipelineCallJob pipelinePath Expression 0..1
extends args Assignment *
Job

All Jobs must have an id to uniquely identify them in the Pipeline. The allowFailure and max-
Attempts specify whether a Job failing terminates Pipeline execution and the maximum number
of times a Job should be run if not successful.

Users also have multiple options to configure the execution flow of jobs.

» The ifCondition property specifies a condition that must be met for the Job to execute.

* Jobs can be run either in parallel with one another or sequentially. By default, GHA and
CircleClI run Jobs in parallel, while Jenkins runs them sequentially. However, users can
configure this behavior. The PIMM runs Jobs in parallel by default, and dependencies are

established using the previous and next properties.

* Jobs can also be configured with a matrix. Matrices, detailed in section 5.2.5, specifty
multiple arrays of values the user wants to run the Job with. The Job will then be run for

all allowed combinations of values.

The PIMM also lets users specify ancillary Docker containers through the services property.
These services run in the background throughout Job execution. They can be used to set up
databases, among other things. Besides these properties, Jobs also inherit the PipelineBlock
properties detailed in section 5.2.1.

There are two kinds of Jobs.

* ScriptJobs are composed of Steps, which are the atomic instructions of the Pipeline (de-

tailed in section 5.2.6). Table 5.7 maps the ScriptJob to platform-specific concepts.

 PipelineCallJobs are a call to a separate Pipeline. This is done through the Pipeline’s file
path (pipelinePath) and arguments (args). In GHA, calling a separate pipeline script is done
through a specific kind of job, while in CircleCI and Jenkins, it is done through a specific
plugin. Table 5.7 maps the PipelineCallJob to platform-specific concepts.

From CI/CD Concepts to Meta-Models 46

Table 5.6: ScriptJob class mappings.

Meta-model Classes
GHA ScriptJob
Jenkins StepStage, MatrixStage, ParallelNestedStage
CircleCI Job, WorkflowJobConfiguration
Table 5.7: PipelineCallJob class mappings.
Meta-model Classes
GHA WorkflowCallJob
Jenkins StepStage, MatrixStage, Paralle]NestedStage, Step
CircleCI Job, WorkflowOrbJobConfiguration

5.2.4 Agents and Services
An Agent specifies where a Pipeline or Job will be run. There are various types of Agent.

Table 5.8: Agent and DockerContainer PIMM classes and properties.

Concepts Intrinsic Properties Extrinsic Properties
name | type | arity name | type | arity
Agent
CustomAgent labels | Expression | *
extends
Agent
PresetAgent image ‘ Expression ‘ 0..1
extends
Agent
WindowsAgent
extends
PresetAgent
LinuxAgent container ‘ DockerContainer ‘ 0..1
extends
PresetAgent
MacOSAgent xcode ‘ Expression ‘ 0..1
extends
PresetAgent
label | EString | 0..1 image Expression 1
options | EString | 0..1 | environmentVariables Assignment *
volumes Expression *
DockerContainer ports Expression *
registryUsername Expression 0..1
registryPassword Expression 0..1
network Expression 0..1

PresetAgents define preconfigured VMs made available by platform providers. These can be
either WindowsAgents, LinuxAgents, or MacOSAgents. The image property lets users specify
the particular VM they want to use.

5.2 Creating the Platform-Independent Meta-Model 47

A LinuxAgent can also have a DockerContainer so the user can better configure the execu-
tion environment.

CustomAgents defined Agents that need further user configuration. These are referred to with
labels.

A DockerContainer has the information necessary to initialize a Docker container. The image
property specifies the Docker image. The environmentVariables, volumes, ports, and network
properties all map to basic Docker functionality. The options property lets users specify other
Docker options. The registryUsername and registryPassword properties are used to access the
Docker registry. The optional label property is used to refer to the DockerContainer.

Table 5.8 details PIMM’s Agent classes. Table 5.9 maps the Agent PIMM class to PSMM

concepts.

Table 5.9: Agent class mappings.

Meta-model Classes
GHA Agent
Jenkins NoneAgent, AnyAgent, LabelAgent, NodeAgent, DockerAgent
CircleCI DockerExecutor, MachineExecutor, MacOSExecutor,
ExecutorReferenceExecutor, OrbReferenceExecutor

5.2.5 Matrices

A Matrix is used to define combinations of values to run the Job with. For example, in a Matrix,
a user can define arrays of values for an 0S and a program they would like to run. The Job would
then be run for every combination of OS and program.

As seen in table 5.10, a Matrix has an arbitrary number of axes. A MatrixAxis defines an
array of values in the Matrix. It has a name property, so it can be referred to, and one or more
cells, which specify array values.

The includes property is used to specify particular combinations of values that cannot be made
using the axes. For example, a user can specify one single version value in addition to the
aforementioned 0S and program axes. The Job would then be run for every combination of OS,
program, and the specified version value. The excludes property is used to disallow particular
combinations of axes values.

Both the includes and excludes properties refer to a MatrixCombination. A MatrixCombi-
nation lets users multiple Assignments (detailed in section 5.2.8) for Matrix values.

The failFast property is used to specify whether the Job should fail immediately if one of the

Matrix combinations fails or if it should keep running.

5.2.6 Steps

Steps are atomic instructions that run as part of a Job. As seen in table 5.11, there are various
kinds of Steps.

From CI/CD Concepts to Meta-Models 48

Table 5.10: Matrix PIMM classes and properties.

Concepts Intrinsic Properties Extrinsic Properties

name type arity name type arity

failFast | EBooleanObject | 0..1 axes Matrix Axis *

Matrix includes MatrixCombination *

excludes MatrixCombination *

MatrixAxis name VariableDec%aration 1
cells Expression 1.%
MatrixCombination combinationEntries Assignment 1..%

ConditionalSteps are used for flow control. They have one or more thenSteps that are exe-
cuted when the ifCondition is true and can have elseSteps that are executed otherwise.

NonConditionalSteps can have an id, a display name, a workingDirectory, and environment-
Variables. With allowFailure, they can be configured to continue Pipeline execution if they fail,
and with timeoutMinutes, to fail after an allotted amount of time.

Commands run a specified program in the Job’s Agent. They can also specify a shell where
the program is run.

Plugins run platform-specific packages that are made available in marketplaces. These are
referred to by their pluginName and version. They may also receive arguments (kwargs).

Cache steps can either load or store data from the Agent to speed up subsequent Pipeline
executions. The cacheName is used to refer to the cache. A Cache step also has to have one or
more cache keys and paths.

Artifacts can either store output data specific to a certain Pipeline execution or download
another artifact. They can have an artifactName, include and excludePaths, and a retentionTime
before the artifact is deleted.

Checkout serves to load the git repository into the Agent. The path property specifies where
the repository will be loaded.

Platforms differ in their implementations of steps. In Jenkins, all steps are a call to platform-
specific plugins (even running a program in a shell). GHA only has two steps: executing programs
in the agent or calling to platform-specific packages. The PIM is closest to CircleCI’s model
with regard to Steps, as it has native support for caching, uploading artifacts, and checking out
repositories.

This is done as these kinds of steps are crucial to pipeline scripts, and all platforms support
them, even if not natively. Having the PIMM abstract these steps allows us to automatically mi-
grate this functionality from platform to platform. This abstraction does lead to some information
loss, section 9.2 assesses the impact of this.

Tables 5.12 to 5.15 and 5.17 and section 5.2.6 have the mappings to the equivalent PSMM step

classes.

5.2 Creating the Platform-Independent Meta-Model 49

Table 5.11: Step PIMM classes and properties.

Concepts Intrinsic Properties Extrinsic Properties
name type ‘ arity name type arity
Step
ConditionalStep ifCondition Expression 1
extends thenRun Step 1..*
Step elseRun Step
NonConditionalStep id EString 0..1 | environmentVariables | Assignment *
extends name EString 0..1 workingDirectory Expression | 0..1
Step allowFailure | EBooleanObject | 0..1 timeoutMinutes Expression | 0..1
Command program Expression 1
extends shell Expression | 0..1
NonConditionalStep
Plugin pluginName EString 1 kwargs Assignment *
extends version EString 1
NonConditionalStep
Cache store ‘ CACHE_MODE ‘ 1 cacheName Expression 1
extends keys Expression | 1..*
NonConditionalStep paths Expression | 1.*
. store ‘ EBooleanObject ‘ 1 artifactName Expression | 0..1
Artifact includePaths Expression *
extends -
NonConditionalStep excludePaths Expression *
retentionTime Expression | 0..1
Checkout path Expression | 0..1
extends
NonConditionalStep

5.2.7 Parameters

Pipelines and Jobs can have inputs and outputs. These are defined using Parameters, seen in
table 5.18.

A Parameter has an id, so it can be referred to. It can also have a description.

Inputs have a fype, a required property, and an optional defaultValue. They may also have
choices, used to enumerate valid values in case the Input is of CHOICE #ype.

Outputs must have a value.

Tables 5.19 and 5.20 have the mappings to the equivalent PSMM classes.

5.2.8 Expressions and Variables

All platforms have some expression grammar. The PIMM addresses this with the Expression
classes

Expressions include logical operators, literals, variable references, and formatted strings (that
mix string literals and other expressions).

The only major difference between PIMM and PSMM happens with CircleCI. In CircleClI,
logical operators can have an arbitrary number of operands. The PIMM uses more standard binary
logical operators. This difference has no bearing on the functionality of either platform and can be
handled by M2M transformations.

From CI/CD Concepts to Meta-Models 50

Table 5.12: Command class mappings. Table 5.13: ConditionalStep class map-

pings.
Meta-model Class Meta-model Classes
GHA Command
. GHA IfStep
Jenkins Step - —
CircloCl RunSte Jenkins ConditionalStep
unstep CircleCI WhenStep, UnlessStep

Table 5.14: Cache class mappings. Table 5.15: Artifact class mappings.

Meta-model Classes Meta-model Classes
GHA Package GHA Package
Jenkins Step Jenkins Step
CircleCI SaveCacheStep, CircleCI StoreArtifactsStep,
RestoreCacheStep OrbReferenceStep
Table 5.16: Checkout class mappings.
Meta-model Class
GHA Package
Jenkins Step
CircleCI CheckoutStep
Table 5.17: Plugin class mappings.
Meta-model Classes
GHA Package
Jenkins Step
CircleCI SetupRemoteDockerStep, StoreTestResultsStep,
PersitToWorkspaceStep, AttachWorkspaceStep,
AddSSHKeysStep, OrbReferenceStep

Currently, PIMM VariableDeclarations happen in Assignments, Parameters and Matrix-
Axes. Platforms support other kinds of variables, such as accessing the SHA of the commit that
triggered the pipeline or accessing secrets defined in the platform (used so sensitive information
is not made public). These concepts are common to the various platforms but are not currently
part of the PIMM. This means the PIMM cannot refer to these variables in a platform-independent

manner and, consequently, cannot automatically migrate them.

5.2.9 Core Differences Between Platforms

There are clear differences between the platforms. Some of these differences can be handled by
the PIMM, while others are not currently representable
CircleCI and Jenkins can be configured to be very modular through the use of functions and the

reuse of Jobs. There are ways to imitate this in GHA, but they are more cumbersome and involve

5.2 Creating the Platform-Independent Meta-Model 51

Table 5.18: Parameter PIMM classes and properties.

Concepts Intrinsic Properties Extrinsic Properties
name | type | arity name type arity
id VariableDeclaration 1
Parameter — :
description Expression 0..1
Input type INPUT_TYPE 1 defaultValue Expression 0..1
extends required | EBooleanObject 1
Parameter [chojces EString
Output value Expression 1
extends
Parameter
Table 5.19: Input class mappings. Table 5.20: Output class mappings.
Meta-model Class Meta-model | Class
GHA Input GHA Output
Jenkins Jenkins
CircleCI Parameter CircleCI

the use of multiple files. We did not consider this functionality to be core to CI/CD pipelines. As
such, the meta-model does not currently support functions or the reuse of Jobs.

GitHub Actions has some unique features due to its tight integration with GitHub, like setting
permissions for the pipeline to interact with the repository. Moreover, all platforms have minor

features that are not supported by the others. These are not supported by the PIMM.

Chapter 6

Implementing the Reengineering
Process

This chapter details the implementation of the reengineering process outlined in figure 4.2.

The chapter’s structure follows the reengineering process itself, starting with T2M transfor-
mations, detailed in section 6.1. Section 6.2 details the model validations used to implement strict
mode. Section 6.3 details M2M transformations. Section 6.4 concludes the chapter with M2T
transformations.

All of the transformations used in the reengineering process can be found at [50].

6.1 Text-to-Model Transformations

Text-to-model transformations are the first step of the reengineering pipeline. We use them to
create PSMs of the CI/CD pipelines we parse. They are also the only main component of the
tool’s logic that is not implemented using entirely model-driven technologies.

The original approach we considered was to perform T2M transformations by generating a
parser with Xtext to perform embedded translation. However, this could not be done as the DSLs
being parsed have some complexity with regard to variable declarations and references. This
requires the use of symbol tables to populate the PSM in such a manner that all the references are
accurate.

For these reasons, we use a two-step output production strategy. This means that first, we parse
the input text into an abstract syntax tree (AST). Afterward, we walk the AST and output the model
as we visit its nodes. This allows the use of symbol tables, which makes variable declarations and
references possible.

This can theoretically be done with MDE technologies. We can define a grammar/meta-model
for a DSL and use Xtext to generate a parser for that DSL. From the DSL model outputted by
the parser, we can use ATL to perform M2M transformations from that DSL model to a PSM (as

outlined in section 6.3).

52

6.2 Model Validations 53

import 'platform:/resource/d.fe.up.pt.cicd.gha.metamodel/model/GHA.ecore'

package GHA

context Workflow

inv MatrixSettings :
if Matrix.allInstances ()—->select (
matrix |
matrix.axes->isEmpty ()or
matrix.failFast <> null or
matrix.maxParallel <> null

)—>notEmpty () then null else true endif

endpackage

Listing 6.1: GHA-to-CircleCI Model Constraint Example.

However, we elected to go a different way. Both platforms for which we implemented T2M
transformations are based on YAML. As YAML has a very complex syntax, we chose to use a
pre-existing Java YAML parser package instead of trying to develop a grammar ourselves. For
certain platforms, like GHA, this Java package is not enough to parse pipeline scripts. This is
because GHA’s DSL is an extension of YAML with expressions in certain, well-defined places.
When the parser arrives at one of these expressions, it uses a GHA expression grammar that we
developed to parse them. These parsers were based on the platforms’ configuration references.

After building the AST, we visit the nodes using Java instead of ATL, as Java is better suited
to dealing with the symbol tables.

6.2 Model Validations

We use model validations to implement the strict mode of the transpiler. When running in strict
mode, we validate the input model to check if it can be guaranteed that the output pipeline will
be semantically equivalent to the input one. These validations check whether certain platform
features are being used. These validations must be defined for every permutation of input and
output platforms, as certain pipeline elements may be migratable to one platform and not another.

Validations are implemented in Complete OCL, which separates the constraint definition from
the meta-model definition. This is useful as it lets the transpiler use different validation files for
the same model in different contexts. Listing 6.1 shows an example of a constraint defined in
CompleteOCL.

Currently, strict mode is only supported in GHA-to-CircleCI migrations. The implemented
constraints are a product of differences between technologies, PIMM limitations, and limitations

in the transformations. The current constraints for GHA-to-CircleClI strict mode migration forbid:

Implementing the Reengineering Process 54

* environment variables defined at the Pipeline level

¢ default working directory or shell defined at the Pipeline level
* GHA staging environments

* definition of GHA permissions

* use of undeclared variables like accessing commit or platform information
* use of GHA-specific built-in functions

* use of GHA concurrency groups

* use of GHA secrets

* use of Job and Step timeouts

* use of certain Matrix and DockerContainer configurations

* use of identifiers to refer to Steps

* use of Jobs that call other Pipelines

6.3 Model-to-Model Transformations

Model-to-model transformations presented the main challenge of our approach, as they are the
logic that allows pipelines to be translated from one platform to another (section 6.3.1. They also

let us merge multiple pipelines into a single one (section 6.3.2),

6.3.1 Migrating Pipeline Platforms

We use M2M transformations to transform a pipeline from a PSM representation to our PIM and
vice-versa. This way, the transpiler uses the PIM as an intermediate representation, and we avoid
having to define transformations for every permutation of the input and output platforms.

The PIMM was designed to ease transformations to and from the PSMs. Where it was possible,
we wanted one-to-one mappings between PIMM and PSMM, i.e., when a concept or property in
one meta-model has a direct correspondence to one in the other meta-model. Still, this is not
always possible due to significant platform differences. For example, Jenkins’s way of executing
Jobs in parallel by nesting them means the PIM to Jenkins transformation has to group the job
dependency graph by levels and then nest Jobs from the same group.

While most of these differences between concepts can be handled in a single-step PSM-to-
PIM/PIM-to-PSM transformation, some are more complex. To deal with this, we split the PSM-
to-PIM/PIM-to-PSM transformation into multiple simpler transformations by defining helpers.
All helpers are PIM-to-PIM transformations, allowing them to be reused for various platforms if

appropriate.

6.3 Model-to-Model Transformations 55

[extract job inputs
helper
PIM'
unwind conditionals
helper

change pipeline representation

PIM-to-PSM]

Figure 6.1: PIM-to-GHA transformations.

Figure 6.1 shows an example of this. In PIM-to-GHA, the transpiler uses two helpers. GHA
does not allow defining Job inputs while the PIMM does. This means Job inputs must be extracted
to the Pipeline so they are not lost (1). In the PIMM, ConditionalSteps can have an arbitrary
number of child-steps to be executed when their condition is true; they also have an “else” block
with multiple steps. GHA only allows one child-step per condition and has no “else” functionality.
The helper unwinds ConditionalSteps on the PIM, creating multiple ConditionalSteps, each
with one child-step (2) (“else” blocks are handled by negating the condition). Only after these
transformations does the transpiler run a transformation to convert the PIM to a GHA model (3).
Besides these, there are three more transformation helpers.

When executing PIM-to-Jenkins transformations, we must extract environment variables from
Steps to their containing Job as Jenkins does not support defining environment variables at the
Step level.

CircleClI is unique because it uses refinements in both CircleCI-to-PIM and PIM-to-CircleCI
transformations. In CircleCI, a Matrix is defined outside of a Job, and the MatrixAxes cor-
respond to Inputs on the Job. In the PIMM, the Matrix is an extrinsic property of the Job.
This means there are extra Inputs defined on the Job after running the exogenous transformation.
These must be removed and references to their variables altered to references to the Matrix. When
transforming the PIM to CircleClI, the opposite process has to be executed.

The rules for these transformations are implemented in ATL. We chose ATL for its tight inte-
gration with EMF. This allows the ATL IDE to provide several development tools like a debugger,
type checking, and contextual completions based on the meta-models used, easing the develop-

ment process.

6.3.2 Merging Multiple Pipelines

Model mergers are used to combine various pipeline scripts into one, so we can help developers
consolidate CI/CD platforms.

Implementing the Reengineering Process 56

Pipeline merging only happens after the input PSMs have been transformed into PIMs. This
lets us merge pipelines regardless of their original platform. A merger transforms two PIMs into
one PIM. Merging models is a two-step process.

The first step is a comparison. We define rules to indicate what elements of the two input
models match. We search for Triggers of the same type, Pipeline Parameters and Jobs with the
same id, and Pipeline environmentVariables with the same name. This comparison creates a trace
indicating these elements.

We merge the Pipelines using this trace. Pipeline inputs, outputs, triggers, environmentVari-
ables, and jobs are combined. When Jobs match, the Job belonging to the leftmost PIM in the
list of scripts to merge is given priority instead of combining the two Jobs (as combining jobs and
guaranteeing the end result makes sense is too complex). Elements not determined to match by
the comparison are copied into the new PIM.

Unlike the other transformations, model mergers are implemented using Epsilon languages as
they have better support for comparing and merging models.

Although the transformation is only written to merge two PIMs into one, the tool we devised

can merge an arbitrary number of pipelines through a reduction process.

6.4 Model-to-Text Transformations

Model-to-text transformations are responsible for code generation and only happen from PSMs.
They are the simplest part of the reengineering process and are implemented in Acceleo.

Although these are vertical transformations, where we have to go from a higher abstraction
level (the PSM) to a lower one (the pipeline scripts), since the PSMMs were created from pipeline
configuration references of their respective platforms, the only missing information is the concrete
textual syntax of the platforms. This is what simplifies M2T transformations.

Still, there are issues to consider, as the code generated has to be semantically equivalent to
the PSM.

Pipeline DSLs often let the user specify the same pipeline element with different syntax.
For example, in GHA, the three following trigger definitions are interchangeable: on: push,
on: [push],and on: {push: null}. This brings to light the differences between the GHA
DSL and YAML, as in YAML, the three definitions are semantically different (they attribute a
string, a list, and a map to the on key, respectively).

When generating code, we always choose the most flexible syntax available to avoid un-
necessary complexity in the transformation. In the previous example, it would be defining the
trigger as on: {push: null}. This syntax works in cases where there are multiple trig-
gers (on: {push: null, pull_request: null}) and also supports further specifications
to the trigger (on: {push: {branches: "main"}}). Using it, we can handle the largest
amount of GHA trigger definitions without excessive use of conditionals. If the trigger does not
have any branches property, we do not generate it, and if there are multiple triggers, we add an

element to the on map.

6.4 Model-to-Text Transformations 57

Practically, using the transpiler to execute a GHA-to-GHA migration will most likely result in

code that is not semantically equivalent in YAML, even if it is in GHA.

[R - " T N VU R

Chapter 7

The Transformations DSL

The TDSL is designed so the user can interact with the models throughout the reengineering
process. With the TDSL, the user can migrate Pipeline elements the transpiler cannot migrate
automatically or make other alterations to the Pipeline.

The TDSL’s functionality is implemented through M2M transformations. All of these trans-
formations are endogenous. Most transformations are PIM-to-PIM, as the TDSL’s objective was
to interact with the scripts in a platform-independent manner. However, the user can also define
PSM-to-PSM transformations. A user can specify an arbitrary number of transformations in a
single TDSL file.

before translating {
on circleci select workflow frontend
}
while translating {
replace step 2 on 'frontend-test' with command {

script 'npm install'

Listing 7.1: TDSL example.

Just like other one-to-one M2M transformations, TDSL transformations are implemented in
ATL. Figure 7.1 shows the process of transforming a TDSL file to ATL transformations as a reengi-
neering process. A TDSL file (1) is transformed to a TDSL model (2) using M2T transformations
(I); this is detailed in section 7.2 along with TDSL syntax. The TDSL model conforms to the
TDSL meta-model (3); this meta-model is detailed in section 7.1 along with TDSL functionality.
The TDSL model is transformed (II) into as many ATL files (4) as there are TDSL transformations
(each file performs one transformation). These ATL files are then compiled (III) to ATL assembly.
Section 7.3 details the transformations from a TDSL model to ATL assembly files.

58

7.1 The Transformations DSL Meta-Model

TDSL

Meta-Model

conforms to
11

model-to-text

TDSL Model

Y

I
text-to-model

—

. TDSL File

59

11 5

compile

ATL Assembly

ATL File 0 File 0

compile
ATL File N ATL Assembly

File N

Figure 7.1: TDSL reengineering process.

7.1 The Transformations DSL Meta-Model

The TDSL meta-model (figure 7.2) was made to simplify common transformations that users must

make when migrating CI/CD platforms that cannot be made automatically. These transformations

can be made throughout the reengineering process, i.e., on the input PSM, on the PIM, and on the

output PSM.

% Tronsformation

r

P outplaceTransformation

ing
: MODELS = CICD

T
L

fo

“{ InplaceTransformation

o g

F

 setCirceCiVersion

< version : Estring

B selectworkflow

% Addexecutor B Addports | ‘ 5 AddTrigger ‘

‘ = trigger Trigger

< jobName : EString 5 ports : Estring

] AddOrbReferenceEsecutor

< orb: Estring
7 executor : Estring

B setoptions

< options : EString

0.1p0stM [H Transtormationset

0. onTiM

10.] preTiM

% Thrrransormaton

4 rsprransormaton

[edistep | ([8 newsip | ‘L ReplaceAgentLabels

‘ % index: Elntegerobject ‘ < step:Step ’

5 labels: Estring

| [5 repacesier |
B changePlugin

< version : Estring
% name: StringToStringMapEntry

| B hangelmage H B Deletestep

 Addstep

7 image : Estring

£ args: StringToStringMapEntry

Figure 7.2: TDSL meta-model.

This meta-model stands apart because it references other meta-models, the PIMM and the

PSMMs (in future iterations). Referencing these meta-models means we can avoid repetition in

the TDSL meta-model when, for example, the TDSL is used to create a new PIMM Step, as we

avoid copying the PIMM definition into the TDSL meta-model. This also increases the robustness

of the TDSL meta-model as, when the other meta-models change, it changes too.

The Transformations DSL 60

The main class of the TDSL meta-model is the TransformationSet. It lets users define an
arbitrary number of Transformations. These are split between the prePIM, onPIM, and postPIM
properties. The onPIM property contains PIMTransformations and the prePIM and postPIM
properties contain PSMTransformations.

All Transformations are either OutplaceTransformations or InplaceTransformations.
Certain Transformations are also Conditional Transformations.

On the PIM, there is support for common migration pipeline changes such as changing Plu-
gins’ name, version, and arguments, replacing CustomAgent labels, adding Triggers, adding,
replacing and deleting Steps, and interacting with Docker containers. Table 7.1 details PIM-

Transformations.

Table 7.1: TDSL PIMTransformations.

Concepts Intrinsic Properties Extrinsic Properties
name type arity | name type arity
ChangePlugin version EString 1 name | StringToStringEntry 1

extends args | StringToStringEntry *
InplaceTransformation,
PIMTransformation

ReplaceAgentLabels labels EString *
extends
OutplaceTransformation,
PIMTransformation,
ConditionalTransformation

AddTrigger extends trigger PIMM:: Trigger 1
InplaceTransformation,
PIMTransformation,
Conditional Transformation

JobTransformation job ‘ EString ‘ 1
extends
PIMTransformation
EditStep extends index ‘ ElntegerObject ‘ 1
JobTransformation
NewStep extends EditStep, step PIMM:Step [1
OutplaceTransformation
AddStep extends NewStep
ReplaceStep extends NewStep
DeleteStep extends EditStep,
InplaceTransformation
AddPorts extends ports EString 1..*%
OutplaceTransformation,

PIMTransformation,
ConditionalTransformation

SetOptions extends options | EString | 1
InplaceTransformation,
PIMTransformation,
ConditionalTransformation

Changelmage extends image | EString | 1
OutplaceTransformation,
PIMTransformation,
Conditional Transformation

7.2 The Transformations DSL Grammar and Parser 61

Table 7.2: TDSL PSMTransformations.

Concepts Intrinsic Properties Extrinsic Properties
name | type | arity | name | type | arity
CircleCITransformation extends
PSMTransformation
AddExecutor extends jobName \ EString \ 1

OutplaceTransformation,
CircleCITransformation

AddOrbReferenceExecutor extends orb EString 1
AddExecutor executor | EString 1
SetCircleCIVersion extends version | EString 1

InplaceTransformation,
CircleCITransformation

SelectWorkflow extends name EString 1
InplaceTransformation,

CircleCITransformation

Currently, the only PSM transformations supported explicitly by the TDSL are on the CircleCI
meta-model. This is because the TDSL focuses on interacting with the reengineering process at the
PIM level, and PSM interaction is only meant to handle PIMM limitations. It can add orb (CircleCI
plugins) executors to a job, set the CircleCI version of the script, and select the workflow to be
migrated. Table 7.2 details PSMTransformations.

The class ATLScript makes it possible to input ATL directly into the TDSL. This can be done
to any pipeline model. Table 7.3 details ATLScripts.

Table 7.3: TDSL ATLScript.

Concepts Intrinsic Properties Extrinsic Properties
name type arity | name | type | arity
ATLScript extends Transformation, | script EString 1
PIMTransformation, model | MODELS 1
PSMTransformation

7.2 The Transformations DSL Grammar and Parser

Unlike the PSMs, the TDSL’s current iteration has no support for variable declarations or refer-
ences. Thus, it is possible to create TDSL models using embedded translation, and T2M transfor-
mations are done entirely by the Xtext parser.

Another difference to the other T2M transformations is that we control the TDSL’s syntax.
When specifying the grammar, our goal was to allow the user to make alterations to the models
with the feel of natural language. Listing 7.1 shows a TDSL script used to select a CircleCI

workflow and replace a step on the pipeline.

The Transformations DSL 62

A TDSL script can have three main sections, before, while, and after (listing 7.2). These

correspond to the prePIM, onPIM, and postPIM properties of a TransformationSet.

TransformationSet returns TransformationSet:

{TransformationSet}

('"before' 'translating'? '{' (prePIM+=TSMTransformation)x '}"')?
('while' 'translating'? '{' (onPIM+=TIMTransformation)x '}')?
('after' 'translating'? '{' (postPIM+=TSMTransformation)x '}')?

Listing 7.2: TDSL entry parser rule.

In the before and after sections, the user can define PSMTransformations. These require
the meta-model to be specified. In the while section, the user can define PIMTransformations.

Both support defining raw ATL transformations.

7.3 From the Transformations DSL to ATL

Unlike the CI/CD pipeline reengineering process (figure 4.2), the TDSL’s reengineering process
only uses a single level of models. This is because the TDSL is simpler than the CI/CD platforms.
Generating an ATL file directly from the TDSL model also helps deal with some ATL limitations.

ATL has a specific mode for implementing endogenous transformations, which is called re-
fining mode. This mode serves to make in-place alterations to models. Using it, we only need
to specify rules for what model elements must be altered. This mode is theoretically ideal for
implementing TDSL transformations, as they are always endogenous and not very complex.

However, refining mode lacks several key ATL features needed for the TDSL. For this reason,
some TDSL transformations are implemented using the regular ATL mode (out-place). This means
we need to specify rules explicitly copying every model element that is unaltered.

This is easier to do directly in text form than transforming the TDSL model to an ATL model
and then generating ATL text (or compiling directly from the ATL model). M2T transformations
are responsible for most of the TDSL’s reengineering logic.

After the ATL file has been generated, the final step of the M2T transformation is to compile
it into ATL assembly. This is done by the ATL engine, as detailed in section 8.1.1.

Another difference to highlight is that we generate a separate ATL file for each Transforma-

tion specified in the TransformationSet. This helps make the TDSL more modular.

Chapter 8

ACICDTrip - A Tool for CI/CD

Reengineering

The goal of this work is to simplify the CI/CD migration process. Achieving this goes beyond
creating the meta-models and defining transformations. There is a need to integrate the various
technologies and create software that users can install and run without hassle.

This presents a problem. Usually, MDE software comes in the form of an Eclipse Plugin that
extends the IDE’s functionality. Eclipse is only used by about 10% of developers according to
Stack Overflow’s developer surveys [130]. This is due to its usability problems.

Making our transpiler an Eclipse Plugin would severely limit the number of DevOps practi-
tioners it could help. Consequently, we sought to integrate the various MDE technologies used for
the meta-model, transformations, and validations in the form of a CLI that could run independently
from the Eclipse IDE.

Section 8.1 details how we run MDE technologies outside of Eclipse. Section 8.2 presents the
architecture of the CLI.

The source code for ACICDTrip can be found at [50].

8.1 Running Eclipse Technologies in Standalone Mode

All of the MDE technologies used in the project can be run in standalone mode, i.e., outside of the
Eclipse IDE, by exporting their generated Java packages. However, support for this varies from
technology to technology.

The first step in running Eclipse MDE technologies standalone is to generate meta-model Java
packages. These packages are the backbone of a program of this kind, as they are used by all other
technologies. Eclipse can automatically generate these packages from the Ecore files where we
define the meta-models.

We manually register the meta-model Java packages before running any of the MDE technolo-
gies. This is because if the meta-models are not registered, MDE technologies will not have the

required information to operate on the models.

63

ACICDTrip — A Tool for CI/CD Reengineering 64

These packages also allow us to have a Java Object representation of the models. We use this
in T2M transformations to create the models as we visit the AST.

Both Xtext and Acceleo are simple to run standalone as they generate Java packages with
all required configurations already done. OCL differs from these as the projects only include
CompleteOCL files. When running OCL standalone, the file with the constraints is parsed into a
constraint map by the OCL package. To validate a model, we must iterate through the constraints
in the constraint map and evaluate them individually using the OCL package.

ATL and Epsilon technologies are more complex to run standalone. These are detailed in

sections 8.1.1 and 8.1.2 respectively.

8.1.1 ATL

ATL is unique among the MDE technologies in that we have to run two separate features: the

model transformations and the compilation of ATL files.

Running ATL Transformations

ATL projects only include the ATL files themselves and their compiled counterparts (in ATL As-
sembly). They do not include any generated Java packages. This means we need to set up the ATL
environment ourselves.

The transformations are run in the EMFVM. To configure it, we need to convert the meta-
models into ATL’s IModel format (ATL does not use the generated EMF model packages directly),
load the ATL Assembly file with the compiled transformation, and the input model (also converted
to the IModel format). If running in refining mode, this is all we need to do as transformation
is done in-place. Otherwise, we also need to load the output model object. After running the
transformation, we convert the output model back to Ecore.

The main issue of running ATL this way is the lack of descriptive error messages if there is a
problem with the transformation. When running in Eclipse, ATL outputs a stack trace indicating

where the error occurred.

Compiling ATL Transformations

Compiling ATL standalone is a simple matter when compared to running it. We only need to use
the compiler package and input the ATL file path and the output ATL Assembly file path.

8.1.2 ECL, ETL and EML

Epsilon has a different philosophy regarding models.
When using Epsilon technologies, every model must be in a different ResourceSet. To deal
with this, we need to create a separate ResourceSet and register the meta-models for each of the

three input models.

8.2 CLI Architecture 65

The models must also have particular names in concordance with the ECL and EML files. The
input models are named “Left” and “Right” to work with ECL and EML rules. They must both
also be aliased to “Source”, so they can work with the ETL rules that copy non-matching model
elements. The output model is called “Target”.

We make use of two modules. The EclModule, to run the model comparison and create the

match trace, and the EmlModule to take the match trace and the input models and run the merger.

8.2 CLI Architecture

The CLI makes use of three key classes to implement the reengineering pipeline logic: Abstrac-
tReverseEngineer (section 8.2.1), AbstractForwardEngineer (section 8.2.2), and Abstract-

Transformer (section 8.2.3). Section 8.2.4 details other major classes used by the CLI.

8.2.1 AbstractReverseEngineer

The AbstractReverseEngineer orchestrates the transformations from an input CI/CD pipeline
script into a PIM.

To do this it makes use of an AbstractParser to parse text to a PSM, PSM EndogenousAb-
stractTransformers to apply TDSL transformations to the PSM, a ToPIMAbstractTransformer
to transform the PSM to a PIM, and EndogenousCICDAbstractTransformers to apply TDSL
transformations to the PIM. These are received as constructor arguments.

The CLI can use various AbstractReverseEngineers when it receives multiple input files. In
this case, the output PIMs are then merged using AbstractMergers.

Figure 8.1a shows the AbstractReverseEngineer class diagram, including PSM-specific sub-

classes.

8.2.2 AbstractForwardEngineer

The AbstractForwardEngineer orchestrates the transformations from an input PIM to a CI/CD
pipeline script.

To do this, it makes use of EndogenousCICDAbstractTransformers to apply TDSL trans-
formations to the PIM, a FromPIMAbstractTransformer to transform the PIM to a PSM, En-
dogenousAbstractTransformers to apply TDSL transformations to the PSM, and an Abstract-
Generator to transform the PSM to a CI/CD pipeline script. These are received as constructor
arguments.

Figure 8.1b shows the AbstractForwardEngineer class diagram, including PSM-specific

subclasses.

8.2.3 AbstractTransformer

AbstractTransformers run M2M transformations, implementing the logic from section 8.1.1.

ACICDTrip — A Tool for CI/CD Reengineering 66

AbstractEngineer

A

AbstractEngineer

AbstractForwardEngineer

| 5

AbstractReverseEngineer

T CircleCIForwardEngineer GHAForwardEngineer
CircleCIReverseEngineer GHAReverseEngineer GHAForwardEngineer
(a) AbstractReverseEngineer class diagram. (b) AbstractForwardEngineer class diagram.

Figure 8.1: AbstractEngineer class diagrams.

ExogenousAbstractTransformers call on EndogenousAbstractTransformers to implement
exogenous transformation helpers. In the case of ToOPIMAbstractTransformers, these are called
after the exogenous transformations. In FromPIMAbstractTransformers, these are called after.
The helpers being used are determined by the specific instantiable subclass.

AbstractTransformers can also receive an AbstractValidator as a constructor argument. If
this is the case, validation is run before transformation.

Figure 8.2 shows the AbstractTransformer class diagram.

8.2.4 Other Classes

The other major classes used by the CLI are as follows:

AbstractParsers Run T2M transformations, implementing the logic detailed in section 6.1.
AbstractGenerators Run M2T transformations, calling the Acceleo generators.
AbstractValidators Run OCL validations.

TransformationsDSLtoATLASMCompiler Compiles TDSL to ATL Assembly transforma-
tions. To do this, it makes use of an AbstractParser for the TDSL and an AbstractGener-

ator for ATL. These are constructor arguments.

AbstractMergers Run model mergers.

AbstractTransformer

A

ExogenousAbstractTransformer

i

ToTIMAbstractTransformer

FromTIMAbstractTransformer|

[EndogenousAbstractTransformer|

A

EndogenousCICDAbstractTransformer

EndogenousCircleClAbstractTransformer

N
CICDRefiner
GHA2CICDTransformer CircleCI2CICDTransformer CICD2GHATransformer CICD2JenkinsTransformer
ContractMatrixInputs
CICD2CircleClTransformer
SimplifyConditionals ExtractJoblnputs ExtractMatrixInputs [ExtractEnvironmentVariablesFromSteps|

Figure 8.2: AbstractTransformer class diagram.

CircleCIRefiner

QIMIQIYIIY [TD '8

L9

Chapter 9

Evaluation

To help us answer RQ2 and RQ3, we prepared two evaluations.

In section 9.1, we migrate pipelines using ACICDTrip and execute them in their respective
repositories. We then compare the execution logs of the original and migrated pipelines to deter-
mine if they are equivalent. This helps us get a better perspective of our tool in practice.

In section 9.2, we execute a double-round-trip, where we migrate GHA pipelines to CircleCI
and then back into GHA. We then compare the original and migrated GHA pipelines to determine
if they are semantically equivalent. This lets us get a better perspective of our tool’s functionality

for a large number of scripts.

9.1 Evaluating ACICDTrip in Practice

This evaluation helps us ascertain if ACICDTrip can be used to migrate projects in practice. This

will mean using the TDSL to change Plugins among other transformations.

9.1.1 The Process

To compare execution logs of scripts, we needed not only example scripts to migrate but also
the underlying codebase to execute. This proved a challenge, as we did not want to create these
projects ourselves, and finding projects that could be built out-of-the-box so we did not lose much
time configuring them proved difficult.

We used a set of example projects provided by CircleCI so users can experiment with their
platform'. These five projects use many PIMM concepts and should be well set up for CI/CD.

To execute this evaluation, we need to fork each CircleCI repository and set up a CircleCI
organization so we can run the CircleCI-provided pipelines. We must also migrate these pipelines
to another CI/CD platform and execute them. We chose GHA as the destination platform due to
its simple setup. As the forked repositories were already hosted on GitHub, we only needed to add

the migrated pipelines to the repository in the correct directory to run GHA.

lhttps ://circleci.com/docs/examples—and-guides-overview/

68

https://circleci.com/docs/examples-and-guides-overview/

9.1 Evaluating ACICDTrip in Practice 69

After both pipelines have been run, we need to compare their execution logs. This comparison
is not as simple as running di ff between the two logs, as they are formatted differently; we
needed to compare them manually. To help with this, we cleaned the logs by removing timestamps
of command execution, indentation from lines, and printed lines while pulling docker images. In
the case of GitHub Actions, we also removed the logs of permissions granted to the action. Lastly,
we removed logs from the executed commands if these were overly verbose and irrelevant to
comparing the platforms. Figure 9.1 shows an example of the cleaned logs.

This evaluation depends greatly on the functionality of the TDSL. It will let us manually alter
the elements of pipelines that cannot be migrated automatically, allowing us to execute them. To
this end, this evaluation also lets us see how easily we can transform pipelines using the TDSL. A
transformation common to all the pipelines is adding a Trigger so the pipeline can be run manu-
ally, as these are not defined in the original CircleCI pipelines. Other transformations required for

each project are detailed in the following section.

Evaluation

0 g o s W N

e e e e e e
RGeS, I N VR RS o Vo)

0 ~J o s W N

10
11
12
13
14
15
16
17
18
19
20
21

(...)

Operating System: Ubuntu 20.04.6 LTS

OSType: linux

(...)

3.10.5: Pulling from cimg/python

Status: Downloaded newer image for cimg/python:3.10.5
(ooo)

pip install -r requirements.txt

(...)

pytest

(...)

ERROR openapi_server/test/test_cart_controller.py
ERROR openapi_server/test/test_database.py

ERROR openapi_server/test/test_image_controller.py
ERROR openapi_server/test/test_menu_controller.py

trerrrrrrrrrr it it Interrupted: 4 errors during collection !

7 warnings, 4 errors in 0.64s ======

(a) CircleCI Python project example logs (abridged).

(oo00)

[group]Operating System

Ubuntu

22.04.4

LTS

[endgroup]

(ooo)

3.10.5: Pulling from cimg/python

Status: Downloaded newer image for cimg/python:3.10.5
(...)

pip install -r requirements.txt

()

pytest

(oo0o)

ERROR openapi_server/test/test_cart_controller.py
ERROR openapi_server/test/test_database.py

ERROR openapi_server/test/test_image_controller.py
ERROR openapi_server/test/test_menu_controller.py

trrrrrrrrrrrr ittt Interrupted: 4 errors during collection !

7 warnings, 4 errors in 0.39s ======

(b) GHA Python project example logs (abridged).

Figure 9.1: CircleCI and GitHub cleaned pipeline logs comparison.

70

9.1 Evaluating ACICDTrip in Practice 71

9.1.2 Results

Our criteria to determine if logs were equivalent were if the key steps of each pipeline were exe-
cuted and if they had the same output. This depends on the context of each pipeline.

Java Project

This pipeline incorporates the installation of Dockeri ze to facilitate testing of a Java Spring Boot
Server coupled with a PostgreSQL database.

The script can be migrated to GHA using the CLI + TDSL and should have equivalent exe-
cution as the original CircleCI script. We must add a Step to checkout repository contents and
replace a CircleCl-specific Plugin. Moreover, to deal with certain differences between how Cir-
cleCI and GHA handle Docker container networking, we need to specify ports on the PostgreSQL
container and replace the 1ocalhost address on one of the steps with 172.17.0.1 (the IP of
the Docker bridge network). Listing 9.1 shows the TDSL script used.

The problem in this particular case is in the codebase itself, which has the 1ocalhost address
hardcoded in a configuration file instead of as an environment variable. After changing the address
in the configuration file, the migrated pipeline executes successfully and with equivalent logs to
the original.

No pipeline elements were lost when abstracted to the PIM. Because of the need to alter the

source code, this project is only considered a partial success.

while {
add trigger when "input.triggers—->isEmpty ()" manual
add container ports when "input.label = 'cimg/postgres:14.1'" ports
— {'5432:5432"}

insert step 1 on 'maven/test' with checkout {}
replace step 3 on 'maven/test' with command {
script 'dockerize -wait tcp://172.17.0.1:5432 -timeout 1m'
}
replace step 4 on 'maven/test' with command {

script 'mvn verify'

Listing 9.1: Java Project TDSL script.

.NET Project

This pipeline builds, tests, and stores the test results of a .NET application.
To migrate this script, we need to alter the Agent the pipeline runs on from a CircleCI Windows
orb to a Windows VM. We also need to remove two steps specific to CircleCI. The first one helps

connect the CircleCI executor to the repository (this is not needed with GHA). The second one

Evaluation 72

is a StoreTestResultsStep step whose functionality is the same as the StoreArtifactsStep when
converted to GHA. Listing 9.2 shows the TDSL script used.

The pipeline execution succeeds in both the migrated and original pipelines. The steps exe-
cuted and their results are equivalent. No pipeline elements were lost when abstracted to the PIM.
We also compared the artifacts generated by the pipelines; they were exactly the same, with the

exclusion of execution timestamps.

while {
add trigger when "input.triggers—->isEmpty ()" manual
set labels {'windows-latest'}

delete step 1 on 'build-and-test'
delete step 5 on 'build-and-test'

Listing 9.2: .NET Project TDSL script.

Monorepo Project

This pipeline orchestrates the building and testing of both Python Flask and Vue.js applications
within a monorepo environment.

This CircleCI script features two workflows. The PIMM equivalent of a workflow is a
Pipeline. Unlike the CircleCI meta-model, the platform-independent and GHA meta-models only
support one Pipeline/Workflow at a time. However, we can use the TDSL to select the workflow
to translate and run the program twice, generating two GHA scripts.

For the backend script, we only need to replace a CircleCI Plugin with a Command to install

Python packages. This can be seen in listing 9.3.

before translating {
on circleci select workflow 'backend-test'
}
while translating {
replace step 2 on 'backend-test' with command ({

script 'pip install -r requirements.txt'

Listing 9.3: Monorepo Project Backend TDSL script.

The frontend script is similar. We must change a Plugin to a Command that installs node
packages. We also need to add an option to the Docker image used by the original pipeline to

change the user. This last change is a particularity of the Docker images CircleCI provides, which

9.1 Evaluating ACICDTrip in Practice 73

give permissions to a user called circleci. Another possibility would have been to use another

Docker image.

before translating {
on circleci select workflow frontend

}

while translating {
set container options when "true" to '--user root'
replace step 2 on 'frontend-test' with command {

script 'npm install'

Listing 9.4: Monorepo Project Frontend TDSL script.

Both the original and migrated pipelines fail out of the box. The failures are related to the path
of the package. json and requirements.txt files provided in the repository. As they fail in
the same way, this is considered a success. No pipeline elements were lost when abstracted to the
PIM.

NodeJS Project

This script orchestrates the installation of various JavaScript packages required for a Vue.js appli-
cation. It then executes multiple backend and frontend unit tests utilizing Cypress.

Migrating this script requires changing the Docker image provided by CircleCI to a more stan-
dard one on the test Job. We must also replace a Plugin with a Command to install packages.
On the cypress/test Job, we need to insert a Checkout step and replace a CircleCI Plugin
with a GHA one. We must also remove the Docker container and run the Job directly on the VM.
Listing 9.5 shows the TDSL script used.

The original and migrated pipelines both succeed. Having run the same steps and with the

same output. No pipeline elements were lost when abstracted to the PIM.

1

20

21

22

23

24

25

26

27

28

29

30

31

32

Evaluation 74

while {
add trigger when "input.triggers—->isEmpty ()" manual
set container image when 'true' to 'node:16'
replace step 2 on 'test' with command {
script 'yarn install’
}
insert step 1 on 'cypress/run' with checkout {}
replace step 2 on 'cypress/run' with plugin {
name 'cypress—io/github-action’
version 'vé'
args {

'command' = 'yarn run test:e2e —--headless'

}

run atl on cicd {

n

—— @path CICD=/d.fe.up.pt.cicd.metamodel/model/CICD.ecore

module cicdRefinement;

create OUT : CICD refining IN : CICD;

rule RemoveContainer ({

from
input : CICD!DockerContainer (
input.refImmediateComposite () .refImmediateComposite().id =
< 'cypress/run'
)
to
drop
}
"
}
}
Listing 9.5: NodelJS Project TDSL script.
Python Project

This script is designed to facilitate the building and testing of a Python application. It achieves
this by installing several Python packages essential for the application and subsequent execution
of multiple unit tests.

Migrating this script is a matter of altering the Docker container user of the image provided by
CircleClI and replacing a Plugin with a Command to install Python packages. Listing 9.6 shows
the TDSL script used.

P T Y N T

9.2 Evaluating ACICDTrip for a Large Number of Pipelines 75

Both the original and migrated pipelines succeed, and the logs are equivalent. No pipeline

elements were lost when abstracted to the PIM.

while {
add trigger when "input.triggers—->isEmpty ()" manual
set container options when "true" to '--user root'

replace step 2 on 'build-and-test' with command {

script 'pip install -r requirements.txt'

Listing 9.6: Python Project TDSL script.

9.2 Evaluating ACICDTrip for a Large Number of Pipelines

With this evaluation, we want to better understand how ACICDTrip functions for a greater number
of real-world scripts. This was not feasible to accomplish using the methodology from section 9.1

due to the need to use the TDSL and run the pipelines.

9.2.1 The Process

There are several challenges in checking whether we can migrate a migrated pipeline back into the
original platform without semantic changes (as seen in figure 9.2). This is because the platforms
themselves have differences in features. Because of this, we will only attempt to evaluate this for
strict-mode-compatible scripts, as in strict mode, the program is meant to exit with an error if it
finds a feature that cannot be migrated.

For this evaluation, we used the GHA and CircleClI platforms, which are the ones for which
we implemented both the reverse engineering (text to PSM to PIM) and forward engineering (PIM
to PSM to text) processes. We started the evaluation with GHA pipeline scripts as we only imple-
mented strict-mode validation for the GHA-to-CircleCI migration.

We randomly selected 10,000 GHA-using repositories from the dataset retrieved for the chap-
ter 3 study. In these repositories, we found 25,487 GHA scripts. We could migrate 22,684 (89,0%)
of these to CircleCI in normal mode, but only 4,091 (16.1%) were strict-mode-compatible. We
migrated the 4,091 scripts back into GHA. Most of the pipelines that failed validation (82.3%)
were due to references to variables not yet supported by the PIMM. The most common examples
of these variables are user-defined secrets (e.g., API tokens) and commit information (e.g., SHA).

We used the same TDSL script for all pipelines. This script was used in the GHA-to-CircleCI
migration, and the only transformation it makes is setting the CircleCI version to “2.1” so the

CircleClI pipeline is valid (listing 9.7).

Evaluation 76

after translating ({

on circleci set version to "2.1"

Listing 9.7: Double Round-Trip TDSL script.

GHA uses a YAML-based syntax. To compare the original and migrated pipelines, we start by
running yamldif£2, a CLI to compare two YAML or JSON files.

However, while the GHA DSL is based on YAML, it also extends it with expressions. GHA
also provides various shorthands to speed up pipeline definition. For example, the aforementioned
way of defining the same trigger as on: push, on: [push],or on: {push: null}. This
means the migrated pipeline may be different in YAML but the same in GHA.

Consequently, we need to filter out differences from the output of yamldiff if they do not
impact the GHA pipeline. We use regular expressions to evaluate certain differences and eliminate
them if they match. What follows is a list of the YAML differences we ignored:

» Trailing whitespace - we ignore any differences in trailing whitespaces in strings between

the original and generated files.
* String to one-item list - key: stringisthe same as key: [string].

* List to empty map - key: [listvalue] isthe same as

key: map[listvalue:<nil>].

* String to empty map - key: string is the same as

key: map[string:<nil>].
* Empty map to null - key: <nil> isthe same as not having key at all.

¢ String output to map - .outputs.output—name: value isthe same as

*.outputs.output—-name: map[value: value].

* Full variable reference - In GHA, it is possible to omit part of a variable reference, e.g., we
can refer to jobs. job—0.env.ENV_VAR just as env.ENV_VAR. The transpiler always

generates the full variable reference.

« If without brackets - GHA lets users omit the “${{ (...) }}” syntax that denotes an expres-
sion when defining a conditional for flow control. The transpiler always generates expres-
sions with “${{ (...) }}” syntax.

* Container image - ».container: value is the same as

*.container: map[image: value].

2https://github.com/sahilm/yamldiff

https://github.com/sahilm/yamldiff

9.2 Evaluating ACICDTrip for a Large Number of Pipelines

77

name: "Workflow"

on: push

jobs:
build:
runs—on: ubuntu-latest
steps:

- uses: actions/checkout@v3

(a) Input GHA pipeline script.

version: 2.1

jobs:
build:
machine:
image: "ubuntu-latest"
steps:
— checkout:
workflows:

version: 2.1
Workflow:
jobs:

build:

(b) Intermediate CircleClI pipeline script.

name: "Workflow"

jobs:
build:
name: "build"
runs-on:
- "ubuntu-latest"
steps:

- uses: "actions/checkout@v4"

(c) Output GHA pipeline script.

Figure 9.2: Example of a GHA pipeline (figure 9.2a) being migrated to CircleCl (figure 9.2b) and

then back into GHA (figure 9.2c¢).

Evaluation 78

9.2.2 Results

There are some limitations to using CircleCI as an intermediary technology in this evaluation.
CircleClI does not define most Triggers in the pipeline script (it does this in the platform settings),
meaning we lose Trigger information when migrating the GHA pipeline. Display names of Steps
are also altered in certain situations. We ignore differences that stem from these limitations as a
fully-developed ACICDTrip would have tighter integration with the CircleCI platform and migrate
the Triggers, and the Step display names have no bearing on pipeline execution.

The abstraction of GHA plugins like actions/checkout to PIMM Steps like Checkout
means we lose version information of these Plugins in the migration (ACICDTrip generates
pipelines with the latest version). These differences are moot and only a result of this particu-
lar kind of evaluation. Some platforms use native Steps for this functionality, while others use
Plugins. If the platform we are migrating to uses native Steps (e.g., CircleCI), the version is irrel-
evant; if it uses Plugins (e.g., Jenkins), we do not want to use another platform’s Plugin’s version.
The abstraction lets us migrate these steps accurately and automatically.

Taking this into account, 3,316 of the scripts suffered no semantic change. This gives us an
81,1% successful migration rate.

Of 775 pipelines with semantic change (pipelines may have multiple changes):

* 404 had Plugins lose arguments when being migrated to Checkouts, Artifacts, or Caches.
This is because they have extra functionality not supported by the PIMM.

* 31 had lost Plugin environment variables. CircleCI does not natively support environment
variables in Orb steps. We send these as arguments instead. This avoids loss of information
as, when changing the GHA Plugin to a CircleCI one, the CircleCI one may instead take

these values as arguments.

* 100 had differences because strings were parsed as floating point numbers. This happens
most in Plugins as we have no information on the type of the argument we are parsing. The
string value “3.10” is parsed as a float 3.1. This causes changes mostly when the Plugin

argument indicates a version of some kind, as 3.10 should be read as a string in that context.
* 16 had differences due to encoding. The transpiler only supports UTF-8.
* 54 had macOS version mismatches as CircleCI does not directly store the macOS version.

* 252 had differences that are not easily classifiable. These should be seen as the result of

bugs in the current version of the transpiler.

9.3 Addressing RQ2

The second research question prompts us to evaluate whether the PIMM can be the basis for
accurate translation of CI/CD pipelines between platforms. The evaluations allow us to answer

this question positively.

9.4 Addressing RQ3 79

In section 9.1, all of the pipelines could be migrated to GHA. The PIMM supported the
pipelines completely, and the transformations we defined were capable of accurately migrating
from CircleCI to the PIMM and then to GHA. We needed to use the TDSL for some transforma-
tions that could not be done automatically. Still, all of these transformations except selecting the
pipeline to migrate were done on the PIM. There was no need to substantially interact with the
CircleCI or GHA models in the migration process, even if there was a need to interact with the
codebase in one project. We also made no alterations to the generated scripts.

In section 9.2, there are many pipelines that cannot yet be migrated in strict mode. Still, the
vast majority (81.1%) of pipelines supported by strict mode can be migrated with no semantic
alteration.

Any reengineering process is lossy. Modeling is an abstraction, and consequently, a model can
never contain all the information of the original object. This is doubly true for us, as we are trying
to model CI/CD pipelines in a manner that is independent of their underlying platform. Inevitably,
there will be elements we cannot represent and details of the elements we do represent that we
will lose.

The glaring examples of this are the Checkout, Artifact, and Cache steps. This abstraction
lets us automatically migrate core CI/CD functionality between platforms, but it means we lose
information about the Plugin version and arguments of some platforms.

The version alteration is irrelevant to migrating between platforms as long as we guarantee
that the functionality of the step is the same. However, we cannot say the same for the loss
of arguments. This is the most common semantic difference amongst the 775 altered files in
section 9.2.2. Further PIMM development could address some of these, but there are limits.

For example, GHA’s actions/checkout package has an optional argument to check out
the repository’s submodules. CircleCI’s checkout does not support this functionality, but it can
be mimicked by running certain shell commands. If we added this functionality to the PIMM’s
Checkout, we could add those commands when running the PIM-to-CircleCI transformation.
However, this would make the CircleCI-to-PIM transformation much more complex because of
the need to group multiple CircleCI steps into one PIMM step. Moreover, if we try to optimize
the PIMM to one particular platform migration, we could lessen its ability to represent other plat-
forms’ pipelines as it becomes more platform-specific.

Overall, while there is room for further development of the PIMM by adding new concepts and
detailing some existing ones, the evaluation shows that the current abstraction level is appropriate

to allow accurate migration between platforms.

9.4 Addressing RQ3

The third research question asks if CI/CD migration can be fully automated. We find the answer
to this question to be negative.
Firstly, although different CI/CD platforms have much common functionality, there are still

significant differences in feature sets. For example, GHA’s tight integration with GitHub lets users

Evaluation 80

set up permissions for pipelines in the pipeline itself. In other platforms, these permissions have
to be defined when generating a token for the platform to access the repository. CircleCI has more
options for users to control execution flow, like calling functions, defining multiple pipelines in
one script, and easily reusing jobs. These different feature sets are one of the main motivators for
migration [121].

This means there will always be pipelines that cannot be wholly migrated from one platform
to another. Section 9.2 shows this can happen even in the pipelines supported by strict mode, as
404 scripts had Plugins lose arguments because of extra functionality.

Moreover, migrating CI/CD sometimes necessitates changes to the codebase and changes that
can only be done with context-specific knowledge. Section 9.1 has an example of this. Migrating
meant changing the address and ports of a Docker container, which can only be done with knowl-
edge of the ports used by the container. This address also needed to be changed in the codebase.

Finally, Plugins need to be changed between platforms. In theory, this could be done automat-
ically, but there is no guarantee there will always be a corresponding Plugin in another platform.

This would imply manual work to replace it with multiple Plugins or Commands.

9.5 Threats to Validity

The PIMM was devised based on several of the most popular CI/CD platforms from chapter 3 and,
as such, should be able to represent most pipelines. Still, it is conceivable that CI/CD pipelines
implemented in more niche platforms may not be representable.

The CircleClI projects used in section 9.1 are not representable of real-world pipelines as they
are part of sample projects. Still, they use most core PIMM functionality other than Matrices and
show how the PIMM can be used to migrate platforms.

Regarding section 9.2°s evaluation. We show that our tool can be self-consistent in its trans-
formations from platform to platform. However, even in the 81,1% of cases where there was no
semantically relevant alteration, we cannot guarantee that the intermediate script of the double
round trip is semantically equivalent in the intermediate platform. As seen in section 9.2, chang-
ing platforms requires some manual work, as there are some particularities to each platform that
are too low-level to be considered in the PIMM. The successful migration rate and other statistics
also only apply to the GHA-to-CircleCI migration and cannot be generalized for all migrations.

The 10,000 GHA-using repositories used for this evaluation were selected at random. While
they are all real-world projects made public by users, we cannot guarantee that the scripts we
retrieved from these repositories are in use and representative of their projects. The large sample

size should minimize these concerns.

Chapter 10
Conclusions and Future Work

With our work, we found there are enough core concepts common to diverse CI/CD platforms to
define a common language, the meta-model we propose. This allows the full migration of existing
pipelines in many situations. Nevertheless, a fully automated reengineering process does not seem
feasible in all cases.

Often, changing technologies requires some manual work, as there are some particularities
to each platform that are too low-level to be considered in the PIMM. For example, GHA scripts
require at least one Trigger definition to be well-formed; however, when translating from CircleCI,
there is often missing information related to Triggers.

To aid with these manual changes, we designed an initial DSL. In fact, a fully-fledged TDSL
could also be a lingua franca for CI/CD pipelines, letting developers write pipelines without being
concerned about the syntax of the technology they will end up using. Future TDSL versions
may also interact with the PSM-to-PIM and PIM-to-PSM transformations; this way, it would
be possible for the user to configure the version of the platform-specific plugins that Checkout,
Artifact, and Cache steps get migrated to.

There is also room for further development of the PIMM. The next development path should
be adding support for user-defined secrets and other relevant pipeline variables, as this is revealed
to be a major current limitation. These features are present in multiple CI/CD platforms, so the
PIMM would stay platform-independent.

For better usability, future versions of ACICDTrip should provide more user feedback about
the migration process, such as listing the elements of the pipeline the transpiler cannot migrate
and will require user input. This can be done by defining more model validations and checking

their constraints.

81

References

[1]

[6]

[7]

About the MOF Query/View/Transformation Specification Version 1.3. URL: https://
Www.omg.org/spec/QVT/1.3/About-QVT (visited on 12/27/2023).

Acceleo | Home. URL: https://eclipse.dev/acceleo/ (visited on 12/27/2023).

Adetokunbo A A Adenowo and Basirat A Adenowo. “Software Engineering Methodolo-
gies: A Review of the Waterfall Model and Object-Oriented Approach”. In: International
Journal of Scientific & Engineering Research 4.7 (2013), pp. 427-434.

Hanieh Alipour and Yan Liu. “Model Driven Deployment of Auto-Scaling Services on
Multiple Clouds”. In: 2018 IEEE International Conference on Software Architecture Com-
panion (ICSA-C). 2018 IEEE International Conference on Software Architecture Compan-
ion (ICSA-C). Seattle, WA: IEEE, Apr. 2018, pp. 93-96. 1SBN: 978-1-5386-6585-5. DOTI:
10.1109/ICSA-C.2018.00033. URL: https://ieeexplore. ieee.org/
document /8432188/ (visited on 06/25/2024).

AppVeyor. URL: https://www.appveyor.com/ (visited on 06/21/2024).

S.A.LLB.S. Arachchi and Indika Perera. “Continuous Integration and Continuous Delivery
Pipeline Automation for Agile Software Project Management”. In: 2018 Moratuwa Engi-
neering Research Conference (MERCon). 2018 Moratuwa Engineering Research Confer-
ence (MERCon). May 2018, pp. 156-161. DOI: 10.1109/MERCon.2018.8421965.
URL: https : // ieeexplore . ieee . org/ abstract / document / 8421965 ?
casa_token=vM2GUu7Bq7cAAAAA : wZUfCkE4AhbTQo8WZkG7ECIfwOKAsOoPmMDg
75x9DVa0Ykfcc60SSx0SFsSPUyzahjRvti4ELGe28 (visited on 11/29/2023).

Matej Artac et al. “Model-driven continuous deployment for quality DevOps”. In: Pro-
ceedings of the 2nd International Workshop on Quality-Aware DevOps. ISSTA ’16: In-
ternational Symposium on Software Testing and Analysis. Saarbriicken Germany: ACM,
July 21, 2016, pp. 40-41. ISBN: 978-1-4503-4411-1. DOI: 10.1145/2945408.29454
17. URL: https://dl.acm.org/doi/10.1145/2945408.2945417 (visited on
01/04/2024).

Automating migration with GitHub Actions Importer. GitHub Docs. URL: https://doc
s.github.com/en/actions/migrating-to-github—-actions/automated-
migrations/automating-migration-with-github-actions- importer

(visited on 12/06/2023).

82

https://www.omg.org/spec/QVT/1.3/About-QVT
https://www.omg.org/spec/QVT/1.3/About-QVT
https://eclipse.dev/acceleo/
https://doi.org/10.1109/ICSA-C.2018.00033
https://ieeexplore.ieee.org/document/8432188/
https://ieeexplore.ieee.org/document/8432188/
https://www.appveyor.com/
https://doi.org/10.1109/MERCon.2018.8421965
https://ieeexplore.ieee.org/abstract/document/8421965?casa_token=vM2GUu7Bq7cAAAAA:wZUfCkE4AhbTQo8WZkG7ECIfw0KAsoPmDqj5x9DVaOYkfcc6oSSxOSFsSPUyzahjRvti4ELGc28
https://ieeexplore.ieee.org/abstract/document/8421965?casa_token=vM2GUu7Bq7cAAAAA:wZUfCkE4AhbTQo8WZkG7ECIfw0KAsoPmDqj5x9DVaOYkfcc6oSSxOSFsSPUyzahjRvti4ELGc28
https://ieeexplore.ieee.org/abstract/document/8421965?casa_token=vM2GUu7Bq7cAAAAA:wZUfCkE4AhbTQo8WZkG7ECIfw0KAsoPmDqj5x9DVaOYkfcc6oSSxOSFsSPUyzahjRvti4ELGc28
https://doi.org/10.1145/2945408.2945417
https://doi.org/10.1145/2945408.2945417
https://dl.acm.org/doi/10.1145/2945408.2945417
https://docs.github.com/en/actions/migrating-to-github-actions/automated-migrations/automating-migration-with-github-actions-importer
https://docs.github.com/en/actions/migrating-to-github-actions/automated-migrations/automating-migration-with-github-actions-importer
https://docs.github.com/en/actions/migrating-to-github-actions/automated-migrations/automating-migration-with-github-actions-importer

REFERENCES 83

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Zia Babar, Alexei Lapouchnian, and Eric Yu. “Modeling DevOps Deployment Choices
Using Process Architecture Design Dimensions”. In: The Practice of Enterprise Model-
ing. Ed. by Jolita Ralyté, Sergio Espaiia, and Oscar Pastor. Lecture Notes in Business In-
formation Processing. Cham: Springer International Publishing, 2015, pp. 322-337. ISBN:
978-3-319-25897-3. DOI1: 10.1007/978-3-319-25897-3_21.

Kiyana Bahadori and Tullio Vardanega. “DevOps Meets Dynamic Orchestration”. In: Soft-
ware Engineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment. Ed. by Jean-Michel Bruel, Manuel Mazzara, and Bertrand
Meyer. Lecture Notes in Computer Science. Cham: Springer International Publishing,
2019, pp. 142-154. 1SBN: 978-3-030-06019-0. DO1: 10.1007/978-3-030-06019~
0_11.

K. Beck. “Embracing change with extreme programming”. In: Computer 32.10 (Oct.
1999), pp. 70-77. 1SSN: 00189162. DOI: 10.1109/2.796139. URL: http://iee
explore.ieee.org/document/796139/ (visited on 12/09/2023).

Moritz Beller, Georgios Gousios, and Andy Zaidman. “Oops, My Tests Broke the Build:
An Explorative Analysis of Travis CI with GitHub”. In: 2017 IEEE/ACM 14th Interna-
tional Conference on Mining Software Repositories (MSR). 2017 IEEE/ACM 14th Inter-
national Conference on Mining Software Repositories (MSR). Buenos Aires, Argentina:
IEEE, May 2017, pp. 356-367. 1SBN: 978-1-5386-1544-7. DOI: 10.1109/MSR.2017.
62. URL: http://ieeexplore . ieee . org/document / 7962385/ (visited on
12/17/2023).

Francisco Javier Bermudez Ruiz, Jesis Garcia Molina, and Oscar Diaz Garcia. “On the
application of model-driven engineering in data reengineering”. In: Information Systems
72 (Dec. 1,2017), pp. 136-160. 1SSN: 0306-4379.DOI1: 10.1016/5.1is.2017.10.004.
URL: https://www.sciencedirect.com/science/article/pii/S0306437
915300508 (visited on 12/26/2023).

N. Bohr. “On the constitution of atoms and molecules”. In: The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 26.151 (July 1913), pp. 1-25.
ISSN: 1941-5982, 1941-5990. DOI: 10.1080/14786441308634955. URL: https :
//www.tandfonline.com/doi/full/10.1080/14786441308634955 (visited
on 12/19/2023).

Richard C. Gronback Boldt Nick. Graphical Modeling Framework | The Eclipse Founda-
tion. URL: https://eclipse.dev/modeling/gmp/ (visited on 12/27/2023).

Francis Bordeleau et al. “Towards Modeling Framework for DevOps: Requirements De-
rived from Industry Use Case”. In: Software Engineering Aspects of Continuous Devel-
opment and New Paradigms of Software Production and Deployment. Ed. by Jean-Michel
Bruel, Manuel Mazzara, and Bertrand Meyer. Lecture Notes in Computer Science. Cham:

https://doi.org/10.1007/978-3-319-25897-3_21
https://doi.org/10.1007/978-3-030-06019-0_11
https://doi.org/10.1007/978-3-030-06019-0_11
https://doi.org/10.1109/2.796139
http://ieeexplore.ieee.org/document/796139/
http://ieeexplore.ieee.org/document/796139/
https://doi.org/10.1109/MSR.2017.62
https://doi.org/10.1109/MSR.2017.62
http://ieeexplore.ieee.org/document/7962385/
https://doi.org/10.1016/j.is.2017.10.004
https://www.sciencedirect.com/science/article/pii/S0306437915300508
https://www.sciencedirect.com/science/article/pii/S0306437915300508
https://doi.org/10.1080/14786441308634955
https://www.tandfonline.com/doi/full/10.1080/14786441308634955
https://www.tandfonline.com/doi/full/10.1080/14786441308634955
https://eclipse.dev/modeling/gmp/

REFERENCES 84

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Springer International Publishing, 2020, pp. 139-151. 1SBN: 978-3-030-39306-9. DOT:
10.1007/978-3-030-39306-9_10.

Hayet Brabra et al. “Model-Driven Orchestration for Cloud Resources”. In: 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). 2019 IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD). Milan, Italy: IEEE, July 2019, pp. 422—
429. 1SBN: 978-1-72812-705-7. DOI: 10.1109/CLOUD.2019.00074. URL: https:
//ieeexplore.ieee.org/document/8814534/ (visited on 06/25/2024).

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering
in Practice. Synthesis Lectures on Software Engineering. Cham: Springer International
Publishing, 2017. ISBN: 978-3-031-01421-5. DOI: 10.1007/978-3-031-02549-5.
URL: https://link.springer.com/10.1007/978-3-031-02549-5 (visited
on 12/19/2023).

Fabio Calefato, Filippo Lanubile, and Luigi Quaranta. “A Preliminary Investigation of
MLOps Practices in GitHub”. In: Proceedings of the 16th ACM / IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ESEM °22. Helsinki, Fin-
land: Association for Computing Machinery, 2022, pp. 283-288. ISBN: 9781450394277.
DOI: 10 . 1145/ 3544902 . 3546636. URL: https : / /doi .org/ 10 .1145/
3544902.3546636.

G. Casale et al. “RADON: rational decomposition and orchestration for serverless com-
puting”. In: SICS Software-Intensive Cyber-Physical Systems 35.1 (Aug. 2020), pp. 77—
87. 1SSN: 2524-8510, 2524-8529. DOI: 10 .1007 /s00450-019- 00413 —w. URL:
http://link.springer.com/10.1007/s00450-019-00413~-w (visited on
06/25/2024).

Giuliano Casale et al. “DICE: Quality-Driven Development of Data-Intensive Cloud Ap-
plications”. In: 2015 IEEE/ACM 7th International Workshop on Modeling in Software
Engineering. 2015 IEEE/ACM 7th International Workshop on Modeling in Software En-
gineering (MiSE). Florence: IEEE, May 2015, pp. 78-83. 1ISBN: 978-1-4673-7055-4. DOTI:
10.1109/MiSE.2015.21. URL: https://ieeexplore.ieee.org/document/
7167407/ (visited on 12/07/2023).

Stéphanie Challita et al. “Model-based cloud resource management with TOSCA and
OCCTI”. In: Software and Systems Modeling 20.5 (Oct. 1, 2021), pp. 1609-1631. ISSN:
1619-1374. DOI: 10.1007/510270-021-00869—-y. URL: https://doi.org/10.
1007/s10270-021-00869-y (visited on 06/25/2024).

Chef Software DevOps Automation Solutions | Chef. Chef Software. URL: https: //
www.chef.io/ (visited on 01/04/2024).

Lianping Chen. “Continuous Delivery: Huge Benefits, but Challenges Too”. In: IEEE Soft-
ware 32.2 (Mar. 2015). Conference Name: IEEE Software, pp. 50-54. 1SSN: 1937-4194.
DOI: 10.1109/MS.2015.27. URL: https://ieeexplore.ieee.org/abstract

https://doi.org/10.1007/978-3-030-39306-9_10
https://doi.org/10.1109/CLOUD.2019.00074
https://ieeexplore.ieee.org/document/8814534/
https://ieeexplore.ieee.org/document/8814534/
https://doi.org/10.1007/978-3-031-02549-5
https://link.springer.com/10.1007/978-3-031-02549-5
https://doi.org/10.1145/3544902.3546636
https://doi.org/10.1145/3544902.3546636
https://doi.org/10.1145/3544902.3546636
https://doi.org/10.1007/s00450-019-00413-w
http://link.springer.com/10.1007/s00450-019-00413-w
https://doi.org/10.1109/MiSE.2015.21
https://ieeexplore.ieee.org/document/7167407/
https://ieeexplore.ieee.org/document/7167407/
https://doi.org/10.1007/s10270-021-00869-y
https://doi.org/10.1007/s10270-021-00869-y
https://doi.org/10.1007/s10270-021-00869-y
https://www.chef.io/
https://www.chef.io/
https://doi.org/10.1109/MS.2015.27
https://ieeexplore.ieee.org/abstract/document/7006384?casa_token=zca1QQTWpkwAAAAA:3KlDQ3L7xFSm4tG1NGoTPSWU5IKRCyOmVFYurgy0421HIz4u77Jm9q1Hcmlwy8ZMTI9tbKxtB-8
https://ieeexplore.ieee.org/abstract/document/7006384?casa_token=zca1QQTWpkwAAAAA:3KlDQ3L7xFSm4tG1NGoTPSWU5IKRCyOmVFYurgy0421HIz4u77Jm9q1Hcmlwy8ZMTI9tbKxtB-8

REFERENCES 85

[25]

[26]

[27]

(28]
[29]

[30]
[31]

[32]

[33]

/document /7006384 ?casa_token=zcalQQTWpkwAAAAA : 3K1DQ3L7xFSm4tGl
NGoTPSWUSIKRCYOmVEYurgy0421HIz4u77Im9glHemlwy8ZMTI 9tbKxtB-8 (vis-
ited on 11/29/2023).

Wei Chen et al. “MORE: A Model-Driven Operation Service for Cloud-Based IT Sys-
tems”. In: 2016 IEEE International Conference on Services Computing (SCC). 2016 IEEE
International Conference on Services Computing (SCC). San Francisco, CA, USA: IEEE,
June 2016, pp. 633—640. 1SBN: 978-1-5090-2628-9. DOI: 10 . 1109 /SCC . 2016 . 8
8. URL: http:/ /ieeexplore . ieee . org/ document / 7557508/ (visited on
01/04/2024).

E.J. Chikofsky and J.H. Cross. “Reverse engineering and design recovery: a taxonomy”.
In: IEEE Software 7.1 (Jan. 1990). Conference Name: IEEE Software, pp. 13—17. ISSN:
1937-4194. DOI: 10.1109/52.43044. URL: https://ieeexplore.ieee.org/
abstract/document /43044 (visited on 12/26/2023).

Federico Ciccozzi et al. “Blended Modelling - What, Why and How”. In: 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C). Munich, Ger-
many: IEEE, Sept. 2019, pp. 425-430. 1SBN: 978-1-72815-125-0. poI1: 10.1109 /MO
DELS—-C.2019.00068. URL: https://ieeexplore. ieee.org/document /
8904858/ (visited on 12/27/2023).

CircleCIl. URL: https://circleci.com (visited on 06/21/2024).

CircleCI Orbs. CircleCl. URL: https : / / circleci . com / orbs/ (visited on
12/17/2023).

Codefresh. URL: https://codefresh.io/ (visited on 06/21/2024).

Eldan Cohen and Mariano P. Consens. “Large-Scale Analysis of the Co-commit Patterns
of the Active Developers in GitHub’s Top Repositories”. In: 2018 IEEE/ACM 15th Inter-
national Conference on Mining Software Repositories (MSR). 2018, pp. 426—436.

Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer. “DevOpsML: towards
modeling DevOps processes and platforms”. In: Proceedings of the 23rd ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings. MODELS ’20: ACM/IEEE 23rd International Conference on Model Driven
Engineering Languages and Systems. Virtual Event Canada: ACM, Oct. 16, 2020, pp. 1-
10. 1SBN: 978-1-4503-8135-2. DOI: 10 . 1145/ 3417990 . 3420203. URL: https :
//dl.acm.org/doi/10.1145/3417990.3420203 (visited on 12/07/2023).

Alessandro Colantoni et al. “Towards blended modeling and simulation of DevOps pro-
cesses: the Keptn case study”. In: Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. MODELS
’22: ACM/IEEE 25th International Conference on Model Driven Engineering Languages

https://ieeexplore.ieee.org/abstract/document/7006384?casa_token=zca1QQTWpkwAAAAA:3KlDQ3L7xFSm4tG1NGoTPSWU5IKRCyOmVFYurgy0421HIz4u77Jm9q1Hcmlwy8ZMTI9tbKxtB-8
https://ieeexplore.ieee.org/abstract/document/7006384?casa_token=zca1QQTWpkwAAAAA:3KlDQ3L7xFSm4tG1NGoTPSWU5IKRCyOmVFYurgy0421HIz4u77Jm9q1Hcmlwy8ZMTI9tbKxtB-8
https://ieeexplore.ieee.org/abstract/document/7006384?casa_token=zca1QQTWpkwAAAAA:3KlDQ3L7xFSm4tG1NGoTPSWU5IKRCyOmVFYurgy0421HIz4u77Jm9q1Hcmlwy8ZMTI9tbKxtB-8
https://doi.org/10.1109/SCC.2016.88
https://doi.org/10.1109/SCC.2016.88
http://ieeexplore.ieee.org/document/7557508/
https://doi.org/10.1109/52.43044
https://ieeexplore.ieee.org/abstract/document/43044
https://ieeexplore.ieee.org/abstract/document/43044
https://doi.org/10.1109/MODELS-C.2019.00068
https://doi.org/10.1109/MODELS-C.2019.00068
https://ieeexplore.ieee.org/document/8904858/
https://ieeexplore.ieee.org/document/8904858/
https://circleci.com
https://circleci.com/orbs/
https://codefresh.io/
https://doi.org/10.1145/3417990.3420203
https://dl.acm.org/doi/10.1145/3417990.3420203
https://dl.acm.org/doi/10.1145/3417990.3420203

REFERENCES 86

[34]
[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

and Systems. Montreal Quebec Canada: ACM, Oct. 23, 2022, pp. 784-792. 1SBN: 978-1-
4503-9467-3. DOI: 10.1145/3550356.3561597. URL: https://dl.acm.org/
doi/10.1145/3550356.3561597 (visited on 12/07/2023).

Concourse. URL: https://concourse—ci.org/ (visited on 06/21/2024).

Ana C. Franco Da Silva et al. “OpenTOSCA for IoT: Automating the Deployment of IoT
Applications based on the Mosquitto Message Broker”. In: Proceedings of the 6th Inter-
national Conference on the Internet of Things. 10T’ 16: The 6th International Conference
on the Internet of Things. Stuttgart Germany: ACM, Nov. 7, 2016, pp. 181-182. ISBN:
978-1-4503-4814-0. DOI: 10.1145/2991561.2998464. URL: https://dl.acm.
org/doi/10.1145/2991561.2998464 (visited on 01/04/2024).

Alexandre Decan et al. “On the Use of GitHub Actions in Software Development Reposi-
tories”. In: 2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME). Limassol, Cyprus: IEEE, Oct. 2022, pp. 235-245. 1SBN: 978-1-66547-956-1.
DOI: 10.1109/ICSME55016.2022.00029. URL: https://ieeexplore. iecece.
org/document/9978190/ (visited on 01/31/2024).

Elisabetta Di Nitto et al., eds. Model-Driven Development and Operation of Multi-Cloud
Applications: The MODAClouds Approach. SpringerBriefs in Applied Sciences and Tech-
nology. Cham: Springer International Publishing, 2017. 1SBN: 978-3-319-46031-4. DOT:
10.1007/978-3-319-46031—-4. URL: http://1link. springer.com/10.
1007/978-3-319-46031-4 (visited on 01/04/2024).

Drone. URL: https://www.drone.io/ (visited on 06/21/2024).

Thomas F. Diillmann, Oliver Kabierschke, and André van Hoorn. “StalkCD: A Model-
Driven Framework for Interoperability and Analysis of CI/CD Pipelines”. In: 2021 47th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
2021, pp. 214-223. DOI1: 10.1109/SEAA53835.2021.00035.

Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. Google-Books-ID: PVIqfEdv9LOC. Pearson Educa-
tion, June 29, 2007. 313 pp. ISBN: 978-0-321-63014-8.

Ecore - Eclipsepedia. URL: https : / /wiki . eclipse . org/ Ecore (visited on
12/27/2023).

Badr El Khalyly et al. “A new metamodel approach of CI/CD applied to Internet of
Things Ecosystem”. In: 2020 IEEE 2nd International Conference on Electronics, Con-
trol, Optimization and Computer Science (ICECOCS). 2020 IEEE 2nd International Con-
ference on Electronics, Control, Optimization and Computer Science (ICECOCS). Keni-
tra, Morocco: IEEE, Dec. 2, 2020, pp. 1-6. ISBN: 978-1-72816-921-7. DOI: 10.1109/
ICECOCS50124 . 2020 .9314485. URL: https : / / ieeexplore . ieece . org/
document /9314485/ (visited on 12/07/2023).

https://doi.org/10.1145/3550356.3561597
https://dl.acm.org/doi/10.1145/3550356.3561597
https://dl.acm.org/doi/10.1145/3550356.3561597
https://concourse-ci.org/
https://doi.org/10.1145/2991561.2998464
https://dl.acm.org/doi/10.1145/2991561.2998464
https://dl.acm.org/doi/10.1145/2991561.2998464
https://doi.org/10.1109/ICSME55016.2022.00029
https://ieeexplore.ieee.org/document/9978190/
https://ieeexplore.ieee.org/document/9978190/
https://doi.org/10.1007/978-3-319-46031-4
http://link.springer.com/10.1007/978-3-319-46031-4
http://link.springer.com/10.1007/978-3-319-46031-4
https://www.drone.io/
https://doi.org/10.1109/SEAA53835.2021.00035
https://wiki.eclipse.org/Ecore
https://doi.org/10.1109/ICECOCS50124.2020.9314485
https://doi.org/10.1109/ICECOCS50124.2020.9314485
https://ieeexplore.ieee.org/document/9314485/
https://ieeexplore.ieee.org/document/9314485/

REFERENCES 87

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

EMFText. EMFText. URL: http://devboost .github.io/EMEFText/ (visited on
12/27/2023).

Epsilon. URL: https://eclipse.dev/epsilon/ (visited on 06/23/2024).

Epsilon Documentation. URL: https://eclipse.dev/epsilon/doc/ (visited on
06/23/2024).

Nicolas Ferry et al. “CloudMF: Model-Driven Management of Multi-Cloud Applications”.
In: ACM Transactions on Internet Technology 18.2 (May 31, 2018), pp. 1-24. ISSN: 1533-
5399, 1557-6051. DOI: 10.1145/3125621. URL: https://dl.acm.org/doi/10.
1145/3125621 (visited on 06/25/2024).

Nicolas Ferry et al. “ENACT: Development, Operation, and Quality Assurance of Trust-
worthy Smart IoT Systems”. In: Software Engineering Aspects of Continuous Develop-
ment and New Paradigms of Software Production and Deployment. Ed. by Jean-Michel
Bruel, Manuel Mazzara, and Bertrand Meyer. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019, pp. 112-127. 1SBN: 978-3-030-06019-0. DOT:
10.1007/978-3-030-06019-0_09.

Finding and customizing actions. GitHub Docs. URL: https://docs.github.com/e

n/actions/learn—-github-actions/finding—and-customizing—-actions

(visited on 12/17/2023).

Franck Fleurey et al. “Model-Driven Engineering for Software Migration in a Large In-
dustrial Context”. In: Model Driven Engineering Languages and Systems. Ed. by Gre-
gor Engels et al. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2007,
pp. 482-497. 1SBN: 978-3-540-75209-7. DO1: 10.1007/978-3-540-75209-7_33.

André Flores and Hugo Gido. ACICDTrip Repository. June 2024. DOI: 10.5281/zeno
do.11922315. URL: https://github.com/DreFlo/auto-cicd-migration/
releases/tag/v0.1.1.

André Flores et al. A Two-Level Model-Driven Approach for Reengineering CI/CD
Pipelines. Manuscript submitted for publication. 2024. URL: https : / / dreflo .

github.io/auto-cicd-migration/doc/thesis/inforum.pdf.

Martin Fowler. Continuous Integration. martinfowler.com. URL: https://martinfow

ler.com/articles/continuousIntegration.html (visited on 11/29/2023).

Hugo Gifo, Jicome Cunha, and Rui Pereira. Model-Driven Approaches for DevOps: A
Systematic Literature Review. Manuscript submitted for publication. 2023. URL: https:
//h4g0.github.io/Survey_MDE_DevOps.pdf.

Hugo Giao et al. 2023. URL: https://anonymous. 4open.science/r/DevOps—
Repositories—122E.

Hugo Giao et al. 2023. URL: https://anonymous. 4open.science/r/github-
devops—-mining—CO0D7.

http://devboost.github.io/EMFText/
https://eclipse.dev/epsilon/
https://eclipse.dev/epsilon/doc/
https://doi.org/10.1145/3125621
https://dl.acm.org/doi/10.1145/3125621
https://dl.acm.org/doi/10.1145/3125621
https://doi.org/10.1007/978-3-030-06019-0_9
https://docs.github.com/en/actions/learn-github-actions/finding-and-customizing-actions
https://docs.github.com/en/actions/learn-github-actions/finding-and-customizing-actions
https://doi.org/10.1007/978-3-540-75209-7_33
https://doi.org/10.5281/zenodo.11922315
https://doi.org/10.5281/zenodo.11922315
https://github.com/DreFlo/auto-cicd-migration/releases/tag/v0.1.1
https://github.com/DreFlo/auto-cicd-migration/releases/tag/v0.1.1
https://dreflo.github.io/auto-cicd-migration/doc/thesis/inforum.pdf
https://dreflo.github.io/auto-cicd-migration/doc/thesis/inforum.pdf
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://h4g0.github.io/Survey_MDE_DevOps.pdf
https://h4g0.github.io/Survey_MDE_DevOps.pdf
https://anonymous.4open.science/r/DevOps-Repositories-122E
https://anonymous.4open.science/r/DevOps-Repositories-122E
https://anonymous.4open.science/r/github-devops-mining-C0D7
https://anonymous.4open.science/r/github-devops-mining-C0D7

REFERENCES 88

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]
[65]

[66]

[67]

Hugo Gido et al. A Meta-Model to Support the Migration and Evolution of CI/CD
Pipelines. Manuscript submitted for publication. 2024. URL: https : / / dreflo .
github.io/auto-cicd-migration/doc/thesis/models.pdf.

Hugo Gido et al. Chronicles of CI/CD: A Deep Dive into its Usage Over Time. Manuscript
submitted for publication. 2023. URL: https://dreflo.github.io/auto-cicd-

migration/doc/thesis/msr.pdf.

Hugo Giao et al. CI/CD repos with tools. Nov. 2023. DOI: 10.6084/m9. figshare.
24578740.v2. URL: https://figshare.com/articles/dataset/Untitled_
Item/24578740.

Hugo Gido et al. CI/CD repositories from GitHub. Nov. 2023. DOI: 10 . 6084 /m9 .
figshare.24578746.v1.URL: https://figshare.com/articles/dataset/
CI_CD_repositories_from_GitHub/24578746.

Hugo Gido et al. CI/CD repositories with tool history. Nov. 2023. DOI: 10. 6084 /m9.
figshare.24578752.v1. URL: https://figshare.com/articles/dataset/
CI_CD_repositories_with_tool_history/24578752.

GitHub Actions. URL: https : / /github . com/ features /actions (visited on
06/21/2024).

GitHub Actions pipeline integration. URL: https: //codefresh.io/docs/docs/
integrations/github—actions/ (visited on 12/06/2023).

GitLab CI/CD. URL: https://docs.gitlab.com/ee/ci (visited on 06/21/2024).
GoCD. URL: https://www.gocd.org/index.html (visited on 06/21/2024).

Mehdi Golzadeh, Alexandre Decan, and Tom Mens. “On the rise and fall of CI services
in GitHub”. In: 2022 IEEFE International Conference on Software Analysis, Evolution and
Reengineering (SANER). 2022 IEEE International Conference on Software Analysis, Evo-
Iution and Reengineering (SANER). Honolulu, HI, USA: IEEE, Mar. 2022, pp. 662—-672.
ISBN: 978-1-66543-786-8. DOI: 10.1109/SANER53432.2022.00084. URL: https:
//ieeexplore.ieee.org/document/ 9825792/ (visited on 11/12/2023).

Marvin Grieger et al. “Concept-Based Engineering of Situation-Specific Migration Meth-
ods”. In: Software Reuse: Bridging with Social-Awareness. Ed. by Georgia M. Kapitsaki
and Eduardo Santana de Almeida. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2016, pp. 199-214. 1SBN: 978-3-319-35122-3. DO1: 10.1007/
978-3-319-35122-3_14.

Richard Gronback. Eclipse Modeling Project | The Eclipse Foundation. URL: https :
//eclipse.dev/modeling/emf/ (visited on 12/27/2023).

https://dreflo.github.io/auto-cicd-migration/doc/thesis/models.pdf
https://dreflo.github.io/auto-cicd-migration/doc/thesis/models.pdf
https://dreflo.github.io/auto-cicd-migration/doc/thesis/msr.pdf
https://dreflo.github.io/auto-cicd-migration/doc/thesis/msr.pdf
https://doi.org/10.6084/m9.figshare.24578740.v2
https://doi.org/10.6084/m9.figshare.24578740.v2
https://figshare.com/articles/dataset/Untitled_Item/24578740
https://figshare.com/articles/dataset/Untitled_Item/24578740
https://doi.org/10.6084/m9.figshare.24578746.v1
https://doi.org/10.6084/m9.figshare.24578746.v1
https://figshare.com/articles/dataset/CI_CD_repositories_from_GitHub/24578746
https://figshare.com/articles/dataset/CI_CD_repositories_from_GitHub/24578746
https://doi.org/10.6084/m9.figshare.24578752.v1
https://doi.org/10.6084/m9.figshare.24578752.v1
https://figshare.com/articles/dataset/CI_CD_repositories_with_tool_history/24578752
https://figshare.com/articles/dataset/CI_CD_repositories_with_tool_history/24578752
https://github.com/features/actions
https://codefresh.io/docs/docs/integrations/github-actions/
https://codefresh.io/docs/docs/integrations/github-actions/
https://docs.gitlab.com/ee/ci
https://www.gocd.org/index.html
https://doi.org/10.1109/SANER53432.2022.00084
https://ieeexplore.ieee.org/document/9825792/
https://ieeexplore.ieee.org/document/9825792/
https://doi.org/10.1007/978-3-319-35122-3_14
https://doi.org/10.1007/978-3-319-35122-3_14
https://eclipse.dev/modeling/emf/
https://eclipse.dev/modeling/emf/

REFERENCES 89

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Michele Guerriero et al. “A Model-Driven DevOps Framework for QoS-Aware Cloud Ap-
plications”. In: 2015 17th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC). 2015 17th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC). Timisoara, Romania: IEEE,
Sept. 2015, pp. 345-351. 1SBN: 978-1-5090-0461-4. DOT: 10.1109/SYNASC.2015.
60. URL: http://ieecexplore . ieee . org/document / 7426104/ (visited on
06/25/2024).

Mubin Ul Haque, Leonardo Horn Iwaya, and M. Ali Babar. “Challenges in Docker De-
velopment: A Large-Scale Study Using Stack Overflow”. In: Proceedings of the 14th
ACM / IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM). ESEM °20. Bari, Italy: Association for Computing Machinery, 2020. ISBN:
9781450375801. DOI: 10.1145/3382494.3410693. URL: https://doi.org/10.
1145/3382494.3410693.

Jordan Henkel et al. “Learning from, Understanding, and Supporting DevOps Artifacts
for Docker”. In: 2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE). New York, NY, United States: Association for Computing Machinery, 2020,
pp. 38-49. DOI: 10.1145/3377811.3380406.

Willem-Jan van den Heuvel et al. “ChainOps for Smart Contract-Based Distributed Ap-
plications”. In: Business Modeling and Software Design. Ed. by Boris Shishkov. Lecture
Notes in Business Information Processing. Cham: Springer International Publishing, 2021,
pp. 374-383. ISBN: 978-3-030-79976-2. DOI: 10.1007/978-3-030-79976-2_25.

Michael Hilton et al. “Usage, costs, and benefits of continuous integration in open-source
projects”. In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. ASE’16: ACM/IEEE International Conference on Automated Soft-
ware Engineering. Singapore Singapore: ACM, Aug. 25, 2016, pp. 426—437. 1SBN: 978-
1-4503-3845-5. DOI: 10.1145/2970276.2970358. URL: https://dl.acm.org/
doi/10.1145/2970276.2970358 (visited on 12/17/2023).

Helena Holmstrom et al. “Global Software Development Challenges: A Case Study on
Temporal, Geographical and Socio-Cultural Distance”. In: 2006 IEEE International Con-
ference on Global Software Engineering (ICGSE’06). 2006, pp. 3—11. DOI: 10.1109/
ICGSE.2006.261210.

Geir Horn and Pawel Skrzypek. “MELODIC: Utility Based Cross Cloud Deployment Op-
timisation”. In: 2018 32nd International Conference on Advanced Information Network-
ing and Applications Workshops (WAINA). 2018 32nd International Conference on Ad-
vanced Information Networking and Applications Workshops (WAINA). Krakow: IEEE,
May 2018, pp. 360-367. ISBN: 978-1-5386-5395-1. DOI: 10 . 1109 /WAINA . 2018 .
00112. URL: https://iecexplore.ieece.org/document/8418097/ (visited on
01/04/2024).

https://doi.org/10.1109/SYNASC.2015.60
https://doi.org/10.1109/SYNASC.2015.60
http://ieeexplore.ieee.org/document/7426104/
https://doi.org/10.1145/3382494.3410693
https://doi.org/10.1145/3382494.3410693
https://doi.org/10.1145/3382494.3410693
https://doi.org/10.1145/3377811.3380406
https://doi.org/10.1007/978-3-030-79976-2_25
https://doi.org/10.1145/2970276.2970358
https://dl.acm.org/doi/10.1145/2970276.2970358
https://dl.acm.org/doi/10.1145/2970276.2970358
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/ICGSE.2006.261210
https://doi.org/10.1109/WAINA.2018.00112
https://doi.org/10.1109/WAINA.2018.00112
https://ieeexplore.ieee.org/document/8418097/

REFERENCES 90

[75]

[76]

[77]

[78]

[79]

[80]
[81]

[82]

[83]

Jerome Hugues et al. “TwinOps - DevOps meets model-based engineering and digital
twins for the engineering of CPS”. In: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion Proceed-
ings. MODELS ’20: ACM/IEEE 23rd International Conference on Model Driven Engi-
neering Languages and Systems. Virtual Event Canada: ACM, Oct. 16, 2020, pp. 1-5.
ISBN: 978-1-4503-8135-2. DOI: 10.1145/3417990.3421446. URL: https://dl.
acm.org/doi/10.1145/3417990.3421446 (visited on 12/07/2023).

Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, July 27, 2010. 956 pp. ISBN:
978-0-321-67022-9.

Introduction to CircleCI migration - CircleCIl. URL: https://circleci.com/docs/
migration—-intro/ (visited on 12/06/2023).

Ramtin Jabbari et al. “What is DevOps? A Systematic Mapping Study on Definitions and
Practices”. In: Proceedings of the Scientific Workshop Proceedings of XP2016. XP ’16
Workshops. Edinburgh, Scotland, UK: Association for Computing Machinery, 2016. ISBN:
9781450341349. DOI: 10.1145/2962695.2962707. URL: https://doi.org/10.
1145/2962695.2962707.

Santiago P. Jicome-Guerrero, Marcelo Ferreira, and Alexandra Corral. “Software Devel-
opment Tools in Model-Driven Engineering”. In: 2017 5th International Conference in
Software Engineering Research and Innovation (CONISOFT). 2017 5th International Con-
ference in Software Engineering Research and Innovation (CONISOFT). Mérida, Mexico:
IEEE, Oct. 2017, pp. 140-148. 1SBN: 978-1-5386-3956-6. DOI: 10.1109/CONISOFT.
2017 .00024. URL: http://ieeexplore . ieee . org/document / 8337945/
(visited on 12/26/2023).

Jenkins. URL: https://www. jenkins. io (visited on 06/21/2024).

Jenkins pipeline integration/migration. URL: https://codefresh.io/docs/docs/
integrations/jenkins—integration/ (visited on 12/06/2023).

Miguel Jiménez et al. “DevOps’ shift-left in practice: an industrial case of application”.
In: Software Engineering Aspects of Continuous Development and New Paradigms of Soft-
ware Production and Deployment: First International Workshop, DEVOPS 2018, Chateau
de Villebrumier, France, March 5-6, 2018, Revised Selected Papers 1. Springer. 2019,
pp- 205-220.

R. Kazman, S.G. Woods, and S.J. Carriere. “Requirements for integrating software ar-
chitecture and reengineering models: CORUM II”. In: Proceedings Fifth Working Con-
ference on Reverse Engineering (Cat. No.98TB100261). Proceedings Fifth Working Con-
ference on Reverse Engineering (Cat. No.98TB100261). Oct. 1998, pp. 154-163. DOI:
10.1109/WCRE . 1998 . 723185. URL: https : // ieeexplore . ieece . org/
abstract/document /723185 (visited on 02/02/2024).

https://doi.org/10.1145/3417990.3421446
https://dl.acm.org/doi/10.1145/3417990.3421446
https://dl.acm.org/doi/10.1145/3417990.3421446
https://circleci.com/docs/migration-intro/
https://circleci.com/docs/migration-intro/
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/CONISOFT.2017.00024
https://doi.org/10.1109/CONISOFT.2017.00024
http://ieeexplore.ieee.org/document/8337945/
https://www.jenkins.io
https://codefresh.io/docs/docs/integrations/jenkins-integration/
https://codefresh.io/docs/docs/integrations/jenkins-integration/
https://doi.org/10.1109/WCRE.1998.723185
https://ieeexplore.ieee.org/abstract/document/723185
https://ieeexplore.ieee.org/abstract/document/723185

REFERENCES 91

[84]

[85]

[86]
[87]

[88]

[89]

[90]

[91]

Abdelmadjid Ketfi and Noureddine Belkhatir. “Model-driven framework for dynamic de-
ployment and reconfiguration of component-based software systems”. In: Proceedings
of the 2005 symposia on Metainformatics - MIS °05. the 2005 symposia. Esbjerg, Den-
mark: ACM Press, 2005, 8—es. ISBN: 978-1-59593-719-3. DOI: 10.1145/1234324 .
1234332. URL: http://portal .acm.org/citation.cfm?doid=1234324.
1234332 (visited on 01/04/2024).

Jorg Christian Kirchhof et al. “MontiThings: Model-Driven Development and Deploy-
ment of Reliable IoT Applications”. In: Journal of Systems and Software 183 (Jan. 2022),
p. 111087. 1SSN: 01641212. DOI: 10 . 1016/ 5. jss.2021 .111087. URL: https :
//linkinghub.elsevier.com/retrieve/pii/S0164121221001849 (visited
on 12/07/2023).

Kubernetes. URL: https://kubernetes.io/ (visited on 06/21/2024).

Rakesh Kumar and Rinkaj Goyal. “Modeling continuous security: A conceptual model for
automated DevSecOps using open-source software over cloud (ADOC)”. In: Computers
& Security 97 (Oct. 1, 2020), p. 101967. 1SSN: 0167-4048. DOI: 10.1016/ j . cose.
2020.101967. URL: https://www.sciencedirect.com/science/article/
pii/S0167404820302406 (visited on 01/03/2024).

GitHub Staff Kyle Daigle. Octoverse: The State of Open Source and rise of Al in 2023.
Nov. 2023. URL: https://github.blog/2023-11-08-the-state-of-open-

source—and—ai/.

Hemank Lamba et al. “Heard it through the Gitvine: an empirical study of tool diffusion
across the npm ecosystem”. In: Proceedings of the 28th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE °20: 28th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. Virtual Event USA:
ACM, Nov. 8, 2020, pp. 505-517. 1SBN: 978-1-4503-7043-1. DO1: 10.1145/3368089.
3409705. URL: https://dl.acm.org/doi/10.1145/3368089.3409705
(visited on 02/01/2024).

Pei Liu et al. “A First Look at CI/CD Adoptions in Open-Source Android Apps”. In:
Proceedings of the 37th IEEE/ACM International Conference on Automated Software En-
gineering. ASE *22. Rochester, MI, USA: Association for Computing Machinery, 2023.
ISBN: 9781450394758. DOI: 10.1145/3551349.3561341. URL: https://doi.
org/10.1145/3551349.3561341.

Leszek A. Maciaszek and Joaquim Filipe, eds. Evaluation of Novel Approaches to Soft-
ware Engineering: 9th International Conference, ENASE 2014, Lisbon, Portugal, April

https://doi.org/10.1145/1234324.1234332
https://doi.org/10.1145/1234324.1234332
http://portal.acm.org/citation.cfm?doid=1234324.1234332
http://portal.acm.org/citation.cfm?doid=1234324.1234332
https://doi.org/10.1016/j.jss.2021.111087
https://linkinghub.elsevier.com/retrieve/pii/S0164121221001849
https://linkinghub.elsevier.com/retrieve/pii/S0164121221001849
https://kubernetes.io/
https://doi.org/10.1016/j.cose.2020.101967
https://doi.org/10.1016/j.cose.2020.101967
https://www.sciencedirect.com/science/article/pii/S0167404820302406
https://www.sciencedirect.com/science/article/pii/S0167404820302406
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://doi.org/10.1145/3368089.3409705
https://doi.org/10.1145/3368089.3409705
https://dl.acm.org/doi/10.1145/3368089.3409705
https://doi.org/10.1145/3551349.3561341
https://doi.org/10.1145/3551349.3561341
https://doi.org/10.1145/3551349.3561341

REFERENCES 92

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

28-30, 2014. Revised Selected Papers. Vol. 551. Communications in Computer and Infor-
mation Science. Cham: Springer International Publishing, 2015. ISBN: 978-3-319-27217-
7.DOI: 10.1007/978-3-319-27218-4. URL: http://link.springer.com/
10.1007/978-3-319-27218-4 (visited on 12/09/2023).

Manar Majthoub, Mahmoud H. Qutqut, and Yousra Odeh. “Software Re-engineering: An
Overview”. In: 2018 8th International Conference on Computer Science and Information
Technology (CSIT). 2018 8th International Conference on Computer Science and Infor-
mation Technology (CSIT). Amman: IEEE, July 2018, pp. 266-270. 1ISBN: 978-1-5386-
4152-1. pOI: 10 .1109/CSIT.2018.8486173. URL: https ://ieeexplore.
ieee.org/document/8486173/ (visited on 12/26/2023).

Managing Plugins. Managing Plugins. URL: https : / /www . jenkins . io /doc/
book/managing/plugins/ (visited on 12/17/2023).

Manually migrating to GitHub Actions. GitHub Docs. URL: https://docs.github.c
om/en/actions/migrating-to-github—-actions/automated-migrations

(visited on 12/06/2023).

Fran Melchor et al. “A Model-Driven Approach for Systematic Reproducibility and Repli-
cability of Data Science Projects”. In: Advanced Information Systems Engineering. Ed. by
Xavier Franch et al. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2022, pp. 147-163. 1SBN: 978-3-031-07472-1. DOI: 10 . 1007 /978 -3 -
031-07472-1_09.

Tom Mens and Pieter Van Gorp. “A Taxonomy of Model Transformation”. In: Electronic
Notes in Theoretical Computer Science 152 (Mar. 2006), pp. 125-142. 1SSN: 15710661.
DOI: 10.1016/j.entcs.2005.10.021. URL: https://linkinghub.elsevier
.com/retrieve/pii/S1571066106001435 (visited on 12/20/2023).

metaDepth: A framework for deep meta-modelling. URL: http://metadepth.org/
(visited on 12/27/2023).

MetaObject Facility | Object Management Group. URL: http://www.omg.org/mof/
(visited on 12/27/2023).

Bart Meyers et al. “A Model-Driven Engineering Framework to Support the Functional
Safety Process”. In: 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems Compan-
ion (MODELS-C). Sept. 2019, pp. 619-623. DOI1: 10.1109/MODELS-C.2019.00094.
URL: https://ieecexplore.ieece.org/abstract/document /8904799 (visited
on 01/03/2024).

Migrate from GitHub Actions - CircleCI. URL: https://circleci . com/docs/
migrating-from-github/ (visited on 12/27/2023).

https://doi.org/10.1007/978-3-319-27218-4
http://link.springer.com/10.1007/978-3-319-27218-4
http://link.springer.com/10.1007/978-3-319-27218-4
https://doi.org/10.1109/CSIT.2018.8486173
https://ieeexplore.ieee.org/document/8486173/
https://ieeexplore.ieee.org/document/8486173/
https://www.jenkins.io/doc/book/managing/plugins/
https://www.jenkins.io/doc/book/managing/plugins/
https://docs.github.com/en/actions/migrating-to-github-actions/automated-migrations
https://docs.github.com/en/actions/migrating-to-github-actions/automated-migrations
https://doi.org/10.1007/978-3-031-07472-1_9
https://doi.org/10.1007/978-3-031-07472-1_9
https://doi.org/10.1016/j.entcs.2005.10.021
https://linkinghub.elsevier.com/retrieve/pii/S1571066106001435
https://linkinghub.elsevier.com/retrieve/pii/S1571066106001435
http://metadepth.org/
http://www.omg.org/mof/
https://doi.org/10.1109/MODELS-C.2019.00094
https://ieeexplore.ieee.org/abstract/document/8904799
https://circleci.com/docs/migrating-from-github/
https://circleci.com/docs/migrating-from-github/

REFERENCES 93

[101]

[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]
[111]
[112]
[113]

[114]

Model Merging (EML) - Epsilon. URL: https://eclipse.dev/epsilon/doc/
eml/ (visited on 06/01/2024).

Model Transformation (ETL) - Epsilon. URL: https://eclipse.dev/epsilon/
doc/et1/ (visited on 06/01/2024).

James Newkirk. “Introduction to agile processes and extreme programming”. In: Proceed-

ings of the 24th international conference on Software engineering. 2002, pp. 695-696.

OASIS. Topology and orchestration specification for cloud applications (TOSCA) Version
1.0, Committee Specification 0l. URL: http://docs .oasisopen.org/tosca/
TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html. (visited on 01/04/2024).

Obeo. ATL | The Eclipse Foundation. URL: https://eclipse.dev/at1l/ (visited on
12/27/2023).

Object Management Group. OMG Unified Modeling Language Specification. Mar. 2000.

Efi Papatheocharous and Andreas S. Andreou. “Evidence of Agile Adoption in Software
Organizations: An Empirical Survey”. In: Systems, Software and Services Process Im-
provement. Ed. by Fergal McCaffery, Rory V. O’Connor, and Richard Messnarz. Vol. 364.
Series Title: Communications in Computer and Information Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 237-246. 1SBN: 978-3-642-39178-1. DOI: 10 .
1007/978-3-642-39179-8_21. URL: http://1link.springer.com/10.
1007/978-3-642-39179-8_21 (visited on 12/09/2023).

R. Pérez-Castillo et al. “Reengineering technologies”. In: IEEE Software 28.6 (2011),
pp. 13—-17. 1SSN: 0740-7459. DOI1: 10.1109/MS.2011.145.

Puppet by Perforce. accessed: 16/11/2023. 2023. URL: https://www.puppet . com/

resources/history-of-devops—reports.

Puppet by Perforce. State of Devops Report 2013. 2013.

Puppet by Perforce. State of Devops Report 2015. 2015.

Puppet by Perforce. State of Devops Report 2017. 2017.

Kai Petersen, Claes Wohlin, and Dejan Baca. “The Waterfall Model in Large-Scale De-

velopment”. In: Product-Focused Software Process Improvement. Ed. by Frank Bomarius
et al. Vol. 32. Series Title: Lecture Notes in Business Information Processing. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2009, pp. 386—400. 1SBN: 978-3-642-02151-0. DOT:
10.1007/978-3-642-02152-7_29. URL: http://1link.springer.com/10.
1007/978-3-642-02152-7_29 (visited on 12/09/2023).

Plan a migration from another tool to GitLab CI/CD | GitLab. URL: https : / /doc
s.gitlab.com/ee/ci/migration/plan_a_migration . html (visited on

12/06/2023).

https://eclipse.dev/epsilon/doc/eml/
https://eclipse.dev/epsilon/doc/eml/
https://eclipse.dev/epsilon/doc/etl/
https://eclipse.dev/epsilon/doc/etl/
http://docs.oasisopen.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html.
http://docs.oasisopen.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html.
https://eclipse.dev/atl/
https://doi.org/10.1007/978-3-642-39179-8_21
https://doi.org/10.1007/978-3-642-39179-8_21
http://link.springer.com/10.1007/978-3-642-39179-8_21
http://link.springer.com/10.1007/978-3-642-39179-8_21
https://doi.org/10.1109/MS.2011.145
https://www.puppet.com/resources/history-of-devops-reports
https://www.puppet.com/resources/history-of-devops-reports
https://doi.org/10.1007/978-3-642-02152-7_29
http://link.springer.com/10.1007/978-3-642-02152-7_29
http://link.springer.com/10.1007/978-3-642-02152-7_29
https://docs.gitlab.com/ee/ci/migration/plan_a_migration.html
https://docs.gitlab.com/ee/ci/migration/plan_a_migration.html

REFERENCES 94

[115]

[116]

[117]

[118]

[119]

[120]
[121]

[122]

[123]

[124]

Corinne Pulgar. “Eat your own DevOps: a model driven approach to justify continuous
integration pipelines”. In: Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings. MODELS ’22.
Montreal, Quebec, Canada: Association for Computing Machinery, 2022, pp. 225-228.
ISBN: 9781450394673. DOI: 10.1145/3550356.3552395. URL: https://doi .
org/10.1145/3550356.3552395.

Puppet Infrastructure & IT Automation at Scale | Puppet by Perforce. URL: https://
www . puppet . com/ (visited on 01/04/2024).

Thijs Reus, Hans Geers, and Arie van Deursen. “Harvesting Software Systems for MDA -
Based Reengineering”. In: Model Driven Architecture — Foundations and Applications.
Ed. by Arend Rensink and Jos Warmer. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2006, pp. 213-225. 1SBN: 978-3-540-35910-4. DOI: 10 . 1007 /
11787044_17.

Franklin Magalhaes Ribeiro et al. “A Model-Driven Solution for Automatic Software De-
ployment in the Cloud”. In: Information Technology: New Generations. Ed. by Shahram
Latifi. Advances in Intelligent Systems and Computing. Cham: Springer International Pub-
lishing, 2016, pp. 591-601. 1SBN: 978-3-319-32467-8. DOI: 10.1007/978-3-319-
32467-8_52.

Luis F. Rivera et al. “UML-driven automated software deployment”. In: Proceedings of the
28th Annual International Conference on Computer Science and Software Engineering.
CASCON ’18. USA: IBM Corp., Oct. 29, 2018, pp. 257-268. (Visited on 01/03/2024).

D. L. H. Rosenberg. Software Re-engineering. Goddard Space Flight Center, NASA.

Pooya Rostami Mazrae et al. “On the usage, co-usage and migration of CI/CD tools: A
qualitative analysis”. In: Empirical Software Engineering 28.2 (Mar. 7, 2023), p. 52. DOI:
10.1007/s10664-022-10285-5. URL: https://doi.org/10.1007/s10664~
022-10285-5.

Winston W Royce. “Managing the development of large software systems: concepts and

techniques”. In: Proceedings of the 9th international conference on Software Engineering.

1987, pp. 328-338.

Julio Sandobalin. “A Model-Driven Approach to Continuous Delivery of Cloud Re-
sources”. In: Service-Oriented Computing — ICSOC 2017 Workshops. Ed. by Lars
Braubach et al. Vol. 10797. Series Title: Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 346-351. 1SBN: 978-3-319-91763-4. DOI:
10.1007/978-3-319-91764-1_29. URL: https://link.springer.com/10.
1007/978-3-319-91764-1_29 (visited on 12/07/2023).

Search. GitHub Docs. URL: https://docs.github.com/en/rest/search?
apiVersion=2022-11-28 (visited on 01/05/2024).

https://doi.org/10.1145/3550356.3552395
https://doi.org/10.1145/3550356.3552395
https://doi.org/10.1145/3550356.3552395
https://www.puppet.com/
https://www.puppet.com/
https://doi.org/10.1007/11787044_17
https://doi.org/10.1007/11787044_17
https://doi.org/10.1007/978-3-319-32467-8_52
https://doi.org/10.1007/978-3-319-32467-8_52
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/978-3-319-91764-1_29
https://link.springer.com/10.1007/978-3-319-91764-1_29
https://link.springer.com/10.1007/978-3-319-91764-1_29
https://docs.github.com/en/rest/search?apiVersion=2022-11-28
https://docs.github.com/en/rest/search?apiVersion=2022-11-28

REFERENCES 95

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]
[137]

S. Sendall and W. Kozaczynski. “Model transformation: the heart and soul of model-driven
software development”. In: IEEE Software 20.5 (Sept. 2003), pp. 42—45. 1SSN: 0740-7459.
DOI: 10.1109/MS.2003.1231150. URL: http://ieeexplore.ieee.org/
document/1231150/ (visited on 12/20/2023).

Sirius - Eclipsepedia. URL: https : / /wiki .eclipse.org/ Sirius (visited on
12/277/2023).

Eliezio Soares et al. “The effects of continuous integration on software development: a
systematic literature review”. In: Empirical Software Engineering 27.3 (May 2022), p. 78.
ISSN: 1382-3256, 1573-7616. DOI: 10 .1007/s10664-021-10114~ 1. URL: htt
ps://1link . springer .com/10.1007/s10664—-021-10114-1 (visited on
11/01/2023).

Ian Sommerville. Software engineering. 9th ed. OCLC: 0cn462909026. Boston: Pearson,
2011. 773 pp. 1SBN: 978-0-13-703515-1.

Hui Song et al. “Model-based fleet deployment in the IoT-edge—cloud continuum”. In:
Software and Systems Modeling 21.5 (Oct. 2022), pp. 1931-1956. 1SSN: 1619-1366, 1619-
1374. DO1: 10.1007/510270-022-01006—z. URL: https://link.springer.
com/10.1007/s10270-022-01006-z (visited on 12/07/2023).

Stack Overflow Insights - Developer Hiring, Marketing, and User Research. URL: https:
//survey.stackoverflow.co/ (visited on 02/05/2024).

Daniel Stahl and Jan Bosch. “Modeling continuous integration practice differences in
industry software development”. In: Journal of Systems and Software 87 (Jan. 2014),
pp. 48-59. 1SSN: 01641212. DOI: 10.1016/ 3. jss.2013.08.032. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0164121213002276 (visited
on 11/29/2023).

State of Continuous Delivery Report 2023: The Evolution of Software Delivery Perfor-
mance. CD Foundation. URL: https://cd. foundation/state-of-cd-2023/
(visited on 02/05/2024).

Case Study. Cloud native computing foundation. Nov. 2023. URL: https://www.cncf.
io/.
TCS - Eclipsepedia. URL: https://wiki.eclipse.org/TCS (visited on 12/27/2023).

The State of Developer Ecosystem in 2023. JetBrains: Developer Tools for Professionals
and Teams. URL: https : / /www . jetbrains . com/ lp/devecosystem— 2023
(visited on 02/01/2024).

Travis CI. URL: https://www.travis—ci.com (visited on 06/21/2024).

William M. Ulrich and Philip Newcomb. Information Systems Transformation: Architecture-
Driven Modernization Case Studies. Google-Books-ID: hDzledYPG7AC. Morgan Kauf-
mann, Feb. 4, 2010. 449 pp. 1SBN: 978-0-08-095710-4.

https://doi.org/10.1109/MS.2003.1231150
http://ieeexplore.ieee.org/document/1231150/
http://ieeexplore.ieee.org/document/1231150/
https://wiki.eclipse.org/Sirius
https://doi.org/10.1007/s10664-021-10114-1
https://link.springer.com/10.1007/s10664-021-10114-1
https://link.springer.com/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10270-022-01006-z
https://link.springer.com/10.1007/s10270-022-01006-z
https://link.springer.com/10.1007/s10270-022-01006-z
https://survey.stackoverflow.co/
https://survey.stackoverflow.co/
https://doi.org/10.1016/j.jss.2013.08.032
https://linkinghub.elsevier.com/retrieve/pii/S0164121213002276
https://linkinghub.elsevier.com/retrieve/pii/S0164121213002276
https://cd.foundation/state-of-cd-2023/
https://www.cncf.io/
https://www.cncf.io/
https://wiki.eclipse.org/TCS
https://www.jetbrains.com/lp/devecosystem-2023
https://www.travis-ci.com

REFERENCES 96

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Using scripts to test your code on a runner. GitHub Docs. URL: https://docs.gith

ub.com/en/actions/examples/using-scripts-to-test-your—-code-on-

a-runner (visited on 12/06/2023).

Bogdan Vasilescu et al. “Quality and productivity outcomes relating to continuous inte-
gration in GitHub”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ESEC/FSE’15: Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of Software En-
gineering. Bergamo Italy: ACM, Aug. 30, 2015, pp. 805-816. 1SBN: 978-1-4503-3675-8.
DOI: 10.1145/2786805.2786850. URL: https://dl.acm.org/doi/10.1145/
2786805.2786850 (visited on 12/17/2023).

Eelco Visser. “A Survey of Rewriting Strategies in Program Transformation Systems”. In:
Electronic Notes in Theoretical Computer Science. WRS 2001, 1st International Workshop
on Reduction Strategies in Rewriting and Programming 57 (Dec. 1, 2001), pp. 109-143.
ISSN: 1571-0661. DOI: 10.1016/S1571-0661 (04) 00270-1. URL: https://www.
sciencedirect.com/science/article/pii/S1571066104002701 (visited on
12/20/2023).

Eclipse Web. Eclipse OCL (Object Constraint Language). projects.eclipse.org. Jan. 31,
2013. URL: https://projects.eclipse.org/projects/modeling.mdt.ocl
(visited on 12/27/2023).

Eclipse Web. Eclipse Xpand. projects.eclipse.org. Jan. 31, 2013. URL: https://proje
cts.eclipse.org/projects/modeling.m2t .xpand (visited on 12/27/2023).

Eclipse Web. Java Emitter Templates (JET2). projects.eclipse.org. Jan. 31, 2013. URL:
https://projects.eclipse.org/projects/modeling.m2t . jet (visited on
12/27/2023).

Denis Weerasiri et al. “A Model-Driven Framework for Interoperable Cloud Resources
Management”. In: Service-Oriented Computing. Ed. by Quan Z. Sheng et al. Vol. 9936.
Series Title: Lecture Notes in Computer Science. Cham: Springer International Publishing,
2016, pp. 186-201. 1SBN: 978-3-319-46294-3. DOI: 10.1007/978-3-319-46295~
0_12. URL: https://link.springer.com/10.1007/978-3-319-46295-
0_12 (visited on 06/25/2024).

Denis Weerasiri et al. “CloudMap: A Visual Notation for Representing and Managing
Cloud Resources”. In: Advanced Information Systems Engineering. Ed. by Selmin Nurcan
et al. Vol. 9694. Series Title: Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2016, pp. 427-443. 1SBN: 978-3-319-39695-8. DOI: 10.1007 /978~
3-319-39696-5_26. URL: https://link.springer.com/10.1007/978-3—-
319-39696-5_26 (visited on 06/25/2024).

Frank Weil and LLC UniqueSoft. “Legacy Software Reengineering”. In: Unique Soft LLC
(2015).

https://docs.github.com/en/actions/examples/using-scripts-to-test-your-code-on-a-runner
https://docs.github.com/en/actions/examples/using-scripts-to-test-your-code-on-a-runner
https://docs.github.com/en/actions/examples/using-scripts-to-test-your-code-on-a-runner
https://doi.org/10.1145/2786805.2786850
https://dl.acm.org/doi/10.1145/2786805.2786850
https://dl.acm.org/doi/10.1145/2786805.2786850
https://doi.org/10.1016/S1571-0661(04)00270-1
https://www.sciencedirect.com/science/article/pii/S1571066104002701
https://www.sciencedirect.com/science/article/pii/S1571066104002701
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.m2t.xpand
https://projects.eclipse.org/projects/modeling.m2t.xpand
https://projects.eclipse.org/projects/modeling.m2t.jet
https://doi.org/10.1007/978-3-319-46295-0_12
https://doi.org/10.1007/978-3-319-46295-0_12
https://link.springer.com/10.1007/978-3-319-46295-0_12
https://link.springer.com/10.1007/978-3-319-46295-0_12
https://doi.org/10.1007/978-3-319-39696-5_26
https://doi.org/10.1007/978-3-319-39696-5_26
https://link.springer.com/10.1007/978-3-319-39696-5_26
https://link.springer.com/10.1007/978-3-319-39696-5_26

REFERENCES 97

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Michael Wenz. Graphiti Home | The Eclipse Foundation. URL: https://eclipse.
dev/graphiti/ (visited on 12/27/2023).

Johannes Wettinger et al. “Streamlining DevOps automation for Cloud applications using
TOSCA as standardized metamodel”. In: Future Generation Computer Systems 56 (Mar.
2016), pp. 317-332.1SSN: 0167739X.DOI1: 10.1016/ 7. future.2015.07.017. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X15002496
(visited on 01/04/2024).

David Gray Widder et al. “A conceptual replication of continuous integration pain points
in the context of Travis CI”. In: Proceedings of the 2019 27th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE °19: 27th ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. Tallinn Estonia: ACM,
Aug. 12, 2019, pp. 647-658. 1SBN: 978-1-4503-5572-8. DOI: 10 . 1145/ 3338906 .
3338922. URL: https://dl.acm.org/doi/10.1145/3338906.3338922
(visited on 01/31/2024).

David Gray Widder et al. “I'm leaving you, Travis: a continuous integration breakup
story”. In: Proceedings of the 15th International Conference on Mining Software Repos-
itories. ICSE *18: 40th International Conference on Software Engineering. Gothenburg
Sweden: ACM, May 28, 2018, pp. 165-169. ISBN: 978-1-4503-5716-6. DOI: 10.1145/
3196398 .3196422. URL: https://dl.acm.org/doi/10.1145/3196398.
3196422 (visited on 12/17/2023).

N. Wirth. Algorithms + Data Structures = Programs. Series In Automatic Computation.
Prentice-Hall, 1976. URL: https://books.google.pt/books?id=XRhOxgEACAA
J.

Emma Witman. What is GitHub? How to start using the code hosting platform that allows
you to easily manage and collaborate on programming projects. Business Insider. URL:

https://www.businessinsider . com/guides/tech/what -is—-github

(visited on 01/05/2024).

Michael Wurster et al. “The essential deployment metamodel: a systematic review of de-
ployment automation technologies”. In: SICS Software-Intensive Cyber-Physical Systems
35.1 (Aug. 2020), pp. 63—75. ISSN: 2524-8510, 2524-8529. DOI: 10.1007/s00450—
019-00412-x. URL: http://link.springer.com/10.1007/s00450-019~
00412-x (visited on 01/04/2024).

Xtext - Language Engineering Made Easy! URL: https://eclipse.dev/Xtext/
(visited on 12/27/2023).

Tianyin Xu and Darko Marinov. “Mining Container Image Repositories for Software Con-
figuration and Beyond”. In: Proceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results. ICSE-NIER ’18. Gothenburg, Sweden:

https://eclipse.dev/graphiti/
https://eclipse.dev/graphiti/
https://doi.org/10.1016/j.future.2015.07.017
https://linkinghub.elsevier.com/retrieve/pii/S0167739X15002496
https://doi.org/10.1145/3338906.3338922
https://doi.org/10.1145/3338906.3338922
https://dl.acm.org/doi/10.1145/3338906.3338922
https://doi.org/10.1145/3196398.3196422
https://doi.org/10.1145/3196398.3196422
https://dl.acm.org/doi/10.1145/3196398.3196422
https://dl.acm.org/doi/10.1145/3196398.3196422
https://books.google.pt/books?id=XRhOxgEACAAJ
https://books.google.pt/books?id=XRhOxgEACAAJ
https://www.businessinsider.com/guides/tech/what-is-github
https://doi.org/10.1007/s00450-019-00412-x
https://doi.org/10.1007/s00450-019-00412-x
http://link.springer.com/10.1007/s00450-019-00412-x
http://link.springer.com/10.1007/s00450-019-00412-x
https://eclipse.dev/Xtext/

REFERENCES 98

[156]

[157]

Association for Computing Machinery, 2018, pp. 49-52. 1SBN: 9781450356626. DOT:
10.1145/3183399.3183403. URL: https://doi.org/10.1145/3183399.
3183403.

Mansooreh Zahedi, Roshan Namal Rajapakse, and Muhammad Ali Babar. “Mining Ques-
tions Asked about Continuous Software Engineering: A Case Study of Stack Overflow”.
In: Proceedings of the Evaluation and Assessment in Software Engineering. EASE ’°20.
Trondheim, Norway: Association for Computing Machinery, 2020, pp. 41-50. ISBN:
9781450377317. DOI: 10.1145/3383219.3383224. URL: https://doi.org/10.
1145/3383219.3383224.

Liming Zhu, Len Bass, and George Champlin-Scharff. “DevOps and Its Practices”. In:
IEEFE Software 33.3 (May 2016), pp. 32-34. 1SSN: 0740-7459. DOI: 10 . 1109/ MS .
2016.81. URL: http://ieeexplore.ieee.org/document /7458765/ (visited
on 12/07/2023).

https://doi.org/10.1145/3183399.3183403
https://doi.org/10.1145/3183399.3183403
https://doi.org/10.1145/3183399.3183403
https://doi.org/10.1145/3383219.3383224
https://doi.org/10.1145/3383219.3383224
https://doi.org/10.1145/3383219.3383224
https://doi.org/10.1109/MS.2016.81
https://doi.org/10.1109/MS.2016.81
http://ieeexplore.ieee.org/document/7458765/

Appendix A

Platform-Specific Meta-Model Figures

Figures A.1 to A.3 represent the PSMMs developed for this work. Expression and variable decla-

ration classes have been truncated to improve legibility.

Figure A.1: CircleCI meta-model.

99

Platform-Specific Meta-Model Figures

] mrigger

I 10.) secrets

1

¥ - (0.7 outputs 011 wiggers

B secret | [Bouwwm
7 type INPUT TYPES = strng = = e G2
© ishequired: EBooesnObject > descption: Epresson
£ options: Esting (0.4 oututs
o defaut: ression
T Tinputs.
5 Eventyperrigger | () SpectedpatnsTrigger (9 SpecifedsranchesTrigger % purdger | B Worktoncaigoer

B scheduleTrigger |

K ACTIVITY_TYPES < ignoreSpecifiedPaths : EBoolean = false.

52 paths: Expression

< ignoreSpecifiedBranches : EBoolean = false

52 branches : Expression

l l

100

T
5 StandardtventTrigger H Pukequesttigger | (5 PuReqvestirgetigoer (B PushTrigger Rl L — 111 jobs
5 event: EVENTS = branch.protection.rule S ignoreSpecifiedTags : EBoolean = false
52 tags: Expression
10.1) defouts
T siep [+ o
= d: Eswing) Abstactstep B saiptiob. % Job
S» name : Expression —— 01.) steps
= 5 name: Estring 1 0.1 stateqy
SCzimmm = jobName : Expression
T 27T = ifConditon: Expression 0.1 permissions 0.7 permissions
S B e E vorton
£ wokdhoDRcl) = timeoutMinutes : Express = name : Expression
= 1 = o — = o
H Permission & environmenVariabes : VariableAssignment
. S key : PERMISSION_SCOPES
B WorkiowCaios 19.7) dependsn value : PERMISSIONS = read
1.1 thenkun 0.7 necessaryfor
5 inheritSecrets : EBooleanObject = false 10.1) efauts
RGP 0,11 stagingEnvironment
£ args :VariableAssignment 10.1) concurrencyGroup.
5 Command B pacage] B tsep E o o B MawoComtination B petais
3 ” 3 ” = m = faifast: Expression % entres - VariableAssignment > shell Bxpression
2 args: VariableAssignment - o marparale: xpression @ workingDirectory : Expression
o entrypoin : Expression
S containerArgs : Expression
10T senvices
 Con e B s & conarensomn
S image Expression =) % name: Var i S name : Expression
= usemame : xpression 52 1abels: Expression 52 cells: Expression = Expression
= password : Brpression 1.1] value
&2 environmentVariables : VariableAssignment
& pors: Expression
& volumes: Expression
= options : Expression 0-1) container
5 AbstractAgent
[1.1] agent
B PpollingTrigger B Upstreamrigger
E AbstractPipelineExecutionBlock B Tool
S cron : EString {2 jobs : EString
< tool : SUPPORTED _TOOLS = maven
[NoneAgent | E Labelagent | E AnyAgent 7 version : EString
> labels : Expression
0.4] tools
Q [0.#] triggers.
‘ B ripeline] Trigger
| [DockerAgent | [B DockerContainer | B NodeAgent = - Assignment
T image : Estring = customWorkspace - EString
 label : Estring
= args : Estring
= registryURL : EString = [
= registryCredentialsld : EString =
{111 agent S cron: Estring
] Abstractstep
ConditionalChildStep & AbstractStage
7 name : EString
8 WHEN._ L TIMES B MatrixCombination | | H Matrixaxis
1041 steps &3 conditions : When [1.] stages &2 entries : Assignment * name : VariableDeclaration
- 2 environmentVariables : Assignment 5 cells : Expression
52 whens : When
5 StageChildstep 10.%) excludes [1.4] axes
B scriptedBlock 0.4 includes.
B stepStage
(0.4 steps [Nestedstage
|a | |EI | | B Matrixstage
[1..] thenRun e
© failFast : EBooleanObject

H conditionalStep

H step

0.%) elseRun

* ifCondition : Expression

7 command : EString
5 arguments : Assignment

[1.4] stages

S

Figure A.3: Jenkins meta-model.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Problem Definition
	1.2 Objectives
	1.3 Contributions
	1.4 Document Structure

	2 State of the Art
	2.1 Background on CI/CD
	2.2 Migration Support from CI/CD Platform Providers
	2.2.1 Automated Migrations
	2.2.2 Manual Migrations

	2.3 Model-Driven Engineering
	2.3.1 From Abstraction to Modeling
	2.3.2 Model-Driven Software Engineering
	2.3.3 Modeling Languages
	2.3.4 Meta-Modeling
	2.3.5 Model Transformations
	2.3.6 Model-Driven Software Reengineering
	2.3.7 Model-Driven Engineering Technologies

	2.4 Related Work

	3 Understanding CI/CD Usage in Practice
	3.1 Methodology
	3.1.1 Collecting Repositories Using the GitHub REST API
	3.1.2 Searching Repositories for Current CI/CD Usage
	3.1.3 Analyzing CI/CD Usage of Repositories Over Time

	3.2 Results
	3.2.1 The Increasing Relevance of CI/CD
	3.2.2 The Usage of Different CI/CD Platforms
	3.2.3 The Change Rate of CI/CD Platforms

	3.3 Related Work
	3.4 Threats to Validity
	3.5 Implications for Transpiler Design

	4 Overview of the Approach to CI/CD Pipeline Migration
	4.1 Automatic Migration Tool
	4.2 Execution Example

	5 From CI/CD Concepts to Meta-Models
	5.1 Creating the Platform-Specific Meta-Models
	5.2 Creating the Platform-Independent Meta-Model
	5.2.1 Pipeline
	5.2.2 Triggers
	5.2.3 Jobs
	5.2.4 Agents and Services
	5.2.5 Matrices
	5.2.6 Steps
	5.2.7 Parameters
	5.2.8 Expressions and Variables
	5.2.9 Core Differences Between Platforms

	6 Implementing the Reengineering Process
	6.1 Text-to-Model Transformations
	6.2 Model Validations
	6.3 Model-to-Model Transformations
	6.3.1 Migrating Pipeline Platforms
	6.3.2 Merging Multiple Pipelines

	6.4 Model-to-Text Transformations

	7 The Transformations DSL
	7.1 The Transformations DSL Meta-Model
	7.2 The Transformations DSL Grammar and Parser
	7.3 From the Transformations DSL to ATL

	8 ACICDTrip – A Tool for CI/CD Reengineering
	8.1 Running Eclipse Technologies in Standalone Mode
	8.1.1 ATL
	8.1.2 ECL, ETL and EML

	8.2 CLI Architecture
	8.2.1 AbstractReverseEngineer
	8.2.2 AbstractForwardEngineer
	8.2.3 AbstractTransformer
	8.2.4 Other Classes

	9 Evaluation
	9.1 Evaluating ACICDTrip in Practice
	9.1.1 The Process
	9.1.2 Results

	9.2 Evaluating ACICDTrip for a Large Number of Pipelines
	9.2.1 The Process
	9.2.2 Results

	9.3 Addressing RQ2
	9.4 Addressing RQ3
	9.5 Threats to Validity

	10 Conclusions and Future Work
	References
	A Platform-Specific Meta-Model Figures

