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1 Introduction

Symbolic Data Analysis (SDA), introduced by Edwin Diday in the late eighties of the last century
(Diday (1988)), is concerned with representing and analysing data presenting intrinsic variability,
which is to be explicitly taken into account. In classical Statistics and Multivariate Data Analysis,
the elements under analysis are generally individual entities for which a single value is recorded
for each variable - e.g., individuals, described by their age, salary, education level, marital status,
etc. But when the elements of interest are classes or groups of some kind - the citizens living in
given towns; teams, consisting of individual players - then there is variability inherent to the data.
To reduce this variability by taking central tendency measures - mean values, medians or modes
- obviously leads to a signi�cant loss of information. Symbolic Data Analysis (Bock and Diday
(2000); Billard and Diday (2003, 2006); Diday and Noirhomme-Fraiture (2008); Brito (2014))
provides a framework allowing representing data with variability, using new variable types. Also,
methods have been developed which suitably take data variability into account. Symbolic data
may be represented using the usual matrix-form data arrays, where each entity is represented in
a row and each column corresponds to a di�erent variable - but now the elements of each cell
are generally not single real values or categories, as in the classical case, but rather �nite sets of
values, intervals or, more generally, distributions.

In this lesson, we introduce and motivate the �eld of Symbolic Data Analysis, providing
a historical perspective. We then detail the new variable types that have been introduced to
represent variability, illustrating with some examples. We consider in particular the case of
interval-valued data, i.e., where for each entity under analysis an interval of IR is recorded,
focusing on the parametric modelling for interval data proposed in Brito and Duarte Silva
(2012). This modelling then allows for multivariate parametric analysis of multidimensional
interval-valued data (Brito et al (2015); Duarte Silva and Brito (2015)). Next we consider
the case of numerical data described by empirical distributions, known as histogram data. We
introduce alternative representations of histogram observations, observing that interval-valued
data constitutes a special case of those. Methods for the multivariate analysis of histogram-valued
data are presented (Brito and Chavent (2012); Dias and Brito (2015, 2017)). We conclude by
discussing open issues and research perspectives.

2 Symbolic Data

Since its introduction by Diday (1988), Symbolic Data Analysis has known a considerable de-
velopment. It emerged from the need to consider data that contain information which cannot
be represented within the classical data models, together with the objective of designing meth-
ods that produce results directly interpretable in terms of the input descriptive variables. The
�model� for data representation should allow taking into account intrinsic variability - therefore
allowing representing with a same language, e.g., the elements of a set and clusters of this set.
The �rst �models� used a logical approach, rooted on the idea of representation of a given set
by intent, i.e., by its properties. The need to represent elements de�ned by intent led to the in-
troduction of symbolic objects. Generally speaking, a symbolic object is a description expressed
by means of a conjunction of events in terms of the values taken by the variables, as in the
following description of car model �AlfaRomeo� (the car model, not a single car !), in terms of
Price, Engine Capacity and Colour:

sAlfa = [Price ∈ [27806, 33596]] ∧ [Engine Capacity ∈ [1000, 3000]]∧
∧[Colour ∼ {Red(30%), Black(70%)}]

(1)
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Symbolic objects di�er therefore from the the classical numerical objects (represented and treated
as vectors in IRp) both at the description and syntactic levels. At the description level, the main
di�erences come from the fact that variables are allowed to take multiple values for a given
unit (thereby taking variability into account), and links between variable values may even be
considered; at the syntactic level, symbolic objects are conceived to represent knowledge and
not only (but also !) single observations. As a consequence, di�erences arise at the analysis
level: the focus will now be on the duality between intent (the description) and extent (the set
of individuals verifying this description) of a symbolic object, and generalization techniques are
widely used (Brito and Diday (1990); Brito (1995)).

With the European projects on Symbolic Data Analysis - SODAS, �Symbolic Objects Data
Analysis System�, then followed by ASSO, �Analysis System of Symbolic O�cial data� - came
the need of a standardised data representation, to allow for analysis by di�erent methods; at the
same time distance-based methodologies, closer to classical data analysis approaches, followed
by statistically-rooted models were developed. This naturally led to the progressive departure
from the logic-based representation of �symbolic objects�, as in (1), in favour of a tabular data
representation, more familiar to data analysts and statisticians, where n entities in rows take
�values� for p variables in columns, as in Table 1.

Model Price Eng. Capacity Colour
Alfa Romeo [27806, 33596] [1000, 3000] { Red (30%), Black (70%)}

Table 1: Tabular representation of symbolic data.

The formal de�nition of new symbolic variable types, and the study of their properties, fol-
lowed. The community had moved from Symbolic Data-Analysis (a di�erent approach to analyse
data) to Symbolic-Data Analysis (the analysis of Symbolic Data). O�cial statistics appeared as
a natural �eld of application for SDA methodologies, since studies in this area generally rely on
aggregated data, also due to con�dentiality issues which prevent the dissemination of individual
data (microdata).

To describe groups of individuals or concepts, variables may now assume other forms of
realizations, which allow taking into account the intrinsic variability. These new variable types
have been called symbolic variables, and they may assume multiple, possibly weighted, values for
each unit. As in the classical statistics framework, we are dealing here with random variables,
which may be observed in a given population; the term �symbolic� is used to stress the fact that
the values they take are of a di�erent nature. In the next section, we de�ne the (new) di�erent
variable types, providing illustrating examples in each case.

3 Types of Variables

To represent data variability, new variable types have been introduced in SDA, whose realizations
are now not restricted to real values (in the numerical case) or individual categories (in the
qualitative case). The di�erent variable types, including the classical ones - which may be
considered special cases of the symbolic types (see Brito (2014)) - are presented below.

As in classical Statistics, we distinguish numerical and categorical variables (Stevens (1946)).
A numerical (or quantitative) variable is single valued (real or integer), as in the classical frame-
work, if it takes one single value of an underlying domain for each unit. It is multi-valued if
its values are �nite subsets of the domain and it is an interval-valued variable if its values are
intervals of IR. When a distribution over a set of sub-intervals is given, the variable is called
a histogram-valued variable. A categorical (or qualitative) variable is single-valued (ordinal or
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nominal), when it takes one category from a given �nite category set O = {m1, . . . ,mk} for each
unit; multi-valued, if its values are �nite non-empty subsets of O. A categorical modal variable
Y with a �nite domain O = {m1, . . . ,mk} is a multi-valued variable where, for each unit, we are
given a category set and, for each category m`, a frequency or probability which indicates how
frequent or likely that category is for this unit Bock and Diday (2000).

Let Y1, . . . , Yp be the set of variables, Oj the underlying domain of Yj and Bj the set where
Yj takes its value for each unit, for j = 1, . . . , p. A description d is de�ned as a p-tuple d =
(d1, . . . , dp) with dj ∈ Bj , j = 1, . . . , p.

Let S = {s1, . . . , sn} be the set of units under analysis (e.g. individuals or even classes of
individuals) under analysis, then Yj(si) ∈ Bj for j = 1, . . . , p; i = 1, . . . , n. The data array to be
analysed consists of n descriptions, one for each si ∈ S : di = (Y1(si), . . . , Yp(si)), i = 1, . . . , n.

3.1 Classical Variables

3.1.1 Quantitative Single-Valued Variables

Given the set of n units S = {s1, . . . , sn}, a quantitative single-valued variable Y is de�ned by
an application Y : S → O such that si 7−→ Y (si) = c ∈ O ⊆ IR. This is the classical numerical
case, and B is identical to the underlying set O, B ≡ O.

3.1.2 Categorical Single-Valued Variables

A categorical single-valued variable is a standard categorical variable. Given S = {s1, . . . , sn},
and a �nite set of categories, O = {m1, . . . ,mk} a categorical single-valued variable is de�ned
by an application Y : S → O such that si 7−→ Y (si) = m` (i.e., in this case, again, B ≡ O). If
the categories of O are naturally ordered, the variable is called ordinal, otherwise it is nominal.
Such a categorical variable may be used to build new concepts or entities, by aggregating the
cases sharing the same category.

3.2 New Variable Types

3.2.1 Quantitative Multi-Valued Variables

Given the set S, a quantitative multi-valued variable Y is de�ned by an application

Y : S −→ B

si 7−→ Y (si) = {ci1, . . . , cini
}

Here B is the power set of an underlying set O ⊆ IR (excepting the empty set ∅). Y (si) is
now a �nite non-empty set of real numbers.

3.2.2 Interval-Valued Variables

Given S = {s1, . . . , sn}, an interval-valued variable is de�ned by an application

Y : S −→ B

si 7−→ Y (si) = [li, ui]

B is the set of closed and bounded intervals of an underlying set O ⊆ IR. Let I be an n× p
matrix representing the values of p interval-valued variables on S. Each si ∈ S is represented by
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a p-tuple of intervals, Ii = (Ii1, . . . , Iip), i = 1, . . . , n, with Iij = [lij , uij ], j = 1, . . . , p (see Table
2).

Y1 . . . Yj . . . Yp

s1 [l11, u11] . . . [l1j , u1j ] . . . [l1p, u1p]
. . . . . . . . . . . .
si [li1, ui1] . . . [lij , uij ] . . . [lip, uip]
. . . . . . . . . . . .
sn [ln1, un1] . . . [lnj , unj ] . . . [lnp, unp]

Table 2: Matrix I of interval data.

The value of an interval-valued variable Yj for each si ∈ S is usually de�ned by the lower and
upper bounds lij and uij of Iij = Yj(si). For modelling purposes, however, it may be useful to
represent Yj(si) by the midpoint cij = (lij + uij)/2 and range rij = uij − lij of Iij .

Example:

Consider a dataset containing information about arriving �ights at some airports; Table 3
presents data for three airports. In airport A, for instance, the number of passengers in arriving
�ights ranged from 150 to 200, the number of codesharing companies involved in each �ight was
either 1 or 2. Here, the number of passengers is an interval-valued variable whereas the number
of codesharing companies involved is a multi-valued quantitative variable. A similar description
may be obtained for the remaining airports. It should be stressed that in this example the units
under analysis are the airports, for each of which we have aggregated information, and not the
individual �ights.

Airport Passengers Companies
A [150, 200] {1, 2}
B [180, 300] {1, 2, 3}
C [200, 400] {1, 3}

Table 3: Data for airports (1).

./

3.2.3 Histogram-Valued Variables

When real-valued data are aggregated by means of intervals, the information on the distribution
inside the intervals is not taken into account. One way to keep more detailed information is to
de�ne sub-intervals between the global lower (LB) and upper (UB) bounds and compute frequen-
cies for these intervals. We obtain for each case a histogram1 with k classes (and k frequencies)
where k is the number of the considered sub-intervals. Naturally, to aggregate numerical mi-
crodata by means of a histogram implies that a reasonably large number of observations are
available at the micro level.

Given S = {s1, . . . , sn}, a histogram-valued variable is de�ned by an application

1We use here the term �histogram� in an informal way, to denote the empirical distribution over a set of

sub-intervals, although this does not correspond to the statistical formal de�nition of a histogram.
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Y : S −→ B

si 7−→ Y (si) = {
[
Ii1, Ii1

[
, pi1;

[
Ii2, Ii2

[
, pi2; . . . ;

[
Iiki , Iiki

]
, piki}

where Ii` =
[
Ii`, Ii`

[
or
[
Ii`, Ii`

]
, ` = 1, . . . , ki are the sub-intervals considered for observation

si, Ii` = Ii`−1, ` = 2, . . . , ki and pi1 + . . .+ piki = 1, i = 1, . . . , n. B is now the set of all possible
partitions of any compact of IR and all possible distributions over the (�nite set of) corresponding
sub-intervals. It is assumed that for each unit si values are uniformly distributed within each
sub-interval. For di�erent observations, the number and length of sub-intervals considered may
naturally be di�erent.

When k = 1 a histogram reduces to an interval: interval-valued variables may therefore be
considered special cases of histogram-valued variables.

Example:

Consider again the airports example, with a new variable which records the delay (in minutes)
of each arriving �ight. In this case, information is recorded for three time lengths (0 to 10
minutes, 10 to 30 minutes, 30 minutes to one hour), the corresponding variable is therefore a
histogram-valued variable - see Table 4.

Airport Passengers Companies Delay (minutes)

A [150, 200] {1, 2} {[0, 10[ , 0.25; [10, 30[ , 0.65;
[30, 60] , 0.10}

B [180, 300] {1, 2, 3} {[0, 10[ , 0.45; [10, 30[ , 0.30;
[30, 60] , 0.25}

C [200, 400] {1, 3} {[0, 10[ , 0.75; [10, 30[ , 0.20;
[30, 60] , 0.05}

Table 4: Data for airports (2).

./

3.2.4 Categorical Multi-Valued Variables

A categorical multi-valued variable is de�ned by an application

Y : S → B

where B is the set of non-empty subsets of O = {m1, . . . ,mk}. The �values� of Y (si) for si ∈ S
are now �nite sets of categories.

3.2.5 Categorical Modal Variables

A categorical modal variable Y with a �nite domain O = {m1, . . . ,mk} is a multi-valued variable
where, for each unit, we are given a category set and, for each category m`, a weight, frequency
or probability p` which indicates how frequent or likely that category is for this unit. In this
case, B is the set of distributions (probability, frequency, or other) over O, and its elements are
denoted {m1(p1), . . . ,mk(pk)}.
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Example:

Consider again the airports example, and the information on the companies' shares of arriving
�ights. We have then a categorical modal variable, as shown in Table 5.

Airport Shares of arriving �ights
A {British (0.25), Lufthansa (0.40), Air France (0.35)}
B {British (0.10), Lufthansa (0.15), Air France (0.60), Iberia (0.15)}
C {Lufthansa (0.30), Air France (0.50), Iberia (0.20)}

Table 5: Data for airports (3).

./

Categorical modal variables are similar to histogram-valued variables for the quantitative
case, in that their values are both characterized by classes or categories and weights. In SDA,
�distributional data� refers to both types, as opposed to �set-valued� variables, when no distri-
bution is given. Nevertheless, from a mathematical point of view, they are of di�erent nature.

4 Analysis of Symbolic Data

To represent data taking into account variability intrinsic to each observation, new variable types
have been de�ned, whose values assume new forms. As expected, de�nitions of basic statistical
notions do not apply automatically, and well established properties are no longer straightforward.
To apply statistical and multivariate data analysis techniques to symbolic data then requires
proper consideration, and often the design of appropriate tools.

Consider the case of numerical variables, where the evaluation of dispersion is a central ques-
tion and the consequences of di�erent possible choices in the design of multivariate methods has
to be addressed. Also, many multivariate methodologies are de�ned by linear combinations of the
descriptive variables, and on the properties of dispersion measures under linear transformations.
The question then arises of how should a linear combination of symbolic numerical variables be
de�ned, and which properties remain valid.

Di�erent approaches have been considered by various authors to address these and other
issues and propose symbolic extensions of multivariate data analysis methods. Most existing
methods for the analysis of such data still rely on non-parametric descriptive approaches.

Interval-valued data is the most investigated case for which more methods have been devel-
oped. Those methods follow two distinct approaches within a non-parametric framework. These
consist either in (i) assuming a distribution, usually the Uniform, within each observed interval,
derive sample moments from this assumption (see Bertrand and Goupil (2000), Billard and
Diday (2003)), and design methods based on such moments (Billard and Diday (2000)) or (ii)
represent an interval by two real numbers, the lower and upper bounds or the midpoint and (half)
range, and propose methods using these two values. These are usually exploratory approaches,
relying on distance-based criteria - see, e.g., De Carvalho et al (2006); Chavent et al (2006),
Duarte Silva and Brito (2006), Neto and De Carvalho (2008), Neto and De Carvalho (2010).

The statistical analysis of distributional data, and in particular of histogram-valued data, has
received more attention in the past few years. The approaches developed rely on assuming a
Uniform distribution within each sub-interval of each observed histogram. The proposed methods
are either based on sample moments derived from such assumption or on the representation of the
histograms by the associated quantile functions, for which appropriate distances are considered,
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which allow de�ning appropriate criteria - see Irpino and Verde (2006, 2008), Brito and Chavent
(2012), Dias and Brito (2015).

However, for the speci�c case of interval-valued variables, probabilistic approaches have been
proposed and investigated (see Brito and Duarte Silva (2012), Neto et al (2011), Le-Rademacher
and Billard (2011)), opening new paths: statistical modelling of symbolic variables then allows
for estimation and hypothesis testing.

In the next section we present the parametric model for interval-valued variables proposed
by Brito and Duarte Silva (2012), and show how it opens the way to multivariate parametric
analysis of interval data. In Section 6 we focus on the representation of histogram data by means
of the associated quantile functions. Considering now interval-valued data in this framework, we
obtain the very �rst results deduced for this type of variables as a special case. Non-parametric
exploratory methods based on this representation are presented, which may be applied to data
of either (or both) types.

5 Modelling and Analysing Interval Data

5.1 Parametric Models for Interval Data

Let S = {s1, . . . , sn} be the set of n units under analysis. Consider that each si ∈ S is represented
by a p-dimensional vector of intervals, (Ii1, . . . , Iip), i = 1, . . . , n, with Iij = [lij , uij ], j = 1, . . . , p,
as in Table 2.

Brito and Duarte Silva (2012) proposed parametric models for interval data, relying on

Multivariate Normal or Skew-Normal distributions for the MidPoints C, with cij =
lij + uij

2
,

and Log-Ranges R∗ = lnR with rij = uij − lij , of the interval-valued variables.
The Gaussian model consists in assuming a multivariate Normal distribution for the Mid-

Points C and the logs of the Ranges, R∗, with mean vector µ = [µtC µtR∗ ]
t and covariance matrix

Σ =

(
ΣCC ΣCR∗

ΣR∗C ΣR∗R∗

)
where µC and µR∗ are p-dimensional column vectors of the mean val-

ues of, respectively, the MidPoints and Log-Ranges, and ΣCC ,ΣCR∗ ,ΣR∗C and ΣR∗R∗ are p× p
matrices with their variances and covariances.

This model has the advantage that it allows for a straightforward application of classical
multivariate methods. It is important to keep in mind, however, that the MidPoint cij and the
Log-Range r∗ij = ln(rij) of the value of an interval variable Iij = Yj(si) are related to the same
variable, and must therefore be considered together. The link that may exist between MidPoints
and Log-Ranges of the same or di�erent interval-valued variables should be taken into account
by appropriate con�gurations of the global covariance matrix. Intermediate parameterizations
between the non-restricted and the non-correlation setup considered for real-valued data are
therefore relevant for the speci�c case of interval data.

The most general formulation allows for non-zero correlations among all MidPoints and Log-
Ranges (con�guration C1); in another setup, interval variables Yj are independent, but for each
variable, the MidPoint may be correlated with its Log-Range (con�guration C2); a third sit-
uation allows for MidPoints (respectively, Log-Ranges) of di�erent variables to be correlated,
but no correlation between MidPoints and Log-Ranges is allowed (con�guration C3); �nally, all
MidPoints and Ranges are uncorrelated, both among themselves and between each other (con�g-
uration C4). Table 6 summarizes the di�erent considered con�gurations. We note that from the
Normality assumption it follows that, in this particular framework, imposing non-correlations
with Log-Ranges is equivalent to imposing non-correlations with Ranges.
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Con�guration Characterization Σ

C1 Unrestricted Unrestricted

C2 Yj 's independent
ΣCC ,ΣCR∗ = ΣR∗C ,
ΣR∗R∗ all diagonal

C3 C's uncorrelated with R∗'s ΣCR∗ = ΣR∗C = 0

C4 All C's and R∗'s are uncorrelated Σ diagonal

Table 6: Di�erent cases for the variance-covariance matrix.

It should be remarked that for con�gurations C2, C3 and C4, Σ can be written as a block
diagonal matrix, after a possible rearrangement of rows and columns.

The Gaussian model has many advantages, which explains its generalized use in multivariate
data analysis; in particular, it allows for a direct modelling of the covariance structure between
the variables. Nevertheless it does present some limitations, namely the fact that it imposes
a symmetrical distribution on the MidPoints and a speci�c relation between mean, variance
and skewness for the Ranges. A more general model that overcomes these limitations may
be obtained by considering the family of Skew-Normal distributions (see, for instance, Azzalini
(1985); Azzalini and Dalla Valle (1996)). The Skew-Normal generalizes the Gaussian distribution
by introducing an additional shape parameter, while trying to preserve some of its mathematical
properties.

The density of a p-dimensional Skew-Normal distribution is given by

f(y;α, ξ,Ω) = 2φp(y − ξ; Ω)Φ(αtω−1(y − ξ)), y ∈ IRp (2)

where ξ and α are p-dimensional location and shape parameter vectors respectively, Ω is a
symmetric p × p positive-de�nite matrix, ω is a diagonal matrix formed by the square-roots of
the diagonal elements of Ω, φp is the density of a Np(0,Ω) and Φ is the distribution function of
a standard Gaussian variable.

Notice that the Skew-Normal model encompasses mixed models with marginal Normal ran-
dom variables, for which the corresponding shape parameter is null.

The mean, variance-covariance matrix and skewness coe�cients of a p dimensional Skew-
Normal distribution are given by (Azzalini (2005)):

µ = E(Y ) = ξ + ωµZ (3)

Σ = V ar(Y ) = Ω− ωµZµtZω (4)

γ1,j =
E[(Yj − E(Yj))

3]

V ar(Yj)3/2
=

4− π
2

µ3
Z;j

(1− µ2
Z;j)

3/2
, j = 1, . . . , p (5)

where µZ is a vector of expected values for standard Skew-Normal variables, which are de�ned by

µZ =

√
2

Π
δ with δ =

ω−1Ωω−1α√
(1 + αtω−1Ωω−1α)

.

As an alternative to the Gaussian model, it may be considered that (C,R∗) follow jointly a
2p-multivariate Skew-Normal distribution, for which the di�erent alternative con�gurations of
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the Σ matrix may be assumed. Given (4), a null covariance Σ(j, j′) implies that Ω(j, j′) =

Ω(j, j)
1
2µZj

Ω(j′, j′)
1
2µZj′ or, equivalently Ω(j, j′) =

2

π

1

1 + αtω−1Ωω−1α
Ωtjω

−1ααtω−1Ωj′ where

Ωj denotes the jth column of Ω. This de�nes non-linear relations between the parameters in Ω
and α.

5.1.1 Parameter Estimation

Gaussian Model

Let Yi = Y (si) =
[
Ci
t, R∗i

t
]t

be the 2p dimensional column vector comprising all the Mid-
Points and Log-Ranges for unit si and Ȳ be sample mean of the Yi's. The maximum likelihood
estimators of µ and Σ under the unrestricted con�guration C1 are obviously the classical ones,

µ̂ =Ȳ (6)

Σ̂ =
1

n

n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )t :=
1

n
E (7)

For the restricted con�gurations, the maximum likelihood estimators of µ and Σ are obtained
from the non-restricted estimators simply replacing by zeros the null parameters in the model for
Σ (see Brito and Duarte Silva (2012)). For all con�gurations, the log-likelihood can be written
as

lnL(µ,Σ) = −np ln(2π)− n

2
ln det Σ − 1

2
trEΣ−1 − n

2

(
Ȳ − µ

)t
Σ−1

(
Ȳ − µ

)
(8)

Since Σ−1 is symmetric positive de�nite, the quadratic form term will be a minimum only
when µ is equal to Ȳ , so that the maximum-likelihood estimate of the mean vector is always Ȳ ,
as usual. In the restricted con�gurations, Σ can be written as a block diagonal matrix, after a
possible rearrangement of rows and columns. Then the maximum can be obtained by separately
maximizing with respect to each block of Σ.

Skew-Normal Model

Azzalini and Capitanio (see, e.g., Azzalini and Capitanio (1999); Azzalini (2005)) have ob-
tained the log-likelihood of a p-dimensional Skew-Normal distribution as

lnL(ξ,Ω, α) = constant − 1

2
n ln det Ω− n

2
tr(Ω−1V ) +

∑
i

ζ0(αtω−1(Yi − ξ)) (9)

where V = n−1
∑
i

(Yi−ξ)(Yi−ξ)t and ζ0(x) = ln(2Φ(x)). The maximization of (9) is performed

in two steps by de�ning a new parameter, η = αtω−1, and separating the maximization on ξ and
η from the maximization on Ω given ξ, which has the analytical solution Ω = V .

The optimal likelihood solution for the Skew-Normal model with restricted con�gurations may
not be obtained by simply replacing corresponding entries in the appropriate matrices, because
of the non-linear relations between the parameters in Ω and α. For the Skew-Normal model with
restricted con�gurations, we rely on Valle and Azzalini (2008) centred parametrization, which
employs directly the parameters µ, Σ and γ1 given by (3), (4) and (5). The log-likelihood is max-
imized with respect to µ, the free elements in Σ and γ. This may be done using a quasi-Newton
numerical algorithm and the gradients derived by Valle and Azzalini (2008).

13



Given an interval-valued data set, the choice among the di�erent models and covariance
con�gurations may be based on usual information criteria, such as the Bayesian Information
Criteria (BIC) (Schwarz (1978)), or on pairwise likelihood ratio tests.

5.2 Multivariate Parametric Analysis of Interval Data

The models presented above allow for multivariate parametric analysis of interval data, by suit-
ably extending and adapting the corresponding models for classical real-valued data. Analysis
of Variance (Brito and Duarte Silva (2012)), Discriminant Analysis (Duarte Silva and Brito
(2015)) and Model Based Clustering (Brito et al (2015)) have been addressed under this frame-
work. The R-package MAINT.DATA (Duarte Silva and Brito (2017)), available on CRAN,
allows modelling interval data under the proposed framework, providing functions and methods
for parameter estimation, outlier detection, (M)ANOVA, discriminant analysis and model-based
clustering.

5.2.1 ANOVA and MANOVA

ANOVA and MANOVA may be performed following a likelihood ratio approach.
Since each interval-valued variable Yj is modelled by a pair < Cj , R

∗
j >, an analysis of variance

of Yj is accomplished by a two-dimensional MANOVA of (Cj , R
∗
j ).

Let us assume a one-way design, where the single factor has k levels, and let n` be the
number of units in group `. Let again Yij =

[
Cij , R

∗
ij

]t
be the 2-dimensional column vector

with the MidPoint and Log-Range of variable Yj for unit si, let Ȳ•j` and µ•j` be sample and
population means of the Yij 's in group `, and Ȳ•j• the corresponding global sample mean. The
null hypothesis in this case consists in stating that all µ•j` are equal across groups.

Consider �rst the Gaussian model. For all covariance con�gurations, the likelihood ratio

statistic is given by λ =

(
detEj,alt

detEj,null

)n
2

where Ej,null and Ej,alt are 2×2 matrices corresponding

to the null and alternative hypothesis respectively. In the unrestricted case C1, these matrices
are the classical ones, for the restricted covariance con�gurations, Ej,null and Ej,alt are obtained
from their classical versions by replacing the null entries corresponding to each con�guration.

In all cases, under the null hypothesis, 2 lnλ follows asymptotically a Chi-square distribution
with n− k degrees of freedom.

For the Skew-Normal model, we need to maximize the log-likelihood for the null (mean vectors
equal across groups) and the alternative hypothesis. Since no closed form is known for maximum
likelihood estimates in this case, maximization has to be performed by numerical methods. For
the unrestricted con�guration C1, all covariance parameters are free, whereas for the restricted
con�gurations, the corresponding ones are �xed to zero.

A simultaneous analysis of all the Y 's interval-valued variables may be accomplished by a 2p
dimensional MANOVA, following the same procedure.

5.2.2 Discriminant Analysis

The main goal of discriminant analysis is to obtain classi�cation rules capable of assigning units
of unknown origin to one of several well de�ned given groups, based on a vector of relevant
attributes. The classical decision theoretic approach to this problem assumes that the attribute
vectors follow some known distribution and derives an optimal rule that minimizes either the
misclassi�cation probability or the expected value of the misclassi�cation cost.
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Assume a problem with k groups, G`, ` = 1, . . . , k and denote the attribute vectors by x,
the a priori group membership probabilities by π` and the within group probability or density
function by f`(x).

Assuming equal misclassi�cation cost across groups, it is well-known that the optimal rule
assigns an unit to the group G` for which π` × f`(x) is maximal - see, e.g., McLachlan (1992).
These rules are usually expressed in terms of unknown parameters, that in practice must be
estimated from observations with known group membership.

When f` is a Gaussian density, and the covariance matrices are equal across groups, the
approach described above results in a linear classi�cation rule, whereas when covariance matrices
di�er from group to group, a quadratic classi�cation rule is obtained.

Consider the Gaussian model for interval data. Then, for each covariance con�guration,
an estimate of the optimum classi�cation rule can be obtained by direct generalisation of the
classical linear (10) and quadratic (11) discriminant classi�cation rules, given by

Γ = arg max
`

(µ̂`
tΣ̂−1Y − 1

2
µ̂`
tΣ̂−1µ̂` + ln π̂`) (10)

Γ = arg max
`

(−1

2
Y tΣ̂`

−1
Y + µ̂`

tΣ̂`
−1
Y + ln π̂` −

1

2
(ln det Σ̂` + µ̂`

tΣ̂`
−1
µ̂`)) (11)

where Γ ∈ {1, . . . , k} denotes the group assignments, ` is a group index, µ̂`, Σ̂, Σ̂` and π̂` are the
maximum likelihood estimates of µ`,Σ,Σ` and π` for the corresponding covariance con�gurations.

For the Skew-Normal model di�erent alternatives may be considered: the groups di�er only
in terms of the location parameter ξ; the groups di�er in terms of both ξ and Ω; the groups di�er
in terms of ξ, Ω and the shape parameter α.

We consider a Location Model in which the groups di�er only in terms of the location parame-
ter ξ, and a General Model, where the groups di�er in terms of all parameters. The corresponding
classi�cation rules are, respectively,

Γ = arg max
`

(ξ̂`
t
Ω̂−1Y − 1

2
ξ̂`
t
Ω̂−1ξ̂` + ln π̂` + ζ0(α̂tω̂−1(Y − ξ̂`))) (12)

and

Γ = arg max
`

(−1

2
Y tΩ̂`

−1
Y + ξ̂`

t
Ω̂`
−1
Y + ln π̂` − (13)

1

2
(ln det Ω̂` + ξ̂`

t
Ω̂`
−1
ξ̂`) + ζ0(α̂`

tω̂`
−1(Y − ξ̂`)))

where ξ`,Ω,Ω`, α, α` and location, scale, association and shape parameters (see Azzalini and
Capitanio (1999)), ω and ω` are the square-root of the diagonal elements of the matrices Ω and
Ω`, and ζ0(x) = ln(2Φ(x)).

5.2.3 Model-Based Clustering

Model-based clustering considers the data as arising from a distribution that is a mixture of
two or more components (Ban�eld and Raftery (1993); McLachlan and Peel (2000)). Each
component is described by a density function and has an associated probability or �weight� in
the mixture. Typically it is assumed that components are p-variate Normal distributions, thus,
the probability model for clustering will often be a �nite mixture of multivariate Normals. Each
component in the mixture will then be called a cluster. The problem then consists in estimating
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the model parameters for each component, as well as the membership probabilities of each unit.
To this purpose, the Expectation-Maximization (EM) algorithm is commonly used. This is an
iterative method to �nd maximum likelihood estimates, when the model depends on unobserved
variables - in this case the component membership probabilities. The method alternates between
an expectation (E) step, which �nds the expectation of the log-likelihood at the current parameter
estimates, and a maximization (M) step, which estimates parameters maximizing the expected
log-likelihood found on the E step.

Model-based clustering of interval data may be addressed by considering the Gaussian model
presented above. For that purpose, the EM algorithm has been adapted to the likelihood maxi-
mization in our models, for di�erent covariance con�gurations.

In model-based clustering of interval data, Yi = [Ci, R
∗
i ] is de�ned as the 2p dimensional vector

comprising all the MidPoints and Log-Ranges for si, and the �complete� data are considered to
be vi = (yi, zi), where zi = (zi1, . . . , zik) is assumed as the �missing� data, with zi` = 1 if si ∈
cluster ` and zi` = 0 otherwise. In the unrestricted case the M-step formulas for Σ̂, Σ̂` are the
classical ones; for the restricted con�gurations Σ̂ and Σ̂`, ` = 1, . . . , k are obtained maximizing
the likelihood for each block separately (see Brito and Duarte Silva (2012)).

For the selection of the appropriate model and the number of components k, the Bayesian
Information Criterion (BIC) (Schwarz (1978)) may be used.

6 Analysis of Histogram Data

Given S = {s1, . . . , sn}, if Y is a histogram-valued variable then

Y (si) = {
[
Ii1, Ii1

[
, pi1;

[
Ii2, Ii2

[
, pi2; . . . ;

[
Iiki , Iiki

]
, piki}, i = 1, . . . , n

where Ii` =
[
Ii`, Ii`

[
or
[
Ii`, Ii`

]
, ` = 1, . . . , ki are the sub-intervals considered for observation

si, Ii` = Ii`−1, ` = 2, . . . , ki and pi1 + . . .+ piki = 1.
The values of a histogram-valued variable may equivalently be represented by the empirical

distribution function or by its inverse, the quantile function. This latter option is often used,
given that all quantile functions are de�ned on the same domain [0, 1], which is convenient for
comparisons and multivariate analysis.

Assuming a Uniform distribution within each subinterval Ii`, the quantile function associated
with a histogram-valued observation Y (si) is a piecewise linear function given by :

Ψ(t) = F−1(t) =



Ii1 + t
wi1

ri1 if 0 ≤ t < wi1

IIi2 + t−wi1

wi2−wi1
ri2 if wi1 ≤ t < wi2

...
Iiki +

t−wiki−1

1−wiki−1
riki if wini−1 ≤ t ≤ 1

(14)

where wil =

l∑
`=1

pi` if l = 1, . . . , ki and ri` = Ii` − Ii` with ` ∈ {1, . . . , ki}; ki is the number of

sub-intervals in Y (si).

Example:

Consider the data in Table 4 and the delay distribution for airport C : {[0, 10[ , 0.75; [10, 30[ , 0.20;
[30, 60] , 0.05}. The associated quantile function is

16



Ψ(t) =


t

0.75 × 10 = 40t
3 if 0 ≤ t < 0.75

10 + t−0.75
0.20 × 20 = 100t− 65 if 0.75 ≤ t < 0.95

30 + t−0.95
0.05 × 30 = 600t− 540 if 0.95 ≤ t ≤ 1

./

As noted above, interval-valued variables may be considered as a particular case of histogram-
valued ones, when only one interval is allowed for in each observation, with weight equal to one.
If Y is an interval-valued variable, then Y (si) = [li, ui] = {[li, ui], 1}. If a Uniform distribution is
assumed in each observed interval, the quantile function associated with Y (si) is a linear function
Ψ(t) = F−1(t) = li+ t(ui− li), t ∈ [0, 1]. Notice however, that for interval-valued variables other
distributions may be considered within the observed intervals, e.g., the Triangular distribution -
see Dias and Brito (2017); Cheira et al (2017); Malaquias (2017).

6.1 Descriptive Statistics for Histogram-Valued Variables

Assuming a Uniform distribution within each sub-interval of Y (si) , i = 1, . . . , n, Ii` = [li`, ui`],
` = 1, . . . ki, we may derive sample moments of a histogram-valued variable. Billard and Diday
(2003) obtained the symbolic sample mean

Y =
1

2n

n∑
i=1

ki∑
`=1

[(li` + ui`)pi`] =
1

n

n∑
i=1

ki∑
`=1

(ci` pi`) (15)

and the symbolic sample variance

S2
Y =

1

3n

n∑
i=1

ki∑
`=1

[
(l2i` + li`ui` + u2

i`)pi`
]
− Y 2

=

=
1

n

n∑
i=1

ki∑
`=1

(ui` − li`)2

12
pi` +

1

n

n∑
i=1

ki∑
`=1

(
li` + ui`

2
− Y

)2

pi` (16)

Billard and Diday (2003) also obtained a formula for the covariance between two histogram-
valued variables from the empirical joint density function:

Cov1(Yj , Yj′) =
1

4n

n∑
i=1

 kij∑
`1=1

pij`1(lij`1 + uij`1)

kij′∑
`2=1

pij′`2(lij′`2 + uij′`2)

− Yj Yj′ (17)

Later, Billard (2008) derived a di�erent formula, considering a decomposition into Within
observations Sum of Products (WithinSP) and Between observations Sum of Products (Be-
tweenSP):

Cov2(Yj , Yj′) =
1

n

n∑
i=1

kij∑
`1=1

kij′∑
`2=1

pij`1pij′`2
(uij`1 − lij`1)(uij′`2 − lij′`2)

12︸ ︷︷ ︸
WithinSP

+

+
1

n

n∑
i=1

 kij∑
`1=1

pij`1

( lij`1 + uij`1
2

− Yj
) kij′∑
`2=1

pij′`2

( lij′`2 + uij′`2
2

− Yj′
)

︸ ︷︷ ︸
BetweenSP

(18)
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For the particular case of interval-valued variables, and assuming a Uniform distribution
within each observed interval, we obtain the symbolic sample mean and variance as previously
derived by Bertrand and Goupil (2000):

Y =
1

2n

n∑
i=1

(li + ui) =
1

n

n∑
i=1

ci (19)

S2
Y =

1

3n

n∑
i=1

(l2i + liui + u2
i )− Y

2
=

1

n

n∑
i=1

(ui − li)2

12
+

1

n

n∑
i=1

(
li + ui

2
− Y

)2

(20)

which is the sum of the variances of the Uniform distributions assumed within each observed
interval, plus the variance of the intervals' midpoints.

Billard and Diday (2003)) derived a formula for the covariance between two interval-valued
variables from the empirical joint density function:

Cov1(Yj , Yj′) =
1

4n

n∑
i=1

(lij + uij)(lij′ + uij′)− YjYj′ (21)

Billard (2008) then obtained

Cov2(Yj , Yj′) =
1

n

n∑
i=1

(uij − lij)(uij′ − lij′)
12︸ ︷︷ ︸

WithinSP

+
1

n

n∑
i=1

( lij + uij
2

− Yj
)( lij′ + uij′

2
− Yj′

)
︸ ︷︷ ︸

BetweenSP

(22)

6.2 Distance Measures for Histogram-Valued Variables

Many distance measures to compare distributions have been proposed in the literature - see e.g.,
Bock and Diday (2000); Gibbs and Su (2002). Here we focus on speci�c cases of interest : the
Euclidean distance, and distances based on the quantile function representation.

Let, as above, Y (si) = {
[
Ii1, Ii1

[
, pi1;

[
Ii2, Ii2

[
, pi2; . . . ;

[
Iiki , Iiki

]
, piki} be the �observation�

of histogram-valued variable Y at si ∈ S.
Assuming that both histograms are de�ned on a �xed partition (same subintervals, I1, . . . , Ik)

the (squared) Euclidean distance between two histogram observations Y (si), Y (si′) compares the
respective weights:

D2
E(Y (si), Y (si′)) =

k∑
`=1

(pi` − pi′`)2 (23)

The Wasserstein and the Mallows distances compare the quantile functions associated with
the histograms, the former using a L1 absolute value approach and the latter a L2 approach.

The Wasserstein distance is de�ned as

DW (Y (si), Y (si′)) = DW (Ψi,Ψi′) =

∫ 1

0

|Ψi(t)−Ψi′(t)| dt (24)

while the Mallows distance is given by

DM (Y (si), Y (si′)) = DM (Ψi,Ψi′) =

√∫ 1

0

(Ψi(t)−Ψi′(t))2dt (25)
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Under the uniformity hypothesis, and considering a �xed weight decomposition (same weights,
di�erent intervals), we have (Irpino and Romano (2007)):

D2
M (Y (si), Y (si′)) = D2

M (Ψi,Ψi′) =

k∑
`=1

p`

[
(ci` − ci′`)2 +

1

3
(ri` − ri′`)2

]
(26)

For the particular case of interval-valued observations (only one (sub)-interval for each ob-
servation), we obtain

D2
M (Y (si), Y (si′)) = D2

M (Ψi,Ψi′) = (ci − ci′)2 +
1

3
(ri − ri′)2 (27)

i.e., the squared Mallows distance between two observed intervals is de�ned as the squared Eu-
clidean distance between the intervals' midpoints plus one third of the squared Euclidean distance
between the intervals' half-ranges. For real-valued data, the ranges are null, and the (squared)
Mallows distance coincides with the (squared) Euclidean distance.

Using a metric-based approach, Irpino and Verde (2015) obtained basic statistics for histogram-
valued variables, with the interval-valued ones as special case. The Fréchet Mean, or barycenter,
is de�ned by

M = arg min
x

n∑
i=1

wid
2(si, x) (28)

When based on the Euclidean distance, the mean distribution or barycenter of a family of
distributions is the �nite uniform mixture of the given distributions.

For the Mallows distance, the barycenter is obtained from the mean quantile function, the
Mallows barycentric histogram is the solution of the minimization problem

min
Ψb(t)

n∑
i=1

D2
M (Ψi(t),Ψb(t)) (29)

and it is de�ned by the quantile function where the centers and half ranges of each subinterval
` are the classical mean of the centers and half ranges of all observations.

Given a partition of S in K groups C1, . . . , CK , the Mallows distance ful�ls the Huygens theorem
decomposition in Between and Within dispersion, as relates to the barycenters (as de�ned in
(28) and (29)) (Irpino and Verde (2006)):

n∑
i=1

D2
M (Ψi(t),ΨS(t)) =

k∑
h=1

nhD
2
M (ΨS(t),ΨCh

(t)) +
k∑
h=1

∑
si∈Ch

D2
M (Ψi(t),ΨCh

(t))
(30)

where nh is the number of units in group Ch, ΨS(t) is the quantile function of the barycentric his-
togram in S and ΨCh

(t) is the quantile function of the barycentric histogram in Ch, h = 1, . . . ,K.

Given its (good) properties, the Mallows distance is the basis of many data analysis ap-
proaches for histogram-valued data.
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6.3 Multivariate Analysis of Histogram Data

Several methods for multivariate analysis of histogram-valued data have been developed which
rely on the representation of the histogram observations by quantile functions. We present here
approaches developed for linear regression and clustering.

6.3.1 Linear Regression of Histogram Data

Dias and Brito (2015) proposed the Distribution and Symmetric Distribution Linear Regression
model, where the distributions taken by the histogram-valued variables are represented by their
quantile functions.

The space of quantile functions is a semi-linear space: the sum of two quantile functions is
still a quantile function, but the product of a quantile function by a scalar is a quantile function
if and only if the scalar is non-negative (for negative scalars we obtain a decreasing function,
which cannot be a quantile function). This implies that a regression model may not be de�ned,
as in the classical case, by a linear combination with real coe�cients.

The solution proposed for this problem relies in considering a model with two terms for
each independent variable Xj : the quantile function that represents the observed distribu-
tion(histogram) the variable takes, ΨXj(si)(t) and the quantile function that represents the dis-
tribution (histogram) of the respective symmetric histogram-valued variable, ΨX̃j(si)

(t). The
obtained quantile function ΨŶ (si)

(t) is then given by:

ΨŶ (si)
(t) = γ + α1ΨX1(si)(t) + β1ΨX̃1(si)

(t) + . . .+ αpΨXp(si)(t) + βpΨX̃p(si)
(t) (31)

with αj , βj ≥ 0, j = 1, 2, . . . , p and γ ∈ IR.
Although non-negativity restrictions on the parameters are imposed, this does not imply a di-

rect linear relationship because the model includes both the quantile functions that represent the
distributions taken by the histogram-valued variables and the quantile functions that represent
the distributions taken by the respective symmetric histogram-valued variables. Determination
of the model requires solving a quadratic optimization problem, subject to non-negativity con-
straints on the unknowns. The Mallows distance is used to quantify the error, i.e., the di�erence
between the observed and the predicted quantile function of Y (si). The parameters of the model
are an optimal solution of the minimization problem:

Minimize SE =

n∑
i=1

D2
M (ΨY (si),ΨŶ (si)

) (32)

with αj , βj ≥ 0, j = 1, 2, . . . , p and γ ∈ IR.

The Karush Kuhn Tucker optimality conditions allow de�ning a measure to evaluate the qual-
ity of �t of the model, with values in the unit interval, similarly to the coe�cient of determination
in classical linear regression for real-valued data.

The model has also been studied and applied to real problems in the particular case of interval-
valued variables (Dias and Brito (2017)), considering either Uniform of Symmetric Triangular
distributions within the observed and predicted intervals.

Along similar lines, Irpino and Verde (2008) have developed a linear regression model for
histogram-valued data which minimizes the Mallows distance between the observed quantile
function of the dependent variable, and the one derived from the linear model. The proposed
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method relies in the exploitation of the properties of a decomposition of the Mallows distance
by Irpino and Romano (2007); this is used to measure the sum of squared errors and rewrite
the model splitting the contribution of the predictors in a part depending on the averages of the
distributions and another depending on the centred quantile distributions.

6.3.2 Clustering of Histogram Data

The Huygens decomposition for the Mallows distance referred above (see Section 6.2) allows for
the extension to histogram-valued data of clustering methods which use criteria based on the
within and between cluster dispersion measured by a quadratic distance.

Brito and Chavent (2012) proposed a method for divisive clustering of histogram and in-
terval data. The method provides a hierarchy on a set of objects together with a conjunctive
characterization of each formed cluster. Starting from the (full) set under analysis, the method
proceeds by performing a bipartition of one cluster at each step. At step m a partition of S
in m clusters is present, one of which will be further divided in two sub-clusters; the cluster to
be divided and the splitting rule are chosen to obtain a partition in m + 1 clusters minimizing
intra-cluster dispersion

Q(m) =

k∑
h=1

∑
si,si′∈C

(m)
h

D2(si, si′) (33)

with

D2(si, si′) =

p∑
j=1

d2(Yj(si), Yj(si′)) (34)

Here d must be quadratic distance between distributions, allowing for the Huygens decompo-
sition, as the Mallows distance (see (25)). The bipartition to be performed at each step is de�ned
by one single variable, considering conditions of the type Rj` := Yj ≤ Ij`, ` = 1, . . . ,Kj − 1, j =
1, . . . , p. Then, sub-cluster 1 will consist of those elements si ∈ S who verify condition Rj`:=
Yj(si) ≤ Ij` and sub-cluster 2 of those si′ who do not :Yj(si′) > Ij`. It is considered that

si ∈ S veri�es the condition Yj(si) ≤ Ij` if and only if
∑̀
α=1

pijα ≥ 0.5. The sequence of such

conditions constitutes a necessary and su�cient condition for cluster membership; therefore the
obtained clustering is monothetic: each cluster is represented by a conjunction of properties in
the descriptive variables.

Exploring the same decomposition, Irpino and Verde developed Ward hierarchical clustering
(Irpino and Verde (2006)) and dynamical clustering (Verde and Irpino (2007); Irpino and Verde
(2008)) approaches for histogram data, treating interval data as a special case.

7 Concluding Remarks and Perspectives

Symbolic Data Analysis provides a framework where the variability observed may e�ectively
be considered in the data representation, and methods be developed that take that variability
into account. This approach is of particular and growing interest in the analysis of huge sets of
data, recorded in very large databases, when the units of interest are not the individual records
(the microdata), but rather some second-level entities. The multivariate statistical analysis of
symbolic data, however, raises new problems, as intervals and empirical distributions are not
real numbers: classical concepts do not apply directly, and usual properties on which established
methods rely cannot be taken for granted.
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Di�erent approaches have been pursued to appropriately take the variability inherent to the
data into account in the modelling and analysis. Parametric approaches, allowing for inferential
studies and hypotheses testing have only been proposed for interval-valued variables, and are
based on the decomposition of the intervals in two quantities, usually midpoints and ranges, to
which concepts designed for real-valued data may apply. The consideration of a distribution
within observed intervals (other than the Uniform) raises new problems, for which only prelim-
inary approaches have been developed. This leads to the analysis of histogram-valued data, so
far only considered from a non-parametric point of view. Moreover, all work to this day has been
done on the basis of marginal empirical distributions, i.e., the empirical distribution for each
variable is considered separately. An important e�ort will be necessary to go one step further,
and consider the joint observed distributions in the data representation and analysis. Finally,
kernel density estimation may be applied to the empirical distributions, leading to density-valued
variables. This will be another fascinating line of research in the future of Symbolic Data Anal-
ysis.
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