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Abstract

In this thesis, we use the theory of Higgs bundles as a tool to understand complex projective
structures, i.e. maximal atlas of charts valued in the projective line and whose transition
functions are Möbius transformations. The setup uses the celebrated non-abelian Hodge
correspondence, mapping a polystable SL(2,R)-Higgs bundle on a compact Riemann surface X
of genus g ≥ 2 to a flat connection, which in some cases, is the holonomy of a branched hyperbolic
structure. Together with Gaiotto’s conformal limit, which maps the same bundle to a partial
oper, i.e., to a connection whose holonomy is that of a branched complex projective structure
compatible with X, these are two examples of already known constructions of connections
corresponding to projective structures. Our main contribution is to show these are both
instances of the same phenomenon: the family of connections appearing in the conformal limit
can be understood as a family of complex projective structures, deforming the hyperbolic
ones into the ones compatible with X. When the Higgs bundle has zero Toledo invariant, we
also show that this deformation is optimal, inducing a geodesic for the Teichmüller (Finsler)
metric on Teichmüller space. The proof makes essential use of a Beltrami differential that
naturally comes up in the construction and for which we provide an explicit expression. We also
give insight on the geometric significance of this differential, by relating it with the pull-back
metric in X induced by the harmonic map associated to the Higgs bundle. To carry out the
construction, we also give a new proof of the existence of the conformal limit for SL(2,C), which,
contrary to previously known ones, works in the configuration space of polystable SL(2,C)-Higgs
bundles. The argument used seems simpler than the ones found in the literature, relying only
on a symmetry of the Hitchin equation. As further results, we provide a characterization of
the Higgs bundles corresponding to elementary representations. On the expository side, we
include proofs of some classical results about complex projective structures and the Schwarzian
differential equation in contemporary language, and some non-standard descriptions of the
geometry of the harmonic maps appearing in the theory of Higgs bundles.





Resumo

Nesta tese utilizamos a teoria de fibrados de Higgs como uma ferramenta para compreender as
estruturas complexas projetivas, i.e. atlas maximais de cartas com valores na linha projetiva e
cujas funções de transição são transformações de Möbius. Como enquadramento é utilizada a
celebrada correspondência de Hodge não abeliana, que faz corresponder um fibrado de Higgs
poliestável numa superfície de Riemann X de género g ≥ 2 a uma conexão plana. Em conjunto
com o limite conforme de Gaiotto, que envia o mesmo fibrado num oper parcial, i.e. numa
conexão cuja holonomia provém de uma estrutura projetiva ramificada compatível com X, estes
são dois exemplos de construções já conhecidas de conexões que correspondem a estruturas
projetivas. A principal contribuição é uma demonstração de que estes dois exemplos são
instâncias de um mesmo fenómeno: a família que surge no limite conforme pode ser vista
como uma família de estruturas projetivas complexas que deforma as hiperbólicas naquelas que
são compatíveis com X. Quando o fibrado de Higgs tem invariante de Toledo nulo, também
mostramos que esta deformação é ótima, induzindo uma geodésica para a métrica (Finsler) de
Teichmüller no espaço com o mesmo nome. A prova utiliza instrumentalmente um diferencial
de Beltrami para o qual providenciamos uma expressão explícita. Também exploramos o seu
significado geométrico, relacionando-o com a métrica em X induzida pelo mapa harmónico
associado ao fibrado de Higgs. Para concretizar a construção, fazemos uso de uma nova prova da
existência do limite conforme para SL(2,C), que incluímos e que, ao contrário das previamente
conhecidas, é válida no espaço de configurações de fibrados de Higgs SL(2,C) poliestáveis. O
argumento utilizado parece mais simples do que os presentes na literatura, recorrendo apenas
a uma simetria das equações de Hitchin. Como resultados adicionais, apresentamos uma
caracterização dos fibrados de Higgs correspondentes a representações elementares. Como parte
expositiva, incluímos, em linguagem contemporânea, provas de alguns resultados clássicos sobre
estruturas projetivas complexas e a equação diferencial de Schwarz, bem como uma descrição
adaptada da geometria do mapa harmónico que surge na teoria de fibrados de Higgs.
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Introduction

The overall goal of this thesis is the study of geometric structures and their relation with Higgs
bundles. More concretely, our objective is to explore how gauge theoretic techniques can be
used to describe complex projective structures on closed surfaces.

The subject of complex projective structures is an old one. These geometric entities have
been studied for the last 150 years, in several guises, reappearing in the literature every now
and then, if only to be described with different languages. The starting point can be traced
back to the classical theory of linear differential equations and to the work of Riemann, Schwarz,
Poincaré, Picard, and other mathematicians at the end of the 19th century. Throughout the
20th century, a plethora of modern techniques were used with success to solve several central
questions in the theory, providing a deeper and wider understanding of the mathematical
landscape surrounding these objects. These techniques came from a variety of different fields,
from algebraic geometry and the theory of connections to the theory of Kleinian groups and
hyperbolic geometry. By the end of the century, most of the results were being obtained through
topological cut-and-paste techniques and the analytical theory had been gradually abandoned.
For example, this is what happens with the breakthrough result in (Gallo et al., 2000), at the
beginning of our century.

Parallel to this development, gauge theory started to find relevant applications in the study
of the geometry of manifolds. In the late ’80s and throughout the ’90s, after a seminal paper
by Hitchin, and as a result of the work of several others, like Donaldson, Corlette, Simpson etc.,
the use of gauge theoretic techniques on the study of representations of the fundamental group
of Kähler manifolds, and Riemann surfaces in particular, was widely diffused as the theory of
Higgs bundles.

So, at the start of my PhD, and after three decades of successes of this theory, the interest of
some mathematical communities in its applications had grown significantly. So it only seemed
natural to try applying Higgs bundles to study geometric structures, and the result in (Gallo
et al., 2000) provided a bridge to complex projective structures.

Motivation

The research presented here lies at the intersection of two mathematical subjects, the study of
complex projective structures, and the theory of Higgs bundles.

1



2 Introduction

A complex projective structure is a way to model a surface S onto the geometry of the
complex projective line CP1. It is a maximal atlas A of CP1-valued charts, whose transition
functions are Möbius transformations. In particular, it induces a structure of a Riemann
surface X which is said to be compatible with A. By analytic continuation of a chart along the
surface, one can produce a map out of the universal cover d : S̃ → CP1 called the developing
map. This is a local diffeomorphism which is ρ-equivariant, where ρ : π1(S) → PSL(2,C)
is a representation of the fundamental group, called the holonomy of the structure. These
objects were first studied as solutions of a linear differential equation of Schwarz, the holonomy
corresponding to the classical monodromy of the equation. The main questions in the theory
concern the geometric properties of the developing map, the classification of what kind of
homomorphisms can appear as the holonomy, the moduli and Teichmüller spaces naturally
associated, the topological properties of the holonomy mapping to the character variety, the
uniqueness of the projective structure inducing a given complex one, and so on.

In the 60s, Gunning reframed the theory in terms of projective connections (Gunning, 1966,
§9). This marks the beginning of the use of bundle and sheaf-cohomological techniques to obtain
further information about these objects. The author describes a projective structure compatible
with X as a holomorphic vector bundle together with a holomorphic subbundle of maximal
degree, effectively realizing projective structures as maximally unstable holomorphic bundles
(Gunning, 1967b, Theorem 2), a result which is referred in the text as Gunning’s Theorem.
To build this bundle, we note that the holonomy representation can be used to construct a
flat projective bundle P , for which the developing map corresponds to a section s. The fact
that it is a local diffeomorphism translates into s being transverse to the horizontal foliation
of the bundle. Taking these objects into account, he showed one could actually find adequate
lifts, producing a holomorphic flat vector bundle E together with a transverse line bundle L.
Nonetheless, the theory progressed by different paths, and its later developments were more
closely related to Teichmüller Theory and Kleinian groups. In terms of the characterization of
holonomies this culminated with the celebrated work (Gallo et al., 2000), where the authors
prove that, for a closed surface of genus g ≥ 2, a representation ρ : π1(S) → PSL(2,C) appears
as the holonomy of a projective structure if and only if ρ is non-elementary and lifts to to
SL(2,C), a result which had been conjectural for some decades. To prove this, they rely on
Kleinian groups, in particular Schottky groups, to build a pants decomposition of the surface
as determined by the representation ρ, and effectively building a complex projective structure
with holonomy ρ and establishing this previously unsettled direction of the result.

In parallel with these developments, the theory of Higgs bundles, started in the seminal
paper (Hitchin, 1987), and further developed by others, made great progress in the study of
representations of the fundamental group into Lie groups, through the non-abelian Hodge
correspondence. A Higgs bundle is a complex vector bundle E over a closed Riemann surface
X of genus g with a holomorphic structure ∂E and a holomorphic End(E)-valued one form
Φ called the Higgs field. Under some stability conditions, Hitchin (Hitchin, 1987) proved
that a certain dimensional reduction of the Yang-Mills equations depending on Φ, now called
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Hitchin equations, admitted a solution, the so-called harmonic metric. This metric can be used
to build a flat connection out of the Higgs field. It established the bridge to the theory of
representations. The fact that this construction could be reversed, a theorem in (Donaldson,
1987) and generalized in (Corlette, 1988), established the non-abelian Hodge correspondence, in
the form of a homeomorphism between the moduli space of polystable Higgs bundles MDol and
that of completely reducible flat connections MdR, i.e. the character variety of the fundamental
group. This was further generalized to compact Kähler manifolds in Simpson (1992).

The theory of Higgs bundles has proven to be quite successful in providing information
about these moduli spaces, leading to the discovery of special components which were previously
unknown, called Hitchin components. The representations in these components share many
interesting properties with the Fuchsian ones appearing in the theory of Riemann surfaces and
were the starting point of Higher Teichmüller Theory (Wienhard, 2018).

Higgs bundles were also used by Hitchin to provide a new proof of the uniformization theorem.
This proof used the solutions of the gauge theoretic equations to build all possible metrics of
negative constant curvature on the closed surface S, (Hitchin, 1987, Theorem 11.2). These
metrics came from the family of Higgs bundles with maximal Toledo invariant, parametrized
by a quadratic differential q ∈ H0(K2), allowing to identify the Teichmüller space of the surface
T (S) with the vector space H0(K2). Hitchin’s parametrization of T (S) is indeed the first
example of the use of Higgs bundles to study geometric structures.

For some time, the non-explicit nature of the non-abelian Hodge correspondence, made
it difficult to generalize this approach to other geometric structures, but, more recently, a
lot of work has been done in this direction. In (Biswas et al., 2021) the authors generalize
the results of Hitchin to non-maximal Toledo invariant, showing that, under some conditions,
these Higgs bundles correspond to branched hyperbolic structures. Several other authors
have approached the use of Higgs bundles to build geometric structures such as the works
(Baraglia, 2010; Collier, 2017; Collier and Toulisse, 2023; Labourie, 2007). Specifically for
complex projective structures see (Alessandrini, 2019; Alessandrini et al., 2021). From a slightly
different perspective, geometric structures have also appeared in other constructions related
to the non-abelian Hodge correspondence. In relation to physics and the Thermodynamic
Bethe Ansatz, Gaiotto defined his conformal limit in (Gaiotto, 2014). This involved taking
a SL(n,C)-Higgs bundle in the Hitchin component, and defining a family of flat connections
∇~,R, with fixed ~ ∈ C∗ and parametrized by R ∈ R+, starting in the flat connection given
by the non-abelian Hodge correspondence, and obtained by combining the C∗ action on the
moduli space together with the twistor line construction. Gaiotto conjectured that the limit of
this family when R → 0 existed and it was an oper. Opers, defined using modern language
in (Beilinson and Drinfeld, 2005), were already known to be equivalent to complex projective
structures compatible with X when n = 2. This conjecture thus established a relation with
geometric structures. The statement was proved to be true in (Dumitrescu et al., 2021). After
that, the limit was extended to include all stable SL(n,C)-Higgs bundles and its existence was
established on the moduli space in (Collier and Wentworth, 2018). In this article, it was also
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shown that the limit is a partial oper in the sense of (Simpson, 1992). Under some conditions,
and for n = 2, this again corresponds to geometric structures, namely branched projective
ones which are compatible with X. The research presented here aims at offering a tentative
understanding of these two seemingly distinct appearances of projective structures, in the hope
of using the conformal limit to shed light on the results in (Gallo et al., 2000), using gauge
theoretic terms.

The main contribution is the realization of these two instances as a unified phenomenon. In
particular, we show that, under some conditions, every connection in the family appearing in the
conformal limit is the holonomy of a branched complex projective structure. These structures
are compatible with Riemann surface structures Xµ determined by a Beltrami differential µ
which we calculate. The main tool in the construction is the theorem of Gunning, used to
identify the adequate transverse subbundles that define the structure. To achieve the results,
we also provide a simpler and more general proof of the existence of the conformal limit for
polystable SL(2,C)-Higgs bundles, which works on the configuration space (and not only on
MDol) and makes a simple use of the symmetries of the equation, avoiding the use of the inverse
function theorem for infinite dimensional Banach spaces, which was used in previous proofs of
the existence of the limit. We also show that for Higgs bundles with minimal Toledo invariant,
the construction has interesting geometric properties, inducing a geodesic in Teichmüller space
when it is given the Teichmüller (Finsler) metric. The origin of the Beltrami differential is also
explored, and we show that µ comes up naturally as the differential that provides conformal
coordinates for the metric induced in X by the harmonic map associated with the Higgs bundle.
As further results, we include a characterization of SL(2,C)-Higgs bundles corresponding to
elementary representations.

Results and structure of the thesis

We start by reviewing some of the classical theory of projective structures in Chapter 1. This is
an expository chapter where we collect and present proofs of some well-known results. We start
by quickly reviewing complex projective geometry in CP1 and then we introduce the definition
of complex projective structure as an atlas of CP1-valued charts with complex-projective
transition functions. We give some examples and provide equivalent definitions using the
notions of holonomy and development and a fiber bundle description. After that, we introduce
certain subclasses of complex projective structures and recall the uniformization theorem to
show that every Riemann surface X admits one such structure. Then we study the classical
parameterization of complex projective structures compatible with X as solutions of the Schwarz
differential equation. Before giving detailed accounts of structures on the torus and the sphere,
we show that the representations that can come up as holonomies of projective structures lift
to representations in the complex special linear group. We also study some restrictions on
the representations that appear in the case of closed surfaces of genus g ≥ 2. We proceed to
a proof of a theorem of Poincaré that states that, precisely on these closed surfaces of genus
g ≥ 2, the holonomy and the compatible Riemann surface structure are enough to determine
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the projective one. We finally give a more algebraic-geometric equivalent description of complex
projective structures using a theorem of Gunning and a holomorphic vector bundle over the
surface. Finally, we close the chapter by reviewing branched projective structures and verifying
whether the non-branched results do hold for these structures.

In Chapter 2 we provide further background on a diversity of topics related to Higgs bundles
and opers. This chapter is expository, but fewer details are provided, given the accessibility of
the proofs in the literature, and it sets the stage for the main results in chapter 3. We begin
by recalling the non-abelian Hodge correspondence for polystable Higgs bundles. Then we go
over the construction of Gaiotto’s conformal limit. We proceed to recall the relation between
partial opers and the branched projective structures of chapter 1. We finish by stating some
classical results in Teichmüller theory, namely how one can use Beltrami differentials to change
the complex structure on a Riemann surface.

Chapter 3 is the main chapter of the thesis where our primary contributions are presented.
We give a new proof of the existence of the conformal limit in the context of SL(2,R)-Higgs
bundles. This proof works in the configuration space and for polystable bundles, which means
it generalizes (for rank 2) part of the results in (Collier and Wentworth, 2018; Dumitrescu
et al., 2021). It relies simply on a symmetry of the Hitchin equation and dispenses the use of
the inverse function theorem on infinite dimensional Banach spaces, as in those papers. Then
we use the result of Gunning to show, again in the configuration space, that this conformal
limit is a partial oper, i.e. a branched projective structure compatible with a base Riemann
surface X. We proceed to the main construction, where, under some conditions, we build
branched projective structures associated with the family of connections used to define the
conformal limit. The instrumental tool is a Beltrami differential µ that appears naturally
associated with the family of connections and which we calculate explicitly. The branched
projective structures are then compatible with the complex structure determined by this µ. The
special case of minimal Toledo invariant is approached separately, since the proofs are slightly
different, even though the result still holds. We then provide an interpretation of the results,
showing that the constructed family of projective structures interpolates between branched
hyperbolic structures and branched projective structures compatible with X. In the case of
minimal Toledo invariant, the projective structures constructed cover a (reparametrization of
a) geodesic arc in the Teichmüller space with the Teichmüller (Finsler) metric. We finish the
chapter by providing a generalization of our proof of the existence of the conformal limit to all
polystable SL(2,C)-Higgs bundles. Apart from the last section, this chapter collects the results
of the pre-print (Silva and Gothen, 2024).

We finish with Chapter 4, which is a mixed chapter, being both expository and with some
new results. It was born out of a tentative understanding of (non)-elementary representations
in terms of Higgs bundles and their geometry. So we begin by recalling some of the geometry of
the harmonic map associated with SL(n,C)-Higgs bundles. We recall some known results about
equivariant maps, the geometry of the associated homogeneous space, and the calculation of the
(possibly degenerate) metric induced by the harmonic map on the surface X. The exposition
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is non-standard. We then provide a new explicit expression for the Beltrami differential
that renders this metric conformal in general. We also present an expression for the second
fundamental form of the harmonic map in terms of the Higgs bundle. We apply the developed
results to the case of SL(2,R)-Higgs bundles showing that in this case, the Beltrami differential
is exactly the one that appeared in the construction of Chapter 3. We finish by providing a
characterization of the Higgs bundles associated to elementary representations.

References and further bibliography

Since the subject is profoundly vast, any kind of complete bibliography seems out of purpose to
be included here, as it seems any historically detailed overview. We thus have tried to use as
sources contemporary expositions in the form of survey articles or monographs, which not only
try to approach the topics from a modern perspective but also include detailed bibliographies for
further information. We cannot understate how the survey (Dumas, 2009), mainly in Chapter 1,
the articles (Alessandrini, 2019; Hitchin, 1987), in Chapter 3, and the lecture notes (Li, 2019a),
for Chapter 4, have impacted the work presented here.



Chapter 1

Complex projective structures

The original purpose of this chapter was to collect some classical results on complex projective
structures since these are needed for the understanding of the main contributions in Chapter 2.
The problem is that most of the proofs of these date back to Poincaré, Goursat, Picard and
other mathematicians of the end of the nineteenth century, and, to the best of my knowledge,
they were not updated to modern terms without a shift in the techniques used. So the goal of
the chapter changed, from the simple presentation of the results to the writing up of the theory
with some amount of detail. I tried to use techniques similar in spirit to the classical ones which
means the solutions of Schwarzian differential equation take the main role as both objects of
study and tools of geometric understanding. The literature on this subject is extremely vast,
and it would be unreasonable to attempt a complete historical account here. Nonetheless, useful
general references for this chapter are the excellent survey (Dumas, 2009, Chapters 1,2,3 and 5)
and (De Saint-Gervais, 2016, Chapter IX) for the historical perspective. Since we try to keep
the approach close to the theory of differential equations, we did not include here the beautiful
topological techniques developed by Thurston, rooted in the previous notion of grafting. For
details about this, we point to (Dumas, 2009, Chapter 4) and the references therein.

1.1 Complex projective geometry

The main objects of study in this thesis will be complex projective structures which are a way
to transport the geometry of the complex projective line CP1 to more general surfaces. So we
start by recalling some facts about this geometry. We let CP1 be the set of lines through the
origin in C2 and consider on it the action of PSL(2,C) = SL(2,C)/{±Id}. This is the action
covered by the linear action of SL(2,C) on C̊2 = C2 − {(0, 0)}, and we have an equivariant

7
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diagram
SL(2,C)

	
C̊2

PSL(2,C)
	

CP1

P

P

where P : C̊2 → CP1 sends a point to the line it determines, and P : SL(2,C) → PSL(2,C)
is the quotient map. Nevertheless, we will mostly see CP1 as the Riemann sphere, i.e., the
extended plane CP1 = C ∪ {∞}. The action of PSL(2,C) on CP1 reads as the action of the
group of Möbius transformations on C ∪ {∞}. The group isomorphism sends a matrix ±

[
a b
c d

]
to its Möbius representative, the extended complex function az+b

cz+d . Note that the arithmetic is
extended to infinity as usual, and this function maps ∞ to a

c and attains ∞ when z = −d
c . We

will make no distinction between these two isomorphic groups and their elements. The action of
PSL(2,C) is sharply 3-transitive, meaning that there is a single Möbius transformation taking
any triple of distinct points in CP1 to any other such triple. In particular, it follows that if two
Möbius transformations agree on three points, then they are identical. This is a much stronger
condition from which the rigidity of this action follows. That is, Möbius transformations are
determined by their action on any open set. The geometry of CP1 with the action of PSL(2,C)
is an example of a non-metric geometry.

Remark 1.1.1. Indeed, if we consider the stabilizer of a point, say ∞ ∈ CP1, we find Stab(∞) ={
az+b
cz+d ∈ PSL(2,C)| c = 0

}
= Aff(C), where Aff(C) is the group of C-affine transformations

of the form az + b. This means CP1 is a Homogeneous space for PSL(2,C) identified with
PSL(2,C)/Aff(C). In particular, Aff(C) = C∗ nC is non-compact. It is possible to show that
there is no invariant Riemannian metric on this homogeneous space.

Even though the geometry is not metric, CP1 can be given the spherical metric. The Möbius
transformations g = az+b

cz+d that preserve this metric are precisely the ones in PSU(2) ⊂ PSL(2,C),
i.e the ones with norm ||g|| = 2, where ||g||2 = a2+b2+c2+d2

ad−bc , see (Beardon, 1983, Theorem 4.2.2).

1.2 Definitions

The idea of a complex projective structure is then to transfer the geometry of the complex
projective line to a surface S (Hausdorff second-countable topological 2-manifold).

Definition 1.2.1. Let S be a surface. A complex projective chart is a map ϕα : Uα → CP1

which is a homeomorphism of an open set Uα of S onto its image. A complex projective atlas is
a collection A = {ϕα : Uα → CP1}α∈A of complex projective charts such that the transition
functions

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ).
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are Möbius transformations (one for each connected component of ϕα(Uα ∩ Uβ)). The set of
complex projective atlas is ordered by inclusion, and a complex projective structure is a maximal
complex projective atlas for this ordering.

Remark 1.2.2. This is an example of a (G,X)-manifold of Thurston (Thurston, 1997, 3.3, page
125) where the model space is the projective line X = CP1 and the group of transformations
is G = PSL(2,C). For this reason, we also call the maximal atlas A a CP1-structure and S

together with it a CP1-surface. The constructions in this chapter that do not depend on specific
properties of complex projective geometry can be carried out for general (G,X)-manifolds.

This definition is similar to that of the complex structure on a Riemann surface, i.e. a
maximal complex atlas whose transition functions are holomorphic. In fact, given a complex
projective structure A = {ϕα : Uα → CP1}α∈A, we can give S a structure X of a Riemann
surface, simply by composing the charts ϕα with the complex-manifold-charts of CP1 and
adequately restricting their domains. The maps so obtained are C-valued charts and, since
Möbius transformations are holomorphic, i.e. PSL(2,C) acts holomorphically on CP1, the
collection yields a complex structure X in the usual sense. We write that X is induced by A or
that A is compatible with X. We denote by P(S) the set of complex projective structures on S
and by P(X) the set of the ones compatible with X.

Note that a similar reasoning holds for an induced smooth structure, but since smooth
structures are unique on surfaces, this point won’t play an important role in what follows, and
we always assume S has been given this smooth structure.

One can gather the complex projective structures in a category whose morphisms are the
complex projective maps.

Definition 1.2.3. A complex projective map between CP1-surfaces F : (S,A) → (S′,A′) is a
map which is locally in PSL(2,C), i.e. such that every x ∈ S has a connected open neighborhood
U where the local representation of F coincides with a Möbius transformation g ∈ PSL(2,C):

ϕ′ ◦ F |U ◦ ϕ−1 = g|(ϕ(U))

where ϕ and ϕ′ are charts in A and A′. An isomorphism is a complex projective map
F : (S,A) → (S,A′), on the same surface S, whose inverse is also complex projective.

Remark 1.2.4. Note, firstly, that the composition of complex projective maps is still complex
projective because the local representations of the composition are just the composition of the
local representations. Observe, secondly, that a complex projective map is automatically a
local biholomorphism for the induced complex structures since, locally, it looks like a Möbius
transformation. Further, an isomorphism of CP1-structures is a biholomorphism of the induced
complex structures. In particular, it is a diffeomorphism.

Before proceeding to concrete examples, let us observe that we can use local homeomorphisms
to produce new complex projective structures from old ones, as is typical when working with
atlases.
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Remark 1.2.5. Given a local homeomorphism F : S′ → S if S has a complex projective structure
A then we can give S′ a complex projective structure F ∗A whose charts are the pull-backs of
the charts in A under the restrictions of F to neighborhoods where it is a homeomorphism.
The transition functions for F ∗A match the ones in A, and so F ∗A is a complex projective
structure, and it is the only one such that F becomes a complex projective map. Given a map
f ′ : S′ → S′ which covers f : S → S with respect to F we have further that f ′ is complex
projective for F ∗A if and only if f is complex projective for A.

Remark 1.2.6. The previous construction has a kind of reverse analog, the push-forward. If
instead S′ is given a CP1-structure A′ and S is a quotient of S′ by a (discrete and fixed-point
free) group of complex projective isomorphisms Γ whose quotient map is F : S′ → S′/Γ = S

then we can give S a complex projective structure F∗A′. This atlas is built as before by pull-back
but now using the inverses of restrictions of F to neighborhoods where it is a homeomorphism.
It is a complex projective atlas because the transition functions in F∗A′ are either the ones in
A′ or new ones built from composing these with local representations of elements of Γ which
are Möbius transformations. With this structure, F becomes a complex projective map. We
also have the equality of structures F ∗F∗A′ = A′.

Example 1.2.7. The simplest example of a CP1-surface is of course CP1. An atlas for this is
{id : CP1 → CP1}, which is trivially a complex projective atlas. Another possible atlas is made
of the non-homogeneous coordinate charts of the affine patches of CP1. The usual one has two
charts ϕ1([z : w]) = w

z and ϕ2([z : w]) = z
w , and it is a complex projective atlas because the

transition function is the Möbius transformation z 7→ 1
z . All of these define the same maximal

atlas A called the standard complex projective structure on CP1.

Example 1.2.8. The complex plane C, and in general any open subset U of CP1, have complex
projective structures whose atlas has a single chart, the inclusion ι : U ↪→ CP1.

Example 1.2.9. A complex torus T is a quotient of C by a lattice uZ ⊕ vZ, with u, v ∈ C
linearly independent over R. When u and v become linearly dependent over R, but non-zero,
the lattice degenerates and the quotient becomes a complex cylinder C. Since the action of
uZ⊕vZ is made by translations which are Möbius transformations, and thus complex projective
isomorphisms for the standard CP1-structure on C, we are in conditions of Remark 1.2.6, and
the quotient manifolds T and C have induce projective structures.

Example 1.2.10. Another construction of complex projective structures on the Torus comes from
considering the quotient TH

λ of C∗ by the action of a single loxodromic Möbius transformation
of the form z 7→ λz, λ ∈ C∗. Since this a complex projective isomorphism of C∗, the quotient
has a CP1-structure. To see this is a torus note that the transformation maps the circle of radius
1 to the circle of radius |λ|, by expanding or contracting and twisting. The closed annulus
between the two circles is a fundamental domain of the action, whose boundaries are thus glued
into a torus.

Example 1.2.11. Another construction using circles is that of Schottky CP1-structures. To build
them we begin with g pairs of circles {(Cj , C

′
j)}j=1,...,g inside C ⊂ CP1 and all disjoint. Then
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we find g Möbius transformations {Tj}j=1,...,g each of which maps the exterior of circle Cj to
the interior of C ′

j . One can see that the outside of all circles in CP1
1 gives a fundamental domain

for the action of group Γ generated by {Tj}j=1,...,g. The quotient of this fundamental domain
by ΓS gives a compact surface that carries a complex projective structure by the quotient
construction, the Schottky CP1-structures. The identifications work in such a way that the
circle Cj gets identified with C ′

j . This means that when passing to the quotient g handles form
and these are in fact structures on closed surfaces of genus g. See Figure 1.2.11.

Fig. 1.1 A Schottky group: Representation of the fundamental domain of some Schottky groups.
This is the white complement of the large circles. These circles are swapped under the action of
the group and correspond to its generators. So both the left and right frames depict a Schottky
group with two generators, and the middle one, a group with three generators. The successive
images of the circles are represented by lighter and lighter circles. The bright Cantor dust is the
limit set. These images were produced using the algorithms in the beautiful book (Mumford
et al., 2002, Chapter 5). We include the generators of the group in Appendix A.2.

Example 1.2.12. The theorem of uniformization provides an identification of a compact Riemann
surface of genus g ≥ 2 with a quotient of H2 by a Fuchsian group ΓF , i.e. a discrete and fixed
point free group of PSL(2,R). This identification in fact yields a quotient complex projective
structure H2/ΓF .

Example 1.2.13. Deforming slightly the generators of a Fuchsian group one can obtain a group
ΓQF whose limit set is a Jordan curve. These are the Quasi-Fuchsian complex projective
structures defined on a closed surface as the quotient structure of a fundamental domain by
ΓQF . See Figure 1.2.

Example 1.2.14. All these are examples of the general quotient construction U/Γ where a
group of Möbius transformations Γ acts freely and properly discontinuously on an open subset
U ⊂ CP1 without fixed points.

There are several equivalent descriptions of complex projective structures which we study
in the next sections.
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Fig. 1.2 A Quasi-Fuchsian group: Graphical depiction of the fundamental domain of a Quasi-
Fuchsian group (in gray). The limit set (in black) is a Jordan curve with fractal-like features.
This image was produced using the algorithms in (Mumford et al., 2002, Chapter 8), and we
give the generators of the group in Appendix A.2.

1.3 Holonomy and development

Given a complex projective structure, one can produce, via analytic continuation of a single
chart, a map defined on the universal cover S̃. This map is called the developing map and it
carries all the information of the structure. The construction is detailed in this section. We
begin by noting the following which is a result of the rigidity of the action of PSL(2,C) on CP1.

Lemma 1.3.1. Let S be a simply connected CP1-surface. Then there is a complex projective
map d : S → CP1 and it is unique up to the action of PSL(2,C) on CP1, i.e., given any other
complex projective map d′ we have d′ = g ◦ d for some g ∈ PSL(2,C).

Sketch of Proof. The map d is simply the analytic continuation of any chart of the projective
atlas. Explicitly, we consider a point x ∈ U ⊂ S and a chart ϕ : U → CP1 around it. For any
other point y ∈ S we consider a path γy starting in x and ending in y. We cover γy by a finite
ordered chain of simply connected open sets Uj , j = 0, 1, 2, ...n, which are domains of charts ϕj

and such that they intersect in pairs, that is Uj−1,j = Uj−1 ∩ Uj ̸= ∅, as in the picture. We

U0
U1

U2
Un

x

y

Fig. 1.3 An ordered chain covering the path γy from x ∈ U = U0 to y ∈ Un.

consider U0 = U and ϕ0 = ϕ the starting chart to be the first element of the chain and the last
element Un to contain y. Let us denote by gj−1,j = ϕj−1 ◦ ϕ−1

j the transition functions defined
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in Uj−1,j from the coordinates ϕj to coordinates ϕj−1. We define the map d as

d(y) = g0,1 ◦ g1,2 ◦ · · · ◦ gn−2n−1 ◦ gn−1,n ◦ ϕn(y).

This is basically transporting the coordinate of y rigidly to the same CP1 as the one in the
codomain of the starting chart ϕ. One can show (Ratcliffe, 2019, §8.4), using the fact that
Möbius transformations are defined by their effect on an open set, that this map depends
only on the chosen initial chart and not on the hotomopy class of γ. Since the surface S is
simply connected this shows that the map is well-defined. Further it is directly a complex
projective map, since around each point y the local representation is simply the composition
g0,1 ◦ g1,2 ◦ · · · ◦ gn−2n−1 ◦ gn−1,n, which is a Möbius transformation. This shows how to build
the map d. Of course, changing the starting chart for another one in the atlas would change
g0,1 by a composition with a Möbius transformation g, and thus d would change to g ◦ d. Now
for the uniqueness. Take any two complex projective maps d1 : S → CP1 and d2 : S → CP1.
Since they are locally in PSL(2,C), there is a simply connected open set U ̸= ∅ where both are
given in coordinates by Möbius transformations, i.e. there is a chart ϕ : U → CP1 such that
d1 ◦ ϕ−1 = g1 and d2 ◦ ϕ−1 = g2, setting g = g2g

−1
1 , this implies that d2 ◦ ϕ−1 = g ◦ d1 ◦ ϕ−1,

and since ϕ is a homeomorphism, d2 = g ◦ d1. Now we consider the set S′ of points of S where
this equality holds. This is non-empty since U ⊂ S′ and closed since it is defined by a closed
condition. (Just take any sequence converging to x in the closure S′ and take the limit of the
equality to check it still holds on S′, since all functions involved are continuous). It is also true
that S′ is open for we can reverse the thought process above. Indeed, if the equality holds in a
point x we can pass to coordinates in a connected open set U around it, and, since d1 and d2

are complex projective maps, they look like (constant) Möbius g1 and g2 in U . Since d2 = g ◦ d1

at x, we conclude that g1 = gg2 at x, but also at U , for g1 and g2 are constant there. Since S
is connected S′ = S and the uniqueness statement follows.

Definition 1.3.2. We call any such map d a developing map of the simply connected CP1-
surface S.

Remark 1.3.3. Note that it follows from the proof we can find around each point x of S a
simply connected open neighborhood U where a developing map d agrees with a chart of the
atlas. This can also be seen as a corollary since both the restriction of d to U and a chart with
domain U are complex projective maps to CP1 out of a simply connected CP1-surface, and
thus unique up to Möbius transformation.

Remark 1.3.4. Note further that the construction can be carried out using a non-maximal atlas.
In particular, if the atlas on S has transition functions valued in some subgroup Γ ⊂ PSL(2,C),
then the uniqueness can be stated up to the action of this subgroup Γ.

So to a simply connected CP1-surface S we can associate a map from S to CP1 and this
map is essentially unique. If S is not simply connected we can consider its universal covering
map π : S̃ → S. The universal cover S̃ has a unique CP1-structure which makes π into a
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complex projective map (Remark 1.2.5). We can consider then a developing map d of this
simply connected CP1-surface. This map preserves the information about the original surface
S by behaving adequately with respect to the action of the fundamental group π1(S) seen as a
covering group of π : S̃ → S. In fact, given γ ∈ π1(S), since γ : S̃ → S̃ covers the identity of S
which is a complex projective map, we conclude that γ is also a projective map (cf. Remark
1.2.5). This means that d ◦ γ is also a projective map to CP1. By the uniqueness of developing
maps in Lemma 1.3.1, this map must be gγ ◦d for some gγ ∈ PSL(2,C). So d◦γ = gγ ◦d, and for
each γ ∈ π1(S), we get an element gγ ∈ PSL(2,C), and thus a map ρ : π1(S) → PSL(2,C) given
by γ 7→ gγ . This map is a homomorphism of groups since d ◦ γ1 ◦ γ2 = gγ1 ◦ d ◦ γ2 = gγ1 ◦ gγ2 ◦ d
and so gγ1◦γ2 = gγ1 ◦ gγ2 . We call ρ the holonomy representation for d . If instead of d we
had picked a different developing map to begin with, it would be of the form g ◦ d for some
g ∈ PSL(2,C) and it would satisfy g ◦ d ◦ γ = g ◦ gγ ◦ d = g ◦ gγ ◦ g−1 ◦ g ◦ d. This means the
holonomy representation for g ◦ d is simply the same as for d but left-conjugated by g. The
conclusion is that, as the developing map is only defined up to the action of PSL(2,C) on CP1,
the holonomy representation is only defined up to the action of PSL(2,C) by conjugation.

Definition 1.3.5. Let S be a CP1-surface and give its universal cover π : S̃ → S the pull-back
projective structure. The complex projective map defined above d : S̃ → CP1, unique up to
the action of PSL(2,C), is called the developing map of the CP1-surface S. It is equivariant
with respect to a representation ρ : π1(S̃) → CP1, unique up to conjugation by G, called the
holonomy of the CP1-surface S. Equivariance means that d and ρ satisfy

d ◦ γ = ρ(γ) ◦ d, (1.3.1)

for every γ ∈ π1(S). The pair (d, ρ) is called the development pair of the CP1-surface.

S̃ CP1

S

γ∈π1(S) ρ(γ)∈PSL(2,C)

Remark 1.3.6. Using Remarks 1.3.3 and 1.3.4 we note that, since each developing map d

built agrees with some chart of the structure, any two such maps differ by some g which is
a transition function of the atlas. This implies, in particular, that the elements gγ used to
build the holonomy homomorphism are also in the group of transition functions of the atlas.
We conclude that, if there is an atlas with transition functions in a subgroup Γ < PSL(2,C)
then the holonomy can be chosen as a representation ρ : π1(S) → Γ. The converse is not true,
namely it is possible for the representation ρ to have image in Γ without one being able to
find an atlas where all transition functions are in Γ. This is intuitive since the representation
only sees some of the transformations in the atlas corresponding to global deck transformations
γ ∈ π1(S) and not all the local ones.
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Remark 1.3.7. The uniqueness statement translates into uniqueness up to the action of PSL(2,C)
on pairs given by

g · (d, ρ) = (g ◦ d, gρg−1). (1.3.2)

So the development pair is properly defined as an equivalence class of pairs under this action.
We will always assume a representative has been picked and thus refer to the development pair.
Further, the equivariance guarantees that the image-group ρ(π1(S)) always preserves the image
of d.

Example 1.3.8. When the complex structure is a quotient S ∼= U/Γ, where U ⊂ CP1 is a simply
connected open set and Γ a group of complex projective isomorphisms, the development map is
identified with the inclusion UιCP1 and the holonomy representation is simply the identification
π1(S) ∼= Γ. Even when U is not simply connected, it’s still true that the developing map can
be identified with the inclusion, possibly precomposed with a covering. This covering can make
elements of π1(S) act trivially, and the representation is no longer faithful. This is what happens
for Schottky groups, where half of the generators of the group act trivially. It is still true that
the image of the developing map can be identified with the maximal domain of discontinuity,
i.e. the complement of the limit set, which is the light Cantor dust in Figure 1.2.11.

The development pair retains all the information about the projective structure.

Theorem 1.3.9. Let S be a surface and π : S̃ → S its universal cover. If ρ : π1(S) →
PSL(2,C)) is a group-homomorphism and d : S̃ → CP1 a local homeomorphism which is
ρ-equivariant, i.e. d ◦ γ = ρ(γ) ◦ d, then there is a complex projective structure A on S whose
development pair is (d, ρ).

Proof. Define an atlas on the universal cover Ã by pull-back by d of the standard structure
on CP1. Since d is equivariant, the local representation of any γ ∈ π1(S) using this atlas
is simply ρ(γ) (recall that the pull-back charts are local restrictions of d). So every γ is a
complex projective map. Thus the discrete and fixed-point free action of π1(S) on S̃ is made
by projective maps and thus descends to the quotient (Remark 1.2.6). The developing map of
this structure can be taken to be d by the uniqueness of the developing map. The holonomy
must then be ρ, for if d is ρ′-equivariant there are small open sets where d is invertible and
thus ρ(γ) = d ◦ γ ◦ d−1 = ρ′(γ) for every γ.

This result shows that complex projective structures admit a more algebraic description as
the set of equivalence classes of holonomy pairs.

Remark 1.3.10. Observe also, that if S is given a complex structure X, then the complex
projective structure determined by the developing pair (ρ, d) is compatible with X if and only
if d is a holomorphic map. (Where S̃ is given the unique induced complex structure X̃.)
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1.4 Fiber bundle description

In this section, we introduce a third equivalent description of a complex projective structure A
as a smooth CP1-bundle over S together with a transverse section. The construction makes use
of the representation ρ in the developing pair (ρ, d) for A. Taking this homomorphism one can
build an action of π1(S) on S̃ × CP1 as

π1(S) 	 S̃ × CP1 γ · (x̃, u) = (γ(x̃), ρ(γ)(u)) .

This action is properly discontinuous and the quotient P = S̃ ×ρ CP1 = S̃×CP1

π1(S) has a structure
of a fiber bundle over S, with fiber CP1. Another way to see this is to consider the universal
cover S̃ → S as principal π1(S)-bundle. Then P is just the associated bundle with fiber CP1

where π1(S) acts using ρ. The projection on the first factor proj1 : S̃ ×CP1 → S̃
π→ S descends

to the quotient yielding the projection map p : P → S of the bundle. For details see for
instance (Tu, 2017, §31.1). This bundle is in fact a flat fiber bundle, in the sense that each
horizontal leaf S̃× {u} glues in the quotient, producing a leaf of a foliation H of the total space
P , which is complementary to the vertical foliation V, whose leaves are p−1(x). The developing
map then corresponds to a section s : S → P defined by its graph s(x) = [(x̃, d(x̃))], where
x̃ is any lift of x ∈ S to the universal cover. The map d is a local diffeomorphism precisely
when s is everywhere transverse to the horizontal foliation H. We call P the flat CP1-bundle
associated to the structure and s its transverse section. The pair (P, s) is called the graph of the
complex projective structure. Note that if we had picked a different representative g ◦ d for the
developing map and gρg−1 for the holonomy, we would have obtained another flat CP1-bundle,
namely P ′ = S̃ ×gρg−1 CP1, and another section, given by s′(x) = [(x̃, g ◦ d(x̃))]. In this case,
the element g determines an isomorphism of bundles F : P → P ′ given by [(x̃, u)] 7→ [(x̃, g(u))].
This isomorphism maps the horizontal foliation of P to the one of P ′ and the transverse section
s to s′. When such an isomorphism exists we say that the two graphs (P, s) and (P ′, s′) are
equivalent. In conclusion, as the development pair of a structure is only uniquely determined
up to the action of PSL(2,C), the graph of the structure is only uniquely determined up to
equivalence.

The graph retains the complete information about the structure.

Theorem 1.4.1. Let S be a surface. If P is a flat CP1-bundle over S with horizontal foliation
H, and s a section everywhere transverse to H then there is a complex projective structure A
on S whose graph is (P, s).

Proof. To prove this we recall that the parallel transport establishes an isomorphism F between
any CP1-flat bundle P with holonomy ρ and the bundle of the form S̃ ×ρ CP1, with its natural
horizontal foliation. To this see for example (Kolář et al., 1993, Chapter III - 10. and 10.12).
This means that a section s is of mapped to one of the form x 7→ [x̃, s̃(x̃)], where s̃ : S̃ → CP1 is
a ρ-equivariant map. The section is transverse if and only if s̃ is a local diffeomorphism. Thus
(ρ, d) is a developing pair of a complex projective structure. Its graph is precisely S̃ ×ρ CP1,
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together with the section x 7→ [x̃, s̃(x̃)], which under the isomorphism F−1 yields the equivalent
graph (P, s).

This means that complex projective structures have a third interpretation as flat CP1-bundles
together with a transverse section.

Remark 1.4.2. Observe that again, if S is given a complex structure X, then the flat bundle P
has an induced complex structure. The projective structure induced by the transverse section s
is compatible with X if and only if s is holomorphic with respect to these complex structures.

1.5 Affine, dihedral and hyperbolic CP1-surfaces

Armed with the previous equivalent definitions of CP1-surfaces we are in position to study their
geometry. We begin by introducing special types of complex projective structures distinguished
by the geometry of CP1. Recall that the special unitary group SU(2) injects in SL(2,C) as the
matrices of norm 2. The embeddings C ↪→ CP1 and H2 → CP1 determine special subgroups of
PSL(2,C), namely the set of those elements that fix the image.

Definition 1.5.1. We define the following subgroups of PSL(2,C).

(I) PSU(2,C) – the projective special unitary group – the image of SU(2) in PSL(2,C) or,
equivalently, Möbius transformations of norm equal to 2;

(II) Aff(C) – the affine group – elements of PSL(2,C) that preserve C ↪→ CP1 or, equivalently,
Möbius transformations of the form z 7→ az + b, with a ∈ C∗ and b ∈ C;

(III) D∞(CP1) – the dihedral group – complex numbers a ∈ C∗ embedded as diagonal or
anti-diagonal elements of PSL(2,C) or, equivalentely, Möbius transformations of the form
z 7→ az or z 7→ a

z with a ∈ C∗.

(IV) PSL(2,R) – the hyperbolic group – elements of PSL(2,C) that preserve H2 ↪→ CP1 or
equivalentely Möbius transformation with real coefficients.

Groups conjugated to subgroups of any of the first three cases are called elementary of type (I),
(II), or (III). We say that a complex projective structure has unitary (resp. affine, dihedral or
hyperbolic) holonomy if it has a holonomy with image in PSU(2,C) (resp. Aff(C),D∞(CP1) or
PSL(2,R)).

The restriction on the images of the holonomies of complex projective structures is of a
representation-theoretic nature and does not consider the underlying geometry of the developing
map. For this we need the further restriction.

Definition 1.5.2. A complex projective structure is affine (resp. hyperbolic) if it has a
developing map with image in C ↪→ CP1 (resp. H2 ↪→ CP1).
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Lemma 1.5.3. A complex projective structure is affine (resp. hyperbolic) if and only if there
is a compatible atlas whose charts have image in C ↪→ CP1 (resp. H2 ↪→ CP1) and all the
transition functions are in Aff(C) (resp. PSL(2,R)).

Proof. Denote by ι : U → CP1 the embbedding, where U = C or U = H2, and by Γ = Aff(C)
or Γ = PSL(2,R), respectively. Note that a Möbius transformation γ ∈ PSL(2,C) is in Γ if and
only if it preserves ι(U). Since the developing map is built using the transition functions as

d(y) = g0,1 ◦ g1,2 ◦ · · · ◦ gn−2n−1 ◦ gn−1,n ◦ ϕn(y), y ∈ S̃

we see that if the charts ϕ have image in ι(U) and the transition functions gj,j+1 preserve this
image, then for every y ∈ S̃, the point d(y) is still in ι(U). For the converse assume d(S̃) ⊂ ι(U).
We have already seen in Remark 1.3.3 that a non-maximal maximal can be chosen in such a
way that d agrees locally with its charts. Thus, in particular, the charts have image in ι(U).
The transition functions then map subsets of ι(U) to subsets of ι(U). As such they preserve
ι(U) and are in Γ.

Remark 1.5.4. Since the image of the holonomy representation preserves the image of the
developing map d (Remark 1.3.7), we have in particular that affine and hyperbolic CP1-surfaces
have affine and hyperbolic holonomies. The converse is not true, and there are examples of
exotic projective structures that have hyperbolic holonomy but are not hyperbolic. For more
information about these we refer to (Dumas, 2009, 5.4) and the references therein.

We are now in conditions of using the uniformization theorem to prove that, in fact, every
Riemann surface X can be given a compatible complex projective structure, with its type being
determined by the universal cover.

Theorem 1.5.5. Every Riemann surface X is induced by a complex projective structure.
Equivalently, the space P(X) is non-empty for every X.

Proof. The uniformization theorem identifies the universal cover X̃ of X with one of CP1, C or
H. This realizes X as a quotient of either CP1, C or H by a group of biholomorphisms. Since the
biholomorphism groups are Aut(CP1) ∼= PSL(2,C), Aut(C) ∼= Aff(C) and Aut(C) ∼= PSL(2,R),
the surface σ has a complex projective structure induced by the quotient map.

Remark 1.5.6. Note that we actually see that if the universal cover is C then X has an affine
structure and if it is H2, X has a hyperbolic structure.

Observe that the classical uniformization can be replaced by other kinds of uniformization,
for example, Schottky uniformization.
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1.6 Schwarz’s equation and parameterization of structures

1.6.1 Schwarzian derivative

At this point we have seen that a CP1-surface has naturally induced Riemann surface structure,
and, conversely, every Riemann surface X is induced by a CP1-surface. We can now ask
what is the size of the (non-empty) space P(X) for each X, or, in other words, how many
complex projective structures induce the same Riemann surface structure. The purpose of this
section is to prove that P(X) is an affine space modeled on the vector space of holomorphic
quadratic differentials H0(K2). We start by reviewing a classical construction related to ordinary
differential equations and the work of Schwarz. This approach marked the starting point of the
investigations into the subject during the late 19th century, from which the modern definition
used here can be traced back. Only in this chapter, we will use a prime to denote complex
differentiation.

Definition 1.6.1. Let U ⊂ C be an open set and f : U → C a holomorphic function. Assume
its complex derivative f ′ is nonzero in U . We define the Schwarzian derivative of f as

S(f) :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
. (1.6.1)

This is a third-order differential operator satisfying the following properties:

(i) If g ∈ PSL(2,C) is a Möbius transformation, S(g) = 0;

(ii) If f1 and f2 are composable functions then S(f1 ◦ f2) = (S(f1) ◦ f2) f ′2
2 + S(f2).

The proofs of the properties follow by direct calculation. In fact, one can even go further and
check that the Schwarzian derivative of a function f determines it up to Möbius transformation.
The treatment we present here follows (Lehto, 1987, chapter II, 1.2).

Theorem 1.6.2. Let ϑ : U → C be a holomorphic function on a simply connected open set
U ⊂ C. Then there is a meromorphic function f such that

S(f) = ϑ

which is unique up to post-composition with an arbitrary Möbius transformation.

Proof. The function f is built using the intimately related Schwarz differential equation:

u′′ + 1
2ϑu = 0. (1.6.2)

So we consider this linear equation whose solution space on the simply connected U ⊂ C is a
vector space generated by two linear independent holomorphic solutions, say u1 and u2. Define
f = u1

u2
. We will show f satisfies S(f) = ϑ. To begin with, f is meromorphic since it is the

quotient of holomorphic functions. Now, consider the Wronskian W [u1, u2] = u′
1u2 − u1u

′
2 of



20 Complex projective structures

the two solutions. Since u1 and u2 are linearly independent there is a point z0 ∈ U where
W [u1, u2](z0) ̸= 0. But observe that, using Equation 1.6.2, W [u1, u2] satisfies

W [u1, u2]′ = u′′
1u2 + u′

1u
′
2 − u′

1u
′
2 − u1u

′′
2 = −1

2ϑu1u2 + 1
2ϑu1u2 = 0.

Thus W [u1, u2] is constant and non-zero since W [u1, u2](z0) ̸= 0. Write W [u1, u2] = W ∈ C∗.
Now note that, f ′ = u′

1u2−u1u′
2

u2
2

= W
u2

2
. This means that, outside of the poles, f ′ ≠ 0. Now,

f ′′ = −2W
u3

2
u′

2. Thus f ′′

f ′ = −2u′
2

u2
and

(
f ′′

f ′

)′
= −2u′′

2
u2

+ 2 (u′
2)2

u2
2

this shows, using the linear
Equation 1.6.2, that

S(f) =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
= −2u

′′
2
u2

+ 2(u′
2)2

u2
2

− 2
(
u′

2
u2

)2
= u2ϑ

u2
= ϑ.

Now for the uniqueness. Start by noting that if S(g) = 0 on a simply connected open set then
g is a Möbius transformation. Indeed S(g) = 0 if and only if y = g′′/g′ satisfies the Ricatti
equation y′ − 1

2y
2 = 0. Integrating gives y−1 = −1

2(z + c1) i.e y = − 2
z+c1

for some constant
c1. Then g′′/g′ = y = − 2

z+c1
can be integrated once to give log g′ = −2 log(z + c1) + log c2, i.e.

g′ = (z+ c1)−2c2 for some constant c2. Integrating a third time yields g = −(z+ c1)−1c2 + c3 for
some constant c3. This is a Möbius transformation g = c3z+c3c1−c2

z+c1
. Now consider the solution

f we built and any other function h that inverts the Schwarzian derivative S(h) = ϑ. Consider
a simply connected open set V where f is injective (it exists since f ′ ̸= 0). On V ,

ϑ = S(h) = S(h ◦ f−1 ◦ f) = (S(h ◦ f−1) ◦ f)f ′2 + S(f) = (S(h ◦ f−1) ◦ f)f ′2 + ϑ

by (ii). This implies S(h◦f−1) = 0 since f ′ ̸= 0, which then means h◦f−1 = g for some Möbius
transformation g ∈ PSL(2,C). We conclude that h = g ◦ f on V . Now varying V , we conclude
that there is a Möbius transformation by which f and g differ around every point of U . Since U
is connected these transformations must be the same everywhere and thus h = g ◦ f on U .

Remark 1.6.3. The uniqueness statement actually strengthens (i) after Definition 1.6.1. In
particular, we have shown in the proof that, on a simply connected open set, S(f) = 0 if and
only if f is a Möbius transformation.

We take note that, in fact, we have shown something stronger.

Corollary 1.6.4. Every solution f of the equation S(f) = ϑ on a simply connected domain
is actually of the form f = u1/u2, where u1 and u2 are linearly independent solutions of the
Schwarz linear differential equation

u′′ + 1
2ϑu = 0,

with Wronskian W [u1, u2] = 1.
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Proof. We have shown that every solution differs from f = u1
u2

by a Möbius transformation
g = az+b

cz+e ∈ PSL(2,C), i.e every solution is of the form

g ◦ f =
au1

u2
+ b

cu1
u2

+ e
= au1 + bu2
cu1 + eu2

.

But au1 + bu2 and cu1 + eu2 are still linearly independent solutions of the Schwarz linear
differential equation, since det( a b

c e ) = 1. So every solution f is a quotient of linearly independent
solutions. Suppose now that f = u1

u2
. We have shown in the proof that W [u1, u2] = W ∈ C∗ is

constant. So û1 = u1√
W

and û2 = u1√
W

are still solutions of the linear equation where

û1
û2

= u1/
√
W

u2/
√
W

= u1
u2

= f with

W [û1, û2] =
∣∣∣∣∣û1 û2

û′
1 û′

2

∣∣∣∣∣ =
∣∣∣∣∣u1/

√
W u2/

√
W

u′
1/

√
W u′

2/
√
W

∣∣∣∣∣ = 1
W
W [u1, u2] = 1.

1.6.2 Parameterization by quadratic differentials

The Schwarzian derivative can be used to measure the difference between compatible complex
projective structures. So suppose A = {ϕα : Uα → CP1}α∈A and A′ = {ϕ′

α′ : Uα′ → CP1}α′∈A′

are two structures of CP1-surface on S, and suppose further they are compatible with the
Riemann surface structure X. From now on, we will always assume that the charts are C-
valued, which can be achieved by performing a Möbius transformation on the original chart
if needed. The compatibility condition is then equivalent to saying that ϕα (and ϕ′

α′) are
(local) holomorphic functions. We will construct a complex quantity A′ − A which we call the
difference of the projective structures. To do this at each point x ∈ S we simply use the atlas
A as complex coordiantes, zα = ϕα(x), and write the local expressions of the charts ϕ′

α′ of A′

as functions of zα, i.e. ϕ′
α′ ◦ ϕ−1

α (zα). These are transition functions from the charts of one of
the atlases to the other. To measure how much these combined transition functions differ from
a Möbius transformation we will take the Schwarzian derivative with respect to the complex
coordinate zα: (

A′ − A
)

(zα) = S(ϕ′
α′ ◦ ϕ−1

α (zα)). (1.6.3)

To check that this is well defined we need to see what happens when we change the chosen
charts in both the atlases A and A′. We can note firstly that choosing another projective chart
of A′ changes the function ϕ′

α′ ◦ ϕ−1
α by post-composition with a Möbius transformation g′

which have S(g′) = 0, by (i) after Definition 1.6.1. Using the transformation law (ii) one checks
that this leaves the Schwarzian derivative invariant, and thus the definition does not depend
on the chart of A′ chosen. The same thought process can be applied to charts in A, but this
time the function ϕ′

α′ ◦ ϕ−1
α changes by pre-composition with a g ∈ PSL(2,C). This means,
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according to (ii), that the Schwarzian derivative is not invariant but it changes by multiplication
by the square of the derivative of g. To remedy this, the difference A′ − A must be defined as a
quadratic differential.

Definition 1.6.5. Let A = {ϕα : Uα → CP1}α∈A and A′ = {ϕ′
α′ : Uα′ → CP1}α′∈A′ be

complex projective structures compatible with a Riemann surface structure X. The difference
A′ − A is the holomorphic quadratic differential expressed in A-local coordinates zα = ϕα(x)
as (

A′ − A
)

(zα) = S(ϕ′
α′ ◦ ϕ−1

α (zα)) dz2
α. (1.6.4)

Remark 1.6.6. Note that since the structures are compatible with X, the function ϕ′
α′ ◦ ϕ−1

α

is holomorphic. Further, since charts are local homeomorphisms, the function is a local
biholomorphism and thus it has non-zero complex derivative. So its Schwarzian derivative is
locally well-defined. By the previous discussion, the factor dz2

α was chosen to cancel the one
coming from the transformation law of the Schwarzian derivative, and thus the difference is a
well-defined quadratic differential.

It is clear that A′ and A are projectively related if and only if their difference is the zero
quadratic differential. This follows because the comparing transition functions from A′ to
A which appear in Definition 1.6.1 are Möbius transformations if and only if they have zero
Schwarzian derivative (Remark 1.6.3). (Of course in that case A′ and A actually define the
same maximal atlas and we really have A = A′). Observe further that if A1,A2 and A3 are
complex projective structures compatible with X we have that the sum of quadratic differentials
(A1 − A2) + (A2 − A3) = A1 − A3 since, if we write z2 = ϕ2 ◦ ϕ3(z3) for the relations between
the coordinates z2 of A2 and z3 of A3, we have

(A1 − A2) + (A2 − A3) = S(ϕ1 ◦ ϕ−1
2 (z2))dz2

2 + S(ϕ2 ◦ ϕ−1
3 (z3))dz2

3

= S(ϕ1 ◦ ϕ−1
2 (z2))

(
d(ϕ2 ◦ ϕ3)

dz3
(z3)

)2
dz2

3 + S(ϕ2 ◦ ϕ−1
3 (z3))dz2

3

(ii)=
(
S(ϕ1 ◦ ϕ−1

2 ◦ ϕ2 ◦ ϕ3)
)
dz2

3 = A1 − A3.

In particular, (A1 − A2) + (A2 − A1) = A1 − A1 = 0. We will now show that the construction
can be reversed, in the sense that given a holomorphic quadratic differential q ∈ H0(K2) and a
compatible complex projective structure A we can find another one A′ such that A′ − A = q.
Together with the previous identity, these are the axioms for an affine space modeled on H0(K2).

Theorem 1.6.7. Let A be a complex projective structure compatible with the Riemann surface
X and q ∈ H0(K2

X) a holomorphic quadratic differential. Then there exists a unique A′ such
that A′ − A = q.

Proof. Locally on a projective coordinate z = ϕ(x) of A, defined around x ∈ U , U a simply
connected open set, the quadratic differential has a representation q = q(z)dz2. Using Theorem
1.6.2 one can find a local meromorphic function fϕ such that S(fϕ(z)) = q(z) (in particular
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dfϕ

dz ̸= 0 since fϕ has a well-defined Schwarzian derivative). This function is unique up to Möbius
transformation. Now, for each chart ϕ ∈ A with simply connected domain, we define new
charts fϕ ◦ ϕ for each possible solution fϕ. We collect all of them together in a new atlas A′.
To check that A′ is projective we only need to verify that the transition functions are Möbius
transformations in coordinates. We first write z1 = ϕ1(x) and z2 = ϕ2(x) for the coordinates
in A. As this is a projective atlas we have z2 = g21(z1) for some Möbius transformation
g21 ∈ PSL(2,C). Then we write w1 = fϕ1 ◦ ϕ1(x) = fϕ1(z1) and w2 = fϕ2 ◦ ϕ2(x) = fϕ2(z2) for
the coordinates in A′. The transition functions are then τ21(w1) = fϕ2 ◦ϕ2◦(fϕ1 ◦ϕ1)−1(w1). We
will show they are Möbius transformations by calculating the Schwarzian derivative S(τ21(w1))
and showing it is zero (cf. Remark 1.6.3). Note that the transition functions satisfy the equality

τ21 ◦ fϕ1(z1) = fϕ2 ◦ g21(z1).

Applying to this identity the Schwarzian derivative with respect to z1 and successively using
the transformation law (ii), we get

S(τ21) ◦ fϕ1(z1)
(
dfϕ1

dz1
(z1)

)2
+ S(fϕ1(z1)) = S(fϕ2) ◦ g21(z1)

(
dg21
dz1

(z1)
)2

+ 0, by (i)

S(τ21(w1))
(
dfϕ1

dz1
(z1)

)2
+ S(fϕ1(z1)) = S(fϕ2) ◦ g21(z1)

(
dg21
dz1

(z1)
)2
, w1 = fϕ1(z1)

S(τ21(w1))
(
dfϕ1

dz1
(z1)

)2
+ q(z1) = q(g21(z1))

(
dg21
dz1

(z1)
)2
, q(zj) = fϕj (zj)

S(τ21(w1))
(
dfϕ1

dz1
(z1)

)2
+ q(z1) = q(z1), q ∈ H0(K2)

S(τ21(w1)) = 0, dfϕ1

dz1
(z1) ̸= 0.

Thus the transition functions are Möbius transformations. To show uniqueness just note that any
other atlas A′′ such that A′′ −A = q will have A′′ −A′ = (A′′ −A)+(A−A′) = q+(−q) = 0.

Corollary 1.6.8. The space P(X) of compatible projective structures is an affine space modeled
on the space of holomorphic quadratic differentials H0(K2

X).

Of course, we could have also expressed the difference in terms of the developing maps,
since they locally agree with projective charts on the universal cover (Remark 1.3.3). So if A1

and A2 are CP1-structures, take Ã1 and Ã2 to be the ones induced in the universal cover S̃. If
we use coordinates z1 = ϕ1(x) for Ã1, the developing map d2 of A2 locally agrees with some
ϕ2 ∈ Ã2, and thus the definition of difference reads

Ã2 − Ã1 = S(d2 ◦ ϕ−1
1 (z1))dz2

1 , (1.6.5)

i.e. we just take the Schwarzian derivative of d2 in projective coordinates of A1. The same line
of arguments as before can be used to show that this is a π1(S)-invariant quadratic differential
on S̃. Indeed each γ ∈ π1(S) is a projective map for the induced structure Ã1 and thus acts in
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coordinates as ϕ ◦ γ ◦ ϕ−1
1 = g ∈ PSL(2,C). But the coordinates of the quadratic differential

Ã2 − Ã1 pulled-back under γ are just

S(d2 ◦ ϕ−1(gz1))
(
dg

dz1

)2 (ii)= S(d2 ◦ ϕ−1 ◦ g(z1)) = S(d2 ◦ γ ◦ ϕ−1
1 (z1))

= S(ρ(γ) ◦ d2 ◦ ϕ−1
1 (z1)) (ii)= S(d2 ◦ ϕ−1

1 (z1)).

Throughout the rest of the text, we will suppress the explicit dependence on the charts and
will denote by z a complex coordinate (sometimes projective) both on S and on the universal
cover S̃. This means, for example, that if z is the projective coordinate of A1 and d2(z) the
coordinate representation of a developing map of A2, then

Ã2 − Ã1 = S(d2(z))dz2.

Note that if d2 reaches infinity we simply calculate S(d2(z)) = S(1/d2(z)), since w 7→ 1/w is a
Möbius transformation for which S is invariant.

1.7 Holonomies lift

We will see how there is more information available on what kind of homomorphisms do come
up as holonomies of projective structures. So let S a surface and ρ : π1(S) → PSL(2,C) a
homomorphism. Denote by P : SL(2,C) → PSL(2,C) the quotient map represented in matrix
form as [ a b

c e ] 7→ ±[ a b
c e ] or as a Möbius transformation [ a b

c e ] 7→ az+b
cz+d .

Definition 1.7.1. A homomorphism ρ : π1(S) → PSL(2,C) lifts to SL(2,C) if there is another
one ρ̃ : π1(S) → SL(2,C) that covers it relatively to the quotient map P : SL(2,C) → PSL(2,C),
i.e. ρ = P ◦ ρ̃. We get the commutative diagram.

SL(2,C)

π1(M) PSL(2,C)

P
ρ̃

ρ

We will see now that all homomorphisms that come up as holonomies of CP1-structures are
in fact of this kind.

Theorem 1.7.2. Let S be a CP1-surface with holonomy ρ : π1(S) → PSL(2,C). Then ρ lifts
to SL(2,C).

Remark 1.7.3. The lift is not necessarily unique and the images of ρ̃ and of ρ are not necessarily
isomorphic.

Proof. Recall that the only Riemann surface that has CP1 as universal cover is CP1 itself
(Farkas and Kra, 1992, §IV.6.3. Theorem). This is because π1(S) acts without fixed points
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and a Möbius transformation necessarily has a fixed point on the sphere. So in the case of the
Riemann sphere CP1, the holonomy is trivial, and thus the trivial homomorphism to SL(2,C)
lifts it.

Now let (ρ, d) be the developing pair of a projective structure on S. Take S to be uniformized
by the coordinate z, and thus having its universal cover identified with either S̃ = C or S̃ = H2.
Using the Schwarzian parameterization (Theorem 1.6.7), d : S̃ → CP1 corresponds to the
π1(S)-invariant quadratic differential

ϑ = S(d(z))dz2.

This means by Corollary 1.6.4 that d is locally a quotient of linearly independent solutions
of the linear equation u′′ + 1

2ϑu = 0. But, using the uniformizing coordinate, this linear
equation is actually global, and thus d = u1

u2
for some global functions u1 and u2 with Wronskian

W [u1, u2] = 1. Given that the surface is uniformized, an element γ ∈ π1(S) acts as γz = aγz+bγ

cγz+dγ
,

and γ′(z) = (cγz + dγ)−2. Since ϑ is π1(S)-invariant we will show in a computation (that we
carry out the lemma below) that u1(γz)(cγz + dγ) is another solution of the linear equation.
Note that cγ and bγ are not uniquely determined by γ, since

γz = aγz + bγ

cγz + dγ
= −aγz − bγ

−cγz − dγ
.

To express this ambiguity we write ±û1(z) := ±u1(γz)(cγz+dγ) for the new solution. Since the
Schwarz differential equation is linear and S̃ is simply connected, the solution space is a vector
space, and thus ±û1 = αγ u1+βγ u2 for αγ , βγ ∈ C. Analogously ±û2(z) := ±u2(γz)(cγz+dγ) =
δγ u1(z) + ϵγ u2(z) for δγ , ϵγ ∈ C. Both equalities read in matrix form[

±û1(z)
±û2(z)

]
= Aγ

[
u1(z)
u2(z)

]
, with Aγ =

[
αγ βγ

δγ ϵγ

]
.

We will check in another computation below that W [û1, û2] = W [u1, u2]. Since we have taken
u1 and u2 with W [u1, u2] = 1, the matrix Aγ is in SL(2,C).

We now want to make the correspondence γ 7→ Aγ into the lift ρ̃ : π1(S) → SL(2,C).
However, there is a problem, since the matrix Aγ has a sign ambiguity coming from ±ûj(z),
j = 1, 2. So, for each γ, we need to make an adequate choice of ±ûj that reflects on the
corresponding Aγ . This choice needs to be done in a way such that γ 7→ Aγ is a homomorphism
ρ̃. If we manage to do this the proof is finished since ρ̃ will cover ρ. This is seen because the
fact that d is ρ-equivariant reads

ρ(γ) ◦ d(z) = d(γ z) = u1(γ z)
u2(γ z) = u1(γ z)(cγz + dγ)

u2(γ z)(cγz + dγ) =

= αγu1(z) + βγu2(z)
δγu1(z) + ϵγu2(z) =

αγ
u1(z)
u2(z) + βγ

δγ
u1(z)
u2(z) + ϵγ

= P(Aγ) ◦ d(z).
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and thus ρ̃ covers ρ with respect to P. To make a consistent choice of signs we will use a square
root of the canonical bundle. So choose a K1/2 with a holomorphic section f lifted to the
universal cover. The fact that f is a square root reads as f(γz)

√
γ′ = f(z) for a defined and

consistent choice of sign of root which we have denoted by
√
γ′. Noting that γ′ = (cγz + dγ)−2

we see that
(cγz + dγ)

√
γ′ = ±1.

So we chose the signs of ûj(z), j = 1, 2 in a way that the above quantity is always 1. This
means that now γ 7→ Aγ is a well-defined correspondence. Let us show it is a homomorphism.
If γ1 = a1z+b1

c1z+d1
and γ2 = a2z+b2

c2z+d2
we have that (γ1γ2)′ = ((c1a2 + d1c2)z + c1b2 + d1d2)−2. Since

the choices of the square root are determined by f , f is such that

f(γ1γ2z)
√

(γ1γ2(z))′ = f(γ1γ2z)
√
γ′

1(γ2(z))
√
γ′

2(z) = f(γ2z)
√
γ′

2(z) = f(z),

with choices included. We conclude that the choices are compatible, in the sense that if
(c1z + d1)

√
γ′

1 = 1 and (c2z + d2)
√
γ′

2 = 1, we have

((c1a2 + d1c2)z + c1b2 + d1d2)
√

(γ1γ2(z))′ =

= (c1(a2z + b2) + d1(c2z + d2))
√
γ′

1(γ2(z))
√
γ′

2(z) =

=
(
c1
a2z + b2
c2z + d2

+ d1

)
(c2z + d2)

√
γ′

1(γ2(z))
√
γ′

2(z) = 1.

This means that with the given choices

Aγ1γ2

[
u1(z)
u2(z)

]
=
[
u1(γ1γ2z)
u2(γ1γ2z)

]
((c1a2 + d1c2)z + c1b2 + d1d2) =

=
[
u1(γ1γ2z)
u2(γ1γ2z)

](
c1
a2z + b2
c2z + d2

+ d1

)
(c2z + d2) =

= Aγ1

[
u1(γ2z)
u2(γ2z)

]
(c2z + d2) = Aγ1Aγ2

[
u1(z)
u2(z)

]
,

and γ 7→ Aγ indeed defines a homomorphism. We are only left with the mentioned computations.

Lemma 1.7.4. Let γz = aγz+bγ

cγz+dγ
. If u(z) is a solution of the Schwarz linear equation so is

±u(γz)(cγz + dγ).

Proof. We suppress the index γ. Noting that γ′ = (cz + d)−2 we compute

(u(γz)(cz + d))′ = u′(γz)γ′(z)(cz + d) + u(γz)c = u′(γz)(cz + d)−1 + u(γz)c
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and

(u(γz)(cz + d))′′ = u′′(γz)γ′(cz + d)−1 − u′(γz)(cz + d)−2c+ u′(γz)γ′c

= u′′(γz)(cz + d)−3. (1.7.1)

Now, since u(z) is a solution we have u′′(γz) = −1
2ϑ(γz)u(γz), and the π1(S)-invariance reads

ϑ(z) = ϑ(γz)(γ′)2 = ϑ(γz)(cz + d)−4. Combining this with the calculation we obtain

(u(γz)(cz + d))′′ = u′′(γz)(cz + d)−3 = −1
2ϑ(γz)u(γz)(cz + d)−3 = −1

2ϑ(z)u(γz)(cz + d).

Lemma 1.7.5. The Wronskians satisfy W [û1, û2] = W [u1, u2].

Proof. Dropping the index in γ we have ûj(z) = uj(γz)(cz + d). Thus we calculate

W [û1, û2](z) = û1(z)′û2(z) − û1(z)û′
2(z) =

=
(
u′

1(γz)(cz + d)−1 + u1(γz)c
)
u2(γz)(cz + d) − u1(γz)(cz + d)

(
u′

2(γz)(cz + d)−1 + u2(γz)c
)

= u′
1(z)u2(z) − u1(z)u′

2(z).

This proof is modeled on the one of (Kra, 1985, Theorem 3.2), an article where one can find
further details about the intricate history of this result and its several proofs. We note some
points about the argument. The fact that uj(γz)(cγz + dγ) are still solutions of the differential
equation already hints at a transformation law related to square roots of the canonical bundle,
because cγz + dγ = γ′−1/2. It’s possible to express the linear equation in a more invariant way,
without using projective coordinates to begin with. When this is done, one observes that, in
fact, the uj transform like −1

2 -differentials. This was first done in (Hawley and Schiffer, 1966,
II. 1.), where the full transformation law of the Schwarzian derivative (ii), after Definition 1.6.1,
is considered. A contemporary view on this approach reads the Schwarzian linear equation as a
differential operator corresponding to a connection DS : Ω0(K−1/2) → Ω0(K3/2), and leads to
the introduction of opers. Even though we will treat opers in a further section, this approach
won’t be needed and we refer to (Frenkel, 2007, 4 – 4.1) for further details.

It is also possible to provide cohomological proofs of this result, being either of group-
theoretic or sheaf-theoretic nature, for which we again refer to the bibliography of (Kra, 1985).
In any case, it is clear from our proof that the obstruction to the existence of lift is the same as
the obstruction to the existence of a square root of the canonical bundle K. In the case of a
Riemann surface X it is always possible to find such a root since the obstruction to find one is
the image of the Chern class of K in H2(X,Z2). When X is open H2(X,Z2) = 0. When X is
closed the degree of K is even. In both cases, the obstruction vanishes.
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Remark 1.7.6. It follows from the proof, that each possible square square-root of K determines a
lift. This means, in particular, the number of lifts for a closed surface of genus g is 22g. This can
also be seen from the algebraic fact that if we find a lift, we can obtain all others by changing the
signs of the generators of the group in a way that the defining relation is still satisfied. In this case,
there are 2g generators γj of the fundamental group π1(S) = ⟨{aj , bj}j=1,··· ,g|

∏g
k=1[ak, bk] = id⟩,

and the defining relation of the group is satisfied regardless of the signs of the lifts ρ̃(γj), because
it only depends on commutators.

For higher dimensional complex projective manifolds M of dimension m, i.e. manifolds
locally modeled in PGL(m+ 1,C), the obstruction to the lifting turns out to be the image of
the Chern class of the canonical bundle KM = detT ∗M (1,0) inside H2(X,Zm+1), as proved in
(Simha, 1989).

1.8 Characterization of structures on closed surfaces

In this section, we assume S is a closed surface of genus g. Using the parameterization by
quadratic differentials we can already obtain classification results of the projective structures in
lower genus.

1.8.1 The sphere

The sphere has a unique complex structure XCP1 , and since any CP1-structure induces a
complex one, all such projective structures must be compatible with XCP1 . Using stereographic
projection, XCP1 is the complex structure on CP1 = C ∪ {∞}, whose charts are the inclusions
of C and C∗ ∪ {∞} and the transition function is z 7→ 1/z. This atlas makes it clear that in fact
XCP1 is a complex projective structure since the transition function is a Möbius transformation.
Indeed it would be a complex projective structure with dihedral holonomy if it weren’t for the
fact that, since the sphere is simply connected, the holonomy of the structure is trivial. Given
that, by the Riemann-Roch Theorem, there are no quadratic differentials on CP1, there are no
further complex projective structures, i.e., the affine space parameterizing compatible complex
projective structures is trivial.

Theorem 1.8.1. There is only one complex projective structure on the sphere CP1, i.e.
P(CP1) = {XCP1}.

1.8.2 The torus

For this section we follow (Gunning, 1981, 2.) and (Loray and Marìn, 2009, Remark 1.1). The
uniformization theorem describes each complex torus Tτ = C/(Z ⊕ τZ) as the quotient of the
complex plane C by the integer lattice generated by 1 and τ ∈ H2. For a fixed complex structure
Tτ , the Schwarzian parameterization gives a holomorphic quadratic differential ϑ determined by
each complex projective structure compatible with Tτ . Since the canonical bundle of a torus is
trivial we have that K2 is also trivial and ϑ = c ∈ C is a constant. This means we can explicitly
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integrate the linear equation of Schwarz to obtain the developing map. Indeed on the universal
cover C of Tτ we have u′′(z) + 1

2cu(z) = 0. This is a linear equation with constant coefficients.
Its characteristic polynomial is r2 + c

2 . This has two distinct roots ±i
√

c
2 , if c ̸= 0, or a double

root if c = 0. A basis of solutions u1, u2 is then

(1′) u1(z) = e−i
√

c
2 z u2(z) = ei

√
c
2 z if c ̸= 0 (2′) u1(z) = 1 u2(z) = z if c = 0.

To be consistent, namely for the parameterization to be continuous in c, we will use instead the
basis of solutions

(1) u1(z) = i
sin
(√

c/2 z
)

√
c/2

u2(z) = iei
√

c/2z if c ̸= 0

(2) u1(z) = iz u2(z) = i if c = 0.

where the solutions now satisfy W [u1, u2](z) = 1. These were chosen in such a way that

limc→0 i
sin
(√

c/2 z
)

√
c/2

= iz and limc→0 ie
i
√

c/2z = i. The developing map is thus

d(z) = u1(z)
u2(z) =

i
sin
(√

c/2 z
)

√
c/2

iei
√

c/2z
=

(
ei

√
c/2z − e−i

√
c/2z

)
e−i

√
c/2z

2i
√
c/2

= 1 − e−i
√

2cz

i
√

2c

for every c, with limc→0
1−e−i

√
2cz

i
√

2c
= z understood. Note that the developing map never attains

∞, which means that any complex projective structure is actually an affine one. Now the
translations γ1(z) = z + 1 and γτ (z) = z + τ form a basis of the covering group π1(Tτ ). Thus
the equivariance of d reads

d(z + τ) = 1 − e−i
√

2c(z+τ)

i
√

2c
=

1 −
(
1 − 1 + e−i

√
2cz
)
e−i

√
2cτ

i
√

2c
=

= 1
i
√

2c
−
( 1
i
√

2c
− d(z)

)
e−i

√
2cτ = e−i

√
2cτd(z) + 1 − e−i

√
2cτ

i
√

2c
.

It means that d(z + τ) = ατd(z) + βτ for ατ = e−i
√

2cτ and βτ = 1−e−i
√

2cτ

i
√

2c
. Thus the holonomy

is affine, as expected. It is given in matrix form as

γτ 7→ ±

e−i
√

2c/2τ sin
(√

c/2 τ
)

√
c/2

0 ei
√

2c/2τ

 γ1 7→ ±

e−i
√

2c/2 sin
(√

c/2
)

√
c/2

0 ei
√

2c/2

 .
Note that for c = 0 we get simply the holonomy of the uniformized torus

γτ 7→ ±
[
1 τ

0 1

]
∼= z + τ γ1 7→ ±

[
1 1
0 1

]
∼= z + 1.
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A few comments come to light by observing the parameterization. The first one is that all
developing maps omit ∞ ∈ CP1. This means that all structures are in fact affine projective
structures, which accounts for their affine holonomy. The second one is that the developing map
is extremely transcendental. In general, it is known that the Schwarz differential equation will
only have algebraic solutions for very special sets of parameters. In fact, in the most general
case, the equation can’t even be solved by quadrature, that is, its solution cannot be expressed
in terms of elementary functions and their integrals. This is because the differential Galois
group is not solvable. For more details about this, and further results on differential Galois
theory, we refer to (Van Der Put and Singer, 2003, pag. 127), where a variant of Kovacic’s
algorithm is used to determine when the Schwarzian equation has algebraic solutions. Of course,
the fact the equation can’t be solved by quadrature means that, for higher genus surfaces, one
cannot expect such a complete solution to be obtained solely by the methods of this subsection.

1.8.3 Higher genus surfaces

For closed surfaces with genus g ≥ 2, the results are rather different from the previous ones, since
the quadratic differential in the Schwarz parameterization can be non-constant. In particular, a
complete classification in any explicit sense is currently unavailable. We will prove the classical
result that restricts the holonomies of complex projective structures in this case since it is
difficult to find the result expressed in contemporary language.

Theorem 1.8.2. Let S be a closed surface with genus g ≥ 2. Any complex projective structure
on S has non-elmentary holonomy ρ(π1(S)).

To prove the result we will exclude each type of elementary group.

Lemma 1.8.3. For g ≥ 2, the holonomy ρ(π1(S)) is not an elementary group of type (I).

Proof. If the holonomy is of type (I) it is conjugate to a subgroup of PSU(2,C). These are
isometries of the spherical Riemannian metric ds2

CP1 on CP1. This means that the pull-back
metric under the developing map is invariant under the action of π1(S), and thus it descends
to S. Since the Gaussian curvature of this metric is k = 1 we get that

χ(S) =
∫

S
k vol =

∫
S

1 vol > 0

by the Gauss-Bonnet theorem. So we conclude that the Euler characteristic is χ(S) = 2−2g ≥ 1
and thus g = 0.

Lemma 1.8.4. For g ≥ 2, the holonomy ρ(π1(S)) is not an elementary group of type (II).

Proof. We give S the Riemann surface structure X induced by the complex projectvie structure.
Then we proceed as in the proof of the lifting Theorem 1.7.2, using Corollary 1.6.4 to write
the developing map in S̃ = H2 as d = u1

u2
, with uj(z) solutions of the Schwarz linear equation.

If the holonomy is elementary of type (II) then the image of every γ under the holonomy is
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ρ(γ)(z) = αγz + βγ . Choosing γ 7→ Aγ =
[√

αγ βγ

0 √
αγ

−1

]
a lift of the holonomy using a square

root of the canonical bundle K1/2 we obtain as before[
u1(γz)(γ′)−1/2

u2(γz)(γ′)−1/2

]
= Aγ

[
u1(z)
u2(z)

]
. (1.8.1)

In particular, u2(γz)(γ′)−1/2 = √
αγ

−1u2(z). Taking the second derivative of both sides, as
in Lemma 1.7.4 (Equation 1.7.1), we get that u′′

2(γz)(γ′)3/2 = √
αγ

−1u′′
2(z). Suppose now

u′′
2(z) ̸≡ 0. Define v(z) = u2(z)

u′′
2 (z) . It satisfies

v(γz)(γ′)−2 = u2(γz)(γ′)−1/2

u2(γz)(γ′)3/2 =
√
αγ

−1u2(z)
√
αγ

−1u′′
2(z)

= v(z),

and as such it determines a meromorphic bivector field on the surface X. It has a pole
whenever the non-zero holomorphic function u′′

2(z) has a zero of higher order than u2(z). This
is impossible. Thus the bivector field is holomorphic. Since the genus is g > 1, Riemann-Roch
then implies that v(z) = 0, given that the holomorphic bitangent bundle K−2 has no nontrivial
sections. This means u2(z) = 0, a contradiction to the assumption u′′

2(z) ̸≡ 0. We conclude
that u′′

2(z) ≡ 0. Integrating this identity we get that globally u2(z) = c1z + c2 for c1, c2 ∈ C
not both zero (because uj , j = 1, 2, are linearly independent solutions). This means d = u1

u2

has at most one pole at z0 = − c2
c1

, i.e d−1(∞) = {z0} or d avoids infinity. The first case is
impossible because all elements in the holonomy group ρ(γ) = αγz + βγ preserve infinity. Thus
the pre-image d−1(∞) = {z0} is π1(S)-invariant and cannot be a single point since π1(M) acts
without fixed points. This means d actually avoids infinity, and thus the complex projective
structure is an affine one. But affine structures can only exist on the torus. Indeed, by Lemma
1.5.3, we can find an atlas for which all transition functions are elements of Aff(C), i.e. of
the form w = az + b. This is impossible on a genus g > 1 surface since then w′ = a are
locally constant transition functions for the canonical bundle K. This means K is flat, and in
particular 2g − 2 = deg(K) = 0, i.e. g = 1.

Lemma 1.8.5. For g ≥ 2, the holonomy ρ(π1(S)) is not an elementary group of type (III).

Proof. If the holonomy is an elementary group of type (III) then it is conjugate to a subgroup
of D∞(CP1), i.e. Möbius transformations of the form z 7→ az or z 7→ a

z for a ∈ C∗. Now recall
that CP1 can be covered with two charts namely (U = C, z) and (V = C∗ ∪ (∞), w), where
the transition function is w = 1

z . In particular, dw = − 1
z2dz and ∂

∂w = −z2 ∂
∂z . This means

that the vector field Z = z ∂
∂z in U , has coordinate representation z ∂

∂z = 1
w

−1
z2

∂
∂w = −w ∂

∂w in V ,
and it is a global holomorphic vector field on CP1. Consider now the holomorphic 2−tensor
Z ⊗ Z = z ∂

∂z ⊗ z ∂
∂z ∈ O

S̃
(K−2). We will show that the transformations of D∞(CP1) actually

preserve this tensor. After that, the equivariance of the developing map d means that, in
this case, the pullback d∗(Z ⊗ Z) will be a π1(S)-invariant holomorphic bivector field. It will
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descend to a holomorphic section of K−2, meaning that deg(K−2) ≥ 0, by Riemann-Roch.
Since deg(K−2) = −2 deg(K) = 4 − 4g we get that g = 0 or g = 1, which finishes the proof.
We are thus left to show that Z ⊗ Z is an invariant tensor field. In the coordinates of U , any
transformation of the holonomy group that is of the form z 7→ az, transforms ∂

∂z to 1
a

∂
∂z , and

thus Z is mapped to az 1
a

∂
∂z = z ∂

∂z = Z. For transformations of the form z 7→ a
z , the vector ∂

∂z is
mapped to −z2

a
∂
∂z , and Z to a

z
−z2

a
∂
∂z = −z ∂

∂z = −Z. This means that Z⊗Z is mapped to itself,
and as so it is invariant. For the other coordinate patch, we use the transition function to note
that the transformation z 7→ az acts as w 7→ z = 1

w 7→ az = a
w 7→ w

a and the transformation
z 7→ a

z acts as w 7→ z = 1
w 7→ a

z = aw 7→ 1
wa . In both cases the calculation is the same as before

with a replaced by 1/a.

Remark 1.8.6. Of course, these restrictions also yield information about the lifted holonomies
(cf. Theorem 1.7.2). For example, any lift ρ̃ : π1(S) → SL(2,C) of a holonomy representation
ρ : π1(S) → PSL(2,C) on a closed surface of genus g ≥ 2 is irreducible. For suppose the
representation ρ̃ preserves a line in C2, then ρ preserves a point in CP1. Conjugating this
point to ∞ ∈ CP1, we see that the holonomy is of type (II) since Möbius transformations that
preserve ∞ are affine. By Lemma 1.8.4 this cannot happen.

This Theorem characterizes the possible representations that can appear as holonomies
of complex projective structures. The question that follows, of whether these are the only
restrictions, appears naturally and dates back to the original problem. That this was indeed
the case was conjectured for years, and proved in (Gallo et al., 2000, Theorem 1.1.1.).

Theorem 1.8.7. Let S be a closed surface of genus g ≥ 2 and ρ : π1(S) → PSL(2,C) a
non-elementary representation that lifts to SL(2,C). Then there exists a complex projective
structure on S whose holonomy is ρ.

Remark 1.8.8. For each ρ the projective structure is not unique.

The proof of this theorem has proven to be quite elusive and delicate. For instance, the
research announcement (Gallo, 1989, Theorem 1.) claimed a proof, but the details never ended
up being published. Then the proof presented in (Kapovich, 1995) turned out to be flawed
(there are incorrections or omissions in Lemmas 1 and 4). These problems were precisely the
motivation for the work in (Gallo et al., 2000), to which introduction we refer to for further
details about the history of the result. We note that a further gap in the proof there is present
in paragraph 5.5. This was found and corrected in (Fils, 2019).

This theorem has also played a crucial role in the development of the research presented
in this thesis. The starting point and original idea was to use the theory of Higgs bundles to
provide another proof of the statement. This has proved quite difficult mainly because there is
no control over the Riemann surface structure on S compatible with the complex projective
structures produced by the theorem. The Riemann surface structure is the kind of information
that remains fixed in the non-abelian Hodge correspondence (see Chapter 2).
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1.9 The theorem of Poincaré

Propelled by the arguments above where we consider the developing map a global quotient of
solutions of the linear differential equation, we note a simple consequence, already known to
Poincaré (Poincaré, 1884, §4, page 220-221) or (Appell and Goursat, 1930, Chapitre XV. 117,
page 310).

Theorem 1.9.1. Let X be a closed Riemann surface of genus g ≥ 2. If two complex projective
structures A1 and A2 are compatible with X and have the same holonomy then they are identical.

Proof. Let A∞ have developing map d1 and A2 have developing map d2. Since both structures
are compatible with X we can write, using the parameterization by quadratic differentials and
the Schwarz equation, d1 = u1

u2
for uj , j = 1, 2, solutions of u′′ + 1

2ϑ1u = 0 and d2 = v1
v2

with
vj , j = 1, 2, solutions of v′′ + 1

2ϑ2v = 0, where ϑj are π1(S)-invariant quadratic differentials. If
ρ1 : π1(S) → PSL(2,C) and ρ2 : π1(S) → PSL(2,C), the holonomies of A1 and A2, respectively,
are the same, this means that ρ1 = gρ2g

−1, for g ∈ PSL(2,C). Changing d2 by composition
with g, we can assume that, in fact, ρ1 = ρ2. Now this means that both uj and vj satisfy[

u1(γz)(γ′)−1/2

u2(γz)(γ′)−1/2

]
= ±Aγ

[
u1(z)
u2(z)

] [
v1(γz)(γ′)−1/2

v2(γz)(γ′)−1/2

]
= ±Aγ

[
v1(z)
v2(z)

]
,

for the same homomorphism γ 7→ ±Aγ =
(

αγ βγ

δγ ϵγ

)
. Define w = u1v2 − v1u2. We will show in

a computation that w transforms under π1(X) as a vector field, and since it is holomorphic,
we have by Riemann-Roch that w = 0, from where we conclude d1 = u1

u2
= v1

v2
= d2. The

computation goes as follows, suppressing the argument in z after the first equality,

(u1(γz)v2(γz) − v1(γz)u2(γz))(γ′)−1 = (αγu1 + βγu2)(δγv1 + ϵγv2) − (αγv1 + βγv2)(δγu1 + ϵγu2) =
= αγu1δγv1 + αγu1ϵγv2 + βγu2δγv1 + βγu2ϵγv2 − αγv1δγu1 − αγv1ϵγu2 − βγv2δγu1 − βγv2ϵγu2

= (αγϵγ − βγδγ)u1v2 + (βγδγ − αγϵγ)v1u2 = u1v2 − v1u2.

To be clear, the theorem of Poincaré Theorem 1.9.1 shows that if the complex structure is
fixed to be X, the holonomy ρ completely determines the projective structure compatible with
X, which is unique if it exists. But this does not exclude that different CP1-strucutres have
the same holonomy. When this happens, these projective structures are surely not compatible
with the same Riemann surface structure X. We remark that this indeed happens, and, in fact,
infinitely often, as proved, for example, in (Dumas, 2009, 5.4).

Note also that this Theorem 1.9.1 and Theorem 1.8.7 together don’t imply that, for a given
X and a given ρ, there will be a projective structure compatible with X and with holonomy
ρ. This is false, and it will only happen for specific pairs (X, ρ) whose description still seems
impossible in full generality (contrary to what happens in genus 1).
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1.10 The linear bundle

We now observe a consequence of the fact that holonomies lift, related to the bundle construction
of Section 1.4. The point here is that if the holonomy representation ρ : π1(S) 7→ PSL(2,C)
lifts to ρ̃ : π1(S) 7→ SL(2,C), one can carry out the same construction but using the lifted
version ρ̃ using as fiber the vector space C2. This means that the construction produces a flat
complex vector bundle E = S̃ ×ρ̃ C

2 with flat connection ∇. Denote by E̊ the slit bundle, i.e.
the bundle E with its zero section removed. This bundle is the deprojectivization of the bundle
P = S̃ ×ρ CP1 of CP1 produced in the original construction. This means that there is a map
E̊ → P that on each fiber just maps the line in C2 to the point it generates in CP1:

P : E̊ = S̃ ×ρ̃ C
2- {[ 0

0 ]} → P = S̃ ×ρ CP1(
x̃,

[
v1

v2

])
7→ (x̃, [v1 : v2]) .

For this reason, we also write P(E) for P . The horizontal foliation determined by ρ̃ is simply
the one determined by the connection ∇ and it is mapped to the horizontal foliation of P(E)
defined by ρ̃. Note that the transverse section s, coming from the developing map of the
structure, defines a slit line subbundle L̊ ⊂ E̊ simply as L̊x = P−1(s(x)). By adding back
the zero section, we get a line subbundle L uniquely determined by s and the lift ρ̃. The
transversality condition on the section s means that the subbundle L is everywhere transverse
to the horizontal foliation HE determined by ∇. Since both the line bundle and the horizontal
foliation have complex dimension one, and lie inside a two-dimensional space, L is transverse to
HE if Lx is not contained in HxE (the tangent space of HE inside E). In conclusion, a complex
projective structure determines a flat SL(2,C)-vector bundle E together with a transverse line
subbundle L. Of course that, conversely, any flat SL(2,C)-vector bundle E together with such
a line subbundle L will determine a complex projective structure, which we denote by the
tuple (E,∇, L). This is because the projectivization (P(E), s = P(L)) is a flat CP1-bundle
with a transverse section, and this is the graph of a complex projective structure (cf. Theorem
1.4.1). Now to express the space of projective structures as a space of flat SL(2,C)-vector
bundles together with transverse line subbundles we need to introduce an adequate equivalence
relation, as we did when defining the graph. This equivalence relation must deal with the extra
ambiguity introduced by the choice of lifting. As we have seen in Remark 1.7.6, these choices
are determined by the possible signs in the lift of the generators γj of π1(S). So suppose ρ̃1

and ρ̃2 are two lifts to SL(2,C) of ρ. Then define

δ(γ) =

1 if ρ̃1(γ) = ρ̃2(γ)
−1 if ρ̃1(γ) = −ρ̃2(γ)

which compares the choice signs of both lifts. Let us identify {±1} = Z2 ∼= {id,−id} ⊂ C∗ ⊂
SL(2,C), where id is the 2 × 2 identity matrix and C∗ is diagonally embedded in SL(2,C) as
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λ 7→
[

λ 0
0 λ−1

]
. Then this comparison map is simply the homomorphism δ : π1(S) → Z2 such

that γ 7→ ρ̃1(γ) (ρ̃2(γ))−1. We see that the identity ρ̃1 = δ ⊗ ρ̃2 is satisfied. Further δ ⊗ δ = Id,
the trivial homomorphism. This kind of homomorphism accounts for all the possible ambiguity
in the lifting, in the sense that any two lifts define such a map and, further, that given any
such map δ with trivial ⊗-square, we can obtain any other lift by starting from a fixed one
and tensoring it with δ. To take into consideration this at the level of the flat connections and
bundles we define two tuples (E1,∇1, L1) and (E2,∇2, L2) of flat SL(2,C)-bundles Ej with flat
connection ∇j and transverse line subbundle Lj to be equivalent if there is a (smooth) vector
bundle isomorphism F : E1 → E2⊗S such that F(L1) ⊂ L2⊗S and ∇2 = Fi∗(∇1)⊗∇δ, for some
line bundle S with flat connection ∇δ of order 2. (This is the flat connection whose holonomy
is δ.) The equivalence class of the tuple is then uniquely determined by the projective structure.
We call any of the possible flat bundles the associated vector bundle and the corresponding line
subbundle the transverse subbundle of the CP1-structure.

1.10.1 Gunning’s transversality criterion

We will specify this construction for CP1-surfaces compatible with a fixed Riemann surface
X. Recall that in this case, the developing map of the structure is a local biholomorphism, or,
equivalently, its graph is a complex manifold with a holomorphic section. From the point of view
of the associated SL(2,C)-vector bundle (E,∇) and corresponding transverse line subbundle L,
this means that, when E is given the holomorphic structure ∇(0,1) determined by the complex
structure X, i.e.

∇(0,1) : Ω0(E) 7→ Ω0,1(E) v(z) 7→ ∇(v(z))(0,1),

which is trivially integrable, since there are no two-forms on surfaces, then L is a holomorphic line
subbundle ∇(0,1)(Ω0(L)) ⊂ Ω(0,1)(L). The transversality condition of L can now be described in
holomorphic terms. Recall that L is transverse if for every z ∈ X the line Lz is not contained
in the horizontal subspace HzE determined by the flat connection ∇. This happens if and only
if ∇(L) ̸= 0, i.e ∇(s) ̸= 0 for every non-zero local section of L or, equivalently, the sheaf map
∇ : Ω0(L) → Ω1(E) is non-zero. Since L is holomorphic we can consider instead the action of
this map on holomorphic sections H0(L). It restricts then as ∇|H0(L) : H0(L) → H0(E ⊗K),
because its (0, 1)-part is zero on such sections. Since L has a local basis of holomorphic sections,
∇(s) ̸= 0 for every local section if and only if ∇|H0(L)(s) ̸= 0 for every local holomorphic section.
Composing the restriction with the quotient map q : E → E/L we obtain

βL = q ◦ ∇|H0(L) : H0(L) → H0(E/L⊗K). (1.10.1)

which is an O-linear map. This means it determines a holomorphic homomorphism βL :
L → E/L⊗K called the holomorphic second fundamental form of L with respect to ∇. The
transversality condition ∇|H0(L)(s) ̸= 0 for every local holomorphic section is equivalent to
βL being nowhere zero, i.e. an isomorphism, since E/L is a line bundle. Note that since an
SL(2,C)-bundle has a trivialized determinant, there is a natural isomorphism E/L ∼= L−1. This
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means that the second fundamental form can also be seen as a holomorphic section of L−2K,
and L is transverse to ∇ if and only if βL ∈ H0(L−2K) is nowhere zero. We collect this in the
following theorem due to Gunning (Gunning, 1967b, Theorem 2).

Theorem 1.10.1. Let E → X be an SL(2,C)-vector bundle on a Riemann surface X with
holomorphic structure ∇(0,1) given by a flat connection ∇. Then any holomorphic line subbundle
L ⊂ E with nowhere-zero holomorphic second fundamental form βL ∈ H0(L−2K), determines
a projective structure compatible with X. Moreover any other SL(2,C)-bundle E′ with flat
connection ∇′ and subbundle L′ determines an equivalent projective structure if and only if
there is an isomorphism F : E ⊗ S → E′ such that L′ = F(L ⊗ S) and ∇ ⊗ ∇δ = F∗(∇′) for
some holomorphic line bundle S with flat connection ∇δ of order 2.

Remark 1.10.2. The condition of βL ∈ H0(L−2K) being nowhere zero is equivalent to L−2K

being trivialized L−2K ∼= O via βL, or also to βL : L → L−1K being an isomorphism, as was
noted before.

For closed surfaces of genus g the theorem can be combined with the theorem of Riemann-
-Roch to provide further information.

Lemma 1.10.3. Let E → X be an SL(2,C)-vector bundle on a closed Riemann surface X
of genus g ≥ 2 with holomorphic structure ∇(0,1) given by a flat connection ∇. The second
fundamental form βL ∈ H0(L−2K) of the holomorphic line bundle L is nowhere zero if and
only if deg(L) = g − 1.

Proof. We have shown that βL is nowhere zero if and only if βL : L → L−1K is an isomorphism.
This implies that L−2K ∼= O, i.e. L ∼= K1/2 and thus deg(L) = g − 1 by Riemann-Roch.
Conversely, suppose deg(L) = g − 1. The second fundamental form βL yields a section in
H0(L2K−1). Since deg(L2K−1) = 2 deg(L)−(2g−2) = 0, Riemann-Roch guarantees that either
this section is the trivial one or it is everywhere non-zero. In this second case, L2K−1 ∼= O. So
we only need to exclude the first possibility. Suppose then that βL = 0 is the trivial section.
This means that L is preserved by the connection (recall that βL = q ◦ ∇|H0(L), q : E → L).
This contradicts the irreducibility of the flat connection (cf. Remark 1.8.6).

The conclusion is that a complex projective structure compatible with a closed Riemann
surface X of genus g ≥ 2 determines an SL(2,C)-vector bundle E → X with flat connection
∇ and a ∇(0,1)-holomorphic line subbundle L of degree g − 1. This uniquely determines the
CP1-structure up to the equivalence relation in Theorem 1.10.1.

This transversality criterion also provides a simple proof of Theorem 1.9.1 of Poincaré.
Indeed, if the holonomies of two complex projective structures compatible with X are equal,
then one can choose the same lift to SL(2,C). This means that the associated vector bundle is
the same (E,∇) and we have two transverse line subbundles L1 and L2. These are holomorphic
subbundles of (E,∇(0,1)) both of degree g− 1 by the Lemma. Note that even the existence of a
single one of such bundles already guarantees that the bundle (E,∇(0,1)) is unstable. Since
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deg(L1) > 0, this means that L1 is the maximal destabilizing subbundle of E, which is unique
(Gunning, 1967a, §5 (c) Lemma 15) and thus we have L1 = L2.

Remark 1.10.4. In other words, from the algebraic geometric point of view, the flat vector
bundles that support complex projective structures compatible with a closed Riemann surface
X of genus g ≥ 2 are the ones for which the holomorphic bundle (E,∇(0,1)) is maximally
unstable, i.e they have a line subbundle of maximal possible degree. (Recall that the degree of
an unstable subbundle is bounded by g − 1.) We will explore this perspective further after this
chapter.

1.11 Space of marked projective structures

At this point, we should make a remark about the spaces of projective structures that are
usually defined, even though we won’t use them in what will follow. We note that, the space
P(S) we have defined has the three following incarnations:

P(S) =
{

A | A is a maximal CP1-atlas
}

↔

↔ {(ρ, d) |ρ ∈ Hom(π1(S),PSL(2,C)) and d : S̃ → CP1 is a ρ equivariant local diffeomorphism}
PSL(2,C)

↔ {(P, s) |P is a flat CP1-bundle and s is a transverse section}
∼equivalence

.

These are infinite-dimensional spaces. For example, any diffeomorphism of S can be used to
produce another atlas from a given one, which, in general, won’t be the same. The usual way to
deal with this space P(S) is to quotient it by an adequate equivalence relation. For atlases, this
is the equivalence ≈iso under isomorphism of CP1-surfaces, which should be translated suitably
to the other incarnations of the space. Now, although the quotient P(S) is finite-dimensional
it is not Hausdorff. So to deal with this further question, one proceeds as in Teichmüller
theory. We define two complex projective structures on S to be marked isomorphic if there
is a complex projective isomorphism between them which is isotopic to the identity map in
S. Using this stronger notion of equivalence ≈mark

iso the space produced is actually a complex
manifold P(S) = P(S)/ ≈mark

iso . Further the map sending a projective structure to its induced
Riemann surface structure factors as a holomorphic vector bundle map P(S) → T(S) to the
Teichmüller space of S, see, for example, (Dumas, 2009, §3.3). An important result we won’t
need here is that, for a closed surface S of genus g ≥ 2, the holonomy map

hol : P(S) → X SL(2,C) = Homcr(π1(S),SL(2,C))/ SL(2,C),

sending the marked class of a projective structure to its holonomy inside the character variety
is a local biholomorphism. Here Homcr denotes the completely reducible representations. We
refer to (Dumas, 2009, §5.2) and the bibliography therein. It was also shown in (Hejhal, 1975,
Theorem 8.) that hol is not a covering map.
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1.12 Branched projective structures

In this section we will review the branched analog of projective structures introduced and
studied in (Mandelbaum, 1972, 1973). The constructions are similar to the ones in previous
sections, so we only provide details where the arguments are different. As usual, the idea of
branching involves considering geometric structures on S − B, where B is a discrete set of
points on S. Furthermore, one imposes regularity conditions around these points, so that the
structures obtained are still controlled by the geometry of S.

A branched projective structure is then the same as a complex projective structure A =
{(Uα, ϕα : Uα → CP1)}, but now the complex projective charts are not required to be homeo-
morphisms onto their image, but are instead required to be topological (at most) singly-branched
r-coverings from topological disks Uα of S onto open sets of CP1. This is to say that the
charts ϕα are coverings with r sheets, r ≥ 1 an integer, except possibly at a single point of
their domain pα ∈ Uα. This point is imposed to be the only one on its pre-image under ϕα.
The points pα are called the branching points of A and the set BA = {pα}α∈A, which is well
defined and discrete, is called its branching set. The transition functions of the atlas A are
still required to be Möbius transformations. One can show that such an atlas also induces a
complex structure X, called, as before, the induced complex structure. Again we also use the
terminology that A and X are compatible. Using holomorphic coordinates for this complex
structure, the charts ϕα look like z 7→ zr, for integer r > 1 only at the branching points. The
value of r − 1 at each pα is called the order of A at pα, and it is denoted by ordA(pα). We can
collect this information into a divisor supported at B called the branching divisor DA:

DA =
∑

α

ordA(pα) · pα.

This is an effective divisor that is finite if S is compact since B is finite in that case. When
we want to stress the difference between branched projective structures and usual complex
projective structures (with B = ∅) we call these last ones unbranched. We denote the space of
branched projective structures on a surface S as B(S) and the set of those compatible with the
Riemmann surface structure X as B(X).

Example 1.12.1. The most common example of a branched projective structure is the pull-back
of a (not necessarily branched) projective structure under a branched cover of Riemann surfaces.
This means we can take such a cover ϖ : Y → X and any of the unbranched examples we have
seen to produce an assortment of branched ones.

Of course outside the branching set B a branched projective structure induces an unbranched
complex projective one, i.e. S −B is a CP1-surface. This means that the results of previous
sections (valid for not-necessarily-compact surfaces) apply directly to S −B. We will see if and
how they generalize to branched projective structures.
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1.12.1 Holonomy, development and fiber bundles

Let then A a branched projective structure on S, inducing the Riemann surface structure X,
and with branching set BA = {pα}α∈A. Clearly, all the previous constructions, the development
map, the holonomy, and the graph, do work directly on X −B, since it is a CP1-surface.

As seen in Remark 1.3.3, the developing map agrees locally with charts. This means that
around a branching point pα the developing map d of X − B agrees with a chart, and it is
thus of the form z 7→ zrα , with rα = ordA(pα) + 1. Thus we can extend the developing map d

by continuity to (X −B) ∪ {pα}. This extension is no longer a local diffeomorphism, but the
derivative d′(z) = rzr−1 has a zero of order r − 1 = ordA(pα) at the point pα. We can continue
this procedure for every pα, obtaining the developing map of the branched projective structure.
This is no longer a local diffeomorphism around every point but there is a discrete set where it
fails to be an immersion to order r − 1. The branching divisor corresponds to the divisor of
zeros of the derivative d′(z).

Now for the representation, we note that the holonomy of X −B is well-defined as a map
ρX−B : π1(X−B) → PSL(2,C)). The inclusion ι : X−B → X induces the map of fundamental
groups ι∗ : π1(X − B) → π1(X) that maps the generators corresponding to loops γα around
the punctures pα to the trivial element. We will see later, when studying the lifting properties,
that ρX−B maps these generators to ±Id ∈ PSL(2,C), that is, the holonomy is trivial around
the branching point(cf. (De Saint-Gervais, 2016, Proposition IX.1.2. )). Thus ρX−B factorizes
as a map ρ : π1(X) → PSL(2,C)) and this defines the holonomy of the branched structure. It
is clear that the extended developing map d is ρ-equivariant, since it is ρX−B-equivariant on
S −B.

Repeating the construction of the graph is now immediate using the holonomy representation
ρ and the developing map d of the branched structures. This means we can build a flat CP1-fiber
bundle P = S̃ ×ρ CP1 which comes together with a section s(x) = [x̃, d(x̃)], where x̃ is any
lift of x ∈ S to the universal cover, corresponding to d. Outside the branching points, this
section is transverse to the horizontal foliation H with leaves Hu = {[x̃, u]|x̃ ∈ S̃}, with fixed
u ∈ CP1. Using the holomorphic coordinates compatible with the structure we see that around
a branching point s(x) = [z, d(z)] = [z, zrα ], and so s is horizontal to order ordA(pα) = rα − 1.

The conclusion is that a branched projective structure determines a flat CP1
1-bundle together

P with a section s which is transverse except at a discrete set of points where it has finite order
of contact with the horizontal foliation. Note that the branching divisor of the structure DA is
the same as the order of contact divisor between s and H. These objects are only determined
by the structure up to a suitable equivalence relation similar to the non-branched case.

Of course, we can still define subclasses of branched projective structures as we did for the
unbranched ones. The branched affine or hyperbolic structures are defined as in Definition
1.5.2 and the holonomy subgroups as in Definition 1.5.1, simply by allowing branching.



40 Complex projective structures

1.12.2 Schwarz parameterization

Let us observe what happens to the Schwarzian parameterization in the branched case. So we
let S be a surface and A2 be a branched projective structure compatible with the Riemann
surface structure X, and which we suppose uniformized by another projective structure A2.
The construction of the π1(S)-quadratic differential using the Schwarzian derivative works
exactly as before

ϑ = Ã2 − Ã1 = S(d2(z))dz2,

but it is now possible for the quadratic differential to be singular at the branch points where
d′(z) = 0. Indeed, if we calculate the Schwarzian derivative around a branch point pα where
d(z) = zrα , rα ≥ 2 we see that

d′(z) = rαz
rα−1, d′′(z) = rα(rα − 1)zrα−2,

d′′(z)
d′(z) = rα − 1

z
,

(
d′′(z)
d′(z)

)′
= −rα − 1

z2 ,

S(d) =
(
d′′(z)
d′(z)

)′
− 1

2

(
d′′(z)
d′(z)

)2
= −rα − 1

z2 − 1
2

(
rα − 1
z

)2

= −(rα − 1 + r2
α/2 − rα + 1/2)
z2 = 1 − r2

α

2z2 .

Quadratic differentials of this form, with double poles at the branching points pα and
with Laurent expansion around pα with coefficient of the form r2

α − 1
2 , for rα an integer, are

thus the only ones that do come up in the parameterization of branched projective structures.
Nonetheless, the integers rα together with the form of the expansion around chosen branch
points are not enough to uniquely determine a single quadratic differential, and there is, for
each branching divisor D, a class that satisfies these requirements. These are called integrable
meromorphic quadratic differentials of type D, whose set is denoted by VX

D . In (Hejhal, 1975,
Lemma 1) or in (Mandelbaum, 1972, Theorem 3.) it is shown how these differentials are
described. A sketch of the idea goes as follows. The relation between the Schwarzian derivative
and the linear equation of Schwarz in Corollary 1.6.4 will still hold in the branched case, and
the condition for a quadratic differential of said form to appear is that the linear equation
has only non-logarithmic solutions. This is because the developing map is meromorphic if
and only if this happens, and this condition is necessary and sufficient for d to be locally of
the form z 7→ zrα . From the classical theory of singular differential equations, the quadratic
differentials that make the equation have non-logarithmic solutions are determined by the zeros
of a polynomial. These are the so-called apparent singularities of the solutions at a regular
singular point (Poincaré, 1884, pag. 217). This result can be seen from the Frobenius method
for the solution of the linear equation, for example, and we refer to (Haraoka, 2020, Theorem
4.9 or Example 4.2) for a contemporary exposition and further details. The conclusion is that
the Schwarz parameterization is still valid for branched projective structures compatible with
X and with fixed branching divisor D, but the space of usable quadratic differentials is now VX

D ,
the space of integrable ones. The spaces VX

D are affine algebraic varieties inside the vector space
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of meromorphic quadratic differentials with at most double poles. This is to be understood in a
general sense when X is not compact since then the spaces might not be finite-dimensional and,
given that each branched point determines a polynomial equation, there might be an infinite
number of them defining the variety VX

D . In the case of non-branched structures, D = 0 is the
empty divisor, and VX

0 is the space of regular quadratic differentials.

1.12.3 Holonomy lifts

We have seen in Theorem 1.7.2 that the holonomies of complex projective structures lift to
SL(2,C). What happens in the branched case? For this last part, we will work only with
finitely branched structures, i.e., the ones for which the branching divisor is finite B. This
won’t be relevant as our main results concern closed surfaces.

Theorem 1.12.2. Let A be a branched projective structure on a surface S with finite branching
divisor D =

∑m
k=1 ordA(pk) · pk. Then the holonomy of A lifts to SL(2,C) if and only if

deg(D) =
∑m

k=1 ordA(pk) is even.

Sketch of proof. Let B be the branching set of A, and denote by X its induced Riemann surface
structure. We have already shown in the proof of Theorem 1.7.2 that the holonomy of an un-
branched projective structure lifts to SL(2,C). So the holonomy ρX−B : π1(S −B) → PSL(2,C)
lifts to ρ̃X−B : π1(S−B) → PSL(2,C). It is known from the classical theory of linear differential
equations that the lifted holonomy maps the elements γk corresponding to loops around the
punctures to ρ̃X−B(γk) = (−1)rαId, that is[

u1(γkz)(γ′
k)−1/2

u2(γkz)(γ′
k)−1/2

]
=
[
(−1)rα 0

0 (−1)rα

] [
u1(z)
u2(z)

]
,

where uj are linearly independent solutions of the Schwarz linear equation. We refer to
(Haraoka, 2020, section 4.3) for a proof of the general case of differential equations of order
n or to (De Saint-Gervais, 2016, Theorem IX.1.1 and ) for a proof of a version of this result
specifically for the Schwarz equation. Now let π1(S) = ⟨aj |R(aj)⟩ be a presentation of the
fundamental group of S. Then, the the fundamental group of S − B has a presentation of
the form π1(S −B) = ⟨ajγk|R(aj)

∏m
k=1 γk⟩, with the γk corresponding to the punctures. This

means ρ̃X−B will define a map ρ̃ : π1(S) → SL(2,C) if
∏m

k=1 ρ̃X−B(γk) = Id ∈ SL(2,C). Since
ρ̃X−B(γk) = (−1)rαId this happens if and only if deg(D) =

∑m
k=1 ordA(pk) is even.

Remark 1.12.3. This also shows that the holonomy of the branched structure is well defined
since projectively all loops around punctures are mapped trivially, and so ρX−B always factors
through ι∗ : π1(S −B) → π1(S), regardless of the order of D.

1.12.4 Characterization of holonomy on closed surfaces

The results about the restrictions on the holonomy of closed CP1-surfaces won’t always generalize
to branched surfaces with branching divisor D. This is easily seen because the use of the
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theorem of Riemann-Roch plays a fundamental role in their proofs. Note, however, that upon
suitable conditions on the degree of D, one can still make these proof work. For example, it
is impossible for a branched structure to have an elementary holonomy group of type (III) if
deg(D) < 2g − 2. The same proof of Lemma 1.8.5 works, with the detail that the holomorphic
bivector used is now meromorphic with pole divisor −2D. Since deg(K−2) = 4 − 4g, the result
still follows. But when the degree of D jumps to 2g − 2, the proof breaks down. In fact, it
is possible to have a branched complex projective structure with holonomy ρ in D∞(C), for
a suitable D. This naturally gives rise to the question of what is the minimum degree δ(ρ)
the branching divisor must have, for a given representation to be the holonomy of a branched
projective structure. Theorem 1.8.7 shows that δ(ρ) = 0 for ρ non-elementary and liftable to
SL(2,C). In the same article, the authors also showed that δ(ρ) = 1 for ρ non-elementary and
non-liftable. For all other representations, the function δ : Hom(π1(S),PSL(2,C)) is described
in (Fils, 2021, Figure 1.) which we refer to for further details.

1.12.5 Gunning’s criterion for branched structures

Gunning’s construction and his criterion can still be given for finitely branched projective
structures, but not all of them. This is because the construction requires a lift of the holonomy
representation to SL(2,C), and for branched structures, its existence is no longer automatic.
So, from now on we will only consider branched projective structures whose holonomy lifts
to SL(2,C). By Theorem 1.12.2 this happens if and only if deg(D) is even. The construction
proceeds as in Section 1.10.1. Using the lifted holonomy representation ρ̃ of a branched structure
A, we build the SL(2,C)-vector bundle E = S̃×ρ̃ C

2 with flat connection ∇, which projectivizes
to the graph of the structure (P(E) = P, s). The transverse section then defines a line subbundle
L which is transverse to ∇ except at the branching points pα where Lpα ⊂ HpαE, with HE the
tangent bundle of the horizontal foliation determined by ∇. One can again give the complex
structure X induced by A to the surface. This means that E → X is a complex vector bundle
that becomes holomorphic by giving it the ∂-operator ∇(0,1). The transverse line subbundle L
is holomorphic for this structure and we can define its second fundamental form βL as before by
equation 1.10.1. The transversality condition is weakened since it is only satisfied outside the
branching points. At the branching set, βL will have zeros, since Lpα ⊂ HpαE. These zeros have
precisely the same order as the branching points, and thus the branching divisor is expressed
as D = div(βL). Thus a branched projective structure compatible with X and whose holonomy
lifts to SL(2,C) is the same as a flat SL(2,C)-bundle together with a ∇(0,1)-holomorphic line
subbundle, whose second fundamental form βL is non-zero. This data only defined up to the
same equivalence relation as before.

Theorem 1.12.4. Let E → X be an SL(2,C)-vector bundle on a Riemann surface X with
holomorphic structure ∇(0,1) given by a flat connection ∇. Then any holomorphic line subbundle
L ⊂ E with non-zero holomorphic second fundamental form βL, determines a branched projective
structure compatible with X, with branching divisor div(βL). Moreover any other SL(2,C)-
bundle E′ with flat connection ∇′ and subbundle L′ determines an equivalent projective structure
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if and only if there is an isomorphism F : E⊗S → E′ such that L′ = F(L⊗S) and ∇⊗δ = F∗(∇′)
for some holomorphic line bundle S with flat connection δ of order 2.

Remark 1.12.5. Note that for closed and branched projective surfaces there is no analog of
Lemma 1.10.3. Indeed the theorem of Riemann-Roch no longer restricts the holomorphic
subbundle to be K1/2. In fact, for deg(L) < g − 1 we have deg(L−2K) > 0, and there are
non-constant sections βL ∈ H0(L−2K). Note also that when deg(L) ≤ 0, the bundle E is
no longer unstable (cf. Remark 1.10.4 and the paragraph above it). This happens when the
branching divisor D = div(βL) has degree deg(D) ≥ 2g− 2. This is another change in behavior
already reflected by the breaking down of the proofs of the restrictions on the holonomy of
closed CP1-surfaces, as it was noted in Subsection 1.12.4.

This finishes the collection of results about complex projective structures we gather in
this chapter. In what follows, we will explore further constructions using the vector bundle
perspective, and this last Theorem 1.12.4 will be our main tool.





Chapter 2

Higgs bundles, opers and Riemann
surfaces

The purpose of this chapter is to recall a diversity of results that will play a main role in
the construction of Chapter 3. In particular, we start by recalling the non-abelian Hodge
correspondence, the moduli space of Higgs bundles, and their relation with the geometry of
Riemann surfaces, as pioneered by Hitchin and his proof of the uniformization theorem (Hitchin,
1987, Theorem (11.2)). Then we set up Gaiotto’s conformal limit (Gaiotto, 2014) and cite
known existence results. After that, we recall the notion of oper, introduced first in (Drinfel’d
and Sokolov, 1985) but reformulated using modern language in (Beilinson and Drinfeld, 2005),
and their partial analogs introduced in (Simpson, 2010). Finally, we include some statements
about classical Teichmüller space and the Teichmüller (Finsler) metric. Contrary to the previous
chapter, we will only provide details when they are needed to understand the constructions of
Chapter 3, as most of the other ones are well-known and easily accessible in the literature.

2.1 Non-abelian Hodge correspondence

The non-abelian Hodge correspondence is now a well-known construction, due to the seminal
work of several mathematicians, such as Hitchin, Donaldson, Corlette, and others. For details,
history and more bibliography, we refer to the introductory surveys (Guichard, 2017; Li, 2019b;
Thomas, 2023; Wentworth, 2016). Briefly, for a fixed closed Riemann surface X of genus g ≥ 2,
this correspondence establishes a homeomorphism between the moduli space of Higgs bundles
and the moduli space of flat connections. In what follows we will mainly review the existence
of solutions to Hitchin equations, the so-called harmonic metrics, because they will play the
main role in our results. This means we mostly work with the correspondence in the Hitchin
direction, i.e., starting with a Higgs Bundle and building the corresponding flat connection.
From now on X will always be a closed Riemann surface of genus g ≥ 2. We will also define
SL(n,C)-Higgs bundles, even though the correspondence works for more general Lie groups.
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Definition 2.1.1. Let X be a closed Riemann surface. A Higgs bundle is a vector bundle
E → X with holomorphic structure ∂E , together with a Higgs field, i.e a holomorphic one-form
Φ ∈ Ω(1,0)(End(E)) valued in the endomorphisms of E. We denote it by (E, ∂E ,Φ) or simply
by (∂E ,Φ) when the bundle is understood. It is an SL(n,C)-Higgs bundle when (E, ∂E) is
a holomorphic SL(n,C)-vector bundle (i.e. it has holomorphically trivialized det(E)) and
Φ ∈ Ω(1,0)(End0(E)) is trace-free.

Note that for n = 1 Higgs bundle is simply a line bundle L with a holomorphic structure,
i.e. an element of Pic0(X), together with a holomorphic one form, since End(L) is trivial in
this case. We note also that we can perform the usual operations with Higgs bundles, such
as the direct sum, tensor products, and extensions, considering the induced Higgs fields. The
notion of isomorphic Higgs bundles is defined similarly, by imposing the isomorphism preserves
the Higgs field, and the trivialization of det(E) in the SL(n,C)-case. The relevant class of
Higgs bundles is composed of polystable ones. Recall that the slope of a vector bundle E is
slope(E) = deg(E)

rank(E) .

Definition 2.1.2. Let (E, ∂E ,Φ) be a Higgs bundle. It is called (semi)stable if every proper
Φ-invariant holomorphic subbundle V ⊂ E satisfies slope(V )(≤) < slope(E). It is called
polystable if it is the direct sum of stable Higgs bundles.

Remark 2.1.3. The definition of stability for a vector bundle E is analogous but one considers
all proper subbundles V ⊂ E.

We will be interested in SL(2,C)-Higgs bundles. This means that (E, ∂E ,Φ) is strictly
polystable (i.e polystable but not stable) if and only if it is a direct sum of the form E = L⊕L−1,
with L a line bundle with deg(L) = 0. This is because E = L⊕E/L and E/L ∼= L−1, where
the isomorphism is induced by the trivialization of det(E), and only happens when rank(E) = 2.
One can also see that E is topologically trivial since it has degree zero. We now move on to
the metric.

Definition 2.1.4. Let (∂E ,Φ) be a SL(n,C)-Higgs bundle. Let H be a Hermitian metric on
E and let FAH

be the curvature of the Chern connection AH determined by H and ∂E . Fix
R ∈ R+. A metric which induces the trivial metric on det(E) is called harmonic with parameter
R if it satisfies the R-scaled version of Hitchin’s equation:

FAH
+R2 [Φ,Φ∗H ] = 0. (2.1.1)

Remark 2.1.5. If R = 1 we get the usual Hitchin equation for the Higgs bundle (∂E ,Φ), and
a metric which is harmonic with parameter 1 is simply called harmonic. Thus a metric is
harmonic with parameter R if and only if it is a solution to Hitchin’s equation for the Higgs
bundle (∂E , RΦ).

The main point of the correspondence is that polystability is the necessary and sufficient
condition for the existence of such a metric.
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Theorem 2.1.6. An SL(n,C)-Higgs bundle (∂E ,Φ) is polystable if and only if, for each R ∈ R+,
there is a harmonic metric with parameter R. This metric is unique if (∂E ,Φ) is stable.

Note that Hitchin’s equation for R = 1 is equivalent to the flatness of the connection
∇ = AH + Φ + Φ∗H . This is the flat connection associated with the Higgs bundle (∂E ,Φ).
Denote by Hps(E) the configuration space of Higgs bundles on the (topologically) trivial rank
2 bundle E, i.e. Hps(E) is a subset of the fibered product of the affine space of ∂-operators on
E with the vector space of Higgs fields, and by C(E) the space of flat connections. We define
the non-abelian Hodge map as

NH : Hps(E) → C(E) (2.1.2)
(∂E ,Φ) 7→ AH + Φ + Φ∗H , (2.1.3)

where H is the harmonic metric, i.e. the solution of Hitchin’s equation for R = 1. Note that
this map is only well defined on the subset of stable Higgs bundles Hs, since only there the
metric H is unique. But we can extend it to Hps(E) by choosing metrics in each strictly
polystable case. Since this choice won’t be relevant, we write the map in this way, always
assuming an adequate choice has been made if needed. This map actually has image inside
the set of totally reducible flat connections Ccr(E), and it descends to a map between the
moduli spaces MDb = Hps(E)/ ∼ and MdRh = Ccr(E)/G, where the ∼ denotes equivalence
by isomorphism and G = Ω0(Aut(E)) the smooth gauge group. We will mainly work on the
configuration spaces, and so will not worry about the much-studied geometric properties of the
moduli spaces. We note that the moduli space of completely reducible flat connections MdRh

can be identified with the character variety X SL(n,C) = Homcr(π1(S),SL(n,C))/ SL(n,C), with
Homcr(π1(S), SL(n,C)) the space of completely reducible representations, where SL(n,C) acts
by conjugation. This identification is made via the holonomy of the flat connection.

Definition 2.1.7. An SL(2,R)-Higgs bundle is as an SL(2,C)-Higgs bundle E with a holomor-
phic decomposition E = L⊕ L−1, where L is a holomorphic line bundle and with the Higgs
field has the form Φ =

(
0 α
β 0

)
, for this decomposition, where α ∈ H0(L2K) and β ∈ H0(L−2K).

It is so defined because the corresponding connection under the non-abelian Hodge corre-
spondence has holonomy conjugated (in SL(2,C)) to a subgroup of SL(2,R). For such a Higgs
bundle the Toledo invariant deg(L) satisfies a Milnor-Wood type inequality 0 ≤ | deg(L)| ≤ g−1.
Note further that the SL(2,C)-gauge transformation E → E given with respect to the decom-
position by

( 0 i
i 0
)

interchanges L and L−1. This means that when picking a representative in
the configuration space of a point of the moduli space MDb, we can assume deg(L) ≥ 0. The
SL(2,C)-Higgs bundle stability condition for the case deg(L) > 0 is simply β ̸= 0. This is
because L is the maximal destabilizing subbundle of E, which is not preserved by the Higgs
field if and only if β ̸= 0. There are no strictly polystable cases. For the case deg(L) = 0 the
condition is more delicate, and it is analyzed in Section 3.4.
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Definition 2.1.8. The SL(2,R)-Higgs bundles of the form E = K1/2⊕K−1/2, for K1/2 a square
root of the canonical bundle, and with Higgs field Φ =

(
0 q
1 0

)
, where 1 ∈ O and q ∈ H0(K2),

are said to be in a Hitchin component.

These are the Higgs bundles that, under the non-abelian Hodge correspondence, map to
connections whose holonomies lie inside the special components of the real character variety
X SL(2,R) ⊂ X SL(2,C) called the Hitchin components. So the structure of X SL(2,R) is as follows.
The subspaces X SL(2,R)

d of representations with fixed Toledo invariant deg(L) = d are connected
components, except X SL(2,R)

g−1 . The latter has the 22g connected components: the Hitchin com-
ponents, which account for the choice of a square root of K. Moreover, they are parameterized
by quadratic differentials q = α ∈ H0(K2). Hitchin in (Hitchin, 1987) proved that a Hitchin
component parameterizes all hyperbolic structures on S (Definition 1.5.2) and that under the
non-abelian Hodge correspondence a hyperbolic structure is sent to its holonomy. Biswas
et al. in (Biswas et al., 2021) generalized this to show that any SL(2,R)-Higgs bundle with
div(α) ≥ div(β) gives rise to a branched hyperbolic structure with branching divisor div(β).

Remark 2.1.9. There are higher rank Hitchin components for SL(n,C) as described by Hitchin
in (Hitchin, 1992), and they share similar properties with the ones inside SL(2,C), but we won’t
need them for what follows.

2.2 The conformal limit

The existence of the harmonic metric with parameter allows one to use R to deform the flat
connection associated with the Higgs Bundle. This construction was introduced in (Gaiotto,
2014). Given a polystable SL(n,C)-Higgs bundle (∂E ,Φ) and a fixed ~ ∈ C∗ one has the
R+-family of flat connections

∇~,R = AHR
+ ~−1Φ + ~R2Φ∗HR (2.2.1)

where HR is the harmonic metric with parameter R ∈ R+ for (∂E ,Φ), AHR
is the Chern

connection for ∂E and HR, and the adjoint ∗HR
is taken also with respect to the metric HR.

Definition 2.2.1. The ~-conformal limit of (∂E ,Φ) is the connection

∇~,0 := lim
R→0

∇~,R (2.2.2)

when it exists.

Remark 2.2.2. In the case ~ = 1 note that, if R = 1, the connection ∇1,1 is just NH(∂E ,Φ) the
one given by the usual non-abelian Hodge correspondence.

This limit is usually set up on the moduli space, and so it is understood as the limit of a
gauge class of connections. Its existence in this sense was established in (Dumitrescu et al.,
2021, Theorem 3.2.) for SL(n,C)-Higgs bundles in the Hitchin components, and in (Collier and
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Wentworth, 2018, Proposition 5.1.) for all stable SL(n,C)-Higgs bundles. In both cases, the
use of the inverse function theorem in infinite dimensional Banach spaces is instrumental to
finding suitable gauge transformations acting on ∇~,R. Here we will work directly with the
limit defined on the configuration space, and for SL(2,R)-Higgs bundles we shall give a more
direct argument both in the stable case (in Section 3.1) and in the polystable case (in Section
3.4.1)). We give a further proof for SL(2,C)-polystable Higgs bundles in Theorem 3.6.4.

2.3 Partial opers and branched projective structures

Classical opers were introduced in (Drinfel’d and Sokolov, 1985) and the concept was refor-
mulated in modern language in (Beilinson and Drinfeld, 2005). They are defined as a flat
bundle together with a full filtration by holomorphic subbundles, whose induced map on
quotients satisfies a transversality condition. It turns out that their definition exactly matches
the definition of an associated vector bundle to a complex projective structure as stated by
Gunning’s criterion Theorem 1.10.1. In (Simpson, 2010) the filtration used is not necessarily
full, and the transversality condition is replaced by the gr-semistability of the associated graded
Higgs bundle, giving rise to the notion of partial oper. Again, these will be related to branched
projective structures by the branched version of Gunning’s criterion, Theorem 1.12.4.

Definition 2.3.1. (Simpson, 2010) Let X be a Riemann surface and consider an SL(2,C)-
bundle E with flat connection ∇ together with a filtration

0 ⊂ L ⊂ E

by a ∇(0,1)-holomorphic subbundle L. Let βL : L → E/L⊗K be the O-linear map induced by
∇. The associated graded is the Higgs bundle (Gr(E), θ) where

Gr(E) = L⊕ E/L ∼= L⊕ L−1 and θ =
(

0 0
βL 0

)
.

If this Higgs bundle is semistable we call the filtration a partial SL(2,C)-oper. Two partial opers
are equivalent if their flat bundles are isomorphic by a gauge transformation that preserves the
filtration.

Remark 2.3.2. Note that if deg(L) > 0 then L is the maximal destabilizing subbundle of Gr(E).
This means that (Gr(E), θ) is (semi)stable as a Higgs bundle precisely if L is not preserved
by θ, and this happens if and only if βL ̸≡ 0. In this case, the definitions of associated vector
bundle to a branched projective structure compatible with X and of partial oper are the same,
by Gunning’s criterion Theorem 1.12.4, and they just require βL to be non-zero. In the case
deg(L) = 0 though, the bundle Gr(E) is semistable (as a holomorphic bundle). Thus (Gr(E), θ)
is semistable as a Higgs bundle even if βL is zero. In this situation, the definition of partial oper
includes more objects than the branched projective structures. These structures will correspond
to the partial opers with non-zero βL.
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Remark 2.3.3. We remark that Simpson’s definition in (Simpson, 2010) allows for filtrations
which are not full. In particular, 0 ⊂ E, with E semistable as a holomorphic bundle, is
considered a partial oper structure in that paper, but not here.

Remark 2.3.4. In the case of classical, or full, opers is obtained when βL : L → L−1K is an
isomorphism. In this case L2 ∼= K and deg(L) = g − 1, and (Gr(E), θ) is automatically stable,
since βL ̸= 0. These correspond to unbranched projective structures compatible with X.

For now, we will be interested in the case of βL ̸= 0. Then, for a Riemann surface X, a
branched projective structure compatible with X is the same as such a partial SL(2,C)-oper,
with the caveat that the equivalence of projective structures is slightly weaker than that of
opers. While for opers the filtration must be preserved by gauge equivalence, in the situation
of projective structures the gauge equivalence is allowed to twist the subbundle.

We also recall that the structure of a partial SL(2,C)-oper on E, in particular, realizes E
as an extension of the ∇(0,1)-holomorphic line bundles, namely of L by E/L ∼= L−1 :

0 → L → E
βL→ L−1 → 0.

These extensions are classified by an element of the Dolbeault cohomology H1(Hom(L−1, L)) ∼=
H1(L2), and thus represented by a (0, 1)-form with values in L2. In any C∞ decomposition of
E of the form E = L⊕ L−1, the holomorphic structure ∇(0,1) can be written as

∇(0,1) =
(
∂L ω

0 ∂L−1

)
,

since L is holomorphic, and the class [ω] ∈ H1(L2) is called is the extension class of the partial
SL(2,C)-oper (E,∇).

The conformal limit in Definition 2.2.1 of SL(2,R)-Higgs bundles, seen in the moduli space,
is known to be a partial oper. For the Hitchin component this is explicit in (Dumitrescu et al.,
2021, Theorem 3.2.), and for the other SL(2,R)-components it can be read from (Collier and
Wentworth, 2018, Proposition 5.1.). These results, together with the ones of the previous
section (cf. Definition 2.1.8 and paragraph after it), show that, for R = 1 and ~ = 1, the
connections ∇1,1 for SL(2,R)-Higgs bundles with div(α) ≥ div(β) correspond to branched
hyperbolic structures, while the conformal limit connections ∇~,0 correspond to partial opers,
and thus to branched projective structures compatible with X. We will see that these are
instances of the same phenomenon, as in fact, when div(α) ≥ div(β), there is a family of
branched projective structures continuously deforming the ones with holonomy ∇~,1 into the
ones with holonomy ∇~, 0. This is the main contribution present in Chapter 3. For that, we
will need some classical results about Teichmüller theory which we now recall.
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2.4 Beltrami differentials and complex structures

There are several approaches to the description of the Teichmüller space T(S) of a closed surface
S. This is the space of marked complex structures on S and it is classically identified with the
unit L1-ball in the space of holomorphic quadratic differentials H0(K2) for some fixed Riemann
surface structure via Teichmüller’s embedding, see for example (Daskalopoulos and Wentworth,
2007, Theorem 2.9). Its construction relies on the use of Beltrami differentials to change the
complex structure.

Definition 2.4.1. Let X be Riemann surface with canonical bundle K. A Beltrami differential
µ is a (smooth) section of K ⊗K−1 whose sup-norm is strictly bounded by 1, i.e., an element
of the set

B(X) =
{
µ ∈ Ω0(K ⊗K−1) = Ω(−1,1)(X) | ||µ||∞ < 1

}
. (2.4.1)

Remark 2.4.2. Note that the transformation law for the coordinates of µ is µ2(z2) = µ1(z1)dz2/dz1
dz2/dz1

.
As such, the value of |µ(z)| is independent of the holomorphic coordinate chart and it is a
well-defined quantity whose supremum we denote by ||µ||∞.

A Beltrami differential can be used to build a complex atlas for a different complex structure
in the following way. Let z be a coordinate for X and let µ = µ(z)dz ⊗ ∂

∂z ∈ Ω0(K ⊗ K−1).
Consider the local Beltrami equation on the contractible open U ⊂ X for a function v : U → C

∂zv = µ(z)∂zv. (2.4.2)

In this situation, µ(z) is called the parameter of the equation. The classical existence result
states that such a v exists if ||µ||∞ < 1 on U . Furthermore, such function v is a diffeomorphism
onto some open set of C. Now, we can check the condition for existence on each open set U of
X, and this happens precisely if µ is a Beltrami differential. If we collect all such local functions
v together we can verify they form a complex atlas for a new complex structure denoted by
Xµ. A contemporary description of this result can be found for example in (Hubbard, 2006,
Theorem 4.8.12).

Theorem 2.4.3. Let X be a Riemann Surface. Then any Beltrami differential µ ∈ B(X)
determines a complex structure Xµ whose local charts are the solutions of the Beltrami equation
with parameter µ(z).

In conclusion, if X has coordinate z, then Xµ has coordinate v such that ∂zv = µ(z)∂zv.
Writing ν = ∂zv we can observe that the bases of (1, 0) and (0, 1)-forms of Xµ are given with
respect to X by

dv = ν(dz + µ(z)dz) (2.4.3)
dv = ν(dz + µ(z)dz), (2.4.4)

with ν ̸= 0 since v is a local diffeomorphism.
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Remark 2.4.4. It is actually true that any complex structure up to biholomorphism isotopic
to the identity arises in this way. (This can be deduced, for example, from the surjectivity
statement of (Daskalopoulos and Wentworth, 2007, Theorem 2.9), together with the fact that
the map there factors through a map out of B(X)). In particular, there is an identification
of T(S) with the space of Beltrami differentials B(X) modulo the equivalence relation where
µ ∼ µ′ if there is a biholomorphism Xµ → Xµ′ isotopic to the identity.

2.4.1 Teichmüller geodesics and disks

The Teichmüller space T(S) has several interesting metrics. One of them is the Teichmüller
metric, which is a Finsler metric, and whose distance function is defined using the properties of
quasi-conformal mappings. In particular, the distance between Xµ, Xµ′ ∈ T(S) is the smallest
possible maximal dilation of a quasi-conformal mapping f : Xµ → Xµ′ in the isotopy class of
the identity of S. It is a classical result of Teichmüller that each such class has a unique map
that realizes this minimum, the so-called Teichmüller mappings. These maps have complex
dilations of the form

µ = ∂f

∂f
= c

q

|q|
, 0 < c < 1,

where c is a constant and q a quadratic differential. They allow one to describe the geodesic
rays through the origin X0 in T(S) (cf. (Lehto, 1987, Section V.7.7.)).

Theorem 2.4.5. Let µ = t q
|q| be a Beltrami differential with q ∈ H0(X,K2) a quadratic

differential, and t ∈ [0, 1). Then t 7→ Xµ(t) is a geodesic ray in the Teichmüller metric, called
the ray associated with q.

Remark 2.4.6. One can even show that if t is allowed to be in the hyperbolic disk D the map
t 7→ Xµ(t) is an isometry (Lehto, 1987, Theorem V.9.3.). Maps of this form are called complex
geodesics or Teichmüller Disks.



Chapter 3

Higgs bundles and projective
structures

In this chapter we introduce the main contribution of the thesis, to be submitted for publication
as (Silva and Gothen, 2024).

It is a construction of branched projective structures associated with the family 2.2.1 that
appears in the conformal limit, which can be summarized as follows.

Theorem. Let (E = L⊕ L−1,Φ =
(

0 α
β 0

)
) be an SL(2,R)-Higgs bundle, where α ∈ H0(L2K)

and β ∈ H0(L−2K), with 0 < deg(L) ≤ g − 1 and β ̸= 0. Assume that |~R| ≤ 1 and
div(α) ≥ div(β). Then the following results hold.

1. There is a Riemann surface structure Xµ ∈ T(S) associated to a Beltrami differential
µ = µ(~, R) on X and a branched projective structure P(~, R) ∈ B(S) with branching
divisor div(β), compatible with Xµ.

2. The family P(~, R) depends continuously on (~, R) and interpolates between a branched
hyperbolic structure P(~, 1) and the branched projective structure given by the partial oper
(∇~,0, L).

For deg(L) = 0 the construction goes through under the same conditions but for the parameters
with |~R| < 1 (strict inequality). Further, the curve R 7→ Xµ(~,R) in T(S) is a geodesic ray in
the Teichmüller metric.

The proof of these results will occupy the rest of the chapter. To establish them, we will
also provide a simpler proof of the existence of the conformal limit, working at the level of the
configuration spaces of polystable SL(2,C)-Higgs bundles.

3.1 Existence of the SL(2,R)-conformal limit

Recall Definition 2.1.8 where we view an SL(2,R)-Higgs bundle as an SL(2,C)-Higgs bundle
E with a holomorphic decomposition E = L ⊕ L−1, where L is a holomorphic line bundle,
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and a Higgs field of the form Φ =
(

0 α
β 0

)
for this decomposition, where α ∈ H0(L2K) and

β ∈ H0(L−2K). As we have seen the Toledo invariant deg(L) satisfies a Milnor-Wood type
inequality 0 ≤ | deg(L)| ≤ g − 1, and we can assume, by duality, that an SL(2,R)-Higgs bundle
has deg(L) ≥ 0.

Recall that the SL(2,C)-Higgs bundle stability condition for the case deg(L) > 0 is simply
β ̸= 0, and that there are no strictly polystable cases. For the case deg(L) = 0 the condition
will be analyzed in Section 3.4.

The harmonic metric H in either case is known to diagonalize (Hitchin (1987) or (Alessan-
drini, 2019, Proposition 5.2), for example) with respect to this decomposition, so H =

(
h 0
0 h−1

)
,

where h is a metric in the line bundle L.
If we choose a holomorphic frame for L, and the induced holomorphic frame in E, h is

locally given by a positive function, still denoted by h, or h(z) if we want to make explicit the
dependence on a complex coordinate z in X. The Chern connection for H is given in this frame
by AH = d +

(
∂ log h 0

0 −∂ log h

)
=
(

∂z log h dz 0
0 −∂z log h dz

)
. Further α and β are given by 1-forms

α = α(z)dz and β = β(z)dz. Recalling that locally Φ∗H = H−1ΦT
H, Hitchin’s equations (2.1.1)

for this case (R = 1) read

0 = FAH
+ [Φ,Φ∗H ] ⇔

0 =
(
∂∂ log h 0

0 −∂∂ log h

)
+
(

0 α

β 0

)
∧
(

0 βh−2

αh2 0

)
+
(

0 βh−2

αh2 0

)
∧
(

0 α

β 0

)
.

This simplifies to the single scalar (and unscaled) vortex equation

∂z∂z log h = |α|2h2 − |β|2h−2.

The R-scaled version is given in the following definition and just says that HR =
(

hR 0
0 h−1

R

)
is

harmonic with parameter R for
(
E = L⊕ L−1,Φ =

(
0 α
β 0

))
.

Definition 3.1.1. Let L be a holomorphic line bundle and consider the sections α ∈ H0(L2K)
and β ∈ H0(L−2K), and R ∈ R+. A metric hR in L solves the R-scaled vortex equation for
(α, β) if locally in a holomorphic frame

∂z∂z log hR = R2
(
|α|2h2

R − |β|2h−2
R

)
.

Remark 3.1.2. For R = 0 this is an equation for a metric of zero curvature. If such a Hermitian
metric exists on L then deg(L) = 0.

Example 3.1.3. If the Higgs bundle lies in a Hitchin components then(
E = K1/2 ⊕K−1/2,Φ =

(
0 q
1 0

))
,

for a choice K1/2 of square root of the canonical bundle K, from the 22g available, and
q ∈ H0(K2) a quadratic differential. The R-scaled vortex equation is then just the R-scaled
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version of the abelian vortex equation as in Hitchin (Hitchin, 1987)

∂z∂z log h = R2
(
|q|2h2 − h−2

)
.

In this case g = h−2 is a metric in (K1/2)−2 ∼= K−1 ∼= TX, which satisfies

∂z∂z log g = 2R2g

(
1 − qq

g2

)
. (3.1.1)

For R = 1 and q = 0, this is the equation for a Riemannian metric g0 of constant negative
curvature −4.

In the case of SL(2,R)-Higgs bundles, the family of connections (2.2.1) that comes up in
the conformal limit is thus

∇~,R = AHR
+ ~−1Φ + ~R2Φ∗HR

= d+
(
∂ log hR 0

0 −∂ log hR

)
+ ~−1

(
0 α

β 0

)
+ ~R2

(
0 βh−2

R

αh2
R 0

)

= d+
(

∂ log hR ~−1α+ ~R2βh−2
R

~−1β + ~R2αh2
R −∂ log hR

)
. (3.1.2)

To explicitly calculate this limit in the configuration space we make use of a symmetry of
the equations. The argument relates the solutions of the scaled equation with the solutions of
the unscaled one. We will give a more general argument valid for SL(2,C)2-Higgs bundles in
Proposition 3.6.1

Proposition 3.1.4. Let L be a holomorphic line bundle, α ∈ H0(L2K), β ∈ H0(L−2K), and
R ∈ R+. A metric hR is a solution of the R-scaled vortex equation for (α, β) if and only if
h := hR

R is a solution of the unscaled vortex equation for (R2α, β).

Proof. Let h := R−1hR be a solution of the unscaled vortex equation for (R2α, β). This happens
if and only if

∂z∂z log h = |R2α|2h2 − |β|2h−2.

Given the fact that R does not depend on z, i.e., ∂z log h = ∂z log hR − ∂z logR = ∂z log hR ,
the expression is equivalent to

∂z∂z log hR = |R2α|2R−2h2
R − |β|2R2h−2

R = R2
(
|α|2h2

R − |β|2h−2
R

)
,

and so hR solves the R-scaled vortex equation for (α, β).

Corollary 3.1.5. Let deg(L) > 0. Then the pointwise limit of h := hR
R as R → 0 exists as a

metric and it is a solution of the unscaled vortex equation for (0, β).

Proof. By Proposition 3.1.4 h is a solution of the unscaled vortex equations for (R2α, β).
This describes a continuous path (E = L ⊕ L−1,Φ(R)) of polystable Higgs bundles, with
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Φ(R) =
(

0 R2α
β 0

)
. Note that it is a well-defined path since, (E,Φ(R))is stable for all R. This

happens even for R = 0, since then the Higgs bundle is stable because deg(L) > 0. (The
subbundle L is maximally destabilizing.) Under the homeomorphism to the space of harmonic
bundles, this is mapped to a continuous path of metrics, and limR→0 h is the metric associated
to Φ(0).

Remark 3.1.6. If hR is a solution of the R-scaled vortex equation for a fixed (α, β), it was
already noted in (Dumitrescu et al., 2021, Theorem 3.2. and after) (for the Hitchin component)
that limR→0 hR does not exist in general. In our case, this can be seen directly from the fact
that a solution for the 0-scaled equation is just a metric with curvature equal to zero (cf.
Remark 3.1.2), and thus it can only exist in the case deg(L) = 0, but not for general L. More
precisely, given the Corollary, it follows that h = hR/R tends to the solution of the unscaled
vortex equations with (0, β), and so hR = hR tends to zero as fast as R → 0 for deg(L) > 0.
We note also that for deg(L) = 0 the limit limR→0 h does not exist, since in that case (0, β)
defines a non-polystable Higgs bundle (cf. Section 3.4 for further details).

Using Corollary 3.1.5 we can now calculate the conformal limit.

Theorem 3.1.7. Let X be a closed Riemann surface of genus g ≥ 2. Consider the vector
bundle E = L ⊕ L−1, with 1 ≤ deg(L) ≤ g − 1, and induced holomorphic structure ∂E and
Higgs field Φ =

(
0 α
β 0

)
, where α ∈ H0(L2K) and 0 ̸= β ∈ H0(L2K).

Then, the ~-conformal limit ∇~,0 of the SL(2,C)-Higgs bundle (∂E ,Φ) exists. Using the
holomorphic frame of E induced by a holomorphic frame of L, the coordinate representation of
∇~,0 is

∇~,0 = d+
(
∂ log h0 ~−1α+ ~βh−2

0
~−1β −∂ log h0

)
, (3.1.3)

where h0 is the solution of the unscaled vortex equations for (0, β).

Proof. By Proposition 3.1.4, for each R ∈ R+, we can write hR as hR = hR, where h is the
solution of the unscaled vortex equation for (R2α, β). By Corollary 3.1.5, the limit of h as
R → 0 exists and we have limR→0 h = h0. We also note that ∂z logR = 0.

We are now able to compute the following limits:

lim
R→0

∂z log hR = lim
R→0

∂z log (hR) = lim
R→0

(∂z log h+ ∂z logR) = lim
R→0

∂z log h = ∂z log h0,

lim
R→0

R2h2
R = lim

R→0
R4h = 0,

lim
R→0

R2h−2
R = lim

R→0
h−2 = h−2

0 .

Taking R → 0 in the family ∇~,R of (3.1.2) we then get the existence and explicit form of the
conformal limit stated.

Remark 3.1.8. Note that for R ≠ 0, the family ∇~,R in 3.1.2, as a function of the parameters
~ and R into the configuration space of flat connections, is continuous. So, in fact, we have
shown here that this continuity extends to R = 0.
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Remark 3.1.9. Recall the discussion about the components of the moduli space of SL(2,R)-
Higgs bundles (after Definition 2.1.8). There are 22g Hitchin components corresponding to the
maximal Toledo invariant |deg(L)| = g − 1. Further, there are g − 1 non-maximal components,
corresponding to 0 ≤ |deg(L)| < g. The existence of the conformal limit is thus established for
all the components except for the minimal one, i.e., the one for which deg(L) = 0. This will be
done in Section 3.4.

3.2 The conformal limit is a partial oper

We now observe that the conformal limit calculated in Corollary 3.1.7 defines a partial oper.
This was already proved in (Collier and Wentworth, 2018) in greater generality but it sets the
stage for the construction of branched projective structures in Section 3.3.

Theorem 3.2.1. The ~-conformal limit ∇~,0 of the SL(2,R)-Higgs bundle E = L⊕ L−1, with
1 ≤ deg(L) ≤ g − 1, and Higgs field Φ =

(
0 α
β 0

)
, where α ∈ H0(L2K) and 0 ̸= β ∈ H0(L2K) is

a partial SL(2,C)-oper
0 ⊂ L ⊂ (E,∇~,0)

with second fundamental form ~−1β.

Proof. The expression (3.1.3) shows that ∇(0,1)
~,0 preserves L which is therefore a holomorphic

subbundle as required. Moreover, the second fundamental form is the lower left-hand corner of
the matrix in (3.1.3) which is indeed the non-zero holomorphic section ~−1β.

Remark 3.2.2. This is the same as saying that the conformal limit yields a branched projective
structure compatible with X. Its branching divisor is precisely the divisor of β in the Higgs
field.

Remark 3.2.3. Observe also that in the case where α = 0, the Higgs field Φ lies in the nilpotent
cone. In this situation, the entire family ∇~,R in (3.1.2) can be seen directly to be a partial
oper, since L still defines a ∇(0,1)

~,0 -holomorphic subbundle. (The matrix form of ∇(0,1)
~,0 is upper

triangular.) So the proof of the theorem actually works for non-zero R when α = 0. We will
see that there are more general conditions under which ∇~,R is the holonomy of a branched
projective structure.

Remark 3.2.4. The extension class of the limit partial oper is represented by the upper right-hand
corner of ∇0,1

~,0 which reads [~βh−2
0 ] ∈ H0,1(L2) ∼= H1(L2).

Remark 3.2.5. Since the branching divisor of the projective structure given by the conformal
limit is the divisor of zeros of β, we see that the ~-conformal limit ∇~,0 of the SL(2,C)-Higgs
bundle (∂E ,Φ) is a full oper if and only if β is nowhere vanishing, i.e., if and only if (∂E ,Φ)
lies in a Hitchin component.

It is important to note that partial opers correspond only to branched projective structures
which are compatible with a fixed Riemann surface structure X. To study what happens
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along the conformal limit, i.e., as R → 0 in ∇~,R, and to check that these connections actually
correspond to branched projective structures we need to vary the structure X. To this purpose,
we will use the results of Section 2.4.

3.3 Branched projective structures coming from the conformal
limit

We are now ready to carry out the main construction of branched projective structures coming
from the conformal limit. We will define an appropriate Riemann surface structure Xµ for
which ∇~,R is a partial oper, i.e., it defines a branched CP1-structure compatible with Xµ. This
construction will carry through provided the Higgs field Φ =

(
0 α
β 0

)
lies in the special locus

where the divisors of zeros satisfy div(α) ≥ div(β) and given also that |~2R2| ≤ 1. In this
section, we shall assume that deg(L) > 0. The case deg(L) = 0 will be treated in Section 3.4.

Theorem 3.3.1. Fix R ∈ R+
0 and ~ ∈ C∗ such that |~2R2| ≤ 1. Let L be a line bundle of

degree 1 ≤ deg(L) ≤ g − 1 and hR be a solution of the R-scaled vortex equation for (α, β),
where α ∈ H0(L2K) and 0 ̸= β ∈ H0(L2K). Assume further that div(α) ≥ div(β) and let
µ = ~2R2 α

βh
2
R. Then µ is a Beltrami differential. Further ∇~,R is a partial oper for Xµ, with

branching divisor div(β). In particular, it determines a branched projective structure compatible
with Xµ.

Remark 3.3.2. The case div(α) = div(β) implies that deg(L2K) = deg(L−2K) and thus
deg(L) = 0, which is excluded by the hypothesis on L. Moreover, if α = 0, we consider that the
condition div(α) ≥ div(β) holds and then µ = 0. In this case, everything is compatible with
the base Riemann surface structure X, and ∇~,R is a partial oper (cf. Remark 3.2.3).

Proof. For α = 0 there is nothing to prove in view of the preceding remark. So we treat the
case of non-zero α. Note that µ = ~2R2 α

βh
2
R is a smooth section of

L2K ⊗ (L−2K)−1 ⊗ (L−2L
−2) ∼= K ⊗K−1.

Thus only ||µ||∞<1 needs to be checked to prove that µ is a Beltrami differential. This will
be done in Lemma 3.3.3 below. Now we can define a complex structure Xµ by Theorem 2.4.3
whose coordinates are given by solutions v of the Beltrami equation for µ. Using Equation
(2.4.3) one knows that dv = ν(dz + µ(z)dz), with ν = ∂zv ̸= 0. Thus, writing α = α(z)dz and
β = β(z)dz, the flat connection ∇~,R can be written as in (3.1.2),

∇~,R − d =

 ∗ ∗
~−1β(z)

(
dz + ~2R2 α(z)

β(z)h
2
R(z)dz

)
∗

 =
(

∗ ∗
~−1 β(z)

ν dv ∗

)
. (3.3.1)
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This shows in particular that the holomorphic structure ∇(0,1)µ

~,R on E (as a bundle on Xµ)
preserves L, since

∇(0,1)µ

~,R − ∂
µ =

(
∗ ∗

~−1 β(z)
ν dv ∗

)(0,1)µ

=
(

∗ ∗
0 ∗

)
.

where ∂µ is the ∂ operator of Xµ. This means that Lµ ⊂ Eµ is in fact a holomorphic subbundle,
where the subscript µ indicates that we are considering holomorphic bundles on Xµ with the
holomorphic structure induced by the flat connection ∇~,R.

It remains to show that the Xµ-holomorphic second fundamental form βµ
L is non-zero. To

this effect, we note that βµ
L is the OXµ-localization of q ◦ ∇~,R : OXµ(Lµ) → OXµ(Eµ/Lµ ⊗Kµ),

where Kµ is the canonical bundle of Xµ. But, observing the form of ∇~,R in (3.3.1), this is
simply locally given by multiplication by ~−1 β(z)

ν , which is non-zero. Further, the order of
vanishing at each point is precisely the one of β, thus implying that the branching divisor is
div(β).

Lemma 3.3.3. Let |~2R2| ≤ 1 then |µ(z)|2 =
∣∣∣~2R2 α(z)

β(z)h
2
R(z)

∣∣∣2 < 1 everywhere on X.

Proof. We observe that, as div(α) ≥ div(β), µ is smooth. We consider the function

u(z) = log |µ|2

|~2R2|2
= log

∣∣∣∣α(z)
β(z)h

2
R(z)

∣∣∣∣2 .
This is simply the logarithm of the norm squared of the section α

β ∈ H0(L4), where L is given
the metric hR which is a solution of the vortex equations (3.1.1). We will show that u < 0
everywhere on M , thus implying |µ(z)|2 < |~2R2|2. As, by hypothesis |~2R2| ≤ 1, the conclusion
that |µ(z)|2 < 1 everywhere follows. To achieve the inequality u < 0 we use the maximum
principle for elliptic operators (as in (Hitchin, 1992, proof of Theorem (11.2)), following (Li,
2019b, Claim 6.1)), which we set up as follows.

Consider the set {z1, z2, · · · , zk} of zeros of α
β , which is non-empty, because div(α) is not

everywhere equal to div(β). In this set, the function u has negative singularities, i.e., points
where limz→zj u(z) = −∞. This means we can consider small closed disks around these points
where u(z) is as negative as we want. In particular, we can get disks where u < 0 (strict
inequality). When we remove these disks from the surface M , we get a manifold with boundary
U . The function u is smooth on the interior of U and continuous up to the boundary ∂U ,
where u < 0. These are part of the conditions to apply the maximum principle. Note that we
only need to show that u < 0 on the interior of U , since in M\U the inequality already holds
(possibly with u = −∞).

Suppressing from the notation the dependence on z, we see that eu = h4
R|α

β |2, and thus
eu/2 = h2

R|α
β |. So, writing u = log αα

ββ
h4

R, we can calculate that, away from the zeros of α (in
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particular in U),

∂z∂zu = ∂z∂z log α
β

+ ∂z∂z log α
β

+ 4∂z∂z log hR

= 0 + 0 + 4∂z∂z log hR (because α
β is holomorphic)

= 4R2
(
|α|2h2

R − |β|2h−2
R

)
(by the vortex equation (3.1.1))

= 4R2|αβ|
( |α|

|β|
h2

R − |β|
|α|

h−2
R

)
= 4R2|αβ|

(
eu/2 − e−u/2

)
= 8R2|αβ| sinh(u/2).

Recalling that the Laplacian of X is ∆ = 4
g0
∂z∂z, where g0 is the metric of constant negative

curvature −4 (cf. Example 3.1.3), we have equivalently

∆u = 32R2 |αβ|
g0

sinh(u/2).

This is a sinh-Gordon type equation, which can be written as

L[u] = ∆u− 32R2 |αβ|
g0

sinh(u/2)
u

u = 0,

since limu→0
sinh(u/2)

u = 1
2 is finite. Here L = ∆ − c is a linear differential operator, where

c = 32R2 |αβ|
g0

sinh(u/2)
u . In particular, c ≥ 0, since sinh(u/2) and u have the same sign. This

implies that u is a solution of a linear partial differential equation which is uniformly elliptic
on U , and has c ≥ 0. Since u ≤ 0 on the boundary ∂U , we are thus in the conditions of the
classical maximum principle (Gilbarg and Trudinger, 2001, Theorem 3.5) which then implies
that either u is constant or it cannot attain a non-negative maximum in the interior of U . As u
cannot be constant (since α has zeros but it is non-zero) we conclude that u < 0 in the interior
of U , which finishes the proof.

We can also calculate the extension class of this partial SL(2,C)-oper ∇~,R.

Proposition 3.3.4. The extension class of the partial SL(2,C)-oper (E,∇~,R) over Xµ, with
µ = ~2R2 α

βh
2
R, is the Dolbeault class in H1(Xµ, L

2
µ) represented by

ω =
(

1 − |µ|2/|~2R2|2

1 − |µ|2

)
~R2β(z)h−2

R

dv

ν
.

Proof. We need to calculate the (0, 1)µ-part of the upper right entry of ∇~,R. Comparing with
(3.1.2), this is ω = (~−1α(z)dz + ~R2β(z)h−2

R dz)(0,1)µ . To calculate, we note that we can invert
equations (2.4.3) and (2.4.4) to get

dz = 1
1 − |µ|2

(
dv

ν
− µ

dv

ν

)
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dz = 1
1 − |µ|2

(
−µdv

ν
+ dv

ν

)
.

This means ω has a term coming from α which is ~−1α(z) −µ
1−|µ|2

dv
ν and another one coming

from β which is ~R2β(z)h−2
R

1
1−|µ|2

dv
ν . This implies

ω =
(
~R2β(z)h−2

R − µ~−1α(z)
) 1

1 − |µ|2
dv

ν

= ~R2β(z)h−2
R

(
1 − µ

~−1α(z)
~R2β(z)h−2

R

)
1

1 − |µ|2
dv

ν

= ~R2β(z)h−2
R

(
1 − µ

~2
R2

~2
R2

α(z)h2
R

~2R2β(z)

)
1

1 − |µ|2
dv

ν

= ~R2β(z)h−2
R

(
1 − µ

µ

|~2R2|2
) 1

1 − |µ|2
dv

ν

=
(

1 − |µ|2/|~2R2|2

1 − |µ|2

)
~R2β(z)h−2

R

dv

ν
.

3.4 The case of zero degree

In this section we consider the case deg(L) = 0, where the construction has slightly different
features. In particular, as already noted in Remark 3.1.6, a different argument is required for
the existence of the conformal limit and we start with this.

3.4.1 The conformal limit

The conformal limit requires the polystability of the SL(2,R)-Higgs bundle. So we begin by
studying the stability in this case.

Proposition 3.4.1. Let L be a line bundle with deg(L) = 0. Consider the SL(2,R)-Higgs
bundle (E = L⊕ L−1,Φ =

(
0 α
β 0

)
), with α ∈ H0(L2K) and β ∈ H0(L−2K). Then

i) if both α = 0 and β = 0, (E,Φ = 0) is strictly polystable as an SL(2,C)-Higgs bundle;

ii) if both α ̸= 0 and β ̸= 0, (E,Φ) is polystable. If further α and β are not proportional,
(E,Φ) is stable;

iii) if one of α and β is zero but not the other one, (E,Φ) is unstable.

Proof. Case i) is immediate. For case iii) we note that if only one of α or β is non-zero, then
the Higgs field Φ is nilpotent. This means Φ is not diagonalizable, and so (E,Φ) is not a direct
sum of Higgs line bundles. This means it is not strictly polystable. It is also not stable, since
either L or L−1 is Φ-invariant. We are left with case ii). Since E is polystable as a bundle, only
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degree zero subbundles can destabilize the Higgs bundle (E,Φ). Suppose there is a Φ-invariant
holomorphic line subbundle S of degree zero. Write s1 : S → L and s2 : S → L−1 for the maps
induced by the inclusion s : S ↪→ E = L ⊕ L−1. Both of these maps are non-zero because
neither L nor L−1 is Φ-invariant. Hence (since deg(S) = deg(L) = 0) we have s1 : S−1L ∼= O
and s−1

2 : SL ∼= O. Therefore s1/s2 : L2 ∼= O. Now, the subbundle S being Φ-invariant means
that Φ(s) = cs for a non-zero section c, i.e.,

Φ(s) =
(

0 α

β 0

)(
s1

s2

)
=
(
αs2

βs1

)
=
(
cs1

cs2

)
= cs.

Thus cαs2
2 = c2s1s2 = cβs2

1 and, in view of the isomorphism s1/s2 : L2 ∼= O we conclude that α
and β are proportional sections of L2K ∼= L−2K ∼= K. Finally, we can include S−1 in L⊕ L−1

using
(

s−1
2

s−1
1

)
and, since (

0 α

β 0

)(
s−1

2
s−1

1

)
=
(
αs−1

1
βs−1

2

)
=
(
cs−1

2
cs−1

1

)

by the above calculation, we conclude that S−1 is a Φ-invariant complement to S.
In conclusion, if there is a destabilizing Φ-invariant subbundle S, then the sections α and

β are proportional and (E,Φ) decomposes as the direct sum of Higgs bundles S ⊕ S−1, with
the induced Higgs fields. Thus (E,Φ) is strictly polystable. Otherwise, there are no such
subbundles and (E,Φ) is stable.

Thus, in the case deg(L) = 0, the conformal limit can be analyzed using the solution of
the scaled vortex equations for either both α = 0 = β or both non-zero. In this special case,
since the bundle E = L⊕ L−1 itself is stable, the limit of the solution hR of the scaled vortex
equations as R → 0 does exist, and it is simply a metric h0 of zero curvature on L. The
conformal limit is then directly calculated by taking the limit in the family (3.1.2) and it is
∇~,0 = Ah0 + ~−1Φ, where Ah0 is the diagonal Chern connection associated with the Hermitian
metric h0. It is a partial oper (since E = Gr(E) and it is semistable), and, when β ̸= 0, it
defines a branched complex projective structure compatible with X, just as in the previous
section. In conclusion, we have the following.

Theorem 3.4.2. Let (E = L ⊕ L−1,Φ =
(

0 α
β 0

)
) be a polystable SL(2,R)-Higgs bundle with

deg(L) = 0. Then the ~-conformal limit of (E,Φ) exists and it has the structure of a partial
SL(2,C)-oper.

Remark 3.4.3. Proposition 3.1.4 is no longer necessary to change the solution. This is consistent
with the fact that in this case the vortex equations for (β, 0) do not have a solution.

3.4.2 The projective structures coming from the conformal limit

In the zero degree case the condition div(α) ≥ div(β) implies that α = kβ, k ∈ C∗, since both
α and β must have the same number of zeros counted with multiplicity. We are thus in the
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situation ii) of Proposition 3.4.1, where (E = L ⊕ L−1,Φ =
(

0 kβ
β 0

)
) is a polystable Higgs

bundle. Note that the condition in particular implies that L4 ∼= O, since k = α
β ∈ H0(L4). The

proof of Theorem 3.3.1 will carry through, except now the function u will read

u = log
∣∣∣∣α(z)
β(z)h

2
R(z)

∣∣∣∣2 = log
∣∣∣kh2

R(z)
∣∣∣2

and it will be constant by the maximum principle. Of course in this case one can directly check
that hR = |k|−1/2 is a solution of the R scaled-vortex equations, for if α = kβ, the equation
reads

∂z∂z log hR = R2
(
|α|2h2

R − |β|2h−2
R

)
= R2

(
|k|2|β|2h2

R − |β|2h−2
R

)
.

The right hand side when hR = |k|−1/2 is R2 (|k|2|β|2|k|−1 − |β|2|k|
)

= 0 which is precisely
∂z∂z log |k|−1/2 = 0. The Beltrami differential will now be µ = ~2R2k β

βh
2
R = ~2R2 k

|k|
β
β . The

subbundle L will determine a partial oper structure and, when β ̸= 0, a complex projective
structure compatible with Xµ. Thus we have the following result.

Theorem 3.4.4. Fix R ∈ R+ and ~, k ∈ C∗ such that |~2R2| < 1. Let L be a line bundle
with L4 ∼= O (in particular deg(L) = 0) and consider the polystable SL(2,R)-Higgs bundle
(L⊕ L−1,Φ =

(
0 kβ
β 0

)
), where 0 ̸= β ∈ H0(L2K). Then the family (3.1.2) is

∇~,R = d+

 0 ~−1kβ + ~R2β|k|
~−1β + ~R2 k

|k|β 0

 .
Define µ = ~2R2 k

|k|
β
β . Then µ is a Beltrami differential. Further ∇~,R determines a branched

projective structure compatible with Xµ with branching divisor div(β). Its extension class [ω] is
trivial.

3.5 Geometric interpretation of results

3.5.1 Curves in B(M)

Let (L⊕L−1,
(

0 α
β 0

)
) be a polystable SL(2,R)-Higgs bundle with β ̸= 0. Assume that div(α) ≥

div(β)) and |R2~2| ≤ 1 (or |R2~2| < 1 if deg(L) = 0). Then, by Theorems 3.3.1 and 3.4.4, the
partial oper structure on E given by the filtration 0 ⊂ L ⊂ E and the flat connection ∇~,R

determines a branched projective structure. For each ~ and R, we will denote this structure
by Pα

β (~, R) ∈ B(M) or just by P(~, R) whenever α and β are fixed. By construction these
branched projective structures lift to SL(2,C), so by a slight abuse of notation we shall also
write P(~, R) = (∇~,R, L), i.e., as a pair consisting of a flat SL(2,C)-connection and a transverse
line subbundle (cf. Theorem1.12.4). Note that the dependence on ~ and R is continuous, also
for R = 0, since the connection ∇~,R in the configuration space of flat connections depends
continuously on the parameters (Remark 3.1.8). The structure P(~, R) is compatible with the
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Riemann surface Xµ, and thus the forgetful map T : B(M) → T(M) takes P(~, R) 7→ [Xµ]. In
all cases, regardless of the degree of L, the Beltrami differential µ is given by the expression

µ = ~2R2α

β
h2

R = ~2R2h2
R

αβ

|β|2
|α|
|α|

= ~2R2h2
R

|α|
|β|

αβ

|αβ|
,

where hR is the solution of the scaled vortex equations for (α, β), β ̸= 0 and it is understood
that µ = 0 if α = 0. Using Lemma 3.1.4 in the case deg(L) ̸= 0, or the fact that α = kβ and
hR = |k|−1/2, when deg(L) = 0 (Proposition 3.4.4), for some constant k ∈ C∗ we can write µ
as:

µ = ~2R2h2
R

|α|
|β|

αβ

|αβ|
=

~2R2 k
|k|

β
2

|β|2 if deg(L) = 0

~2R4h2 |α|
|β|

αβ
|αβ| if deg(L) ̸= 0

(3.5.1)

where h is the solution of the unscaled vortex equations for (R2α, β). In conclusion, if we fix a
pair (α, β) with div(α) ≥ div(β) and β ̸= 0 and denote the subset of valid parameters ~ and R
by

D = {(~, R) ∈ C∗ × R+
0 | |~2R2| ≤ 1} or

D = {(~, R) ∈ C∗ × R+
0 | |~2R2| < 1} for deg(L) = 0,

we get a map Pα
β : D → B(M) given by (~, R) 7→ Pα

β (~, R). Thus we have continuous maps

D → B(M) → T(M)
(~, R) 7→ Pα

β (~, R) 7→ Xµ(~,R),

where the associated complex structure Xµ(~,R) is determined by µ = µ(~, R) in equation (3.5.1).
We remark that the map is not injective. In particular, µ(~, R) = µ(~′, R′) if ~2R2 = ~′2R′2

for degree zero, or ~2R4 = ~′2R′4, for non-zero degree. We can also fix ~ ∈ C∗, and in that
case we obtain a curve Pα

β (R) := Pα
β (~, R) in B(M) projecting to a curve γ(R) = Xµ(~, R)

in Teichmüller space. In the next section, we study the geometry of this curve which, in the
degree zero case, we show to be a Teichmüller geodesic.

3.5.2 Teichmüller geodesics and disks

Recall the results of subsection 2.4.1, where we described geodesics for the Teichmüller metric in
T(S). Observing the constructed µ in equation (3.5.1) for the case of deg(L) = 0 we immediately
conclude that the curve γ(t) is a (reparameterization) of a Teichmüller geodesic ray.

Theorem 3.5.1. Let Pkβ
β (R) be the R-family of branched projective structures associated

with the conformal limit of E = L ⊕ L−1, with L4 ∼= O, and Higgs field ϕ =
(

0 kβ
β 0

)
, where

0 ̸= β ∈ H0(L2K) and k ∈ C∗, and γ(R) = Xµ(R), with µ(R) = ~2R2 k
|k|

β
2

|β|2 , be the curve
of associated Riemann surface structures in T(S). Assume |~2R2| < 1. Then γ(R) is (a
reparameterization of) a geodesic ray.



3.5 Geometric interpretation of results 65

Remark 3.5.2. Note that the ray is associated to − arg(~2)kβ2 ∈ H0(L4K2) ∼= H0(K2). By
allowing ~ to vary, we analogously get (a reparameterization of) the Teichmüller disk associated
with kβ2.

3.5.3 Reality properties for nonzero degree

Let us now study the family Pα
β (~, R) for some specific parameters in the case where deg(L) ̸= 0.

We will show that there exist values of ~ and R for which the structure Pα
β (~, R) is a branched

hyperbolic structure, cf. Definition 1.5.2. We have seen before branched hyperbolic structures
have real holonomy ρ : π1(M) → PSL(2,R) ⊂ PSL(2,C). The condition of having real holonomy
is, however, not enough to guarantee that the structure is hyperbolic, as there exist (even
unbranched) projective structures with real holonomy which are not hyperbolic (cf. for example
Hejhal (1975)).

The condition for the holonomy to be real can be written in gauge theoretic terms related
to the flat bundle (E,∇~,R). Recall that the holonomy of this connection lifts to SL(2,C)
the holonomy of the projective structure Pα

β (~, R). It is real if, up to gauge equivalence, it
lies in SL(2,R), and this happens if ∇~,R preserves a real structure τ . A real structure τ is
a C-antilinear isomorphism of the bundle E such that τ2 = IdE . The condition that ∇~,R

preserves τ means that ∇~,R ◦ τ = τT ∗M ◦ ∇~,R, where τT ∗M just acts as τ on the section part,
and as complex conjugation, mapping K → K, on the form part. Equivalently τT ∗M is the
tensor product of τ and the real structure on the complex cotangent bundle T ∗M . To write in
gauge theoretic language the stronger condition that the image of d must be in H2, we note that
this is the same as asking for the image of d to avoid the the real locus RP1 ⊂ CP1 which is the
fixed point set of the involution z 7→ z of CP1. This translates to the condition that the line
bundle L ⊂ E induced by d should avoid the fixed point locus of τ in E, i.e., the intersection
should only be the zero section of L (cf. Alessandrini (2019)). Using this description we have
the following.

Proposition 3.5.3. Let deg(L) ̸= 0 and |~|2R2 = 1. Then Pα
β (~, R) is a branched hyperbolic

structure.

Proof. The real structure τ defining the SL(2,R)-structure in E = L ⊕ L−1 is given in a
holomorphic frame by τ(v) = Cv with C =

(
0 h−1

R
hR 0

)
. It is preserved by ∇~,R = d+B if and

only if ∇~,R ◦ τ = τT ∗M ◦ ∇~,R which in this frame reads dC + BC = CB. Using expression
(3.1.2), one concludes that this happens if and only if

~−1αhR + ~R2βhR = ~−1βh−1
R + ~R2αhR

⇐⇒ (~−1 − ~R2)αhR = (~−1 − ~R2)βhR. (3.5.2)

In particular, if |~|2R2 = 1 the equality is valid. Thus the holonomy of ∇~,R is real. To check
that Pα

β (~, R) is branched hyperbolic we simply note that L avoids the fixed locus of τ . This
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happens since vectors fixed by the real structure, i.e., such that τ(v) = v, are of the form
( v1

hv1

)
and the vectors in L are multiples of ( 1

0 ).

Remark 3.5.4. In the particular case ~ = 1 and R = 1, this result recovers the branched
hyperbolic structures constructed (Biswas et al., 2021).

3.5.4 Deformations of geometric structures

Using the previous results one can interpret our construction in terms of geometric structures on
X as follows. Start by fixing ~ with |~| = 1. Then the branched projective structure Pα

β (1, R)
interpolates between a branched hyperbolic structure, at R = 1, and a partial oper, i.e., a
complex projective compatible with X, at R = 0. In the specific case of ~ = 1, the branched
hyperbolic structure is exactly the one coming from the non-abelian Hodge correspondence.

In particular, take any Higgs bundle in a Hitchin component, i.e., one of the form(
E = K1/2 ⊕K−1/2,Φ =

(
0 q

1 0

))
,

where q ∈ H0(K2) is a quadratic differential. In the previous notation α = q and β = 1, and
the condition div(α) ≥ div(β) is satisfied, so our construction goes through. The non-abelian
Hodge correspondence produces a connection which is the holonomy of the (unbranched)
Fuchsian hyperbolic structure Pq

1(1, R = 1). Then, for ~ = 1, and by varying R, we obtain
the curve Pq

1(1, R) of complex projective structures. This curve interpolates between this
Fuchsian structure, at R = 1, and the structure of oper determined by q, at R = 0, i.e., the
complex projective structure compatible with X and which is obtained using the Schwarz
parameterization with quadratic differential precisely equal to q.

3.6 A more general proof of the existence of the conformal
limit

In this section, we give a more general proof of Lemma 3.1.4 which allows one to prove the
existence and compute the conformal limit of polystable SL(2,C)-Higgs bundles.

So we let (∂E ,Φ) be an SL(2,C)-Higgs bundle which is polystable. We denote by E de
smooth underlying bundle which is fixed throughout. We also write (E, ∂E) to denote the
underlying holomorphic bundle. By the non-abelian Hodge correspondence (Theorem 2.1.6)
there is a metric HR harmonic with parameter R, i.e. HR is a solution of the Hitchin’s equation
with parameter R for (∂E ,Φ). If the (E, ∂E) is polystable as a vector bundle then (∂E , 0) is a
polystable SL(2,C)-Higgs bundle. This means, as in Theorem 3.4.2, that there exists a metric
H0 satisfying Hitchin’s equation for this Higgs bundle with zero Higgs field and we can calculate
the limit directly as in the discussion just before that theorem. It is obtained by taking the



3.6 A more general proof of the existence of the conformal limit 67

limit in the family (2.2.1) and it is

∇~,0 = AH0 + ~−1Φ, (3.6.1)

where AH0 is the Chern connection associated to the Hermitian metric H0. It is a partial oper
(possibly in Simpson’s terms, allowing the trivial filtration). We remark that in the strictly
Higgs-polystable case, the metric H0 is not unique but in fact unique up to the scaling of each
factor. This is not a problem, as the limit connection is independent of the choice of such a
scaling.

So we suppose now (E, ∂E) is not polystable as a vector bundle, and fix R ∈ R+. Then E

admits a maximally destabilizing holomorphic line subbundle L ⊂ E. Consider its orthogonal
complement L⊥ ∼= E/L with respect to HR. Then E admits a smooth decomposition of the form
E ∼= L ⊕ L⊥. The trivialization of det(E) induces an isomorphism L⊥ ∼= E/L ∼= L−1, which
gives a decomposition E = L⊕ L−1. With respect to this decomposition, the harmonic metric
is diagonal (because it is diagonal in L⊕ L⊥). Since it is compatible with the trivialization of
det(E) it can be written in E = L⊕ L−1 as HR =

(
hR 0
0 h−1

R

)
, where hR is a hermitian metric

in L. Of course, in general, the decomposition is not a holomorphic one, i.e. ∂E is written
as ∂E =

(
∂L ω

0 ∂L−1

)
, with ω ∈ Ω(0,1)(L2) the Dolbeault representative of the extension class.

With it, the Higgs field is written as Φ =
(

a b
c −a

)
, where a ∈ Ω(1,0)(K), b ∈ Ω(1,0)(L2K) and

c ∈ Ω(1,0)(L2K), satisfying ∂E(Φ) = 0. We will use this decomposition to prove a result similar
to Proposition 3.1.4, but valid in this more general case. Of course, any polystable Higgs bundle
(even when the underlying bundle is polystable as a bundle) admits a decomposition like this, for
instead of the maximally destabilizing subbundle we just use any holomorphic line subbundle L.
The point is that here the decomposition is not necessary to calculate the conformal limit, which
we already know how to do in that case. We remark that this decomposition is reminiscent of
the work in (Li, 2019a, §3.2).

Proposition 3.6.1. Let (E, ∂E ,Φ) be a polystable SL(2,C)-Higgs bundle and R ∈ R+. Take
the smooth decomposition E = L ⊕ L−1, where L ⊂ E is a holomorphic line subbundle, and
(∂E ,Φ) reads

∂E =
(
∂L ω

0 ∂L−1

)
Φ =

(
a b

c −a

)
,

with ω ∈ Ω(0,1)(L2), a ∈ Ω(1,0)(X), b ∈ Ω(1,0)(L2) and c ∈ Ω(1,0)(L−2), satisfying ∂E(Φ) = 0.
Let HR =

(
hR 0
0 h−1

R

)
be a hermitian metric in E, with hR a hermitian metric in L.

Then HR is a solution of Hitchin’s equation with parameter R for (∂E ,Φ) if and only if
H =

(
h 0
0 h−1

)
, with h = hR

R , is a solution of the (unscaled) Hitchin’s equation for

∂E′ =
(
∂L Rω

0 ∂L−1

)
Ψ =

(
Ra R2b

c −Ra

)
.
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Proof. Throughout the proof we take a holomorphic local frame for L and one for L−1, these
induce a (non-holomorphic) frame on E. With respect to these frames, hR and h are represented
by functions, and ∂L = ∂ = ∂L−1 , where ∂ is the usual ∂-operator on forms. The sections a, b, c
are represented by 1-forms. Inside matrices we will suppress the wedge product.

Let us start by showing that ∂E (Φ) = 0 if and only if ∂E′(Φ) = 0. This guarantees that
the pair (∂E′ ,Ψ) is a Higgs bundle. The condition ∂E(Φ) = 0 can be written as

∂E(Φ) = ∂ (Φ) +
(

0 ω

0 0

)
∧ Φ − Φ ∧

(
0 ω

0 0

)
=
(
∂a+ ωc ∂b

∂c −∂a− ωc

)
= 0.

Note that Ψ and ∂E′ are obtained from Φ and ∂E by the substitutions a Ra, b R2b, c c

and ω  Rω. Upon performing these substitutions the above equation is kept unchanged. This
is because the matrix on the left side of the last equality has its diagonal multiplied by R and
the right upper corner multiplied by R2, which are both non-zero terms that we can cancel
out. We conclude that ∂E(Φ) = 0 holds if and only if ∂E′(Φ) = 0 does. For the rest of the
proposition let us calculate

Φ∗R = H−1
R ΦT

HR =
(
a h−2

R c

h2
Rb −a

)
=:
(
a∗R c∗R

b∗R −a∗R

)
, (3.6.2)

where the ∗R on the right are defined entry-wise and are just the adjoint with respect to the
metric hR on L. The commutator is

[Φ,Φ∗R ] = Φ ∧ Φ∗R + Φ∗R ∧ Φ =
(

bb∗R + c∗Rc 2 (a∗Rb− c∗Ra)
2 (b∗Ra− a∗Rc) cc∗R + b∗Rb

)
. (3.6.3)

The Chern connection is AHR
, with connection matrix which we still denote by AHR

given by
(cf. Lemma A.1.1)

AHR
= H−1

R ∂HR +
(

0 ω

0 0

)
−H−1

R

(
0 0
ω 0

)
HR =

(
∂ log hR ω

−ω∗R −∂ log hR

)
, (3.6.4)

with ω∗R = h2
Rω. This connection has curvature FAHR

= dAHR
+AHR

∧AHR
, i.e.,

FAHR
=
(
∂∂ log hR ∂ω

−∂ω∗R −∂∂ log hR

)
+
(

ωω∗R 2(∂ log hR)ω
−2ω∗R(∂ log hR) ω∗Rω

)
.

The R-scaled Hitchin equation is FAHR
+R2[Φ,Φ∗R ] = 0 and so it reads(

∂∂ log hR ∂ω

−∂ω∗R −∂∂ log hR

)
+
(

ωω∗R 2(∂ log hR)ω
−2ω∗R(∂ log hR) ω∗Rω

)
+

+R2
(

bb∗R + c∗Rc 2 (a∗Rb− c∗Ra)
2 (b∗Ra− a∗Rc) cc∗R + b∗Rb

)
= 0. (3.6.5)

Noting that hR = Rh, we see that ∂ log hR = ∂ log(Rh) = ∂ log h+ ∂ logR = ∂ log h, since R is
constant. Denoting by ∗ the adjoint with respect to h we see further that

a∗R = a = a∗
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b∗R = h2
Rb = R2h2b = R2b∗

c∗R = h−2
R c = R−2hc = R−2c∗

ω∗R = h2
Rω = R2h2ω = R2ω∗.

By using these identities, equation 3.6.5 is equivalent to(
∂∂ log h ∂ω

−R2∂ω∗ −∂∂ log h

)
+
(

R2ωω∗ 2(∂ log h)ω
−2R2ω∗(∂ log h) R2ω∗ω

)
+

+R2
(
R2bb∗ +R−2c∗c 2

(
a∗b−R−2c∗a

)
2
(
R2b∗a− a∗c

)
R−2cc∗ +R2b∗b

)
= 0. (3.6.6)

Distributing the R2 in the last term, and rearranging we get(
∂∂ log h R−1∂(Rω)

−R∂(Rω∗) −∂∂ log h

)
+
(

RωRω∗ 2R−1(∂ log h)(Rω)
−2R(Rω∗)(∂ log h) Rω∗Rω

)
+

+
(

R2bR2b∗ + c∗c 2R−1 (Ra∗R2b− c∗Ra
)

2R
(
R2b∗Ra−Ra∗ c

)
cc∗ +R2b∗R2b

)
= 0.

(3.6.7)

If we multiply the upper right corner by the non-zero R and the lower left corner by R−1 we
see that the equation is equivalent to(

∂∂ log h ∂(Rω)
−∂(Rω∗) −∂∂ log h

)
+
(

(Rω) (Rω∗) 2(∂ log h)(Rω)
−2(Rω∗)(∂ log h) (Rω∗) (Rω)

)
+

+
(

(R2b) (R2b)∗ + c∗c 2
(
(Ra)∗ (R2b) − c∗ (Ra)

)
2
(
(R2b)∗ (Ra) − (Ra)∗ c

)
cc∗ + (R2b)∗ (R2b)

)
= 0.

(3.6.8)

This is just the condition that H satisfies the unscaled Hitchin equation for (∂E′ ,Ψ). (To see
this note this condition is obtained from 3.6.5 making the substitutions that take (∂E ,Φ) to
(∂E′ ,Ψ), HR to H, and by removing the R2 factor before the last term). The conclusion is that
HR satisfies the scaled equation for (∂E ,Φ) if and only if H satisfies the unscaled equation for
(∂E′ ,Ψ).

We now proceed as in Section 3.1.
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Corollary 3.6.2. Let (∂E ,Φ) be a polystable SL(2,C)-Higgs bundle with underlying unstable
bundle (E, ∂E), decomposed as E = L ⊕ L−1 as above with L the maximally destabilizing
subbundle, and denote by HR =

(
hR 0
0 h−1

R

)
the harmonic metric HR with parameter R for

∂E =
(
∂L ω

0 ∂L−1

)
Φ =

(
a b

c −a

)

Then the pointwise limit of H :=
(

h 0
0 h−1

)
, with h = hR

R , as R → 0 exists as a metric and it is a
solution of the unscaled Hitchin equation for the polystable Higgs bundle

∂E′
0

=
(
∂L 0
0 ∂L−1

)
Ψ0 =

(
0 0
c 0

)
.

Proof. By Proposition 3.6.1, H is a solution of the unscaled Hitchin equation for

∂E′ =
(
∂L Rω

0 ∂L−1

)
Ψ =

(
Ra R2b

c −Ra

)
.

By varying R ∈ R+
0 , this describes a continuous path (E = L⊕L−1, ∂E′(R),Ψ(R)) of polystable

Higgs bundles. Note that it is a well defined path since, (∂E′(R),Ψ(R)) is stable for all R ∈ R+
0 .

This happens even for R = 0. Firstly, because the pair (∂E′
0
,Ψ0) is a Higgs bundle, since

∂E′
0

· Ψ0 = 0, given that a similar equality holds for (∂E′ , ·Ψ) (cf. the proof of Proposition 3.6.1
for the calculation). And secondly because the pair (∂E′

0
,Ψ0) is polystable (in fact stable),

because deg(L) > 0. (The subbundle L is maximally destabilizing.) Under the homeomorphism
to the space of harmonic bundles, this is mapped to a continuous path of metrics, and limR→0H

is the metric associated to (∂E′
0
,Ψ0).

Remark 3.6.3. It is clear the proof is not valid for polystable Higgs bundles with an underlying
bundle that is polystable in the vector bundle sense. In that case, even though the bundle has
a decomposition of the required form, the tentative limit (∂E′

0
,Ψ0) is not a polystable Higgs

bundle, and so there is no harmonic metric. This could of course be seen directly from the
definition of H because in this exceptional case, the limit HR as R → 0 does exist. This means
the H defined in the statement does not have a limit as R → 0. This is entirely analogous to
the situation in Section 3.4.2.

We are now able to prove the existence of the conformal limit.
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Theorem 3.6.4. Let (∂E ,Φ) be a polystable SL(2,C)-Higgs bundle with underlying unstable
bundle (E, ∂E), decomposed as E = L ⊕ L−1 as above, with L the maximally destabilizing
subbundle, and denote by HR =

(
hR 0
0 h−1

R

)
the harmonic metric HR with parameter R for

∂E =
(
∂L ω

0 ∂L−1

)
Φ =

(
a b

c −a

)
.

Then, the ~-conformal limit ∇~,0 of (∂E ,Φ) exists. Using the holomorphic frame of E induced
by a holomorphic frame of L, the coordinate representation of ∇~,0 is

∇~,0 = AH0 +
(

0 ω

0 0

)
+~−1Φ+~Ψ∗H0

0 = d+
(
∂ log h0 + ~−1 a ω + ~−1b+ ~ ch−2

0
~−1c −∂ log h0 − ~−1 a

)
, (3.6.9)

where H0 :=
(

h0 0
0 h−1

0

)
is a solution of the (unscaled) Hitchin equation for

∂E′
0

=
(
∂L 0
0 ∂L−1

)
Ψ0 =

(
0 0
c 0

)
.

Proof. Recall that the conformal limit Equation 2.2.1 is

∇~,R = AHR
+ ~−1Φ + ~R2Φ∗HR .

By Proposition 3.6.1, for each R ∈ R+, we can write HR as H =
(

h 0
0 h−1

)
, with h = hR

R , is a
solution of the (unscaled) Hitchin’s equation for

∂E′ =
(
∂L Rω

0 ∂L−1

)
Ψ =

(
Ra R2b

c −Ra

)
.

By Corollary 3.6.2, the limit of H as R → 0 exists and we have limR→0H = H0 and limR→0 h =
h0. We also note that ∂z logR = 0, and thus ∂z log hR = ∂z log h. We are now able to compute
the limits of each term appearing in the conformal limit. Writing the Chern connection (whose
calculation is in Equation 3.6.4) in terms of H and h = hR

R we have:

AHR
=
(
∂ log hR ω

h2
Rω −∂ log hR

)
=
(
∂ log h ω

R2h2ω −∂ log h

)

−→
R→0

(
∂ log h0 ω

0 −∂ log h0

)
= AH0 +

(
0 ω

0 0

)
.

Now for the last term ~R2Φ∗HR (whose calculation is in Equation 3.6.2) we have in terms of h:
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R2Φ∗HR = R2
(
a h−2

R c

h2
Rb −a

)
= R2

(
a R−2h−2c

R2h2b −a

)
=
(
R2a h−2c

R4h2b −R2a

)

−→
R→0

(
0 h−2

0 c

0 0

)
= Ψ∗H0

0 .

Combining all these, the conclusion is that

∇~,R = AHR
+ ~−1Φ + ~R2Φ∗HR −→

R→0
AH0 +

(
0 ω

0 0

)
+ ~−1Φ + ~Ψ∗H0

0 .

Remark 3.6.5. We recover the result in (Collier and Wentworth, 2018, Proposition 5.1).
To combine both cases, where the underlying bundle can be polystable as a bundle, we make

a definition of a kind of associated graded Higgs bundle similar to the one in Definition 2.3.1.
Note that there, the graded is associated with a filtration. Here, we will associate it to a Higgs
bundle (basically by choosing a suitable filtration, but nonetheless the two definitions differ.)
So, if the underlying bundle of (∂E ,Φ) is unstable we take the decomposition E = L ⊕ L−1

where L is the maximally destabilizing subbundle. Then we define the graded associated to the
Higgs bundle

∂E =
(
∂L ω

0 ∂L−1

)
Φ =

(
a b

c −a

)

as the Higgs bundle GrE = L⊕ L−1 with

∂Gr E =
(
∂L 0
0 ∂L−1

)
ΦGr E =

(
0 0
c 0

)
. (3.6.10)

If the underlying E is polystable as a vector bundle, we define the graded associated to (∂E ,Φ)
as (∂E , 0). In both cases, the associated graded is polystable. Then the conformal limit of a
SL(2,C)-Higgs bundle is written in the unified form of the following corollary.

Corollary 3.6.6. Let (∂E ,Φ) be a polystable SL(2,C)-Higgs bundle. Write HGr E for the
solution of the (unscaled) Hitchin’s equation for the associated graded (∂Gr(E),ΦGr(E)). Set
BGr(E) = ∂E − ∂Gr(E). Then the ~-conformal limit of (∂E ,Φ) exists in the configuration space
and it is

AHGr E
+BGr(E) + ~−1Φ + ~Φ∗HGr E

Gr E . (3.6.11)

Of course, when E is polystable as a bundle we have BGr(E) = 0 and ΦGr E = 0, and we
recover equation 3.6.1. When E is unstable we have BGr(E) = ( 0 ω

0 0 ) and ΦGr E = ( 0 0
c 0 ), from

where we recover Theorem 3.6.4.
Remark 3.6.7. Note that the associated graded is the limit as t → 0 of the Higgs bundle
t · (∂E ,Φ), i.e. under the well-known C∗ action on the moduli space. This means that Corollary
3.6.6 relates the conformal limit with the limit of this action.
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This form of the result opens the door for a possible generalization to the higher rank case,
which would be interesting to further pursue. We also note that there should be a construction
similar to the one performed in chapter 3 in this more general case. If we write the lower left
corner of the matrix representation of ∇~,R = AHR

+ ~−1Φ + ~R2Φ∗HR in this case we find it
to be equal to

−ωh2
R + ~−1c+ ~R2h2

Rb =
(
~−1c(z) − ω(z)h2

R

)(
dz + ~2R2h2

Rb(z)
c(z) − ~h2

Rω(z)
dz

)
. (3.6.12)

The quantity µ = ~2R2h2
Rb

c−~h2
Rω

is expected to play the same role as before, being a Beltrami
differential under some restrictions on ω and b. In that case, essentially the same proof goes
through to show that these define complex projective structures branched over c.





Chapter 4

Geometry of the harmonic map and
elementary representations

This chapter collects several results about the geometry of the harmonic map, and it was born
out of an attempt to better understand (non-)elementary representations, and also the origin
of the Beltrami differential that does come up in the construction of projective structures in
Chapter 3. Most of these results were already known, but we collect and present them in a
slightly different format. As a general reference for this chapter, we point to the excellent
lecture notes (Li, 2019a, Parts I and II).

4.1 Equivariant maps

In this section, we present some expressions related to the geometry of the harmonic map
associated with a Higgs bundle. Most of these are known, but the presentation is non-standard.
We start by recalling the non-abelian Hodge correspondence as in Section 2.1. So we let X be
a closed Riemann surface of genus g ≥ 2, and (∂E , ϕ) be an SL(n,C)-Higgs bundle which is
polystable. By Theorem 2.1.6, there exists a Harmonic metric H that satisfies (the unscaled)
Hitchin equation (i.e. with parameter R = 1)

FAH
+ [Φ,Φ∗H ] = 0,

where AH is the Chern connection for ∂E and H. This is the condition for the connection
∇ = AH +Φ+Φ∗ to be flat, i.e. (E,∇) is a flat vector bundle. Its holonomy is the homomorphism
ρ : π1(X) → SL(n,C) obtained by ∇-parallel transport of a fiber Ex0

∼= Cn of E over the point
x0 ∈ X. In fact, parallel transport establishes an isomorphism of E with the flat SL(n,C)-vector
bundle Eρ = X̃ ×ρ Cn. This isomorphism is not unique, since it depends on a choice of the
point x0 and of the identification Ex0

∼= Cn, but it is canonical after these choices. This is an
isomorphism of flat bundles, which means that the flat connection ∇ gets identified with the
natural flat connection on Eρ. Further, the metric H gets mapped to a metric in Eρ. Note

75
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that locally, since the isomorphism is given by parallel transport, it amounts to choosing flat
coordinates for E. We will choose, once and for all, such an isomorphism, and we will choose
it with the extra property that the metric Hx0 at the point x0 ∈ X is mapped to the identity
metric in Cn. We can do this by changing the identification of the fiber Ex0

∼= Cn if needed.
We will assume this isomorphism has been performed already. This means we work directly in
Eρ with the natural flat connection and still denote the metric H under the isomorphism by H.
Note that the metric and the flat connection are enough to get back the holomorphic structure
and the Higgs field, and it is only a matter of seeing how these objects are expressed under this
isomorphism, which we will do now. We recall the well-known interpretation of the real Higgs
field Ψ = Φ + Φ∗H as the derivative of the harmonic metric.

Lemma 4.1.1. Let (∂E ,Φ) be a polystable Higgs bundle with associated flat connection ∇ =
AH + Ψ. Then for any sections s, t ∈ Ω0(E) we have ∇(H)(s, t) = −2H(s,Ψt).

Remark 4.1.2. Chose a smooth frame for E and write ∇ = d+B, where B is the connection
matrix, and use still H for the matrix representation of the metric, and Ψ for the one of
the real Higgs field. Then this identity is written as (d + B) · H = −2HΨ or equivalently
dH −HB−B

T
H = −2HΨ. (Recall that the action of ∇ is extended to H which is a 2-tensor.)

When flat coordinates are chosen this is written as dH = −2HΨ, since then B = 0. This is the
usual way this result is written (cf. for example (Guichard, 2017, Lemma 10.12)).

Proof. Recall that A is compatible with H if d(H(s, t)) = H(As, t) +H(s,At). The expression
∇(H) denotes the extension of H to 2-tensors. By definition it is

(∇H)(s, t) = d(H(s, t)) −H(∇(H)s, t) −H(s,∇(H)) =
= d(H(s, t)) −H(As, t) −H(s,At) −H(Ψs, t) −H(s,Ψt)

= −H(Ψs, t) −H(s,Ψt) = −H(Ψs, t) −H(Ψ∗Hs, t) = −2H(Ψs, t).

Remark 4.1.3. Note that this lemma is valid in general. Indeed if E is a complex vector bundle
with a connection ∇ and Hermitian metric H, and we write the unique decomposition of
∇ = A+ Ψ, where A is a connection compatible with H and Ψ is self adjoint, i.e. Ψ∗H = Ψ,
then, we will still have ∇(H)(s, t) = −2H(s,Ψt), for any local sections s, t ∈ Ω0(E). This is
because the same proof holds in this situation.

We can now use this to write Φ in terms of ∇ and H. Indeed, taking the (1, 0)-part, we
have immediately ∇1,0(H)(s, t) = H(s,Φt). This is enough to express all objects of interest in
Eρ. So denote by [x̃, v] the points of Eρ = X̃ ×ρ Cn, with x̃ ∈ X̃ a lift of x ∈ X and v ∈ Cn.
The sections s ∈ Ω0(Eρ) are of the form x 7→ [x̃, s̃(x̃)], where s̃ : X̃ → Cn is a ρ-equivariant
map. The correspondence s 7→ s̃ is the well-known identification of sections of a flat bundle
with the equivariant maps to the model fiber. The metric H is in the same fashion represented
by x 7→ [x̃, H̃x̃], where H̃ : X̃ → (Cn)∗ ⊗ (Cn)∗ ∼= Cn×n, with x̃ 7→ H̃x̃, is a ρ-equivariant map,
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where the action of SL(n,C) on Cn is extended to the dual spaces and tensor products as usual.
In particular G ∈ SL(n,C) acts on the matrix representing the metric H̃x̃ as G−T

H̃x̃G
−1. Note

also that the trivialization of det(Eρ) = X̃ ×ρ ∧nCn ∼= X̃ ×ρ C = X × C (since det(ρ) = 1) is
represented by a constant section c ∈ C. Recalling that we have chosen the identification of
the fiber in such a way that Hx0 = Id, and that H induces this trivialization on det(Eρ), we
conclude that there is a point where c = 1, which then holds globally. This means, in particular,
that det(H̃) = 1, i.e. the matrix H̃x̃ is positive-definite and with unit determinant. We will
denote the set of such matrices by D ⊂ Cn×n. The flat connection ∇ is the natural connection

∇ : Ω0(Eρ) → Ω1(Eρ)
[x̃, s̃(x̃)] 7→ [x̃, ds̃(x̃)].

Now the Higgs field satisfies the identity ∇1,0(H)(s, t) = H(s,Φt), and mapping this to Eρ, we
get, from the expression above of ∇ as d, that ∇(H̃) = dH̃, since the connection matrix of ∇ is
trivial, and thus

[x̃,∇1,0(H̃)x̃] = [x̃, ∂H̃x̃] = −2[x̃, H̃x̃Φ̃x̃].

This identifies the trace-free Higgs Field Φ ∈ Ω0(End0(Eρ)) as the map

x 7→ [x̃, Φ̃x̃] = [x̃,−1
2H̃

−1
x̃
∂H̃x̃]

where Φ̃ = −1
2H̃

−1∂H̃ : X̃ → End0(Cn) is the corresponding ρ-equivariant map. Note that it

follows from Φ∗ = H−1ΦT ΦH that Φ∗ corresponds to the equivariant map Φ̃∗ = H̃−1Φ̃
T
H̃ =

−1
2H̃

−1∂H̃, since H̃ is a hermitian matrix. Finally the holomorphic structure ∂E = ∇(0,1) − Φ∗

corresponds to the operator ∂ − Φ̃∗ = ∂ + 1
2H̃

−1∂H̃, i.e.

∂E : Ω0(Eρ) → Ω(0,1)(Eρ)

[x̃, s̃(x̃)] 7→ [x̃, (∂ − Φ̃∗)s̃(x̃)] = [x̃, (∂ + 1
2H̃

−1∂H̃)s̃(x̃)].

Now we recall that AH is the Chern connection of H and ∂E . This means A(0,1)
H = ∂E and

AH(H) = 0 (equivalent to the compatibility of AH and H, dH(s, t) = H(AHs, t) +H(s,AHt)).
Using these expressions, the Chern connection is identified with the operator AH = d+ Ã which
has connection matrix (cf. Lemma A.1.1)

A = (−Φ̃∗) − (−Φ̃∗)∗ + H̃−1∂H̃ = 1
2H̃

−1∂H̃ − 1
2H̃

−1∂H̃ + H̃−1∂H̃ = 1
2H̃

−1∂H̃ + 1
2H̃

−1∂H̃

= 1
2H̃

−1dH̃, i.e.
AH : Ω0(Eρ) → Ω(Eρ)

[x̃, s̃(x̃)] 7→ [x̃, (d+ Ã)s̃(x̃)] = [x̃, (d+ 1
2H̃

−1dH̃)s̃(x̃)].
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Let us collect the information about the equivariant maps in Table 4.1.

Table 4.1 Table representing the relations between objects in Eρ and their equivariant coun-
terparts. The metric H on Eρ corresponds to the map H̃ in X̃ which is valued in the space
of positive-definite Hermitian matrices in Cn×n with unit determinant. The Higgs fields Φ,
Φ∗ and Ψ are trace-free End0(Eρ)-valued one forms corresponding to Φ̃, Φ̃∗ and Ψ̃ which are
equivariant End0(Cn) = slCn valued one-forms on X̃. The operators ∇, AH and ∂E are defined
on sections s ∈ Ω0(Eρ) or, equivalently, by the expressions on the corresponding spaces of
equivariant mappings s̃ : X̃ → Cn given in the table.

Object in Eρ Equivariant object
H H̃ : X̃ → D
∇ d

Φ Φ̃ = −1
2H̃

−1∂H̃

Φ∗ Φ̃∗ = −1
2H̃

−1∂H̃

Ψ Ψ̃ = −1
2H̃

−1dH̃

∂E ∂ + 1
2H̃

−1∂H̃

AH d+ Ã = d+ 1
2H̃

−1dH̃

Finally, we are only left with the Hitchin equation, which corresponds to the flatness of ∇.
Since the connection ∇ is simply the trivial connection d, the flatness is automatic (for we are
using flat sections to build the isomorphism with Eρ). Thus Hitchin equation boils down only
to the holomorphy of the Higgs field, i.e ∂E · Φ = 0 which is written equivariantly as

−1
2(∂ + 1

2H̃
−1∂H̃) · H̃−1∂H̃ = 0. (4.1.1)

Remark 4.1.4. Note that from the point of view of the original bundle E the map H̃ : X̃ → D
is not canonically defined since it depends on the isomorphism E ∼= Eρ we have fixed from the
beginning. Nonetheless, changing this isomorphism (the point x0 and the identification of the
fiber) corresponds to changing H̃ by the global action of G on D (and possibly the realization of
π1(X) as group of deck transformations of X̃). This means that the geometry of the situation
is preserved, and we can safely refer to the map H̃.

4.2 The geometry of the target space

Let us consider the equivariant map induced by the Harmonic metric H̃. This is a map
H̃ : X̃ → D ⊂ Cn×n, where D is the set of positive definite Hermitian matrices with determinant
one,

D =
{
H ∈ Cn×n|H = H

T
, H ≻ 0 and det(H) = 1

}
. (4.2.1)
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This is the smooth manifold whose geometry determines the possible harmonic metrics, and
whose study occupies this subsection.

Remark 4.2.1. Note that D is just a model for the homogeneous space SL(n,C)/ SU(n), which
is more commonly used. These spaces are diffeomorphic by the map F : SL(n,C)/SU(n) →
D sending [G] 7→ G

−T
G−1. This map is equivariant, changing the left multiplication in

SL(n,C)/ SU(n) to the left action on metrics, where G act as G−T
HG−1. Indeed

F(G1[G2]) = G1G2
−T (G1G2)−1 = G1G2

−T
G−1

2 G−1
1 = G1

−T F(G2)G−1.

Also note that D is not a complex manifold. For example, in the case of n = 2, one can show
this is a model for hyperbolic space H3.

Since H ≻ 0 is an open condition, the tangent bundle to D is obtained by linearizing the
identities det(H) = 1 and H = H

T . Since the second is linear, only in the first one we calculate
d(det(H)) = tr(adj(H)dH) = det(H) tr(H−1dH) = tr(H−1dH), where we have used Jacobi’s
formula in the first equality together with the fact that det(H) = 1. This means we have an
identification as

TR
HD =

{
M ∈ Cn×n|M = M

T and tr(H−1M) = 0
}
. (4.2.2)

The complexification of the tangent bundle TDC = TD is simply TRD ⊗RC and it has a natural
trivialization given by

ξ : TDC → D × End0(Cn) (4.2.3)

MH ⊗ α 7→ (H,−1
2αH

−1MH). (4.2.4)

The choice of the constant −1
2 is used to simplify the expressions that will follow.

This maps the canonical real structure τcan sending MH ⊗ α 7→ MH ⊗ α to the one given
by τ(H,Ψ) = (H,Ψ∗H ) = (H,H−1ΨT

H), since ξ ◦ τcan = τ ◦ ξ, as the following computation
shows:

ξ ◦ τcan(MH ⊗ α) = ξ(MH ⊗ α) = −1
2αH

−1MH = −1
2αH

−1MH
T
H−1H =

= −1
2αH

−1H−1MH
T
H = −1

2(αH−1MH)∗H = τ(H, 1
2αH

−1MH) = τ ◦ ξ(MH ⊗ α).

The real bundle TRD ⊂ TDC is thus identified with the fixed locus of τ in D × End0(Cn). The
tangent action on TDC gets changed to the SL(n,C) action on D × End0(Cn). Indeed, if we
denote the tangent action by G ·MH = G

−T
MHG

−1 ∈ T
G

−T
HG−1DC we have

ξ(G ·MH) = ξ(G−T
MHG) = −1

2GH
−1G

T
G

−T
MHG = −1

2G
−1MHG = G−1ξ(MH)G.
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The Killing form on SL(n,C) is B(Y1, Y2) = 2n tr(Y1Y2). It descends to slCn/sun, the tangent
space of SL(n,C)/SU(n) to [id]. This will then induce a left-invariant metric on TRD. Indeed to
calculate its value at TR

HD recall the equivariant diffeomorphism F([G]) = G
−T
G−1 of Remark

4.2.1. We map TR
HD to TR

IdD using the left action on D and then pull-back by the differential of
F at [G] = [id]. So if H = G

−T
G−1 then a vector M in TR

HD gets mapped to GT
MG in TR

IdD by
using G−1. The differential of F at [G] = [id] is dF|id = d(G−T

G−1)|id = −dG− dG
T , and thus

it is the map Y 7→ −Y −Y
T , for Y ∈ slCn/sun. Its inverse is the map Z 7→ −1

2Z+sun ∈ slCn/sun.
Composing this with the action we get −1

2G
T
MG+ sun. Thus one obtains the left-invariant

Riemannian metric on TRD which, since H = G
−T
G−1, is

⟨M1,M2⟩H = 1
4B

(
G

T
M1G , G

T
M2G

)
= n

2 tr(GGT
M1GG

T
M2) = n

2 tr(H−1M1H
−1M2).

This metric can be extended as a hermitian metric on TDC as

⟨M1 ⊗ α1,M2 ⊗ α2⟩H = α1α2
n

2 tr(H−1M1H
−1M2) = n

2 tr
(
H−1M1 ⊗ α1

T
H−1M2 ⊗ α2

)
.

Using ξ we can induce a metric in D×End0(Cn) that makes this trivialization isometric, simply by
setting ⟨⟨Ψ1,Ψ2⟩⟩H := ⟨ξ−1(Ψ1), ξ−1(Ψ2)⟩H . We can calculate ξ−1 to obtain ξ−1(H,Ψ) = −2HΨ
at H. Thus we get

⟨⟨Ψ1,Ψ2⟩⟩H = 4⟨HΨ1, HΨ2⟩H = 2n tr
(
H−1Ψ1

T
HH−1HΨ2

)
= 2n tr(Ψ∗H

1 Ψ2). (4.2.5)

The equivariance of ξ and the fact that SL(n,C) acts by isometries in D guarantee that SL(n,C)
also acts by isometries on both factors of D × End0(Cn).

4.3 Geometric features of the induced equivariant map

So we are ready to study the differential geometry of the equivariant map induced by the
harmonic metric H̃ : X̃ → D, which we call harmonic map for short (and will be justified later
in Section 4.6). Recall that the derivative of a map f between manifolds can be calculated
in coordinates as the Jacobian matrix

(
∂fj

∂xk

)
. An equivalent way to write this matrix makes

use of the entry-wise differential (df j), where we take the exterior derivative of the coordinate
representation(f j) of f . It is then contracted to (df j)y ∂

∂xk
, which yields the same matrix. The

image of a vector-field Y = Y k ∂
∂xk under the differential is simply

∑
k

(
∂fj

∂xkY
k
)

which using
this second representation reads∑

k

(df j)y ∂

∂xk
Y k = (df j)y∑

k
Y k ∂

∂xk
= (df j)yY .

Of course inside linear spaces the coordinate representations of maps are global, and we write
f as a global tuple of functions. When we are dealing with matrix spaces, f is represented by a
matrix and the entry-wise differential is simply df . Thus the derivative applied to a vector field
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Y is simply dfyY . We will use this notation from now onward. So the derivative of H̃ : X̃ → D
is simply the matrix of one-forms in X̃ acting by contraction,

dH̃ : TRX̃ → TRD (4.3.1)
Y 7→ dH̃yY . (4.3.2)

This extends linearly to the complexification as dH̃ : TCX̃ → TCD with the same expression
Y 7→ dH̃yY . We can compose it with the trivialization ξ to obtain a map to D × End0(Cn)
which is simply

(Id,−1
2H̃

−1dH̃) : TX̃ → D × End0(Cn) (4.3.3)

Y 7→ (H̃,−1
2H̃

−1dH̃yY ). (4.3.4)

Since the trivialization swaps the tangent action with the adjoint action on End0(Cn) we
conclude that for any Y the second component −1

2H̃
−1dH̃yY is equivariant. This means it can

be interpreted as a section of the bundle Ω0(End(Eρ)). The conclusion is that, even though
the derivative per se is not well defined as a section of a bundle over the surface X, after the
trivialization, it becomes a well-defined section of a bundle over X. Thus the ρ-equivariant
harmonic map H̃ shares similarities with maps out of compact surfaces, in the sense that, even
though H̃ itself is not defined on the compact surface X, its tangent data is determined by a
bundle over X.

If we let Y vary, this is actually the one form −1
2H̃

−1dH̃ on S̃ with values in End(Eρ),
acting by contraction. We can now compare with Table 4.1 and observe that this is in fact the
equivariant map Ψ̃ associated with the real Higgs field Ψ. This means that the derivative of
the Harmonic map is identified with the real Higgs field, where the image of a vector field on
the surface is obtained by contraction. From now on we will stop using the explicit distinction
between the equivariant maps and the objects in Eρ.

Lemma 4.3.1. Under the previous identification, the derivative of the harmonic map H̃ : X̃ →
D corresponds to the real Higgs field Ψ. The image of a vector field is obtained by contraction
with Ψ.

Note that we can just take the (1, 0) and the (0, 1) parts to obtain the identifications with Φ
and Φ∗. The endomorphism part of Φ is simply Φy ∂

∂z
. By the lemma, this is simply the image

of ∂
∂z under the derivative of the harmonic map H̃, since Φ∗

y ∂
∂z

= 0. Analogously, the image

of ∂
∂z is Φ∗

y ∂
∂z

, the endomorphism part of Φ∗. We are in conditions to study the rank of the
harmonic map. To ease notation we write Φy ∂

∂z
= φ and Φ∗

y ∂
∂z

= φ∗, that is

Φ = φdz and Φ∗ = φ∗ dz.
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Note also that, since the action of SL(n,C) in D is made by diffeomorphisms, it preserves the
rank. This means that the set of points of X̃ where the rank of the derivative of H̃ : X̃ → D is
constant, i.e the level sets {rank = c}c=0,1,2, is, in fact, invariant. Thus it covers a set in X,
which we call Rc ⊂ X. By a slight abuse of language, we refer to the rank of the derivative of
H̃ at points of X (and not on the universal cover X̃).

Theorem 4.3.2. At the point z ∈ X, the rank of the harmonic map H̃ : X̃ → D is the
C-dimension of the vector space generated by φ and φ∗ inside the fiber (End0(Eρ))z, where the
Higgs field is Φ = φdz. More precisely, at z the map has

1. rank 2 if and only if φ and φ∗ are linearly independent;

2. rank 1 if and only if φ = k φ∗, for k ∈ C∗ with |k| = 1, but φ ̸= 0 ̸= φ∗;

3. rank 0 if and only if φ = 0 = φ∗.

Proof. This is simply a consequence of the fact that φ and φ∗ are the images of the complex
vectors ∂z and ∂z under the (complexification of) the derivative of the harmonic map. Since
{∂z, ∂z} form a C-basis of TzX̃ and the real rank is the same as the complex rank of the
complexification, the result follows.

In conclusion, the local features of the harmonic map are controlled by the endomorphism
parts of the Higgs field and its adjoint. It is a particularly interesting question to study how the
representation interacts with the harmonic map, and concretely for which representations and
base Riemann surface structure X is H̃ : X̃ → D an immersion. Thus it might be particularly
useful to have some more expressions relating the Higgs field and its adjoint with the degeneracy
locus R = R0 ∪ R1 of the harmonic map, i.e. the set of points in X where the map has
non-maximal rank.

Lemma 4.3.3. For all points z ∈ X we have

tr(φφ∗)2 −
∣∣∣tr(φ2)

∣∣∣2 ≥ 0,

with equality if and only if the point lines in the degeneracy locus i.e. z ∈ R.

Remark 4.3.4. Recall that φ is the endomorphism part of the Higgs field, and so the square
φ2 is an endomorphism, and thus not automatically zero, which contrasts with the two form
Φ ∧ Φ = 0.

Proof. We will use the equivariant objects to prove this. Recall the hermitian metric on
TCD ∼= D × End0(Eρ) is ⟨⟨Ψ1,Ψ2⟩⟩H = 2n tr(Ψ∗H

1 Ψ2). The Cauchy–Schwarz for this metric is

|⟨⟨Ψ1,Ψ2⟩⟩H |2 ≤ ⟨⟨Ψ1,Ψ1⟩⟩H⟨⟨Ψ2,Ψ2⟩⟩H ,
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with equality if and only if Ψ1 and Ψ2 are linearly dependent. This inequality for the metric
can be pulled-back under H̃ : X̃ → D, i.e. it can be calculated at Ψ1 = φ̃∗ and Ψ2 = φ̃ reading

| tr φ̃2|2 = | tr(φ̃φ̃)|2 ≤ tr(φ̃φ̃∗) tr(φ̃∗φ̃) =
(
tr(φ̃φ̃∗)

)2
,

since tr(φ̃φ̃∗) is real. This is the inequality to be proved. Equality holds if and only if φ̃ and
φ̃∗ are linearly dependent. By Theorem 4.3.2 this happens if and only if the derivative of the
harmonic map has non-maximal rank, i.e. if and only if z is in the degeneracy locus R.

Remark 4.3.5. Since the harmonic metric is actually real-analytic this realizes R as a real-
analytic space, i.e a real analytic subvariety of the closed Riemann surface X given by the zero
locus of the real-analytic function tr(φφ∗)2 − | tr(φ2)|2.

4.4 The induced Riemannian metric

The harmonic map H̃ : X̃ → D can be used to pull back the ambient Riemannian metric on D
to the surface X̃, and, as SL(n,C) acts by isometries, this tensor is actually invariant and it
descends to X. It is a Riemannian metric at the immersed points of X̃. This happens precisely
at the points where the derivative of the harmonic map has maximal rank. At the level of the
compact surface X, this induces a Riemannian metric on X −R, i.e. outside the degeneracy
locus. We call this tensor the induced metric (even though it degenerates at R). It is useful to
have an explicit expression for this metric, which we calculate. So the pullback of the metric
is just obtained by applying the derivative of the Harmonic metric in Equation 4.3.4 to the
entries of the hermitian metric ⟨⟨·, ·⟩⟩ given in Equation 4.2.5:

h(Y1, Y2) = ⟨⟨Ψ1,Ψ2⟩⟩ = 2n tr(Ψ∗H
1 Ψ2) with Ψj = −1

2H̃
−1dH̃yYj .

Recall that the Hermitian metric ⟨⟨·, ·⟩⟩ was the Hermitian extension of the real Riemannian
metric (i.e. antilinear in the first factor). This means that the bilinear extension of the
Riemannian metric is g(Y1, Y2) = h(Y 1, Y2). Using the real structure τ in D × End0 Cn (cf.
paragraph after the definition of the trivialization ξ, Equation 4.2.4) this gets mapped to

g(Y1, Y2) = ⟨⟨Ψ∗
1,Ψ2⟩⟩ = 2n tr(Ψ1,Ψ2) with Ψj = −1

2H̃
−1dH̃yYj . (4.4.1)

This is the C-bilinear tensor which is the complexification in TX = TCX of the Riemannian
metric in TRX. We conclude the following result.

Proposition 4.4.1. (Li, 2019b, Equation (5.1)) If the Higgs field is Φ = φdz the metric
induced by the harmonic map on X is

g = 2n
(
tr(φ2) dz2 + tr(φφ∗) (dz ⊗ dz + dz ⊗ dz) + tr(φ2) dz2

)
.



84 Geometry of the harmonic map and elementary representations

Proof. If g is the (bilinear complexification) of the Riemannian metric, then its local expression
is

g

(
∂

∂z
,
∂

∂z

)
dz ⊗ dz + g

(
∂

∂z
,
∂

∂z

)
dz ⊗ dz + g

(
∂

∂z
,
∂

∂z

)
dz ⊗ dz + g

(
∂

∂z
,
∂

∂z

)
dz ⊗ dz.

(4.4.2)

Recall that φ = Φy ∂
∂z

= −1
2H̃

−1dH̃y ∂
∂z

and that φ∗ = Φ∗
y ∂

∂z

= −1
2H̃

−1dH̃y ∂
∂z

(by equation 4.3.4,
Lemma 4.3.1 and the discussion after it). So we can substitute this in Equation 4.4.1 defining
g, to calculate the expression in the proposition.

We can perform the check-up calculation to verify that indeed this metric degenerates only
on R as defined by Lemma 4.3.3.

Remark 4.4.2. Note that the conformal part of the metric is 2n tr(φφ∗) (dz ⊗ dz + dz ⊗ dz).
The function e(φ) = 2n tr(φφ∗) is the energy density of the field. We can calculate it as the the
two form 2n tr(Ψ ∧ Ψ∗) = e(φ)dz ∧ dz.

One of the most relevant features of this induced metric is that it is not a conformal metric.
This happens if and only if the dz2 term vanishes, or equivalently, tr(φ2) = 0. If this equality
holds at a point, the harmonic map is infinitesimally conformal there (i.e. it preserves angles
in that tangent space). If this equality holds everywhere the harmonic map H̃ : X̃ → D is a
conformal map. Of course, this is to be interpreted at points outside R, for in that set, the
map lowers its rank, and the metric degenerates. One might perform the usual construction
(see for example (Jost, 2002, eg. Lemma 3.11.1)) to obtain conformal coordinates for g.

Proposition 4.4.3. Let Φ = φdz be the Higgs field and g the induced metric on X by the
harmonic map,

g = 2n
(
adz2 + b(dz ⊗ dz + dz ⊗ dz) + adz2

)
, a = tr(φ2) b = tr(φφ∗H ).

Then g can be written as
g = σ (η ⊗ η + η ⊗ η) ,

where η = dz+µdz, µ ∈ C with µ ∈ C and σ ∈ R. These quantities are given by the expressions

σ = 2nb+
√
b2 − |a|2
2 and µ = a

b+
√
b2 − |a|2

.

The set of points where g degenerates is precisely the one where µ is such that |µ| = 1.

Proof. Upon simplifying η = dz + µdz on g = σ (η ⊗ η + η ⊗ η) we get

g = 2σµ dz2 + σ(1 + |µ|2)(dz ⊗ dz + dz ⊗ dz) + 2σµ dz2.



4.4 The induced Riemannian metric 85

We start by noting that 2σµ = 2na, and 2σµ = 2na (take notice that σ is real). So only the
calculation of the middle term is left. Using this first equality again we notice

σ(1 + |µ|2) = σ + σµµ = 2nb+
√
b2 − |a|2
2 + na

a

b+
√
b2 − |a|2

=

= n

b+
√
b2 − |a|2

((
b+

√
b2 − |a|2

)
)2 + |a|2

)
=

= n

b+
√
b2 − |a|2

(
b2 + b2 + 2b

√
b2 − |a|2

)
= 2nb,

where we have used the inequality b2 − |a|2 ≥ 0 of Lemma 4.3.3, on the first to last equality.
Finally |µ| = 1 if and only if

|a|2 =
(
b+

√
b2 − |a|2

)2
⇐⇒

⇐⇒ |a|2 − b2 − b2 + |a|2 − 2b
√
b2 − |a|2 = 0

⇐⇒ |a|2 − b2 − b
√
b2 − |a|2 = 0.

writing r =
√
b2 − |a|2 this is equivalent to the quadratic equation r2 − br = 0 which has

solutions b = 0 or r = 0. The first case corresponds to b = tr(φφ∗) = 0 which means the norm
of the Higgs field is zero. This happens if and only if the Higgs field is zero, i.e. in the case
where the metric is everywhere degenerate. In particular, we also have r = 0 in this case. On
the non-degenerate case, the r = 0 condition is precisely the one that describes the set where g
degenerates.

Remark 4.4.4. When |µ| < 1, the coordinates v satisfying the Beltrami equation ∂v
∂z = µ∂v

∂z are
conformal for g (compare with Section 2.4).

It is also possible to calculate the Gaussian curvature (along with the connection matrix) of
this metric, but the computations are rather cumbersome. We include for reference the result,
whose calculation can be retrieved from the one in the proof of (Hitchin, 1987, Theorem (11.2)),
and shall be explored further somewhere else.

Proposition 4.4.5. The Lévi-Civita connection of the metric g induced by the harmonic map
is

θ = d+ 1
1 − |µ|2

((C1 + µC2) dz + (C2 + µC1) dz) , (4.4.3)

with C1 = ∂zµ − ∂µ log(σ) and C2 = −∂zµ, where ∂µ = 1
1−|µ|2 (∂z − µ∂z) and the rest of the

notation is as in Proposition 4.4.3.

Of course, the curvature form is then dθ + θ ∧ θ.
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4.5 Second fundamental form

After the calculation of the Riemannian metric (first fundamental form), one can calculate
the second fundamental form of H̃ : X̃ → D. Recall that for general submanifolds this is the
2-tensor valued in the normal bundle NH̃ ⊂ TRD

IIR(Y1, Y2) =
(
∇D

H̃∗Y1
(H̃∗Y2)

)⊥
= ∇D

H̃∗Y1
(H̃∗Y2) − H̃∗∇X

Y1Y2,

where ∇D is the Levi-Civita in D and ∇X the original Levi-Civita connection on X or on X̃

(we pick the metric g0 compatible with the Riemann surface structure). This is just the classical
Gauss Formula, cf. for example (Dajczer and Tojeiro, 2019, Section 1.1). Of course, we will
prefer working with the complexifications of these objects. For the C-linear extensions, the
same equality holds inside TD = TCD, but we can now apply the trivialization ξ in Equation
4.2.4 and look at its second component. This will be a 2−tensor on X̃ valued on SL(n,C). As
before, by equivariance, it will correspond to a tensor valued on End0(Eρ) which we will try to
identify in the context of Higgs bundles, as we have been doing throughout this section. So our
goal is to make more explicit the tensor

II(Y1, Y2) = ξ2
(
∇D

H̃∗Y1
(H̃∗Y2) − H̃∗∇X

Y1Y2
)

∈ End0(Cn),

where ξ2 is the second component of ξ. To begin with we need to calculate the Levi-Civita
connection of D. Recall that TD is seen as a matrix space (cf. the comments at the beginning
of Subsection 4.3), this means that a vector field in TD is a matrix Z which is a function of

H ∈ D. The action of a vector field Z1 on another one Z2 is Z1 · (Z2) = dZ2yZ1 =
(
∂Zj

2
∂ak

Zk
1

)
j,k

,

where ak are matrix coordinates on D.

Lemma 4.5.1. The (complexification of the) Levi-Civita connection of D is

∇D : X(D) × X(D) → X(D) (4.5.1)

(Z1, Z2)H 7→ ∇D
Z1Z2 = dZ2yZ1 − 1

2
(
dHyZ1H

−1Z2 + Z2H
−1dHyZ1

)
. (4.5.2)

Proof. We need to verify that this is torsion-free and compatible with the metric. Observe that
the operator d is taken in the manifold D. Further, the point H ∈ D appears as its representation
in coordinates on the right-hand side. That is, the entries of H, aij are coordinates in D. This
means H = (ajk) is just the identity map in D. Thus dH is the matrix of differentials (dajk). It
follows that (dHyZ1)jk = (dajk)yZ1 = (Z1)jk, i.e. dHyZ1 = Z1. So, for the torsion we calculate

∇D
Z1Z2 − ∇D

Z2Z1 = dZ2yZ1 − dZ1yZ2 − 1
2
(
Z1H

−1Z2 + Z2H
−1Z1 − Z2H

−1Z1 − Z1H
−1Z2

)
= [Z1, Z2] + 0.
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This means the connection is torsion-free. Now for the compatibility with the metric. Write

∇DZ = dZ − 1
2
(
dHH−1Z + ZH−1dH

)
.

We will prove that for real vector fields Z1 and Z2 we have

d⟨Z1, Z2⟩ = ⟨∇DZ1, Z2⟩ + ⟨Z1,∇DZ2⟩.

Recall that ⟨Z1, Z2⟩ = n
2 tr(H−1Z1H

−1Z2) is the Riemannian metric in TRD. So the left-hand
side reads

d⟨Z1, Z2⟩ = n

2 d tr(H−1Z1H
−1Z2) =

= −n

2 tr(H−1dHH−1Z1H
−1Z2) + n

2 tr(H−1dZ1H
−1Z2)

−n

2 tr(H−1Z1H
−1dHH−1Z2) + n

2 tr(H−1Z1H
−1dZ2).

The right-hand side reads

⟨∇DZ1, Z2⟩ + ⟨Z1,∇DZ2⟩ =

= n

2 tr
(
H−1

(
dZ1 − 1

2
(
dHH−1Z1 + Z1H

−1dH
))

H−1Z2

)
+ n

2 tr
(
H−1Z1H

−1
(
dZ2 − 1

2
(
dHH−1Z2 + Z2H

−1dH
)))

=

= n

2 tr
(
H−1dZ1H

−1Z2
)

+ n

2 tr
(
H−1Z1H

−1dZ2
)

− n

2 tr
(
H−1Z1H

−1dHH−1Z2
)

− n

2 tr
(
H−1dHH−1Z1H

−1Z2
)
.

Since the two sides are equal, this proves the real connection is compatible with the metric.
Since the Lévi-Civita connection is the unique torsion-free connection compatible with the
metric, this concludes the proof.

This clarifies a computation already appearing in (Donaldson, 1987, Lemma a)).
We can now map this under ξ to obtain the connection

ξ2
(
∇D

Z1Z2
)

= −1
2

(
H−1dZ2yZ1 − 1

2
(
H−1dHyZ1H

−1Z2 +H−1Z2H
−1dHyZ1

))
. (4.5.3)

We will now pull-back the Levi-Civita connection ∇D under H̃ to obtain the term ∇D
H̃∗Y1

(H̃∗Y2).
Recalling that the derivative of the harmonic map in TD is dH̃ acting on vectors Y ∈ TX̃ as
dH̃yY (cf. Equation 4.3.1) we just need to substitute Zj = dH̃yYj in the expression. We have
to be careful about the notation here, since in the expression of the connection ξ2 ◦ ∇D the
d represents the differential in D, i.e. for the coordinates a of D, and in the derivative of the
harmonic metric dH̃yY it represents the the operator d in X̃, i.e. with respect to z coordinates.
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If we write da for the first case, the chain rule reads daf
dH̃yY

= d(f ◦ H̃)yY , which can be seen
in a coordinate computation. Thus we obtain

ξ2
(
∇D

H̃∗Y1
(H̃∗Y2)

)
= −1

2H̃
−1d

(
dH̃yY2

)
yY1

+1
4
(
H̃−1dH̃yY1H̃

−1dH̃yY2 + H̃−1dH̃yY2H̃
−1dH̃yY1

)
.

To simplify the first term we note the identity

d
(
H−1dH̃yY2

)
yY1

= −H̃−1dH̃yY1H̃
−1dH̃yY2 + H̃−1d

(
dH̃yY2

)
yY1

which implies

−1
2H̃

−1d
(
dH̃yY2

)
yY1

= −1
2d
(
H−1dH̃yY2

)
yY1

− 1
2H̃

−1dH̃yY1H̃
−1dH̃yY2 .

Noting that by Lemma 4.3.1, the derivative −1
2H̃

−1dH̃ corresponds to the real Higgs field
Ψ̃ = ψdz we write −1

2H̃
−1dH̃yYj = ψj . So the identity reads

−1
2H̃

−1d
(
dH̃yY2

)
yY1

= dψ2yY1 − 2ψ1ψ2.

Substituting back in the equation for connection we get

ξ2
(
∇D

H̃∗Y1
(H̃∗Y2)

)
= dψ2yY1 − 2ψ1ψ2 + ψ1ψ2 + ψ2ψ1 = dψ2yY1 − ψ1ψ2 + ψ2ψ1.

Going back to Table 4.1 we note that the Chern connection A for the harmonic metric gets
identified with d − 1

2H̃
−1dH̃ which means dyY1 − ψ1 = dyY1 + 1

2H̃
−1dH̃yY1 = AyY1 . Thus the

connection is just identified with the action of A on the endomorphism ψ2, i.e. AyY1 · (ψ2). We
conclude that the pull-back of the Levi-Civita gets identified with the connection A acting on
endomorphisms.

Lemma 4.5.2. The pull-back of the Levi-Civita ∇D with respect to the harmonic map H̃ : X̃ → D
is identified with the Chern connection A of ∂E and H, acting on End(E).

For the second term ξ2(H̃∗∇X
Y1
Y2) in the second fundamental form II(Y1, Y2) we cannot sim-

plify it much without explicitly writing the Levi-Civita ∇X . So, using the fact that −1
2H̃

−1dH̃

identifies with the real Higgs field (Lemma 4.3.1), we have ξ2(H̃∗∇X
Y1
Y2) = −1

2H̃
−1dH̃y∇X

Y1
Y2

=
Ψy∇X

Y1
Y2
. The conclusion is the invariant description of the second fundamental form.

Proposition 4.5.3. The complex second fundamental form of the harmonic map H̃ : X̃ → D
is identified with the End0(E)-valued 2-tensor

II(Y1, Y2) = (AyY2 · (ΨyY1))⊥ = AyY2 · (ΨyY1) − Ψy∇X
Y1

Y2
, (4.5.4)

where A is the Chern connection of the Higgs bundle with real Higgs field Ψ and ∇X is the
Levi-Civita connection of the conformal metric g0 on X.
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4.6 The harmonic equation and the second fundamental form

We can now relate the geometry we have described with the classical theory of harmonic maps.
In general, a map f : X → M from a Riemann surface X to a Riemannian manifold M is called
harmonic if its tension field is zero. The tension field is defined as

τ(f) = 4∇ ∂
∂z

(
∂f

∂z

)
, (4.6.1)

where ∇ is the pull-back of the Levi-Civita connection of M and ∂f
∂z is the section ∂f

∂z = f∗
(

∂
∂z

)
of the pullback bundle f∗TM . It is well known that this definition is equivalent to the usual
definition of a Harmonic map as a critical point of an energy functional, or as one for which
the trace of the second fundamental form vanishes. For the expression presented here see for
example (Jost, 2017, Equation 10.1.13.). Under the corresponding representations we have set
up, for f = H̃ the pull back connection ∇ is identified with the connection A on End0(E) and
the section f∗

(
∂
∂z

)
with the image of ∂

∂z under the derivative of the harmonic map, i.e with
Ψy ∂

∂z
= Φy ∂

∂z
. Thus the tension field is represented by

τ(H̃) = Ay ∂
∂z

·
(
Ψy ∂

∂z

)
= ∂Ey ∂

∂z

(
Φy ∂

∂z

)
, (4.6.2)

and it vanishes if and only if the Higgs field is holomorphic. Thus we conclude that, in this
setup, the holomorphicity of the Higgs field is equivalent to the harmonicity of H̃ in the classical
sense. Note that this is the only restriction needed, for Hitchin’s equation is automatically
satisfied, since it is equivalent to the flatness of the connection ∇ = A + Φ + Φ∗ which was
already used to build the harmonic map H̃ (under the guise of the isomorphism of E with Eρ).
This is also the trace of the second fundamental form

tr II = II
(
∂

∂x
,
∂

∂x

)
+ II

(
∂

∂y
,
∂

∂y

)
= 4 II

(
∂

∂z
,
∂

∂z

)
= ∂Ey ∂

∂z

(
Φy ∂

∂z

)
,

since the mixed Christoffel symbols ∇X
∂

∂z

∂
∂z of the complexification of the Levi-Civita connection

on X are zero (Ballmann, 2006, Equation 4.36). Note that this means the only non-zero
term in the second fundamental form is II

(
∂
∂z ,

∂
∂z

)
= II

(
∂
∂z ,

∂
∂z

)
. This is the traceless second

fundamental form. It also means that for the harmonic map, II is zero if and only if the
traceless second fundamental form is. A map for which the second fundamental form vanishes
is called totally geodesic. This is because it sends (parameterized) geodesics in the domain
to (parameterized) geodesics in the target ambient space (Xin, 1996, after Definition 1.2.1).
Noting that the Levi-Civita connection is ∇X

∂
∂z

∂
∂z = ∂z log g0

∂
∂z , the conclusion is that

Proposition 4.6.1. The harmonic map H̃ : X̃ → D for the Higgs field Φ = φdz is totally
geodesic if and only if its traceless second fundamental form vanishes, i.e.,

II
(
∂

∂z
,
∂

∂z

)
= Ay ∂

∂z
·
(
Φy ∂

∂z

)
− Ψy∂z log g0

∂
∂z

= A
(1,0)
y ∂

∂z

· (φ) − ∂z log g0φ = 0. (4.6.3)
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Remark 4.6.2. Recall that the (1, 0)-part of the connection A(1,0) acts on φ with the commutator
as usual.

4.7 Examples with SL(2,R) representations

4.7.1 Hitchin component and uniformization

For a quick application let us consider the Hitchin component in SL(2,C) as in Example 3.1.3.
So the Higgs bundle is of the form(

E = K1/2 ⊕K−1/2,Φ =
(

0 q
1 0

))
,

for a choice K1/2 of square root of the canonical bundle K and q ∈ H0(K2) a quadratic
differential.

Proposition 4.7.1. The harmonic map for Higgs fields in the SL(2,C)-Hitchin component is
an immersion.

Proof. This Higgs field is nowhere zero (because of the 1 in the lower left corner), and so by
Proposition 4.3.2, the Harmonic map has non-zero rank. The harmonic metric is known to
diagonalize and so the adjoint Higgs field is Φ∗ =

(
0 h−2

qh2 0

)
. Note that the endomorphism part

of the fields cannot be proportional. Indeed, the constant of proportionality k(z) would have to
satisfy

q(z) = k(z)h−2(z)
k(z)qh2 = 1.

By multiplying both equalities we would have qqh2 = h−2, which is impossible, since ||q||2 =
qqh4 < 1, by the maximum principle, as shown by Hitchin in (Hitchin, 1987, Theorem 11.2).
(Or verify that ||q||2 is the norm of the Beltrami differential in Theorem 3.3.1). This means
that, by Proposition4.3.2, the harmonic map cannot have rank one.

We can further calculate that the connection A is as before. Expressing the connection
in terms of the metric g = h−2 in TX as in Equation 3.1.1 we have d +

(
− 1

2 ∂ log g 0
0 1

2 ∂ log g

)
.

Writing Φ = φdz this means that the traceless second fundamental form is

II
(
∂

∂z
,
∂

∂z

)
= ∂zφ+

(
−1

2∂z log g 0
0 1

2∂z log g

)
φ− φ

(
−1

2∂z log g 0
0 1

2∂z log g

)
− ∂z log(g0)φ

=
(

0 ∂zq(z) − q(z)∂z log g(z) − q(z)∂z log g0(z)
∂z log g(z) − ∂z log g0(z) 0

)

=
(

0 ∂zq(z) − q(z)∂z log (g(z)g0(z))
∂z log g(z)

g0(z) 0

)
.
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The conclusion is that the harmonic map is totally geodesic for q = 0, since the solution metric
g is simply equal to g0, as the Hitchin equations reduce to the negative curvature equations.
If we see D as the hyperbolic space H3, the harmonic map is a totally geodesic embedding
onto H2 ⊂ H3. Of course, this is expected since we are dealing with the uniformizing Higgs
bundle. The pull-back metric also coincides with g0, (up to factor) since tr(φ2) = 2q = 0.
An interpretation of the proof of the uniformization theorem from the point of view of the
harmonic map could then be stated as: «A Riemann surface X is uniformizable by a Fuchsian
representation ρ because the unique ρ-equivariant harmonic map to the homogeneous space
D ∼= H3 is a conformal and totally-geodesic embedding.»

4.7.2 General case and the Beltrami differential in the construction

It is instructive to repeat the previous calculations for more general SL(2,R)-Higgs bundles.
In this case, we let (E = L ⊕ L−1,Φ =

(
0 α
β 0

)
) be a polystable SL(2,R)-Higgs bundle with

0 ≤ deg(L) ≤ g−1. Note that the polystable case with β = 0 can only happen when deg(L) = 0,
and Proposition 3.4.1 implies that α = 0 in that case. Thus the Higgs field is zero everywhere.
By Proposition 4.3.2, the harmonic map has rank zero, i.e., it is constant, mapping X̃ to a single
point. So we assume β ̸= 0. Now to study the injectivity in general observe that the rank is
zero at the simultaneous zeros of α and β. In particular when the condition div(α) ≥ div(β) is
imposed, as in Chapter 3, it implies that the derivative of the harmonic map is zero precisely at
the branching divisor div(β). Now for the locus of points of rank 1. These points are described
in Lemma 4.3.3 as the ones for which

tr(φφ∗)2 −
∣∣∣tr(φ2)

∣∣∣2 = 0,

but α and β are not simultaneously zero. So we calculate

φ =
(

0 α(z)
β(z) 0

)
φ2 =

(
α(z)β(z) 0

0 α(z)β(z)

)
a = tr(φ2) = 2α(z)β(z).

And also

φ∗ =
(

0 β(z)h−2(z)
α(z)h2(z) 0

)
φφ∗ =

(
|β|2(z)h−2(z) 0

0 |α|2(z)h2(z)

)
,

from where b = tr(φφ∗) = |β|2(z)h−2(z) + |α|2(z)h2(z). Thus the degeneracy locus is the set of
points for which

b2 − |a|2 =
(
|β|2h−2 + |α|2h2

)2
− 4 |αβ|2 = 0 ⇐⇒ (4.7.1)

⇐⇒
(
|β|2h−2

)2
+
(
|α|2h2

)2
+ 2 |αβ|2 − 4 |αβ|2 = 0 (4.7.2)

⇐⇒
(
|β|2h−2 − |α|2h2

)2
= 0 (4.7.3)

⇐⇒ |β|2h−2(z) − |α|2(z)h2(z) = 0. (4.7.4)
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Under the condition div(α) ≥ div(β) and deg(L) > 0 it follows from the maximum principle in
Lemma 3.3.3 that |α|2(z)h2(z) < |β|2(z)h−2(z) (just take ~ = 1 = R there). Thus, with this
condition, the equality can only be satisfied at the zeros of β, where both α and β vanish. The
conclusion is that under these hypotheses the harmonic map has rank 2 except at the zeros of
β where it has rank 0. For the case of deg(L) = 0, the condition div(α) ≥ div(β) translates to
α = kβ. We have already seen that in this case the metric |k|−1/2 is a solution of Hitchin’s
equation, and thus the equality holds everywhere (cf. the discussion before Theorem 3.4.4), i.e.
the map has rank 1 everywhere except at the zeros of β where it has zero derivative. Let us now
study the induced metric. Because of the degeneracy, let us assume we are in the case where
deg(L) > 0, the condition div(α) ≥ div(β), and so the harmonic map is a branched immersion.
The induced metric is

g = 4
(
2αβ dz2 + |β|2h−2 + |α|2h2 (dz ⊗ dz + dz ⊗ dz) + 2αβ dz2

)
. (4.7.5)

If we apply Proposition 4.4.3 we discover that the Beltrami differential that gives conformal
coordinates in this case is precisely

µ = a

b+
√
b2 − |a|2

= 2αβ
|β|2h−2 + |α|2h2 +

√
b2 − |a|2

.

Noting that we have already calculated (b2 − |a|2) which is the condition that determines the
branching locus, Equation 4.7.4. We have

√
b2 − |a|2 = |β|2(z)h−2(z) − |α|2(z)h2(z) and thus

µ = 2αβ
|β|2h−2 + |α|2h2 + |β|2h−2 − |α|2h2 = α

β
h2. (4.7.6)

This is exactly the same Beltrami differential that appears in the main construction in Chapter
3, for ~ = 1 = R. This provides a more geometric explanation for the introduction of such a
Beltrami differential: It is the Beltrami differential that renders conformal the induced metric
from the harmonic immersion. We can use Proposition 4.4.5 to calculate the curvature of
the metric. When we carry out this computation we obtain a metric with constant negative
curvature, and this provides another way to check that these representations correspond to
branched hyperbolic structures as in (Biswas et al., 2021) and in Section 3.5.3.

4.8 Elementary Higgs bundles

We include here a short note on elementary Higgs bundles. Let X be a Riemann surface
of genus g ≥ 2. We describe the SL(2,C)-Higgs bundles on X associated with elementary
representations ρ : π1(X) → SL(2,C) which are reductive. We make use of Higgs bundles for
non-connected groups, for which we don’t provide any details and refer to (Barajas et al., 2023).
So we take (∂E ,Φ) a polystable Higgs bundle.
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Type I

If (∂E ,Φ) is a Higgs bundle associated with an elementary representation of type I, i.e. a unitary
representation, then it is of the form (E, 0). This is a consequence of the Narasimhan–Seshadri
theorem.

Type II

If (E,Φ) is a Higgs bundle associated to a reductive elementary representation ρ of type II,

its image ρ(π1(X)) lies in the subgroup C∗ ↪→ SL(2,C) λ 7→
(
λ 0
0 1/λ

)
. This is because

type II representations are Euclidean and the reductivity condition excludes translations. As
so, the bundle E must split as a direct sum E = L ⊕ L−1, where L is a holomorphic line

bundle, and the Higgs field must be diagonal Φ =
(
α 0
0 −α

)
, with α ∈ Ω1,0(X). The fact ρ

is reductive guarantees that (E,Φ) is polystable. As (L,α) is a Higgs bundle, we see that
(∂E ,Φ) decomposes as a direct sum of Higgs bundles. Since E has degree zero, it follows from
polystability that (L,α) should have deg(L) = 0.

Type III

If (E,Φ) is a Higgs bundle associated to an elementary representation ρ of type III, its image
ρ(π1(X)) lies in the subgroup G of SL(2,C) generated by Λ and R with

Λ =
(
λ 0
0 1/λ

)
, λ ∈ C∗ and R =

(
0 −1
1 0

)
. (4.8.1)

This G is a non-connected Lie group whose identity component is G0 ∼= C∗ ↪→ SL(2,C)
embedded via λ 7→ Λ. Since it has 2 connected components (G0 and the one where R lies) it
follows that G is the extension

1 → G0 ∼= C∗ → G → π0(G) ∼= Z2 → 1

which does not split. Consider the (non-homomorphic) section s : π0(G) ∼= Z2 → G given by
[1] 7→ 1 and [R] 7→ R. Define the homomorphism

θ : π0(G) → Aut(G0)
γ 7→ θγ , with θγ(g) = s(γ)gs(γ)−1,

and the cocycle

c : π0(G) × π0(G) → G0
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by the condition

s(γ1)s(γ2) = c(γ1, γ2)s(γ1γ2).

Then one can verify that G is isomorphic to G0 ×(θ,c) π0(G), the product group with twisted
multiplication:

(g1, γ1) · (g2, γ2) = (g1θγ1(g2)c(γ1, γ2), γ1γ2).

The isomorphism is given by C∗ ×(θ,c) Z2 ∼= G0 ×(θ,c) π0(G) → G, with (g, γ) 7→ gs(γ). Let now
E be any rank 2 vector bundle over X with structure group G, and denote by P its associated
principal bundle. The quotient Y := P/G is then a π0(G) principal bundle. Since π0(G) ∼= Z2

is discrete, Y is a covering of X, whose covering group is precisely Z2. Denote by π : Y → X

the 2-to-1 quotient map, which is invariant under Z2. One can show that the bundle π∗E has
structure group G0. Using the decomposition C∗ ×(θ,c) Z2 ∼= G0 ×(θ,c) π0(G) → G, one can
further show that π∗ establishes a one-to-one correspondence between sections of E over X
and Z2-equivariant sections of π∗E over Y . This correspondence extends to Higgs bundles, and
we refer to (Barajas et al., 2023) for further details.

Note that Y is not connected if and only if P admits a reduction of structure group to G0.
In this situation we are back at the previous case of a reductive elementary representation of
type II. Otherwise, Y is connected.

Applying this correspondence we conclude that Higgs bundles of elementary representations
of type III are of the form (E,Φ) such that there exists a 2-fold cover π : Y → X with

(π∗E, π∗Φ) = (L⊕L−1,

(
α 0
0 −α

)
), where L is a line bundle and α ∈ Ω1,0(Y ) is Z2-equivariant.

Note that polystability is preserved by the correspondence since solutions of Hitchin’s equations
for (E,Φ) give rise to solutions for (π∗E, π∗Φ). And so L has degree zero.

4.8.1 Stability

Proposition 4.8.1. If (E,Φ) is a polystable Higgs bundle corresponding to a reductive rep-
resentation of elementary type III which is not of type II. Then the underlying bundle E is
stable.

Proof. Suppose (E,Φ) is elementary of type III. Then there exists a double cover π : Y → X

such that

(π∗E, π∗Φ) = (L⊕ L−1,

(
α 0
0 −α

)
),deg(L) = 0 and α ∈ Ω1,0(Y ).

Suppose that U is a line subbundle of E. We need to show that deg(U) < 0. Assume by
contradiction that deg(U) > 0 then deg(π∗U) = 2 deg(U) > 0. This means π∗U ⊂ π∗E is a
destabilizing subbundle which cannot exist since π∗E = L⊕ L−1 is in particular semistable as
a bundle. Assume now that deg(U) = 0 then deg(π∗U) = 2 deg(U) = 0. By the uniqueness
of the decomposition of π∗E = L⊕ L−1 we conclude that U ∼= L or U ∼= L−1. In either case
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π∗E ∼= π∗U ⊕π∗U−1, from where it follows that E = U ⊕U−1. This contradicts the hypothesis
of E being not of type II.

4.9 The harmonic map for elementary representations

We include the proof of how a restriction on the rank of the harmonic map implies the
elementarity of the representation. Namely, we show that if the ρ-equivariant harmonic map
has rank less than one everywhere, the representation is elementary. To prove this result we
need an equivalent characterization of elementary subgroups of Möbius transformations. Recall
that the action of PSL(2,C) on CP1, seen as C ∪ {∞} = ∂H3, can be extended to H3 ∪ ∂H3.
Here CP1 is identified with the xy-plane in R3 ∪ {∞} and H3 with the upper half-space. This
extension is called the Poincaré extension (Beardon, 1983, cf. Equation 4.1.4). When we are
using the ball model of hyperbolic space, CP1 is identified with its boundary sphere, and the
action is an extension to the closed ball. See, for example, (Beardon, 1983, §5.1) or (Ratcliffe,
2019, §5.5) for the proof of the following proposition.

Proposition 4.9.1. A group G of Möbius transformations is elementary if and only if it has
a finite orbit in H3 ∪ ∂H3. Equivalently, G is of type

(I) if it fixes a point inside H3;

(II) if it fixes a point in CP1 = ∂H3;

(III) if it preserves a hyperbolic geodesic in H3.

After this characterization, we also need further properties of Harmonic maps. In particular,
we need the following classical result.

Theorem 4.9.2. (Sampson, 1978, Theorem 3) Let f : M → N be a harmonic map between
connected Riemannian manifolds. If f has rank 1 on an open set then it maps M to a geodesic
arc in N and it has rank 1 on an open dense set.

Combining these can conclude the following.

Proposition 4.9.3. Let (∂E ,Φ) be a polystable SL(2,C)-Higgs bundle and consider the as-
sociated harmonic map H̃ : X̃ → D ∼= H3. If H̃ has non-maximal rank everywhere then the
representation associated with (∂E ,Φ) is elementary (and reductive).

Proof. The set of points where the harmonic map has rank zero R0 matches the zero set of
the Higgs field by Proposition 4.3.2. This means it is either a discrete set or all of X̃ since the
Higgs field is holomorphic. In this second case, the map is a constant point in D ∼= H3. And
this is the only possibility for rank 0 everywhere. Suppose now the rank is everywhere less
than one, but not everywhere zero. This means that it is one on an open set. By Theorem
4.9.2 then H̃ maps X̃ to a geodesic. Since the image of the harmonic map is preserved by the
representation, this means that the representation fixes either a point in H3 or a geodesic, and
by Theorem 4.9.1 it is an elementary representation.
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4.9.1 Representations associated to the construction with deg(L) = 0

Using the results of Section 3.4.2 and the proposition we can give further information about
the kind of representations that come in the construction of branched projective structures for
the deg(L) = 0 case. The condition divα ≥ div β in this case implies α = kβ and the Higgs
bundle is thus E = L⊕ L−1 with Higgs field

Φ =
(

0 kβ

β 0

)
.

We have seen already, just before Theorem 3.4.4, that |k|−1/2 is a solution of the Hitchin
equation. The degeneracy locus is given by Equation 4.7.4 which is identically satisfied. Thus
the rank of the harmonic map H̃ is one everywhere except at the zeros of β where it is zero. By
Proposition 4.9.3, these correspond to elementary representations. In fact, elementary of type
(III), except when β = 0, for they preserve the image of the harmonic map which is a geodesic.



Appendix A

Some technical results and
calculations

A.1 Chern connection

We include the expression of the Chern connection in a general (non-holomorphic) frame, as it
seems rather delicate to find it in the literature.

Lemma A.1.1. Let (E, ∂E) be a holomorphic vector bundle over a Riemann surface X. Let H
be a Hermitian metric on E. Take a local frame for E (not necessarily holomorphic). Denote
still by H the matrix representation of the metric and the one of the ∂-operator as ∂E = ∂ +C,
where C is a matrix of (0, 1)-forms. Then the Chern connection A for ∂E and H has matrix
representation

AH = d+H−1∂H + C − C∗H = H−1∂H + C −H−1C
T
H.

Proof. We need to show that AH is compatible with both H and ∂E . For the compatibility with
∂E , just take the (0, 1)-part of AH and observe it is ∂ + C which is exactly the representation
of ∂E . For the compatibility with the metric, note that AH is compatible with H if and only if
d(H(s, t)) = H(AHs, t) +H(s,AHt), for local sections s, t. In matrix form, i.e, taking s, t = ej ,
for ej in the frame, the equality reads

dH = A
T
H +HA,

where AH = d+A. Substituting back the expression for A we get

dH = ∂H + C
T
H −HC + ∂H +HC − C

T
H,

because H = H
T is Hermitian. This identity is always satisfied, and so AH is the Chern

connection.
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A.2 Parameters for reproduction of figures

The figures in Chapter 1 of domains of discontinuity were reproduced with the algorithms in
(Mumford et al., 2002). We list the parameters used here.

A.2.1 Schottky groups

For the Schottky groups, let us use the following notation for circles in the complex plane C:
we denote a circle C as a pair C = (P, r) where P ∈ C is its center and r ∈ R+ is its radius.
We start by noting that a Möbius transformation that maps the interior of the circle C = (P, r)
to the exterior of circle C ′ = (Q, s) is given by (Mumford et al., 2002, pag. 90)

z 7→ s
u(z − P ) + ru

u(z − P ) + rv
+Q

where u and v are parameters such that |u|2 − |v|2 = 1. These parameters correspond to the
freedom inside PSL(2,C) of choosing a Möbius transformation performing such a pairing of C
and C ′. In all constructions, we have used the same fixed parameters u, v for all pairs of circles
appearing in the group. So a Schottky group in our images is determined by a pair of circles
for each generator, and two global parameters u and v. This is the information we reproduce
here. Each pair of circles, together with the parameters, is to be replaced in the expression
to obtain the Möbius transformation corresponding to the generator. The values used for the
production of Figure 1.2.11 counting from the left are as follows.

First picture

C1 = (−0.80 + 0.80i, 1.99) C ′
1 = (0.30 − 1.3i, 0.37)

C2 = (0.95 − 0.60i, 0.25) C ′
2 = (1.20 − 1.35i, 0.528)

u = −1 − 1i v = 1

Second picture

C1 = (1.00 + i, 0.99) C ′
1 = (1.00 − i, 0.99)

C2 = (−0.20, 0.19) C ′
2 = (−1 + i, 0.99)

C3 = (−1.00 − i, 0.99) C ′
3 = (0.20, 0.19)

u = 2 v =
√

3

Third picture

C1 = (1.00 + i, 0.99) C ′
1 = (1.00 − i, 0.99)

C2 = (−1.00 − i, 0.99) C ′
2 = (−1.00 + i, 0.99)

u = 2 v =
√

3
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A.2.2 Quasi-Fuchsian group

For the quasi-Fuchsian group we used the recipe "Grandma’s special parabolic commutator
groups" on Box 21 of (Mumford et al., 2002, pag. 229). This is a family of two generators
depending on parameters ta and tb which, for the picture in Figure 1.2, were

ta = 1.91 + 0.05i tb = 1.91 + 0.05i.
We search the limit set up until the threshold ε = 0.005.
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