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ABSTRACT

In Cooperative Intelligent Transport Systems, road users and traffic managers share information
for coordinating their actions to improve traffic efficiency allowing the driver to adapt to the traffic
situation. Its effectiveness, however, depends on the user’s decision-making process, which is the
main source of uncertainty in any mobility system, and depends on the ability of the infrastructure
to communicate timely and reliably. It is expected that cooperation will perform optimally when
no uncertainties are present in the system, i.e. there are no communication failures, the information
is clear, the sender is trustworthy and the receiver adopts the information unconditionally. How-
ever, uncertainty is inherent to the road traffic domain, populated by boundedly rational agents in
a dynamic environment. To cope with such a complex scenario, this paper proposes a game theory
perspective based on the n-Person Prisoner’s Dilemma as a metaphor to represent the uncertainty
of cooperation underlined by communication infrastructures in traveller information systems. The
traveller information system is thus one of the participants together with N-1 vehicles in a binary
road network setting. Taking place in a dynamic environment, with en-route path recommenda-
tions, the emergence of cooperation and changes in agents’ behaviour are analysed, as well as
the effect of information percolation in both flawless and malfunctioning transmission situations.
Results highlighted a close relationship between the emergence of cooperation and network perfor-
mance, as well as the impact of the communication failure on the loss of cooperation sustainment,
which was not recovered after the system was re-established.

Keywords: n-Person Prisoner’s Dilemma, Advanced Traveller Information System, communica-
tion strategies, information percolation, Cooperative Intelligent Transport Systems, agent-based
simulation, Multi-Agent Systems
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INTRODUCTION

The accelerating phenomenon of rural exodus that characterizes contemporary society has been
accompanied by an increasing need for mobility in city and town centres, as well as for inter-
urban connections. The imbalance between transport demand and network capacity gives rise to
traffic congestion, with significant consequences for transport infrastructure. Inefficiencies have
economic, environmental and social impacts.

Cars are becoming directly or indirectly networked devices. Interaction with each other
and with the road infrastructure enables the exchange of information, which is used to coordinate
management actions and help drivers in their decision-making, the main source of uncertainty
in a mobility system. This is why Cooperative Intelligent Transport Systems (C-ITS) solutions,
assisted by an inter-vehicle and vehicle-to-infrastructure communications platform, will play a
crucial role in improving traffic efficiency, safety and security of the public, and the management
of road infrastructures.

A transport network is the backbone of urban activities, designed to accommodate the cir-
culation of people and goods in metropolitan areas. The dynamics of cities and their consequences
on traffic flows imply a continuous updating and readjustment of the system. This must obtain and
provide the most appropriate information to the exact users in a timely manner, at the appropriate
place and to the intended recipient, in order to enable informed decision-making and to influence
users towards an optimal system condition.

This work contributes with a study of information percolation strategies, with both flawless
and malfunctioning transmission situations, allowing us to shed light upon the effects of infor-
mation on the coordination mechanisms. It takes into account the topology of the road network,
the characteristics of communication networks and routing algorithms, and the composition of
transport demand. The proposed approach is leveraged on the assumption that the effectiveness of
information is highly dependent on the user’s decision-making process, which is the main source
of uncertainty in any mobility system. It also depends on the ability of the infrastructure to commu-
nicate timely and reliably, which is not always guaranteed. Considering cooperation will perform
optimally when no uncertainties are present in the system, i.e. there are no communication fail-
ures, the information is clear, the sender is trustworthy and the receiver adopts the information
unconditionally, such an ideal scenario becomes rather an utopia.

However, uncertainty is inherent to the road traffic domain, populated by boundedly ratio-
nal agents in a dynamic environment. To cope with such a complex scenario, we propose a game
theory perspective based on the n-Person Prisoner’s Dilemma as a metaphor to represent the un-
certainty of cooperation underlined by communication infrastructures in traveller information sys-
tems. The traveller information system is thus one of the participants together with N-1 vehicles
in a binary road network setting. It takes place in a dynamic environment, with a strategy to pre-
dict and disseminate the recommendation of the Advanced Traveller Information System (ATIS)
en-route, towards an optimal and fair system state. A simulation framework was implemented to
test and evaluate those strategies, as well as to analyse their impact on the network performance,
including the failure of the information service, allowing to observe the system degradation and
the agents’ behavioural changes. For the sake of simplicity, in this work social behaviour refers
to whether agents are prone to cooperation or defection, whereas the economic behaviour is asso-
ciated with the payoff balance in terms of travel time costs and their equal distribution among the
agents in the population.

The remainder of the paper is organized as follows. The next Section reviews the rele-
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vant literature. The Section entitled “Methodological Approach” presents the formalization in the
context of Game Theory, and describes the experimental framework. Section “Results and Anal-
ysis” summarizes the results of these experiments. Finally, in “Conclusion” the results and future
directions are discussed.

LITERATURE REVIEW

It is possible to identify a social dilemma in the relationship between Game Theory and the study
of car traffic, which explains the stable condition of User Equilibrium with the natural behaviour
of drivers, even though a System Optimum is rarely reached without the intervention of an infor-
mation service (/, 2). However, even if User Equilibrium is optimal for the user, this does not
necessarily mean that it is optimal for the system.

Increasing road capacity is not a viable solution for reducing congestion, as the Braess’s
Paradox has shown (cf. 3), hence the importance of rational and efficient management of existing
resources. Selfishness is an innate characteristic of human beings (4), whereby pure rationality
threatens social dilemmas. However, while consistent with selfishness, so is rationality with al-
truism (5). In (6) authors have shown cooperation in social dilemmas without external controls,
suggesting that their origin lies in human nature, but also that its emergence rate has a strong causal
link with payoffs (7).

Selfish, rational behaviour leads to suboptimal outcomes. The Nash Equilibrium in the
Prisoner’s Dilemma, obtained with a mutual defection strategy is not socially efficient. However,
it is possible for the system to reach an optimum, given the concept of partial cooperation, in which
some players are induced to behave cooperatively, while the rest opt for the rational action of de-
fection. Implemented iteratively, decision alternation leads to a Pareto-efficient solution, although
in finitely repeated games this is not an equilibrium state, as players are tempted to abandon the
strategy (8). this is also empirically verified in a route choice experiment (9), with an alternating
cooperation emerging between players, previously informed that by coordinating their actions they
would be able to achieve maximum time savings. After a certain period of adaptation, the players
learned to coordinate their actions, suggesting that through the gradual acquisition of information
cooperation between small groups can emerge spontaneously (cf. 10). Furthermore, an experiment
with public goods games also showed that the greater the heterogeneity of the group, the lower the
degree of cooperation (/1).

In the original formulation of the Prisoner’s Dilemma, with two participants in a binary
choice of different cost and congestion-sensitive routes, User Equilibrium occurs when both play-
ers choose the lowest cost route. However, the social optimum only exists when one player is
on the lowest cost route and the other on the complementary route, something hardly achievable
by two rational players in a one-shot game. With repetition, in turn, if players learn to cooperate
by alternating between faster and slower routes and share time-saving equally among themselves,
partial cooperation can become a game equilibrium (2).

Successive interactions of the same commuter community, by way of social encounter, can
define a repeated game (9), which, by promoting cooperation to alternately use better and worse
routes, can make each driver’s travel costs lower, on average, than in User Equilibrium (/2). With
a certain degree of altruism and a sufficient number of route alternations between drivers, there is
a self-organizing formation of a fair equilibrium capable of maintaining the network in an optimal
state (/3).

One of the strategies to influence drivers towards altruistic behaviour for small-scale devi-
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ations for the benefit of the common good, with suggestions to achieve a System Optimum, is to
inform them in advance about the objectives of traffic management. The result of survey and simu-
lator studies showed an increase in compliance rate (/4), however they are not directly transferable
to real traffic as they focused on one-time interactions in a laboratory environment, and drivers’
behaviour may be different. Another approach in a simple binary network was to let the agents
know about the overall daily travel time of the system. When their last action had increased it,
they responded with a change of route (/5). The result was a stable and equitable optimal system
in which everyone contributed to the common good. However, this model assumed a completely
altruistic society, something quite difficult to maintain with human drivers.

The benefits of providing rational travellers with journey time information would depend
on their knowledge and ability to predict times based on external factors (/6), enabling them to
make optimal choices, thereby contributing to reducing traffic congestion and improving the level
of service provided by road infrastructure (/7). Nevertheless, there are three adverse impacts
on the network resulting from the prevailing travel information: oversaturation, overreaction and
concentration (/8).

In reality, many travellers rely on information to make their choices, both for its cognitive
and affective value, whether in selecting routes or modes of transport (/9-217) However, increas-
ing the informational burden at the individual level leads to a state of User Equilibrium (22), as
rational agents with full knowledge will compete for the least cost paths on the road network (23).
On the other hand, because of the rational traits and cognitive limitations associated with human
behaviour, not all drivers would comply with the recommendations (24), particularly when achiev-
ing a sub-optimal result (25). As Roughgarden noted (26), route selection is a selfish act, with
no thought of the consequences of such a choice for others, since it is made in order to reach the
destination as quickly as possible.

The advent of ATIS has made it easier to provide current or even predictive information on
traffic flow to road users (cf. 27). However, not only the quantity and validity of the information
is important, but its nature also plays a relevant role (28). Traffic density is pointed out as the best
criterion for control purposes, helping to optimize the flow, to the detriment of travel time, which
introduces not only concentration but also oscillations in the system and is consequently not a good
indicator.

Perfect information draws road networks closer to the User Equilibrium state, but this is
generally sub-optimal and quite different from the System Optimum, which minimizes the aggre-
gation of travel times for all travellers. Nevertheless, if widely accepted by road users, ATIS can
contribute to the road network converging towards the System Optimum rather than User Equilib-
rium by providing the most optimal route for the system (7).

In addition to external information, travellers also generate data during their usual trips
based on the experience of previous journeys, which can be disseminated through information
sharing services. This model shows a positive correlation between percolation rate and conver-
gence to User Equilibrium (29).

The study of the effects of providing traffic recommendations on driver behaviour, in partic-
ular their impact on implicit cooperation in self-interested agents, has demonstrated that optimized
route recommendations and extrinsic incentives (rewards for compliance) in a simple binary road
network led to more efficient emergence of cooperation (22). However, although recommendations
were a condition of cooperation, with incentives increasing the acceptance rate, in a realistic road
network, the need for some kind of coordination was suggested, as indifferent participants were ob-
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served to have maintained route preference even when severely penalized. When all agents follow
the ATIS recommendations, coordinating actions will allow System Optimum to be achieved by
changing suggestions to ensure that all drivers receive the best and worst routes with approximately
the same frequency. They will thus be able to learn to cooperate without incentives, although these
are useful when cooperation between agents requires a change in behaviour against natural propen-
sities (2). However, drivers may mistrust strategic routing heavily relying on incentives (30).

In this work we explore the use of a well-known game theoretic framework to assess the
degree of cooperation between driving agents and an ATIS agent, when the latter acts as informa-
tion provider to the former. To the best of our knowledge previous works do not consider ATIS as
participant of a game. Here we will use the formalization of the n-Person Prisoner’s Dilemma to
evaluate the effectiveness of the information percolation strategies adopted by the ATIS to foster
cooperation in the other participants.

METHODOLOGICAL APPROACH

The decision-making model is implemented based on the n-Person Prisoner’s Dilemma and the
payoff matrix was grounded in the social dilemma of the “tragedy of the commons”. The partic-
ipants in the game are the driving agents constituting the population (the independent variable)
and an information service (ATIS agent), in the form of a road side unit (RSU), which provides a
route recommendation to lead the system to an optimal state. Both driving agents population and
ATIS agent follow the Multi-Agent System (MAS) paradigm. With a game played between the
information system and the driving agents, the two possible actions of Cooperation or Desertion
correspond, respectively, to the options of Accepting or Rejecting the suggestion provided by the
ATIS agent.

System Optimality

Based on Wardrop’s first principle (37), no driver can unilaterally reduce its own travel costs by
shifting to another route. This behavioural assumption leads to a deterministic User Equilibrium
(UE).

Xa
minimize Z = Z / ta(xq)dx
X 7 /0
subject to Zf” =qrs :V(1,5)
k
Xa=3 Y. Y 85 Va
r s k 7
fie >0:Vk,r,s

X, >0:VaecA

In a link a, the variable x, is equilibrium flows, 7, is the travel time, f;* the flow on path &
connecting an origin/destination pair (r,s), and ¢,y the trip rate between r and s.

According to Wardrop’s second principle (37), an optimal traffic assignment pattern, called
the System Optimum (SO), drivers cooperate with each other in order to minimize the total journey
time of the system.
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mini;nize Z= ;xata (xa)

subject to Zf,:s = qrs 1 Y(1,5)
k
Xg = ZZZ@ZSkfk” :Va
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X, >0:VaecA

n-Person Dilemma

In the n-Person Prisoner’s Dilemma game each of n players has a choice between two actions: to
cooperate with the others for the “common good”; or to defect, pursuing their own short-term self-
ish interests. The participants—who can be individuals, organizations, or other types of agents—,
receive a reward or punishment (the payoff) that depends simultaneously on their choice and that
of all the others. This paradox of decision-making illustrates that the rational collective acting in
self-interest is the opposite of the socially optimum.

For the purpose of this project, the dilemma is formulated as a normal-form game, in which
driving agents make a binary decision to accept or reject the suggestion of the ATIS agent, and the
payoff function is based on the socially beneficial outcomes that result from choosing a higher cost
route, thus contributing to reduce the total cost to the system.

Mathematical Concepts
Within the framework of non-cooperative game theory, the following definitions shall apply:

Definition 1. A finite normal-form game is a tuple G = (Z, A, (u;);c7), where:
e 7={1,2,...,n} is a finite set of n players, with n > 2;
e A=A x---xA,, where A, is a non-empty finite set of actions available to playeri € Z,
whereby a = (ay,...,a,) € A is an action profile;
* u=(uy,...,u,), where u; : A — R, is a real-valued utility function for player i € Z.

Definition 2. Let A; be the the action profile of player i, let a;,a} € A; be two actions of player i,
and let A_; be the set of all action profiles of the remaining players. Then, g; strictly dominates a/
ifVa_; € A_; : ui(ai,a—;) > ui(al,a_;). An action is strictly dominant if it (strictly) dominates any
other action.

Definition 3. A player i’s best response to the action profile a_; = (ay,...,a;i—1,ai+1,---,a,) is the
action af € A; : ui(a;,a—;) > ui(a;,a—;),Va; € A;. An action profile a is a Nash equilibrium if, for
each player i, a; is a best response to a_;. An outcome of a game is any action profile a € A.

Definition 4. Let G and d’,a € A. Then an action profile ¢’ Pareto dominates action a if u;(a") >
ui(a),VieZ ,and3j €T uj(d) > uj(a)

Assumptions

Assumption 1. The participants in the game—the driving agents, in this case—, are boundedly
rational, meaning that individual players will do what is profitable to them and try to maximize
their expected value.



Costa, et al. 8

Assumption 2. The common resources are the routes of the road network. Each traveller/player
may choose either to travel in a direct route or use an alternative route, thereby not contributing to
congestion.

Assumption 3. The resource is limited, but since each player is rational, they are expected to
behave selfishly towards its use.

Assumption 4. There always exists a communication channel that allows the ATIS agent to com-
municate with the driving agents.

Assumption 5. Driving agents have only the knowledge they have gathered through their journeys
on the infrastructure, and solely about travel times and rewards received. They have no information
about the current status of the network other than the information provided directly to them by the
infrastructure (ATIS agent).

Assumption 6. Each driving agent has a predefined preferred route, which corresponds to the route
with the lowest cost, the one with the shortest travel time at free-flow speed.

Assumption 7. There is a society of n € N : n > 2 uncooperative players induced with a shared-
resource, which is open-access to all.

Assumption 8. In a game-theoretical context, each traveller represents a rational player who has
two possible actions, namely D (defect) by rejecting the suggestion provided by the infrastructure
and following his preferred/predefined route, or C (cooperate) by accepting the recommendation
and taking the proposed route.

Assumption 9. The ATIS is also a participant in the game, playing against all driving agents with
a fixed strategy to cooperate (C). The payoff depends on the action of the other players accepting
or rejecting its recommendation.

Assumption 10. All players receive a benefit (utility) b € R~ for their decision to accept the ATIS
agent’s recommendation and contribute to the social optimum.

Assumption 11. As choosing the preferred route is a selfish choice, and exploits the resources of
the common good, each player who decides to reject the suggestion pays a cost ¢ € R.

Payoff Matrix

The payoff matrix is based on a formalization of the n-Person Prisoner’s Dilemma (cf. Table 1),
founded on the social dilemma of the "tragedy of the commons", to model a collective behaviour
when users have to compete for a shared but limited resource—the road infrastructure—, open to
all but with incomplete information, anticipating a selfish behaviour regarding the usufruct of road
capacity.

more than n choose C | n or fewer choose C
C C+B C
D B 0

TABLE 1 Payoff matrix structure, where C and D stand for Cooperate and Defect respec-
tively, just as B and C, in turn, mean Benefit and Cost. Payoffs are ordered B > (B+C) >
0 > C, assuming a cost C represented by a negative number. Relating to the original matrix
of the Prisoner’s Dilemma, Temptation means getting the benefit (B) without cost, Reward is
gaining the benefit with a cost (B 4 C), Punishment is not obtaining either (0), and Sucker is
paying a cost without realizing the benefit (C).
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The payoff function of player i is given by:

fi(ai,h),ai =CjorD;, h= {O, 1,....,n— 1} CN
where a; is player i’s action and 4 is the number of other cooperators.
In the payoff functions it is assumed:

Assumption 12.
1. The payoff difference f(D,h) — f(C,h) is positive and constant for all values of
h=1{0,1,...,n—1} CN, and denoted by «;
2. f(C,h) is monotonically increasing in A ={0,1,....n— 1} CN;
3. f(C,n—1)> f(D,0).

By the first condition of the above assumption, any player i will get a better reward by
selecting defection (D) than by choosing cooperation (C), regardless of what all other players
select, i.e., defection is the dominant action for each player. The payoff difference « is interpreted
as the player’s incentive to defect. The second condition means that the payoff of a cooperator
becomes increasingly larger as more players select cooperation. By the last condition, if all players
choose the dominant defection you will have a non-cooperative equilibrium that will be Pareto-
inferior to the outcome if they select the cooperative dominated actions.

Considering the payoffs hold the condition 7 > R > P > §, withn € N:n > 2, the following
utility functions result:

C(h):h-R+(1;/—h)~S
(1
D(h):h-T—l—(N—h)-P

h
From assumption 12:

Ak (2 < k* <n) €N: f(C,k*—2) < f(D,0) < f(C,k* —1)

where k* is the minimum number of cooperators that guarantees that the cooperative payoff can be
greater than or equal to the non-cooperative payoff in case no one selects cooperation, i.e, that the
overall utility of cooperators is greater than the utility of those who reject suggestion, hence the
social dilemma in this context of traffic recommendation and route selection.

One of the best-known and studied models in game theory, the Prisoners’ Dilemma can
transition from 2-person to n-person by replacing the two-dimensional matrix by utility functions
(32), which can be plotted on the graph in the Figure 1, where k* is the minimum number of
cooperators that guarantees that the cooperative payoff can be greater than or equal to the non-
cooperative payoff in case no one selects cooperation, i.e, that the overall utility of cooperators is
greater than the utility of those who reject suggestion.
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180

Payoffs

60

k*—2=547 : : k*—1=548

Ratio of Cooperators
FIGURE 1 Reward/punishment functions for defectors (D) and cooperators (C).

The payoffs chosen were based on the cost of the routes, taking into account their travel

times in free flow, considering a Cost C = —120 and a Benefit B = 180. In view of the formalization
above, the Punishment value is P = 0. The Sucker is the cost of taking the alternative route,
hence the negative value S = —120. The value of Temptation is significant for the slope of the

payoff functions and, consequently, for the cooperation rates. 7 = 180, that give R = 60, obtaining
k* = 549 for 820 driving agents plus the ATIS agent, which always cooperates, its payoff being a
reflex of the driving agents’ cooperation.

Recommendation algorithm

Taking place in a dynamic environment, where both routes were susceptible to congestion, the
ATIS agent provided a route recommendation to driving agents whose goal is to lead the system
to an optimal state. The algorithm employed to build the suggestion calculates a proportion from
the products of the normalization of occupancies and the average travel time of the last n trips, and
reinforces its weight according to the cooperation rate as measured by the RSU (vd. Algorithm 1),
then used to disseminate in multicast routing, for two groups of vehicles.

Algorithm 1: Weight calculation for suggestion build and dissemination.
Input: p; Occupancy of route i
At; Average of last n travel times for route i
k Number of cooperators
R Set of routes
N Number of vehicles plus ATIS

1 foralli € R do
.Dj Ei

R ‘TR
ijlpj Zj:l

At
2 w; =

2|

3 end
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Agent Behaviour

As driving agents make several passes through the network, and to observe social and economic
behaviour, they were modelled as learning agents, whose probability of electing a particular action
changes by an amount proportional to the reward or punishment they received from the environ-
ment. If the action is followed by a satisfying state, then the agent’s propensity to choose that
particular action is reinforced. The Modified Roth-Erev Reinforcement Learning algorithm (33)
was implemented (vd. Algorithm 2).

The learning model proposed by Roth and Erev (34), used in sociological theory, leads
to the Matching Law (35), which, in the context of social dilemmas, predicts that players will
learn to cooperate until the payoff for cooperation exceeds that for defection, only possible, given
Reward > Punishment, if both players cooperate and defect at the same time (36).

Algorithm 2: Modified Roth-Erev Learning Algorithm

Require: ¢ € (0, 1) Exploration rate

¢ € (0,1) Recency
A Set of actions
Input: a; Current action choice
gnj(t) Propensity for action a; at time ¢
ay Last action chosen
Ry (1) Reward for action ay at time ¢
N Number of actions
Parameters: g,;(0) Initial propensity
€ Experimentation
¢ Recency

t<0

initialize ¢,,;(0) < 1, forall j € E
repeat

t—t+1

— _4u(t)
{Pnk(f) X a0 }keA

choose action X; <— k € A randomly, using the probabilities p,(t)
collect reward R; ()

an(t+ 1) A (1 - (P)an +Rk(t)(1 - 8)
forall j # k do

10 | qnj(t+1) = (1= 0)gnj+qnj(1) 555
11 end

12 until rermination;

AW N -

wn

6
7
8
9

The sensitivity tests with the parameters Recency and Experimentation of Roth-Erev al-
gorithm evidenced its impact during the initial period on the promptness with which cooperation
emerges and the plateau around the analytically calculated value of k* was established. Therefore,
since it was studied the variation of cooperation in case of a system failure, the values ¢ = 0.5 and
€ = 0.5 were chosen, for which the plateau was reached more quickly.
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Simulation setup

This is an empirical work, based on simulation methods for the implementation and on quantita-
tive methods for the analysis of the results. A microscopic simulation was chosen, using SUMO
for traffic modelling (37), externally controlled by modules written in Python, through the TraCI
traffic control interface, allowing access to the ongoing traffic simulation, obtain values of the sim-
ulated objects and manipulate their behaviour in simulation time. Moreover, this program had also
implemented the decision models of driving agents and road infrastructure, as well as the C-ITS
service.

Scenario design

Following a principle of simplification, the designed scenario consists of a binary network (see
Figure 2), with two routes of different cost in free-flow, the one with lower cost being the preferred
one for the driving agents. The network is coupled with a 300 m feedback loop and buffer zone,
to reintroduce the simulated vehicles and be able to maintain a network overload. The two routes
between the origin-destination pair are: the main, designated direct (lower cost), with 6000 m, and
the alternative (higher cost), with 9000 m. The RSU sector and feedback edge are two-lane roads,
while the direct and alternative roads are single-lane. The default maximum speed on the network
is 25ms~! (90 kmh™1).

200 m
[ Feedback Edge

Direct Route
o | 6000m N\ |
somy - ,’ N P 250m, Choice / Origin Node
Middle Route Lane Area Detector End-of-Queue Lane Area Detector ¥

4~ Inductive Loop Detectors

L* q000m [\ 9000 m ~/‘
T 7 Destination Node

Route Selection ! N
Inductive Loop Detectors
Inductive Loop Detectors

100m

Alternative Route

FIGURE 2 Network diagram of the scenario, with the two monitored routes (direct and al-
ternative, with 6000m and 9000m, respectively), the initial zone where the RSU and inductive
loop detectors for route selection are located, and the edge for feedback loop. (Diagram is not
to scale.)

Before the choice node, marked as origin for timing, there is a 1000 m section on which the
RSU is located, with a coverage of 150 m, whose zone starts at 250 m of this sector. At 750 m there
is an inductive loop detector to carry out route selection, as already chosen by the driving agent.
This initial configuration was due to the need to have an area to study the RSU dissemination and,
on the other hand, to create a traffic merging zone, allowing the vehicles to change to the most
appropriate lane for the chosen route, without causing too much parasitic noise in the simulation.

On the destination node side, there are 1000 m lane areas for monitoring traffic density, in
the middle of the route and for end-of-queue assessment, as well as inductive loop detectors to
record intermediate travel times (in the middle of the route) and time to destination (at the des-
tination node). The feedback edge has lane change prohibition to mitigate parasitic noise in the
simulation due to premature vehicle insertion manoeuvres that could lead to significant instanta-
neous speed changes.

Artificial population
To obtain a heterogeneous simulated population, four different classes of vehicles were inserted
in the scenario, capable of travelling at full network speed, as shown in the Table 2, with their
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respective probabilities. The ceiling on the number of driving agents to be used in the simulation
aimed to place the network in a state of congestion on the main (direct) route, with traffic moving
at a pedestrian-like speed. Thus, the theoretical value were determined analytically considering the
passenger class, and then verified in a sensitivity analysis by gradually increasing the number of
driving agents, diverting all traffic to the direct route, until the average speed of the system dropped
to 1.50ms ™! (5.40kmh~1).

After the sensitivity analysis, and also taking into account the mitigation of parasitic noise
on the network, a ceiling of 820 driving agents was chosen. The launch speed, during the warm-up
phase, is calculated as a function of density so as to obtain a stable traffic flow along the network
and a balanced distance between vehicles, i.e. a stationary state, when origin demands, route
choices ratio, and destination supplies are constant, time-independent (cf. 38). However, to avoid
SUMO keeping some vehicles too long in backlog, making the process very time consuming, the
launch phase is done for both routes, thus considering the whole length of the network.

vClass
(SVCO)

Length
Width
Height

amwc
accel

decel

be
emergency
decel

Vmax
maxSpeed

speed
deviation

probability

passenger

4.3 m
1.8m

2.9ms 2

7.5ms 2

9.0ms 2

180kmh!

0.1

0.70

1.5m

2.2m
motorcycle 0.9m
1.5m

7.1m
truck 2.4m
2.4m

12.0m

bus 2.5m
3.0m

6.0ms2 10.0ms 2 10.0ms 2 200kmh™! 0.1 0.10

1.3ms™2 4.0ms2 7.0ms 2 130 kmh™! 0.1 0.15

1.2ms™2 4.0ms2 7.0ms 2 85kmh™! 0.1 0.05

TABLE 2 Different vehicle types used in the simulation, with their respective characteristics
and probabilities.

Simulation Procedures
The simulation is launched with a warm-up period, for insertion of all driving agents in the network
uniformly, after which they make a rolling start and run laps (events) during a simulated period of
24 h, with 0.1 s steps, to allow microscopic simulations in fractions of a second, required by both
the RSU dissemination mechanisms and the vehicle insertion manoeuvres at lane changes.
Experiments started by determining a baseline, with constant dissemination, to observe the
emergence of cooperation and its impact on the network. Then it was proceeded to a progressive
degradation of the RSU dissemination, gradually increasing its transmission interval, reaching
each time fewer driving agents. Finally, an abrupt increase of this interval was tested, restoring the
initial, shorter interval, after a certain period, to analyse the behaviour of the driving agents when
faced with a failure and the restoration of the system.

RESULTS AND ANALYSIS
In the baseline experiment, the emergence of cooperation and the establishment of the plateau
occurred after about 5 h (Figure 3). The average vehicle speed on the network followed the increase
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in the number of cooperators, reaching a plateau around 10.5ms~! (37.8 kmh~!). Simultaneously,
the traffic flow of both routes settled at about 1750 veh /h, in line with the travel times on each route,
both at about 700, a value corroborated by the average speeds on each route, about 8.5 ms™!
(30.6kmh~1) on the direct route and 13 ms~—' (46.8 kmh~!) on the alternative route, which are,
respectively, 6000 m and 9000 metre long.

600 - D

500 /\/

400 W J

I
300—‘\ |

number of vehicles (#)

200 |

100 -

T T T T T T T T
02:46:40 05:33:20 08:20:00 11:06:40 13:53:20 16:40:00 19:26:40 22:13:20

time (h)

FIGURE 3 Evolution of the number of Cooperators and Defectors, over a 24h period, in
which the RSU’s dissemination time interval remained constant at 5s.

To analyse the effect of a degradation of the information service, simulations were con-
ducted in which the dissemination time interval doubled every 4 h, in the sequence {5, 10,20,40,80, 160} s,
during which an increasing number of driving agents stopped receiving suggestions and continued
on their default preferred route.

During the first 8 h, the evolution was similar to the baseline, both in terms of cooperation
emergence and traffic flow, i.e. up to 10s interval the ATIS agent was able to deliver recommen-
dation to all driving agents. However, starting at 8 h of simulation, with 20 s interval, there was
witnessed a decreasing trend in the traffic flow (Figure 4), which followed a drop in the number of
driving agents in game (both cooperators and defectors decreased) (Figure 5). The traffic flow on
both routes, and consequently the mean speed on the network, had a steeper decrease after 12 h,
when the interval was increased to 40 s, that of the alternative route tending to zero, as most of the
traffic started to converge to the direct route. The cooperation, which had also been decreasing,
suffered a strong decline and there was an inversion of trends with an increase in the number of
defectors, although the sum diminished, since fewer driving agents were left in game.

In subsequent interactions with the ATIS agent, the number of cooperators continued to
decrease, tending towards zero, while that of defectors rose, with only part of the population,
there being, however, two peaks, which can be explained with the reduction in speed due to the
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FIGURE 4 Traffic flow on each route, in vehicles per hour (veh/h), 4 h Simple Moving Aver-
age, over a 24 h period, in which the RSU’s dissemination time interval doubled every 4 h, in
the sequence {5,10,20,40,80,160} s.

congestion that was forming as more driving agents converged on the direct route. In fact, in
simulations carried out with a smaller population, which did not generate congestion, after the
inversion, the number of defectors reached a peak and then gradually descended in steps.

From what was observed, including by analysing the driving agents’ individual history, as
they began to receive increasingly sparse recommendations from the ATIS agent, they began to
reject more often the few they did receive, even those that were mostly cooperative in the early
hours.

Finally, a sudden degradation of the system was tested, at 8 h of simulation, with the es-
tablished cooperation plateau, changing the dissemination intervals from 5 s to 160 s during an 8 h
period. The driving agents made successive trips without receiving any suggestion, following the
predefined route, and, as expected, there was a significant decrease in the number of participants
in the game. Similarly to what had happened with progressive degradation, the cooperation status
was reversed, with the number of cooperators decreasing, tending to zero. Meanwhile, the num-
ber of defectors began a steeper rise, due to the congestion that had commenced to form, keeping
the vehicles very slow in the RSU coverage area and, therefore, the number of those who were
receiving suggestions was increasing, even with the long transmission interval, also recovering
the amount of participants in the game. However, the majority started to reject the suggestion,
a behavioural trend confirmed after the 5s dissemination interval was re-established, at 16 h of
simulation, when they were again receiving recommendations at each passage and the number of
participants in game grew to the population size.
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FIGURE S5 Evolution of the number of Cooperators and Defectors, over a 24h period,
in which the RSU’s dissemination time interval doubled every 4h, in the sequence
{5,10,20,40,80,160} s.
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FIGURE 6 Evolution of the number of Cooperators and Defectors, over a 24h period, in
which the RSU’s dissemination time interval increased to 160 s at 8 h, and re-established to
Ssat 16h.
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CONCLUSIONS

Some studies had already been devoted to the phenomenon of the emergence of cooperation be-
tween drivers and its impact on road traffic, mentioning the benefit of an ATIS to be able to bring
the network closer to an optimal state. In this work we simulated a binary network, with routes of
different cost, supported by an ATIS that makes en-route recommendations on the best path, based
on Game Theory, with a formalization of the n-Person Prisoner’s Dilemma, in which the ATIS is
also a participant of the game along with the driving agents.

With a dynamic network, susceptible to congestion formation in both routes, it was possible
to observe the correlation between the cooperation of the driving agents towards ATIS agent and
the system performance, namely in the network average speed as well as in the traffic flows in both
routes. By causing a degradation of that information service, with the increase of the dissemination
intervals, there was a concomitant degradation of the system performance with the formation of
congestion in the main route, accompanied also by a loss of cooperation, which tended to zero, and
a generalized rejection of the suggestion by the remaining participants in the game. Testing full
restoration of service after a failure, the trend of declining cooperation continued, even though the
number of participants returned to population size, suggesting a loss of credibility of the ATIS.

The simplicity of this road network limits the ability to generalize to more complex net-
works. Further investigation with more simulations is needed with other traffic patterns and net-
work topologies varying both in number of routes and origin-destination pairs. This extension will
also necessitate proper calibration and validation of SUMO’s simulation parameters. Another issue
needing appropriate investigation concerns the scalability of this approach to cope with real-world
scenarios and large-scale networks. Different approaches can be considered with this purpose, al-
lowing for the comparison of the effect of one single global observer against strategies resorting
to multiple local observers spotted on selected regions of the network, or other hybrid solutions
exploring a hierarchy of observers.

On the other hand, it is important to account for the trustworthiness of all parties involved,
which can be accomplished through modelling a trust factor in ATIS, to understand how coop-
eration could be restored after a system failure, for instance. Finally, we intend to explore this
methodology in other scenarios, such as disruption and crisis management, in which appropriate
information dissemination strategies play a crucial role.
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