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Systems

Deterministic: y(t) = G(q)u(t)

Stochastic: y(t) = H(q)e(t), e(t)− white noise

Stochastic-deterministic: y(t) = G(q)u(t) + H(q)e(t)

SISO: u(t) ∈ R , y(t) ∈ R

MIMO: u(t) ∈ Rnu , y(t) ∈ Rny

Autonomous: xk+1 = Axk

Non-autonomous: xk+1 = Axk + Buk

Linear: xk+1 = Axk + Buk + Kek

Non-linear: xk+1 = f (xk, uk, ek)
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Systems

Time invariant: xk+1 = Axk + Buk.

Time variant: xk+1 = A(k)xk + B(k)uk

Examples of Systems with quantized states:

xk is an integer (number of cars, number of persons in a
queue, etc.)

Robot mode { wait, search, recharge}.
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Discrete-time Markov chain: Definition

White noise sequence {xk}k , k = 0, 1, . . . :

Analysis is straightforward: There is no memory because
xk, k = 0, 1, . . . are independent variables.

Many real-life processes cannot be described by white noise
processes.

Example:

xk ≡stock price of a company: It is reasonable to assume
that xk, k = 1, . . . aren’t statistically independent.
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Discrete-time Markov chain: Definition

DISCRETE-TIME MARKOV PROCESS

A discrete-time Markov process is a stochastic process
{xk}k , k = 0, 1, . . . , where

Prob (xk+1|xk, xk−1, . . . , x0) = Prob (xk+1|xk)

with Prob(a|b) denoting probability distribution of a given b.

In a Markov process the state is the system memory

DISCRETE-TIME MARKOV CHAIN

A Markov chain is a discrete-time Markov process whose
possible values of the state (state-space) is a countable set.
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Transition probability

Stationary discrete-time Markov chain:

Prob (xk+n+1 = j|xk+n = i)∀n∈N = Prob (xk+1 = j|xk = i) = pij(k) = pij

The distribution of xk is the same for all k.

pij - Transition probability:

a) pij ≥ 0 ∀i, j ∈ X

b)
∑
j∈X

pij = 1 ∀i ∈ X.
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State transition matrix

If the state-space is finite, i.e., if there are only n states , then it
can be defined the matrix,

P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
...

...
pn1 pn2 · · · pnn

 ,

denoted as state transition matrix.

It is characterized by the following:

All its elements are positive.

The sum of elements in any row equals 1.
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State transition diagram

A Markov chain is usually shown by a state transition
diagram.

Example: Consider a Markov chain with the state transition
matrix:

P =



1
4

1
2

1
4

1
3

0
2
3

1
2

0
1
2

 .
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State transition diagram

Then it can be represented by the transition diagram:
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Exercise

Consider the Markov chain represented by the previous state
transition diagram:

1 Find P(x4 = 3|x3 = 2).

= p23 =
2
3

.

2 Find P(x3 = 1|x2 = 1).

3 If we know P(x0 = 1) =
1
3
, find P(x0 = 1, x1 = 2).

4 If we know P(x0 = 1) =
1
3
, find P(x0 = 1, x1 = 1, x2 = 3).

Paulo Lopes dos Santos Fernando Arménio Fontes Markov chains 13/56



Introduction Definition of a Discrete-time Markov chain Stationary discrete-time Markov chains with finite state-spaceTransition probability State transition matrix State transition diagram Probability distributions Classification of states Mean hitting times Mean return time Stationary and Limiting Distributions

Exercise

Consider the Markov chain represented by the previous state
transition diagram:

1 Find P(x4 = 3|x3 = 2).

= p23 =
2
3

.

2 Find P(x3 = 1|x2 = 1).

3 If we know P(x0 = 1) =
1
3
, find P(x0 = 1, x1 = 2).

4 If we know P(x0 = 1) =
1
3
, find P(x0 = 1, x1 = 1, x2 = 3).

Paulo Lopes dos Santos Fernando Arménio Fontes Markov chains 13/56



Introduction Definition of a Discrete-time Markov chain Stationary discrete-time Markov chains with finite state-spaceTransition probability State transition matrix State transition diagram Probability distributions Classification of states Mean hitting times Mean return time Stationary and Limiting Distributions

Exercise

Consider the Markov chain represented by the previous state
transition diagram:

1 Find P(x4 = 3|x3 = 2).

= p23 =
2
3

.

2 Find P(x3 = 1|x2 = 1).

3 If we know P(x0 = 1) =
1
3
, find P(x0 = 1, x1 = 2).

4 If we know P(x0 = 1) =
1
3
, find P(x0 = 1, x1 = 1, x2 = 3).

Paulo Lopes dos Santos Fernando Arménio Fontes Markov chains 13/56



Introduction Definition of a Discrete-time Markov chain Stationary discrete-time Markov chains with finite state-spaceTransition probability State transition matrix State transition diagram Probability distributions Classification of states Mean hitting times Mean return time Stationary and Limiting Distributions

Exercise

Consider the Markov chain represented by the previous state
transition diagram:

1 Find P(x4 = 3|x3 = 2)= p23 =
2
3

.

2 Find P(x3 = 1|x2 = 1).

3 If we know P(x0 = 1) =
1
3
, find P(x0 = 1, x1 = 2).

4 If we know P(x0 = 1) =
1
3
, find P(x0 = 1, x1 = 1, x2 = 3).

Paulo Lopes dos Santos Fernando Arménio Fontes Markov chains 13/56



Introduction Definition of a Discrete-time Markov chain Stationary discrete-time Markov chains with finite state-spaceTransition probability State transition matrix State transition diagram Probability distributions Classification of states Mean hitting times Mean return time Stationary and Limiting Distributions

State probability distributions

Markov chain: {xk}k=0,...,∞

xk ∈ X = {1, 2, . . . , n} .

Define the probability distribution of x0 as the row vector:

π(0) =
[
P(x0 = 1) P(x0 = 2) · · · P(x0 = n)

]
What are the distributions of xk, k = 1, . . . ,∞?

P(x1 = j) =
n∑

i=1

P(x1 = j|x0 = i)P(x0 = i) =
n∑

i=1

pijP(x0 = i).

=
[
P(x0 = 1) P(x0 = 2) · · · P(x0 = n)

]


p1,j
p2,j
...

pn,j


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State probability distributions

Hence:

π(1) =
[
P(x0 = 1) P(x0 = 2) · · · P(x0 = n)

]


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
...

...
pn1 pn2 · · · pnn


= π(0)P

Similarly:

π(2) = π(1)P = π(0)P2

π(3) = π(2)P = π(0)P3

...
π(k+1) = π(k)P = π(0)Pk+1
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Exercise

Consider a system that can be in one of two possible states,
X = {0, 1}. Suppose that the transition matrix is given by

P =


1
2

1
2

1
3

2
3

 .

Suppose that the system is in state 0 at time k = 0 , i.e., x0 = 0

1 Draw the transition diagram

2 Find the probability that the system is in state 1 at time
k = 3
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k-Step transition probabilities

Markov chain: {xk}k=0,...,∞

xk ∈ X

x0 = i ⇒ P(x1 = j) = pij, probability of going from state i to
state j in k = 1 step.

What is the probability of going from state i to state j in
k = 2 steps, i.e,

p(2)ij = P(x2 = j|x0 = i)?

Solution:

p(2)ij = P(x2 = j|x0 = i) =
∑
ℓ∈X

P(x2 = j|x1 = ℓ, x0 = i) =

=
∑
ℓ∈X

P(x2 = j|x1 = ℓ)P(x1 = ℓ|x0 = i) =
∑
ℓ∈X

pℓjpiℓ =
∑
ℓ∈X

piℓpℓj.
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k-Step transition probabilities

Two-step transition matrix:

P(2) =


p(2)11 p(2)12 · · · p(2)1n

p(2)21 p(2)22 · · · p(2)2n
...

...
...

...
p(2)n1 p(2)n2 · · · p(2)nn


Calculate

P2 =


p11 p12 · · · p1n
...

...
...

...
pi1 pi2 · · · pin
...

...
...

...
pn1 pn2 · · · pnn





p11 · · · p1j · · · p1n
p21 · · · p2j · · · p2n
...

...
...

...
...

pℓ1 · · · pℓj · · · pℓn
...

...
...

...
...

pn1 · · · pnj · · · pnn


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k-Step transition probabilities

P2 =



n∑
ℓ=1

p1ℓpℓ1 · · ·
n∑

ℓ=1

p1ℓpℓj · · ·
n∑

ℓ=1

p1ℓpℓn

...
...

...
...

...
n∑

ℓ=1

piℓpℓ1 · · ·
n∑

ℓ=1

piℓpℓj · · ·
n∑

ℓ=1

piℓpℓn

...
...

...
...

...
n∑

ℓ=1

pnℓpℓ1 · · ·
n∑

ℓ=1

pnℓpℓj · · ·
n∑

ℓ=1

pnℓpℓn



k-step transition probability:

p(k)ij = P(xk = j|x0 = i), k = 0, 1, . . . ,∞
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k-Step transition probabilities

Let k and m be two positive integers and assume x0 = i. In
order to go to state j in (m + k) steps, the chain will be at some
intermediate state ℓ after m steps. To obtain p(m+k)

ij , we sum
over all possible intermediate states:

p(m+k)
ij = P(xm+k = j|x0 = i) =

∑
ℓ=X

p(m)
iℓ p(k)ℓj
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k-Step transition probabilities

Chapman-Kolmogorov equation:

p(m+k)
ij = P(xm+k = j|x0 = i) =

∑
ℓ∈X

p(m)
iℓ p(k)ℓj

The k-step transition matrix is given by:

P(k) = Pk.
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Classification of states

The state j is accessible from state i, denoted as i → j, if
p(k)ij > 0 for some k. Every state is accessible from itself

because p(0)ii = 1.

The states i and j communicate, denoted as i ↔ j, if they
are accessible from each other, i.e.,

i ↔ j ⇔
{

i → j
j → i

Communication is an equivalence relation:

1 i ↔ i

2 if i ↔ j then j ↔ i

3 if i ↔ j and j ↔ k then i ↔ k
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Equivalence

Exercise

Find the equivalence classes of the Markov chain shown in the
figure (It is assumed that pij > 0 when there is an arrow from
state i to j).
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Irreducible Markov chains

A Markov chain is irreducible if all states communicate
with each other.

Consider the Markov chain:

State 1 is transient.

States 2 and 3 are recurrent.
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Recurrent and transient states

define fii = P(xk = i, for some k ≥ 1|x0 = i) = 1.
State i is recurrent if fii = 1.

State i is transient if fii < 1.

If two states are in the same class, either both of them
are recurrent, or both of them are transient.

A class is recurrent if its states are recurrent.

A class is transient if its states are transient.

Paulo Lopes dos Santos Fernando Arménio Fontes Markov chains 25/56



Introduction Definition of a Discrete-time Markov chain Stationary discrete-time Markov chains with finite state-spaceTransition probability State transition matrix State transition diagram Probability distributions Classification of states Mean hitting times Mean return time Stationary and Limiting Distributions

Recurrent and transient states

Let V be the total number of visits to the state i of a Markov
chain. Then

if i is a recurrent state then

P (V = ∞|x0 = i) = 1.

if i is a transient state with probability of returning equal fii
then

V|x0 = i ∼ Geometric(1 − fii).

Exercise
Show that in a finite Markov chain, there is at least one
recurrent class.
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Recurrent and transient states

Solution
Consider a finite Markov chain with r states,
S = {1, 2, . . . , r}
Suppose that all states are transient.
Then, starting from time 0, the chain might visit state 1
several times, but at some point the chain will leave state 1
and will never return to it. That is, there exists an integer
M1 > 0 such that xk ̸= 1, for all k ≥ M1
Similarly, there exists an integer M2 > 0 such that xk ̸= 2,
for all k ≥ M2, and so on. Now, if you choose
k ≥ max(M1,M2, . . . ,Mr), then xk cannot be equal to any of
the states 1, 2, . . . , r. This is a contradiction, so we
conclude that there must be at least one recurrent state,
which means that there must be at least one recurrent
class.

Paulo Lopes dos Santos Fernando Arménio Fontes Markov chains 27/56



Introduction Definition of a Discrete-time Markov chain Stationary discrete-time Markov chains with finite state-spaceTransition probability State transition matrix State transition diagram Probability distributions Classification of states Mean hitting times Mean return time Stationary and Limiting Distributions

Periodicity

If we Start from state 0 we only return to it at times
k = 3, 6, . . .

In other words, p(k)00 = 0 if k is not divisible by 3

Such a state is called a periodic state with period d(0) = 3.
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Periodicity

Period of a state
The period of a state i is the largest integer d satisfying the
following property: p(k)ii = 0 whenever k is not divisible by d. The
period of i is denoted by d(i). If p(k)

ii = 0, for all k > 0, then we
d(i) = ∞.

If d(i) > 1, state i is periodic.
If d(i) = 1, state i is aperiodic.

All states in the same class have the same period.

A class is periodic if its states are periodic.

A class is aperiodic if its states are aperiodic.
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Periodicity

The states of the Markov chain in the Figure are periodic with
period d = 2.
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Periodicity

If p(n)ii > 0 and p(m)
ii > 0 then pii(ℓ) > 0 where ℓ is the

greatest common divider of m and n

If ℓ > 1, i.e., if m and n have common factors, then i is
periodic with period d(i) = ℓ.

If ℓ = 1, i.e, if m and n are co-prime, then i is aperiodic.

Aperiodicity conditions in an irreducible Markov chains
Existence of at least a self transition (pii > 0 for some state
i).
If p(n)ii > 0, p(m)

ii > 0 and m and n are co-prime,
If exists an integer n such that tha matrix Pn is strictly
positive, i.e., if

P(n)
ij > 0, for all i and j.
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Periodicity

Exercise

For the Markov chain of the Figure:

1 Is Class 1={1, 2} aperiodic?

2 Is Class 2={3, 4} aperiodic?

3 Is Class 4={6, 7, 8} aperiodic?
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Absorbing states

Question: How many classes are in the Markov chain of the
Figure?

Answer: 3 classes

Class 1: State 0: Recurrent;

Class 2: States 1 and 2: Transient;

Class 3: State 3: Recurrent;

States 0 and 3 are absorbing
Once you enter these states you never leave them.
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Absorption probabilities

What are the aborption probabilities of states 2 and 3?
1 Define the conditional probabilities of absorption in 0:

a0 = P (absorption in 0|x0 = 0) = 1,

a1 = P (absorption in 0|x0 = 1) = p10a0 + p12a2 =
1
3

a0 +
2
3

a2,

a2 = P (absorption in 0|x0 = 2) = p21a1 + p23a3 =
1
2

a1 +
1
2

a3,

a3 = P (absorption in 0|x0 = 3) = 0.

Solving the equations:
a1 =

1
3

a0

∣∣∣∣
a0=1

+
2
3

a2

a2 =
1
2

a1 +
1
2

a3

∣∣∣∣
a3=0

⇒


a1 =

1
2

a2 =
1
4
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Absorption probabilities
1 Define the conditional probabilities of absorption in 3:

b0 = P (absorption in 3|x0 = 0) = 0,

b1 = P (absorption in 3|x0 = 1) = p10b0 + p12b2 =
1
3

p0 +
2
3

p2,

b2 = P (absorption in 3|x0 = 2) = p21b1 + p23b3 =
1
2

b1 +
1
2

b3,

b3 = P (absorption in b|x0 = 3) = 1.

Solving the equations:
b1 =

1
3

a0

∣∣∣∣
b0=0

+
2
3

b2

b2 =
1
2

b1 +
1
2

b3

∣∣∣∣
b3=1

⇒


b1 =

1
2

b2 =
3
4
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Absorption probabilities

Aborption probabilities

Consider a finite Markov chain {xk, k = 0, 1, 2, . . . } with
state-space S = {1, 2, . . . ,n} . Suppose that all states are either
absorbing or transient. Let r ∈ S be an absorbing state. Define

ai = P (absorption in r|x0 = i) , for all i ∈ S.

By this definition ar = 1 and aj = 0 if j is any other absorbing
state. The unknown values of ai can be found by solving the
equations:

ai =
∑
ℓ

aℓpiℓ, for alli ∈ S.
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Absorption probabilities

A finite Markov chain can exhibit multiple transient and
recurrent classes.

As time increases, the chain becomes absorbed in one of
its recurrent classes, where it will remain indefinitely.

Using the outlined approach, we can determine the
probability of absorption into each recurrent class.

We can substitute each recurrent class with an absorbing
state.

the transformed chain consists exclusively of transient and
absorbing states.

Employing the aforementioned method we can calculate
the absorption probabilities
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Mean hitting times

ti -Number of steps needed until the chain hits state 0 or 3 (i.e.,
an obsorbing state) given that x0 = i:

t0 = 0 (the chain is alreay in an aborbing state).

t1 = 1 +
1
3

t0 +
2
3

t2 = 1 +
2
3

t2 (because if x0 = 1, after one

step x1 = 1 or x1 = 2 with probabilities
1
3

and
2
3

respectively
and from i = 0 takes t0 steps and from i = 2 takes t2 steps).

t2 = 1 +
1
2

t1 +
1
2

t3 = 1 +
1
2

t1.
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Mean hitting times

Solving the equation:
t1 = 1 +

2
3

t2

t2 = 1 +
1
2

t1

⇒


t1 =

5
2

t2 =
9
4

Mean hitting times

Consider a finite Markov chain {xk, k = 0, 1, 2, . . . } with state
space S = {0, 1, 2, . . . , k}. Let A ⊂ S and T be the first time the
chain visits A. Define ti = E {T|x0 = i} . By definition tj = 0 if
j ∈ A. If i /∈ A then

ti = 1 +
∑
ℓ

tℓpiℓ.
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Mean return time

Assume the chain is in state ℓ.
The mean return time is the expected number of steps
required for the chain return to state ℓ.

Consider the subsequent series of states in a Markov chain:

k 0 1 2 3 4 5 6 7 · · ·
xk 2 1 4 3 2 3 2 3 . . .

Define:
R2 = First return to state 2 = 4 because it happens at k = 4.
Then

r2 = E {R2|x0 = 2}

is the mean return time to state 2.
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Mean return time

Mean return time
Let

Ri = min {k ≥ 1 : xk = i} .

Then
ri = E {Ri|x0 = i}

is the mean return time to i.

By definition Ri ≥ 1 ⇒ ri ≥ 1.

ri = 1 if and only if i is an aborbing state.

Define tji as the expected time until the chain reaches the
state i for the first time, given that x0 = j. Then

ri = 1 +
∑

j

pijtji with tji = 1 +
∑
ℓ

pjℓtℓj.

Paulo Lopes dos Santos Fernando Arménio Fontes Markov chains 41/56



Introduction Definition of a Discrete-time Markov chain Stationary discrete-time Markov chains with finite state-spaceTransition probability State transition matrix State transition diagram Probability distributions Classification of states Mean hitting times Mean return time Stationary and Limiting Distributions

Mean return time

Exercise

Find t11, t21, t31 and r1.
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Mean return time

Solution: 

t11 = 0 by definition

t21 = 1 +
1
3

t21 +
2
3

t31

t31 = 1 +
1
2

t11 +
1
2

t21

⇔


t11 = 0

t21 = 5

t31 =
7
2

and
r1 = 1 + p12t21 = 1 +

5
2
=

7
2
.
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Stationary and Limiting Distributions

Problem: Find the fraction of time that a Markov chain
occupies each state as time goes to infinity.
More specifically, study the distribution:

π(k) =
[
P (xk = 0) P (xk = 1) · · ·

]
Example: Condider a Markov chain with state-space S = {0, 1}
and transition matrix

P =

[
1 − a a

b 1 − b

]
, a, b ∈ [0, 1] ⇒ 0 < a + b < 2.

If P(x0 = 0) = α then

π(0) =
[
p(x0) = 0 p(x0) = 1

]
=

[
α 1 − α

]
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Stationary and Limiting Distributions

On the other hand

Pk = Z−1
{
(zI − P)−1

}
.

Given that

(zI − P)−1 =

[
z − (1 − a) −a

−b z − 1 − b

]−1

=

=
1

z2 − (2 − a − b)z + 1 − a − b

[
z − 1 − b a

b z − 1 − a

]
=

=


z − (1 − b)

(z − 1) (z − (1 − a − b))
a

(z − 1) (z − (1 − a − b))

b
(z − 1) (z − (1 − a − b))

z − (1 − a)
(z − 1) (z − (1 − a − b))


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Stationary and Limiting Distributions

If |1 − a − b| < 1, then, from the z-transform final value theorem

lim
k∞

Pk = lim
z→1

(z − 1) (zI − P)−1 =


b

a + b
a

a + b

b
a + b

a
a + b


and

lim
k→∞

π(k) = lim
k→∞

[
π(0)Pk

]
= π(0) lim

k→∞
Pk =

[
b

a + b
a

a + b

]
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Stationary and Limiting Distributions

In this example:

lim
k→∞

P (xk = 0|x0 = i) = = lim
k→∞

p(k)i0 =
b

a + b
, i = 0, 1

lim
k→∞

P (xk = 1|x0 = i) = lim
k→∞

p(k)i1 =
a

a + b
, i = 0, 1

Limiting Distributions

The probability distribution π =
[
π0 π1 π2 · · ·

]
is called

limiting distribution of the Markov chain {xk}k=0,... with
state-space S if

πj = lim
k→∞

P (xk = j|x0 = i)

for all i, j ∈ S, and
∑
j∈S

πj = 1.
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Stationary and Limiting Distributions

Exercise

Find the mean return times of a Markov chain with state-space
S = {0, 1} and transition matrix

P =

[
1 − a a

b 1 − b

]

Solution:

r0 = 1 + t10p01

r1 = 1 + t01p10

where tij is the expected time until the chain reach the state j,
given that x0 = i:{

t10 = 1 + p10t00 + p11t10 = 1 + (1 − b)t10
t01 = 1 + p00t01 + p01t11 = 1 + (1 − a)t01

⇒
{

t10 = 1/b
t01 = 1/a.
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Stationary and Limiting Distributions

r0 = 1 +
a
b
=

a + b
b

=
1
π0

r1 = 1 +
b
a
=

a + b
a

=
1
π1
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If in the previous example a = b = 1 then

P =

[
0 1
1 0

]
⇒ xk + 2 = P2xk =

[
1 0
0 1

]
xk.

The Markov chain is periodic. In particular

xk =

{
x0 if k is even
x1 if k is odd

if a = b = 0 the chain will consist of two disconnected nodes. In
this case,

xk = x0 for all k.

In these cases the chain does not have a limiting distribution.
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Finite Markov Chains

If a finite Markov chain has more than one recurrent class,
then the chain will get absorbed in one of the recurrent
classes.

Consider a irreducible Markov chain with only one
recurrent class. In this case the chain has a limiting
distribution:

π = lim
k→∞

π(k) = lim
k→∞

[
π(0)Pk

]
.

Similarly

π = lim
k→∞

π(k+1) = lim
k→∞

[
π(0)Pk+1

]
lim

k→∞

[
π(0)PkP

]
=

[
π(0)Pk

]
P = πP.

Hence
πj =

∑
i

πipij
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Finite Markov Chains

Exercise

Find the limiting distribution of the Markov chain with S = {0, 1}
and transition matrix

P =

[
1 − a a

b 1 − b

]
using the relation π = πP.

Solution:

π = πP =
[
π0 π1

] [1 − a a
b 1 − b

]
=

[
(1 − a)π0 + bπ1 aπ0 + (1 − b)π1

]
.

Therefore {
π0 = (1 − a)π0 + bπ1
π1 = aπ0 + (1 − b)π1

⇒ aπ0 = bπ1
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Finite Markov Chains
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Finite Markov Chains

Solve: {
π0 + π1 = 1

aπ0 − bπ1 = 0

 π0 =
b

a + b
π1 =

a
a + b

.
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Finite Markov Chains

Consider a Markov chain {xk}k=0,1,... with state-space
S = {0, 1, . . . ,n}. Then,

1 It has a limiting distribution if and only if the set of
equations: 

π = πP
n∑

j=1

πj = 1

has a unique solution.
2 This unique solution is the limiting distribution of the

Markov chain.
3 The mean return time to state j is

rj =
1
πj
, for all j ∈ S.
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Countably Infinite Markov Chains:

Positive recurrent and null recurrent
Let i be a recurrent state. Assuming x0 = i, let Ri be the number
of transitions needed to return to state i , i.e.,

Ri = min {k ≥ 1 : xk = i}

if ri = E {Ri|x0 = i} < ∞ then i is positive recurrent, otherwise
is null recurrent.
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Countably Infinite Markov Chains:

Theorem
Consider a Markov chain {xk}k=0,1,... with state-space
S = {0, 1, . . . ,n}. Assume that the chain is irreducible and
aperiodic. Then, one of the following cases can occur:

1 All states are transient, and

lim
k→∞

P (xk = j|x0 = i) = 0, for all i, j.

2 All states are null recurrent, and

lim
k→∞

P (xk = j|x0 = i) = 0, for all i, j.

3 All states are positive recurrent. In this case exists a
limiting distribution π =

[
π0 π1 · · ·

]
where

πj = lim
k→∞

P (xk = j|x0 = i) > 0, for all i, j.
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Countably Infinite Markov Chains:

Theorem - continuation
This limiting distribution is the unique solution of

∞∑
i=0

pijπi = πj∑∞
j=0 πj = 1.

Also
rj =

1
π j
, for all j = 0, 1, . . . ,

where rj is the return times to state j.
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