Markov Chains

Paulo Lopes dos Santos Fernando Arménio Fontes

Estimation and Decision Systems, 2023 DEEC, FEUP

- 1 Introduction
- Definition of a Discrete-time Markov chain
- Stationary discrete-time Markov chains with finite state-space
 - Transition probability
 - State transition matrix
 - State transition diagram
 - Probability distributions
 - Classification of states
 - Mean hitting times
 - Mean return time
 - Stationary and Limiting Distributions

Signals

Signals

	Continuous	Discrete
	time	time
Discrete Amp.	Quantized	Digital
Continuous Amp.	Analogic	Sampled

Deterministic: y(t) = G(q)u(t)

Stochastic: $y(t) = H(q)e(t), \ e(t)$ white noise

Stochastic-deterministic: y(t) = G(q)u(t) + H(q)e(t)

Deterministic: y(t) = G(q)u(t)

Stochastic: $y(t) = H(q)e(t), \ e(t)$ white noise

Stochastic-deterministic: y(t) = G(q)u(t) + H(q)e(t)

SISO: $u(t) \in \mathbb{R}, y(t) \in \mathbb{R}$

MIMO: $u(t) \in \mathbb{R}^{n_u}, \ y(t) \in \mathbb{R}^{n_y}$

Deterministic: y(t) = G(q)u(t)

Stochastic: $y(t) = H(q)e(t), \ e(t)$ white noise

Stochastic-deterministic: y(t) = G(q)u(t) + H(q)e(t)

SISO: $u(t) \in \mathbb{R}, y(t) \in \mathbb{R}$

MIMO: $u(t) \in \mathbb{R}^{n_u}, \ y(t) \in \mathbb{R}^{n_y}$

Autonomous: $x_{k+1} = Ax_k$

Non-autonomous: $x_{k+1} = Ax_k + Bu_k$

Deterministic: y(t) = G(q)u(t)

Stochastic: $y(t) = H(q)e(t), \ e(t)$ white noise

Stochastic-deterministic: y(t) = G(q)u(t) + H(q)e(t)

SISO: $u(t) \in \mathbb{R}, y(t) \in \mathbb{R}$

MIMO: $u(t) \in \mathbb{R}^{n_u}, \ y(t) \in \mathbb{R}^{n_y}$

Autonomous: $x_{k+1} = Ax_k$

Linear: $x_{k+1} = Ax_k + Bu_k + Ke_k$

Non-linear: $x_{k+1} = f(x_k, u_k, e_k)$

Time invariant:
$$x_{k+1} = Ax_k + Bu_k$$
.

Time variant:
$$x_{k+1} = A(k)x_k + B(k)u_k$$

Examples of Systems with quantized states:

- x_k is an integer (number of cars, number of persons in a queue, etc.)
- Robot mode { wait, search, recharge}.

Discrete-time Markov chain: Definition

White noise sequence $\{x_k\}_k$, k = 0, 1, ...:

• Analysis is straightforward: There is **no memory** because x_k , k = 0, 1, ... are independent variables.

Many real-life processes cannot be described by white noise processes.

Example:

• $x_k \equiv$ stock price of a company: It is reasonable to assume that x_k , k = 1, ... aren't statistically independent.

Discrete-time Markov chain: Definition

DISCRETE-TIME MARKOV PROCESS

A discrete-time Markov process is a stochastic process $\{x_k\}_k$, $k = 0, 1, \ldots$, where

$$Prob(x_{k+1}|x_k, x_{k-1}, \dots, x_0) = Prob(x_{k+1}|x_k)$$

with Prob(a|b) denoting probability distribution of a given b.

In a Markov process the state is the **system memory**

DISCRETE-TIME MARKOV CHAIN

A Markov chain is a discrete-time Markov process whose possible values of the state (state-space) is a countable set.

Stationary discrete-time Markov chain:

$$\mathsf{Prob}\,(x_{k+n+1} = j | x_{k+n} = i)_{\forall n \in \mathbb{N}} = \mathsf{Prob}\,(x_{k+1} = j | x_k = i) = p_{ij}(k) = p_{ij}(k)$$

• The distribution of x_k is the same for all k.

p_{ii} - Transition probability:

a)
$$p_{ij} \geq 0 \quad \forall i, j \in \mathbb{X}$$

b)
$$\sum_{j \in \mathbb{X}} p_{ij} = 1 \quad \forall i \in \mathbb{X}.$$

State transition matrix

If the state-space is finite, i.e., if there are only n states, then it can be defined the matrix.

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix},$$

denoted as state transition matrix.

It is characterized by the following:

- All its elements are positive.
- The sum of elements in any row equals 1.

State transition diagram

A Markov chain is usually shown by a state transition diagram.

Example: Consider a Markov chain with the state transition matrix:

$$\mathbf{P} = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{3} & 0 & \frac{2}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

Then it can be represented by the transition diagram:

- 2 Find $P(x_3 = 1 | x_2 = 1)$.
- **3** If we know $P(x_0 = 1) = \frac{1}{3}$, find $P(x_0 = 1, x_1 = 2)$.
- ① If we know $P(x_0 = 1) = \frac{1}{3}$, find $P(x_0 = 1, x_1 = 1, x_2 = 3)$.

- 2 Find $P(x_3 = 1 | x_2 = 1)$.
- **3** If we know $P(x_0 = 1) = \frac{1}{3}$, find $P(x_0 = 1, x_1 = 2)$.
- ① If we know $P(x_0 = 1) = \frac{1}{3}$, find $P(x_0 = 1, x_1 = 1, x_2 = 3)$.

- 2 Find $P(x_3 = 1 | x_2 = 1)$.
- **3** If we know $P(x_0 = 1) = \frac{1}{3}$, find $P(x_0 = 1, x_1 = 2)$.
- ① If we know $P(x_0 = 1) = \frac{1}{3}$, find $P(x_0 = 1, x_1 = 1, x_2 = 3)$.

- 2 Find $P(x_3 = 1 | x_2 = 1)$.
- **3** If we know $P(x_0 = 1) = \frac{1}{3}$, find $P(x_0 = 1, x_1 = 2)$.
- ① If we know $P(x_0 = 1) = \frac{1}{3}$, find $P(x_0 = 1, x_1 = 1, x_2 = 3)$.

State probability distributions

- Markov chain: $\{x_k\}_{k=0,\dots,\infty}$
- $x_k \in \mathbb{X} = \{1, 2, \dots, n\}$.
- Define the probability distribution of x₀ as the row vector:

$$\pi^{(0)} = [P(x_0 = 1) \quad P(x_0 = 2) \quad \cdots \quad P(x_0 = n)]$$

• What are the distributions of x_k , $k = 1, ..., \infty$?

•
$$P(x_1 = j) = \sum_{i=1}^{n} P(x_1 = j | x_0 = i) P(x_0 = i) = \sum_{i=1}^{n} p_{ij} P(x_0 = i).$$

= $[P(x_0 = 1) \quad P(x_0 = 2) \quad \cdots \quad P(x_0 = n)] \begin{bmatrix} p_{1,j} \\ p_{2,j} \\ \vdots \\ p_{n,j} \end{bmatrix}$

State probability distributions

Hence:

$$\pi^{(1)} = \begin{bmatrix} P(x_0 = 1) & P(x_0 = 2) & \cdots & P(x_0 = n) \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$
$$= \pi^{(0)} \mathbf{P}$$

Similarly:

$$\pi^{(2)} = \pi^{(1)} \mathbf{P} = \pi^{(0)} \mathbf{P}^{2}
\pi^{(3)} = \pi^{(2)} \mathbf{P} = \pi^{(0)} \mathbf{P}^{3}
\vdots
\vdots
(k+1) = \pi^{(k)} \mathbf{P} = \pi^{(0)} \mathbf{P}^{k+1}$$

Consider a system that can be in one of two possible states, $\mathbb{X}=\{0,1\}$. Suppose that the transition matrix is given by

$$\mathbf{P} = \left[\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{array} \right].$$

Suppose that the system is in state 0 at time k = 0, i.e., $x_0 = 0$

- Draw the transition diagram
- ② Find the probability that the system is in state 1 at time k = 3

- Markov chain: $\{x_k\}_{k=0}$
- \bullet $x_k \in \mathbb{X}$
- $x_0 = i \Rightarrow P(x_1 = j) = p_{ij}$, probability of going from state i to state i in k=1 step.
- What is the probability of going from state i to state j in k=2 steps, i.e,

$$p_{ij}^{(2)} = P(x_2 = j | x_0 = i)$$
?

Solution:

$$\begin{split} p_{ij}^{(2)} &= P(x_2 = j | x_0 = i) = \sum_{\ell \in \mathbb{X}} P(x_2 = j | x_1 = \ell, x_0 = i) = \\ &= \sum_{\ell \in \mathbb{X}} P(x_2 = j | x_1 = \ell) P(x_1 = \ell | x_0 = i) = \sum_{\ell \in \mathbb{X}} p_{\ell j} p_{i\ell} = \sum_{\ell \in \mathbb{X}} p_{i\ell} p_{\ell j}. \end{split}$$

Two-step transition matrix:

$$\boldsymbol{P}^{(2)} = \begin{bmatrix} p_{11}^{(2)} & p_{12}^{(2)} & \cdots & p_{1n}^{(2)} \\ p_{21}^{(2)} & p_{22}^{(2)} & \cdots & p_{2n}^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1}^{(2)} & p_{n2}^{(2)} & \cdots & p_{nn}^{(2)} \end{bmatrix}$$

Calculate

$$\mathbf{P}^{2} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ p_{i1} & p_{i2} & \cdots & p_{in} \\ \vdots & \vdots & \vdots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix} \begin{bmatrix} p_{11} & \cdots & p_{1j} & \cdots & p_{1n} \\ p_{21} & \cdots & p_{2j} & \cdots & p_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{\ell 1} & \cdots & p_{\ell j} & \cdots & p_{\ell n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{n1} & \cdots & p_{nj} & \cdots & p_{nn} \end{bmatrix}$$

$$\mathbf{P}^{2} = \begin{bmatrix} \sum_{\ell=1}^{n} p_{1\ell} p_{\ell 1} & \cdots & \sum_{\ell=1}^{n} p_{1\ell} p_{\ell j} & \cdots & \sum_{\ell=1}^{n} p_{1\ell} p_{\ell n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{\ell=1}^{n} p_{i\ell} p_{\ell 1} & \cdots & \sum_{\ell=1}^{n} p_{i\ell} p_{\ell j} & \cdots & \sum_{\ell=1}^{n} p_{i\ell} p_{\ell n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{\ell=1}^{n} p_{n\ell} p_{\ell 1} & \cdots & \sum_{\ell=1}^{n} p_{n\ell} p_{\ell j} & \cdots & \sum_{\ell=1}^{n} p_{n\ell} p_{\ell n} \end{bmatrix}$$

$$\mathbf{P}^{2} = \begin{bmatrix} \sum_{\ell=1}^{n} p_{1\ell} p_{\ell 1} & \cdots & \sum_{\ell=1}^{n} p_{1\ell} p_{\ell j} & \cdots & \sum_{\ell=1}^{n} p_{1\ell} p_{\ell n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{\ell=1}^{n} p_{i\ell} p_{\ell 1} & \cdots & \sum_{\ell=1}^{n} p_{i\ell} p_{\ell j} & \cdots & \sum_{\ell=1}^{n} p_{i\ell} p_{\ell n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{\ell=1}^{n} p_{n\ell} p_{\ell 1} & \cdots & \sum_{\ell=1}^{n} p_{n\ell} p_{\ell j} & \cdots & \sum_{\ell=1}^{n} p_{n\ell} p_{\ell n} \end{bmatrix}$$

$$\mathbf{P}^{2} = \begin{bmatrix} \sum_{\ell=1}^{n} p_{1\ell} p_{\ell 1} & \cdots & \sum_{\ell=1}^{n} p_{1\ell} p_{\ell j} & \cdots & \sum_{\ell=1}^{n} p_{1\ell} p_{\ell n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{\ell=1}^{n} p_{i\ell} p_{\ell 1} & \cdots & p_{ij}^{(2)} & \cdots & \sum_{\ell=1}^{n} p_{i\ell} p_{\ell n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{\ell=1}^{n} p_{n\ell} p_{\ell 1} & \cdots & \sum_{\ell=1}^{n} p_{n\ell} p_{\ell j} & \cdots & \sum_{\ell=1}^{n} p_{n\ell} p_{\ell n} \end{bmatrix}$$

$$\mathbf{P}^{2} = \begin{bmatrix} p_{11}^{(2)} & \cdots & p_{1j}^{(2)} & \cdots & p_{1n}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{i1}^{(2)} & \cdots & p_{ij}^{(2)} & \cdots & p_{in}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{n1}^{(2)} & \cdots & p_{ni}^{(2)} & \cdots & p_{nn}^{(2)} \end{bmatrix} = \mathbf{P}^{(2)}$$

$$\mathbf{P}^{2} = \begin{bmatrix} p_{11}^{(2)} & \cdots & p_{1j}^{(2)} & \cdots & p_{1n}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{i1}^{(2)} & \cdots & p_{ij}^{(2)} & \cdots & p_{in}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ p_{n1}^{(2)} & \cdots & p_{nj}^{(2)} & \cdots & p_{nn}^{(2)} \end{bmatrix} = \mathbf{P}^{(2)}$$

k-step transition probability:

$$p_{ii}^{(k)} = P(x_k = j | x_0 = i), \quad k = 0, 1, \dots, \infty$$

Let k and m be two positive integers and assume $x_0 = i$. In order to go to state j in (m + k) steps, the chain will be at some intermediate state ℓ after m steps. To obtain $p_{ij}^{(m+k)}$, we sum over all possible intermediate states:

$$p_{ij}^{(m+k)} = P(x_{m+k} = j | x_0 = i) = \sum_{\ell = \mathbb{X}} p_{i\ell}^{(m)} p_{\ell j}^{(k)}$$

Chapman-Kolmogorov equation:

$$p_{ij}^{(m+k)} = P(x_{m+k} = j | x_0 = i) = \sum_{\ell \in \mathbb{X}} p_{i\ell}^{(m)} p_{\ell j}^{(k)}$$

The k-step transition matrix is given by:

$$\mathbf{P}^{(k)} = \mathbf{P}^k$$
.

Classification of states

- The state i is **accessible** from state i, denoted as $i \rightarrow j$, if $p_{ii}^{(k)} > 0$ for some k. Every state is accessible from itself because $p_{::}^{(0)} = 1$.
- The states i and j communicate, denoted as $i \leftrightarrow j$, if they are accessible from each other, i.e.,

$$m{i} \leftrightarrow m{j} \Leftrightarrow \left\{egin{array}{c} m{i}
ightarrow m{j} \ m{j}
ightarrow m{i} \end{array}
ight.$$

Communication is an **equivalence** relation:

- $0 i \leftrightarrow i$
- 2 if $i \leftrightarrow j$ then $j \leftrightarrow i$
- \bigcirc if $i \leftrightarrow j$ and $j \leftrightarrow k$ then $i \leftrightarrow k$

Equivalence

Exercise

Find the equivalence classes of the Markov chain shown in the figure (It is assumed that $p_{ij} > 0$ when there is an arrow from state i to j).

Irreducible Markov chains

 A Markov chain is irreducible if all states communicate with each other.

Consider the Markov chain:

- State 1 is transient.
- States 2 and 3 are recurrent.

Recurrent and transient states

- define $f_{ii} = P(x_k = i, \text{ for some } k \ge 1 | x_0 = i) = 1$.
 - State *i* is **recurrent** if $f_{ii} = 1$.
 - State i is transient if $f_{ii} < 1$.
- If two states are in the same class, either both of them are recurrent, or both of them are transient.
 - A class is recurrent if its states are recurrent.
 - A class is transient if its states are transient.

Recurrent and transient states

Let V be the total number of visits to the state i of a Markov chain. Then

• if *i* is a recurrent state then

$$P(V=\infty|x_0=i)=1.$$

• if i is a transient state with probability of returning equal f_{ii} then

$$V|x_0=i\sim {\sf Geometric}(1-f_{ii}).$$

Exercise

Show that in a finite Markov chain, there is at least one recurrent class.

Solution

- Consider a finite Markov chain with r states.
 - $S = \{1, 2, \ldots, r\}$
- Suppose that all states are transient.
- Then, starting from time 0, the chain might visit state 1 several times, but at some point the chain will leave state 1 and will never return to it. That is, there exists an integer $M_1 > 0$ such that $x_k \neq 1$, for all $k \geq M_1$
- Similarly, there exists an integer $M_2 > 0$ such that $x_k \neq 2$, for all $k \geq M_2$, and so on. Now, if you choose $k \geq \max(M_1, M_2, \dots, M_r)$, then x_k cannot be equal to any of the states $1, 2, \dots, r$. This is a contradiction, so we conclude that there must be at least one recurrent state, which means that there must be at least one recurrent class.

- If we Start from state 0 we only return to it at times $k = 3, 6, \dots$
- In other words, $p_{00}^{(k)} = 0$ if k is not divisible by 3
- Such a state is called a periodic state with period d(0) = 3.

Periodicity

Period of a state

The period of a state i is the largest integer d satisfying the following property: $p_{ii}^{(k)} = 0$ whenever k is not divisible by d. The period of i is denoted by d(i). If $p_{ii}^{(k)} = 0$, for all k > 0, then we $d(i) = \infty$.

- If d(i) > 1, state i is periodic.
- If d(i) = 1, state i is aperiodic.
- All states in the same class have the same period.
- A class is periodic if its states are periodic.
- A class is aperiodic if its states are aperiodic.

The states of the Markov chain in the Figure are periodic with period d=2.

Periodicity

- If $p_{ii}^{(n)} > 0$ and $p_{ii}^{(m)} > 0$ then $p_{ii}(\ell) > 0$ where ℓ is the greatest common divider of m and n
- If $\ell > 1$, i.e., if m and n have common factors, then i is periodic with period $d(i) = \ell$.
- If $\ell = 1$, i.e, if m and n are co-prime, then i is aperiodic.

Aperiodicity conditions in an irreducible Markov chains

- Existence of at least a self transition $(p_{ii} > 0)$ for some state
- If $p_{ii}^{(n)} > 0$, $p_{ii}^{(m)} > 0$ and m and n are co-prime,
- If exists an integer n such that the matrix P^n is strictly positive, i.e., if

$$P_{ii}^{(n)} > 0$$
, for all i and j .

Periodicity

Exercise

For the Markov chain of the Figure:

- Is Class $1=\{1,2\}$ aperiodic?
- ② Is Class $2=\{3,4\}$ aperiodic?
- \odot Is Class $4=\{6,7,8\}$ aperiodic?

Absorbing states

Question: How many classes are in the Markov chain of the Figure?

Absorbing states

Question: How many classes are in the Markov chain of the Figure?

Answer: 3 classes

- Class 1: State 0: Recurrent:
- Class 2: States 1 and 2: Transient;
- Class 3: State 3: Recurrent;

Question: How many classes are in the Markov chain of the Figure?

Answer: 3 classes

- Class 1: State 0: Recurrent;
- Class 2: States 1 and 2: Transient;
- Class 3: State 3: Recurrent;

States 0 and 3 are absorbing

Once you enter these states you never leave them.

Definition of a Discrete-time Markov chain Sta

Absorption probabilities

What are the aborption probabilities of states 2 and 3?

- Define the conditional probabilities of absorption in 0:
 - $a_0 = P$ (absorption in $\mathbf{0}|x_0 = \mathbf{0}) = 1$,
 - $a_1 = P$ (absorption in $\mathbf{0}|x_0 = \mathbf{1}$) = $p_{10}a_0 + p_{12}a_2 = \frac{1}{3}a_0 + \frac{2}{3}a_2$,
 - $a_2 = P$ (absorption in $\mathbf{0}|x_0 = \mathbf{2}$) = $p_{21}a_1 + p_{23}a_3 = \frac{1}{2}a_1 + \frac{1}{2}a_3$,
 - $a_3 = P$ (absorption in $\mathbf{0}|x_0 = \mathbf{3}$) = 0.

Solving the equations:

$$\begin{cases} a_1 = \frac{1}{3}a_0\Big|_{a_0=1} + \frac{2}{3}a_2 \\ a_2 = \frac{1}{2}a_1 + \frac{1}{2}a_3\Big|_{a_2=0} \end{cases} \Rightarrow \begin{cases} a_1 = \frac{1}{2} \\ a_2 = \frac{1}{4} \end{cases}$$

Absorption probabilities

- Define the conditional probabilities of absorption in 3:
 - $b_0 = P$ (absorption in $3|x_0 = 0$) = 0,
 - $b_1 = P$ (absorption in $3|x_0 = 1$) = $p_{10}b_0 + p_{12}b_2 = \frac{1}{3}p_0 + \frac{2}{3}p_2$,
 - $b_2 = P$ (absorption in $3|x_0 = 2$) = $p_{21}b_1 + p_{23}b_3 = \frac{1}{2}b_1 + \frac{1}{2}b_3$,
 - $b_3 = P$ (absorption in $b|x_0 = 3) = 1$.

Solving the equations:

$$\begin{cases} b_1 &= \frac{1}{3}a_0\Big|_{b_0=0} + \frac{2}{3}b_2 \\ b_2 &= \frac{1}{2}b_1 + \frac{1}{2}b_3\Big|_{b_3=1} \end{cases} \Rightarrow \begin{cases} b_1 = \frac{1}{2} \\ b_2 = \frac{3}{4} \end{cases}$$

Aborption probabilities

Consider a finite Markov chain $\{x_k, k = 0, 1, 2, ...\}$ with state-space $S = \{1, 2, \dots, n\}$. Suppose that all states are either absorbing or transient. Let $r \in S$ be an absorbing state. Define

$$a_i = P$$
 (absorption in $r|x_0 = i$), for all $i \in S$.

By this definition $a_r = 1$ and $a_i = 0$ if j is any other absorbing state. The unknown values of a_i can be found by solving the equations:

$$a_i = \sum_{\ell} a_\ell p_{i\ell}, \quad ext{for all } i \in S.$$

- A finite Markov chain can exhibit multiple transient and recurrent classes.
- As time increases, the chain becomes absorbed in one of its recurrent classes, where it will remain indefinitely.
- Using the outlined approach, we can determine the probability of absorption into each recurrent class.
- We can substitute each recurrent class with an absorbing state.
- the transformed chain consists exclusively of transient and absorbing states.
- Employing the aforementioned method we can calculate the absorption probabilities

Mean hitting times

 t_i -Number of steps needed until the chain hits state **0** or **3** (i.e., an obsorbing state) given that $x_0 = i$:

- $t_0 = 0$ (the chain is alreay in an aborbing state).
- $t_1 = 1 + \frac{1}{3}t_0 + \frac{2}{3}t_2 = 1 + \frac{2}{3}t_2$ (because if $x_0 = 1$, after one step $x_1 = 1$ or $x_1 = 2$ with probabilities $\frac{1}{3}$ and $\frac{2}{3}$ respectively and from i = 0 takes t_0 steps and from i = 2 takes t_2 steps).
- $t_2 = 1 + \frac{1}{2}t_1 + \frac{1}{2}t_3 = 1 + \frac{1}{2}t_1$.

Mean hitting times

Solving the equation:

$$\begin{cases} t_1 = 1 + \frac{2}{3}t_2 \\ t_2 = 1 + \frac{1}{2}t_1 \end{cases} \Rightarrow \begin{cases} t_1 = \frac{5}{2} \\ t_2 = \frac{9}{4} \end{cases}$$

Mean hitting times

Consider a finite Markov chain $\{x_k, k = 0, 1, 2, \dots\}$ with state space $S = \{0, 1, 2, \dots, k\}$. Let $A \subset S$ and T be the first time the chain visits A. Define $t_i = E\{T|x_0 = i\}$. By definition $t_i = 0$ if $j \in A$. If $i \notin A$ then

$$t_i = 1 + \sum_{\ell} t_{\ell} p_{i\ell}.$$

Mean return time

Assume the chain is in state ℓ .

The **mean return time** is the expected number of steps required for the chain return to state ℓ .

Consider the subsequent series of states in a Markov chain:

Define:

 R_2 = First return to state 2 = 4 because it happens at k = 4. Then

$$r_2 = E\{R_2|x_0 = 2\}$$

is the mean return time to state 2.

Mean return time

Mean return time

Let

$$R_i = \min\left\{k \geq 1 : x_k = \boldsymbol{i}\right\}.$$

Then

$$r_i = \mathbf{E}\left\{R_i|x_0 = \mathbf{i}\right\}$$

is the mean return time to i.

- By definition $R_i \ge 1 \Rightarrow r_i \ge 1$.
- $r_i = 1$ if and only if i is an aborbing state.
- Define t_{ji} as the expected time until the chain reaches the state i for the first time, given that $x_0 = j$. Then

$$r_i = 1 + \sum_i p_{ij}t_{ji}$$
 with $t_{ji} = 1 + \sum_{\ell} p_{j\ell}t_{\ell j}$.

Mean return time

Exercise

Find t_{11} , t_{21} , t_{31} and r_1 .

Solution:

$$\begin{cases} t_{11} &= 0 \text{ by definition} \\ t_{21} &= 1 + \frac{1}{3}t_{21} + \frac{2}{3}t_{31} \iff \begin{cases} t_{11} = 0 \\ t_{21} = 5 \end{cases} \\ t_{31} &= 1 + \frac{1}{2}t_{11} + \frac{1}{2}t_{21} \end{cases} \Leftrightarrow \begin{cases} t_{11} = 0 \\ t_{21} = 5 \end{cases}$$

and

$$r_1 = 1 + p_{12}t_{21} = 1 + \frac{5}{2} = \frac{7}{2}.$$

Problem: Find the fraction of time that a Markov chain occupies each state as time goes to infinity. More specifically, study the distribution:

$$\pi^{(k)} = \begin{bmatrix} P(x_k = \mathbf{0}) & P(x_k = \mathbf{1}) & \cdots \end{bmatrix}$$

Example: Condider a Markov chain with state-space $S = \{0, 1\}$ and transition matrix

$$\mathbf{\textit{P}} = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix}, \quad a,b \in [0,1] \Rightarrow 0 < a+b < 2.$$

If
$$P(x_0 = 0) = \alpha$$
 then

$$\pi^{(0)} = [p(x_0) = 0 \ p(x_0) = 1] = [\alpha \ 1 - \alpha]$$

On the other hand

$$\mathbf{P}^k = \mathbf{Z}^{-1} \left\{ (z\mathbf{I} - \mathbf{P})^{-1} \right\}.$$

Given that

$$(z\mathbf{I} - \mathbf{P})^{-1} = \begin{bmatrix} z - (1-a) & -a \\ -b & z - 1 - b \end{bmatrix}^{-1} =$$

$$= \frac{1}{z^2 - (2-a-b)z + 1 - a - b} \begin{bmatrix} z - 1 - b & a \\ b & z - 1 - a \end{bmatrix} =$$

$$= \begin{bmatrix} \frac{z - (1-b)}{(z-1)(z-(1-a-b))} & \frac{a}{(z-1)(z-(1-a-b))} \\ \frac{b}{(z-1)(z-(1-a-b))} & \frac{z - (1-a)}{(z-1)(z-(1-a-b))} \end{bmatrix}$$

If |1-a-b| < 1, then, from the z-transform final value theorem

$$\lim_{k\infty} \mathbf{P}^k = \lim_{z \to 1} (z - 1) (z\mathbf{I} - \mathbf{P})^{-1} = \begin{bmatrix} \frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b} \end{bmatrix}$$

and

$$\lim_{k \to \infty} \pi^{(k)} = \lim_{k \to \infty} \left[\pi^{(0)} \mathbf{P}^k \right] = \pi^{(0)} \lim_{k \to \infty} \mathbf{P}^k = \left[\frac{b}{a+b} \quad \frac{a}{a+b} \right]$$

In this example:

$$\lim_{k \to \infty} P(x_k = \mathbf{0} | x_0 = \mathbf{i}) = \lim_{k \to \infty} p_{i0}^{(k)} = \frac{b}{a+b}, \quad \mathbf{i} = 0, 1$$

$$\lim_{k \to \infty} P(x_k = \mathbf{1} | x_0 = \mathbf{i}) = \lim_{k \to \infty} p_{i1}^{(k)} = \frac{a}{a+b}, \quad \mathbf{i} = 0, 1$$

Limiting Distributions

The probability distribution $\pi = \begin{bmatrix} \pi_0 & \pi_1 & \pi_2 & \cdots \end{bmatrix}$ is called **limiting distribution** of the Markov chain $\{x_k\}_{k=0}$ with state-space S if

$$\pi_j = \lim_{k \to \infty} P\left(x_k = \boldsymbol{j} | x_0 = \boldsymbol{i}\right)$$

for all $i, j \in S$, and

$$\sum_{i \in \mathcal{E}} \pi_j = 1.$$

Exercise

Find the mean return times of a Markov chain with state-space $S = \{0, 1\}$ and transition matrix

$$\mathbf{P} = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix}$$

Exercise

Find the mean return times of a Markov chain with state-space $S = \{0, 1\}$ and transition matrix

$$\mathbf{P} = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix}$$

Solution:

$$r_0 = 1 + t_{10}p_{01}$$

$$r_1 = 1 + t_{01}p_{10}$$

where t_{ii} is the expected time until the chain reach the state j, given that $x_0 = i$:

$$\begin{cases} t_{10} &= 1 + p_{10}t_{00} + p_{11}t_{10} = 1 + (1-b)t_{10} \\ t_{01} &= 1 + p_{00}t_{01} + p_{01}t_{11} = 1 + (1-a)t_{01} \end{cases} \Rightarrow \begin{cases} t_{10} &= 1/b \\ t_{01} &= 1/a. \end{cases}$$

$$r_0 = 1 + \frac{a}{b} = \frac{a+b}{b} = \frac{1}{\pi_0}$$

$$r_1 = 1 + \frac{b}{a} = \frac{a+b}{a} = \frac{1}{\pi_1}$$

If in the previous example a = b = 1 then

$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow x_k + 2 = \mathbf{P}^2 x_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x_k.$$

The Markov chain is periodic. In particular

$$x_k = \begin{cases} x_0 & \text{if } k \text{ is even} \\ x_1 & \text{if } k \text{ is odd} \end{cases}$$

if a = b = 0 the chain will consist of two disconnected nodes. In this case,

$$x_k = x_0$$
 for all k .

In these cases the chain does not have a limiting distribution.

Finite Markov Chains

- If a finite Markov chain has more than one recurrent class. then the chain will get absorbed in one of the recurrent classes.
- Consider a irreducible Markov chain with only one recurrent class. In this case the chain has a limiting distribution:

$$\pi = \lim_{k \to \infty} \pi^{(k)} = \lim_{k \to \infty} \left[\pi^{(0)} \mathbf{P}^k \right].$$

Similarly

$$\pi = \lim_{k \to \infty} \pi^{(k+1)} = \lim_{k \to \infty} \left[\pi^{(0)} \mathbf{\textit{P}}^{k+1} \right] \lim_{k \to \infty} \left[\pi^{(0)} \mathbf{\textit{P}}^{k} \mathbf{\textit{P}} \right] = \left[\pi^{(0)} \mathbf{\textit{P}}^{k} \right] \mathbf{\textit{P}} = \pi \mathbf{\textit{P}}.$$

Hence

$$\pi_j = \sum_i \pi_i p_{ij}$$

Exercise

Find the limiting distribution of the Markov chain with $S = \{0, 1\}$ and transition matrix

$$\mathbf{P} = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix}$$

using the relation $\pi = \pi P$.

Exercise

Find the limiting distribution of the Markov chain with $S = \{0, 1\}$ and transition matrix

$$\mathbf{P} = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix}$$

using the relation $\pi = \pi P$.

Solution:

$$\pi = \pi \mathbf{P} = \begin{bmatrix} \pi_0 & \pi_1 \end{bmatrix} \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} = \begin{bmatrix} (1 - a)\pi_0 + b\pi_1 & a\pi_0 + (1 - b)\pi_1 \end{bmatrix}.$$

Therefore

$$\begin{cases} \pi_0 = (1-a)\pi_0 + b\pi_1 \\ \pi_1 = a\pi_0 + (1-b)\pi_1 \end{cases} \Rightarrow a\pi_0 = b\pi_1$$

Finite Markov Chains

Solve:

$$\begin{cases} \pi_0 + \pi_1 &= 1 \\ a\pi_0 - b\pi_1 &= 0 \end{cases} \begin{cases} \pi_0 &= \frac{b}{a+b} \\ \pi_1 &= \frac{a}{a+b} \end{cases}$$

Consider a Markov chain $\{x_k\}_{k=0,1,...}$ with state-space $S = \{0, 1, \dots, n\}$. Then,

It has a limiting distribution if and only if the set of equations:

$$\begin{cases} \pi = \pi \mathbf{P} \\ \sum_{j=1}^{n} \pi_j = 1 \end{cases}$$

has a unique solution.

- This unique solution is the limiting distribution of the Markov chain.
- The mean return time to state j is

$$r_j = \frac{1}{\pi_i}, \quad \text{for all } j \in S.$$

Countably Infinite Markov Chains:

Positive recurrent and null recurrent

Let *i* be a recurrent state. Assuming $x_0 = i$, let R_i be the number of transitions needed to return to state i, i.e.,

$$\mathbf{R}_i = \min\left\{k \ge 1 : x_k = \mathbf{i}\right\}$$

if $r_i = E\{R_i|x_0 = i\} < \infty$ then *i* is **positive recurrent**, otherwise is null recurrent.

Theorem

Consider a Markov chain $\{x_k\}_{k=0,1,...}$ with state-space $S = \{0, 1, \dots, n\}$. Assume that the chain is **irreducible** and aperiodic. Then, one of the following cases can occur:

All states are transient, and

$$\lim_{k\to\infty} P(x_k = \boldsymbol{j}|x_0 = \boldsymbol{i}) = 0$$
, for all $\boldsymbol{i}, \boldsymbol{j}$.

All states are null recurrent, and

$$\lim_{k\to\infty} P(x_k = \boldsymbol{j}|x_0 = \boldsymbol{i}) = 0$$
, for all $\boldsymbol{i}, \boldsymbol{j}$.

All states are positive recurrent. In this case exists a limiting distribution $\pi = \begin{bmatrix} \pi_0 & \overline{\pi_1} & \cdots \end{bmatrix}$ where $\pi_j = \lim_{k \to \infty} P(x_k = \boldsymbol{j} | x_0 = \boldsymbol{i}) > 0$, for all $\boldsymbol{i}, \boldsymbol{j}$.

Countably Infinite Markov Chains:

Theorem - continuation

This limiting distribution is the unique solution of

$$\begin{cases} \sum_{i=0}^{\infty} p_{ij} \pi_i &= \pi_j \\ \sum_{j=0}^{\infty} \pi_j &= 1. \end{cases}$$

Also

$$r_j = \frac{1}{\pi_j}, \quad \text{for all } \boldsymbol{j} = 0, 1, \dots,$$

where r_j is the return times to state j.