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Abstract
Intersection management in the presence of automated guided vehicles (AGVs) in industrial settings is a major problem that theartificial intelligence community tries to tackle. In this paper, we perform a comparative analysis of three well-known reinforcementlearning techniques that produce policies to control a signalized intersection to coordinate traffic flow among automated guidedvehicles. We implemented and tested four scenarios with different numbers of lanes and traffic light phase configurations. The analysisallowed us to gain critical insight into ways to improve the coordination of single intersections operating AGVs. The results suggest thatdecreasing the number of phases and increasing the number of lanes can be beneficial. As for the algorithms used, the DeepQ-Networks (DQN) and Double DQN performed better in simpler scenarios, whereas Dueling DQN seems to be more appropriate formore complex intersection settings.
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1. Introduction

Nowadays, humans are required to drive vehicles reliably.However, if one can fully automate vehicle driving, it canprovide a competitive advantage to the industries that useit. “Automated Guided Vehicles (AGVs) are mobile robotswhich are extensively used in the industry to transportgoods from A to B” (De Ryck et al., 2020). They can beautomobiles, trucks, drones, forklifts, or other industrialvehicles. Managing conflicts with AGVs is a complex taskand several efforts in the Artificial Intelligence commu-nity try to address issues associated with their coordina-tion. A prominent problem is the control of AGV trafficlight intersections. The intersections can have differentcomplexity levels; one possibility is to vary the number ofroads that meet at each intersection or the number of lanes

on each street. Combining more complex intersections,like roundabouts or multiple junctions, is possible as well.However, what they all have in common is that multiplevehicles might want to cross the same area simultaneouslyyielding countless conflicting situations. Therefore, it isdesirable to develop a system capable of training modelsto handle any intersection, assuming that every vehicle onthe road is autonomous (driven by a computer).
The hypothesis in this study is whether RL is a suitablemethodology for representing control systems in dynamicenvironments such as AGV traffic light intersections. Toassess such a hypothesis, we perform a comparative analy-sis of three well-known RL algorithms that model an inter-section. We consider as the most suitable system the onecapable of achieving the highest traffic flow while keeping

https://creativecommons.org/licenses/by-nc-nd/4.0/.


| 35th European Modeling & Simulation Symposium, EMSS 2023
collisions from happening.The remainder of this paper is organized as follows.Section 2 presents the background knowledge and somerelevant to support work herein reported. Section 3 dis-cusses the methodological approach to designing intersec-tion management strategies. In Section 4 we present anddiscuss the results of our experiments. Finally, Section5 draws the conclusions and suggests routes for futurework.
2. Background & Related Work

2.1. Q-Learning

According to Jang et al.(Jang et al., 2019) Q-Learning is amodel-free RL method that allows agents to act optimallyin Markovian domains, defined by a Markov Decision Pro-cess (MDP). Q-learning is an off-policy method because itseparates the learning policy from the acting policy usingEquation 1 to calculate the Q-values of the state-actionpairs. The agent uses these values to select the best ac-tion to be performed at each state. In the same equation,
α ∈ [0, 1] is the learning rate used by the agent in eachiteration of the q-values update, R is the reward obtainedby taking action a at state s, and γ is the reward discountfactor. This process must be repeated several times untilit converges to optimal values used to solve the problem athand.

Q(s, a)← Q(s, a) + α[R + γmax
a′

Q(s′, a′) – Q(s, a)] (1)
2.2. Deep Q-Networks

With the evolution of Deep Learning, Deep Q-Networks
(DQNs) emerged naturally. They can extract essential fea-tures from the data without human handcrafting domain-specific features (Sewak and Sewak, 2019). Accordingto (Jang et al., 2019), DQNs combine Convolution NeuralNetworks (CNNs) with Q-learning. The key idea behindthis method is to use experience replay to reduce the cor-relations between different states, actions, and rewardsthat the CNN could exploit. A replay buffer stores samplesfrom the states, actions, and rewards and every time theCNN learns, random samples are extracted from the replaybuffer to the CNN. However, remember that using moresamples at each step means it takes longer for the CNN toupdate its values.In combination with the experience replay technique, atarget network (Qθ′) is used separately from the Q network(Qθ) to increase training stability. The first one must beupdated only periodically, while the second must be con-tinuously updated. Thus, we end up with a new formulafor the updates of the Q-values (Equation 2), where we usethe target network Qθ′ to get subsequent Q-values for thenext state-actions and the current network Qθ to get thecurrent Q-value for the current state-action.

Qθ(s, a)← Qθ(s, a) + α[R + γmax
a′

Qθ′(s′, a′) – Qθ(s, a)] (2)
However, suppose the size of possible states S is con-siderable. In that case, before the agent can learn enoughinformation from the environment, it may get stuck to ex-ploiting the already explored environment, even if betteroptions exist which have not yet been explored. A solu-tion to this problem is to use Double DQN (DDQN) (Sewakand Sewak, 2019). This method still has a target Qθ′ and acurrent Qθ network. The difference is that we select whataction is the best to be taken from the Q network Qθ, butwe use the value from the target network (Qθ′) to updatethe Q network (Qθ), as seen in Equation 3.
Qθ(st, at)←(1 – α)Qθ(st, at)+

α(Rt+1 + γQθ′(s′, arg maxa′Qθ(s′, a′)) (3)
Finally, Dueling DQN (Wang et al., 2016) branches theneural network into two sub-networks (Fig 1). The firstone corresponds to the “Value” function V(s) of each state,and the second one to the “Advantage” function A(s, a)that computes the advantage of each action over the basevalue of being in state s. This separation does trainingmuch quicker: it has a global value for each state, updatedupon any action. To get the Q-values for each state action,we must use Equation 4, where α is the parameter vectorof the “Advantage” sub-network, β is the parameter vec-tor of the “Value” sub-network, and θ is the parametervector of the convolutional layer which is common to bothnetworks (Sewak and Sewak, 2019).

Q(θ,α,β)(s, a) =V(θ,β)(s)+(
A(θ,α)(s, a) – 1|A|

∑
a

A(θ,α)(s, a)
) (4)

The previous Equation (4) could be as simple as Q(s, a) =
V(s) + A(s, a); however, identificability would be lost. Thismeans that the opposite would not be true despite beingable to get the Q-value given the values of s and a. Onecould not retrieve the values of s and a from the givenvalue of Q. The solution is to subtract the mean value of theadvantage values for state s, given by 1|A|

∑
a A(θ,α)(s, a),

from the advantage value of taking action a in state s.
2.3. Related Work

Intersection control in noisy scenarios where non-stationarity occurs not only due to the changing volumeof vehicles, but also because of the random behavior indriving operational tasks is problem that research com-munity constantly tries to tackle de Oliveira et al. (2006);Vilarinho et al. (2016).
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Figure 1. Schema of a Dueling Q-Network, from (Sewak and Sewak,2019).

Authors in Cabrejas-Egea et al. (2021) considered a traf-fic signal control system using the leading RL approachesto date. Their goal was to compare those approaches tothe ones used by commercial systems such as Fixed-CycleMiller (1963) (seen in most traffic signals), MOVA Vincentand Peirce (1988), and SURTRAC Smith et al. (2013) in twoscenarios: a)“Cross straight”, where there is an intersec-tion with four two-way one-lane roads where vehicles canonly go straight through the intersection and b) “Crosstriple”, where there is an intersection with four two-waythree-lane roads with one dedicated left turn lane. Theirproposed solution uses three different methods: DoubleDQN (DDQN), Dueling Double DQN (DDDQN) and Advan-tage Actor Critic (A2C). The first two algorithms were usedin combination with Prioritised Experience Replay thatoptimises the sample selection from the replay buffer byprioritising the temporal-difference error of the samplesWang et al. (2020). In Wei et al. (2018) is discussed theIntelliLight,“a Reinforcement Learning Approach for In-telligent Traffic Light Control”. The proposed RL methodto control traffic lights is tested it against real-world traf-fic data gathered from surveillance cameras and showedcase studies of policies learned from that data. It defendsthat in real-world scenarios, the reward obtained by theRL agents is not enough to produce the best policy. Dif-ferent policies can create the same reward. However onecan be more suitable than the other if, for example, it hasfewer phase changes.The study in (Pálos and Huszák, 2020) conducts a com-parison of Q-Learning based traffic light control methodsand objective functions. It analyses the performance ofDQN, DDQN, Dueling DQN and DDDQN methods to controltraffic lights in a single intersection environment. Theintersection is composed of four one-lane two-way roadswhere traffic can go straight through or turn right. Kav-ička et al. (2021) propose a study to assess traffic variantsthat use different traffic control signal plans, especiallywithin a central intersection. In Chen et al. (2017) dis-cusses an analytic hierarchy process method to determinethe weights of evaluation indicators of traffic lights, to-gether with microscopic simulation to optimize the sig-nalized intersection for the objectives of efficient design

and control. Both of these two efforts could be considersimilar cases of controlling vehicles within a manufactur-ing compound or industrial warehouse. Authors in Pereiraand Rossetti (2012) consider the integration of a micro-scopic traffic simulator with a game engine to simulatedautonomous vehicles. Elbouzidi et al. (2022) presents astudy that aims to assess the maturity of AI applicationwithin warehouse digital twins, namely techniques, ob-jectives, and challenges. Finally, in Bruzzone et al. (2017),authors address the safety issues related to the develop-ment of new solutions based on autonomous systems forindustrial applications.
3. Materials and Methods

This project aims to achieve Intelligent Traffic Light Man-agement for AGV intersections (Fig 2). When replacinghuman drivers with computers controlling vehicles, newopportunities arise. There is no longer the need to usethe typical yellow lights to let humans know they mustslow down because the red light is coming soon. If theAGV receives a red signal (can be visual or through directcommunication with the intersection controller), it willslow down; if it gets a green signal, it will proceed withinits path. Another advantage of using AGVs is lower reac-tion times (humans need hundreds of milliseconds to starttheir reaction to a visual stimulus (Vis, 2006), comparedto computer processing times in the nanoseconds range),so it is possible to change between light phases more of-ten. Finally, computers are more predictable drivers thanhumans.

Figure 2. Example of an AGV intersection from SUMO (Lopez et al.,2018).

3.1. Problem Formalisation

The selected approach to solving the problem of IntelligentTraffic Light Management for AGVs are the DQN-basedmethods.
In the first place, DQN is an RL method, and therefore
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the problem must be defined as an MDP. To do so, the tuple< S, A, P, R,γ > is defined by the following attributes:
• Environment States (S)

– An RGB bird view image of the intersection.
– A tensor with the speeds of the inbound and out-bound vehicles from the intersection
– Finally, four arrays, each one with information aboutthe following features:
* The percentage of space occupied for each lane.* The number of vehicles halting (with speed under0,1 m/s) for each lane.* The sum of the vehicle’s halting times for eachlane.* The number of vehicles on each lane.

• Action Space (A) — For the action space, we use aninteger value indicating the next phase of the trafficlight. The phases are the different possible combina-tions for the green/red lights of the traffic signals andare predefined for each experiment.• Reward Function (R) — The main goal of the rewardfunction is to penalise collisions between vehicles whilekeeping a high traffic flow. To achieve the goal, sixparameters define the reward function (Equation 5 andTable 1):
– S: The average speed in m/s of all vehicles in oncom-ing lanes (that have not passed through the intersec-tion yet). This is one of the most critical factors ofthe reward function because higher speeds directlylead to higher traffic flow.
– L: It measures the throughput of the intersection.Higher throughput leads to more increased trafficflow.
– W: The sum of waiting times from all vehicles inoncoming lanes. A vehicle is waiting if its speed isbelow 0.1m/s. It prevents the agent from allowingonly one lane to pass through the intersection at highrates while keeping all the others at a standstill.
– I: The number of vehicles in oncoming lanes. If manyvehicles accumulate in oncoming lanes, the trafficsignal must allow more vehicles to go through.
– P: Traffic light phase factor (see Equation 6).
– C: Collision factor (see Equation 7).

R = w1 ∗ S + w2 ∗ L + w3 ∗ W + w4 ∗ I + w5 ∗ P + w6 ∗ C (5)
P = { 1, last_phase ̸= current_phase0, last_phase = last_phase (6)

C = { S, collision = True0, collision = False (7)

Finally, the solutions are evaluated by letting the agentsact in a traffic setup they have never seen before and mea-

Table 1. Reward coefficients.
w1 w2 w3 w4 w5 w610 10 -1 -1 -10 -100

a) Intersection with four two-way one-lane roads. b) Intersection with four two-way three-lane roads.
Figure 3. Intersection

suring the obtained rewards, the number of accidents,and the throughput of the intersection during 3,600 steps(each step corresponds to one second of simulation, to-talling one hour).
3.2. Methods and materials

The proposed solution to check whether or not RL is a suit-able methodology to control AGV traffic light intersectionsconsists in developing three different DQN-based agents,using DQN, Double DQN, and Dueling DQN. Those agentsare trained for 100,000 steps in 6 different scenarios (Sub-section 3.3), following the Training Pipeline Loop (Subsec-tion 3.4). Afterwards, a final testing loop of 3,600 steps isperformed to evaluate the trained agents (Subsection 3.5).
3.3. Scenarios

A total of six different scenarios were developed to trainand test each agent. All the scenarios consist of an intersec-tion with four two-way roads controlled by a traffic light,where only AGVs with the same characteristics are allowedto go through. The differences between the scenarios aredivided into two groups:
• Number of lanes: Regarding the number of lanes on theroads, there are two possibilities (Figs 3a and 3b). In Fig3a, there is an intersection where all the roads have one

lane in each direction. That one lane is responsible fortraffic going in all three possible directions (left, front,and right). Fig 3b shows an intersection where all roadshave three lanes in each direction. The left lane handlestraffic turning left, the middle lane only handles trafficgoing straight, and the right lane handles traffic goingstraight and turning right.• Number of phases: There are three different phase se-tups for each intersection in the previous point (Figs
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4 and 5). In Fig 4, there is a setup with 2 phases. Thefirst one allows traffic to flow from north and south di-rections, while the second allows traffic to flow fromeast and west directions. In this setup there is actuallya third phase that blocks traffic from all directions tolet the agent clear the intersection if it wants to. Fig 5shows a traffic light setup with 4 phases. Going from (a)to (d), each phase allows traffic to flow from north, east,south, or west, respectively. As seen in the 2 phasessetup, the 4 phases setup also has a fifth phase thatblocks traffic from all directions.

Figure 4. Traffic light with 2 phases.

3.4. Training Pipeline Loop

Before the DQN Agent gets into the Training Pipeline Loop(Fig 6), it receives an initial representation of the startingstate of the simulation from the Environment module, andthen the loop starts (steps 1 to 4).
• Step 1: The Agent tells the Environment which action itchooses (an action corresponds to setting a phase at thetraffic light, as seen in Section 3.1). Selecting an actiondepends on some randomness defined by the coefficientbetween exploration and exploitation (ϵ). defined as anexponential function (Eq. 8) to decrease that value untila minimum of 0.10 during training.

ϵ(s) = { 0.5 ∗ 0.999s, 0.5 ∗ 0.999s ≥ 0.10.1, otherwise (8)
• Step 2: The Environment, directly connected to SUMOvia TraCI (Lopez et al., 2018), performs the chosen ac-tion. Upon exchanging information with SUMO, the En-vironment builds the new state representation, detailedin the previous section, calculates the value/reward ofthat state, and sends that information (state and re-ward) back to the Agent.• Step 3: The tuple (Previous State, Action, Reward, State)is pushed to a Replay Buffer that stores up to 5,000 tu-ples, acting as the Agent’s memory.• Step 4: A batch of 64 random tuples is sampled fromthe Replay Buffer to train the Agent’s neural network.

This step is only processed after 64 steps of simulationto have enough tuples to perform the batch trainingof the Agent. Despite only performing 100,000 stepsof simulation, the use of the Replay Buffer to train theagent allows it to repeat past experiences and updatethe neural network almost 6,400,000 times.
3.5. Testing Pipeline Loop

The Testing Pipeline Loop is based on the training one butwithout the training features. Only one hour of simulationis performed (3,600 steps). All actions are chosen usingthe Agent’s policy (no more exploration is needed), and noupdates are done in the Agent’s neural network, so thereis no need to have the Replay Buffer. This loop aims tocollect data about the performance of the multiple agentsin different scenarios.
3.6. Simulating the Intersection

To simulate the intersection we use the SUMO traffic sim-ulator (Lopez et al., 2018). It is possible to interact with thegraphic interface of the simulator through TraCI, creatinga view centred in the middle of the intersection and record-ing the frames of the view at every step. The video framesare then used to build the state representation. ThroughTraCI we can collect further data to augment the environ-ment state with additional information. For the purpose ofthis paper we have devised two scenarios, one for the one-lane and another for the three-lane configurations. Theyboth consist of four perpendicular roads with 100 metersthat meet at a traffic light controlled intersection. We havecreated two route files for each scenario, one for trainingand another for testing. The training files contain flows (a
flow repeatedly generates vehicles in the same path withdifferent departure times) from every road to every otherroad. According to it, our scenarios have four roads and12 flows, three from each road. In each flow, we defineda probability of 0.05 for a new vehicle joining the simula-tion in each step. The testing files were generated with adifferent method to remove randomness and compare allagents with the same traffic demands.
4. Results and Discussion

4.1. One Lane Scenario

4.1.1. 2 PhasesHere we are analysing the scenario where we have one-lane roads and a two-phased traffic light. The most ob-vious conclusion we can take by generally looking at thegraphs from Fig 8 is that the agent with the worst perfor-mance during training is Dueling DQN. It shows the lowestvalues for rewards and average speeds and the highest val-ues for average waiting times and the number of collisions.However, despite having the worst results, Dueling DQNshows to be the most stable approach. Comparing DQNwith Double DQN, we see that DQN can achieve marginally
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a) b) c) d)

Figure 5. Traffic light with 4 phases.

Figure 6. Training pipeline for DQN-based agents.

Figure 7. Testing pipeline for DQN-based agents.

better results. However, the results from DQN and DoubleDQN are not stable. This shows that these agents might beover-fitting to some experiences, and whenever it faces anew situation, the agents do not know what the best actionis.
4.1.2. 4 Phases
Now, analysing the scenario where we have roads with onelane and the traffic light has four phases (Fig 9), the Du-eling DQN agent gets the worst overall results once again.However, it still manages to be the more stable agent inevery metric. The main contributing factor to being morestable is using two separate networks (Value and Advan-tage, seen in Section 2.2) to obtain the Q-values. One ofthe networks has the value of each state, and the secondhas the advantage of taking one action over the others inthat state. Even if the agent faces a state-action pair it hasnever faced before, it might have faced that same state withanother action. So, despite no value being stored in theAdvantage network for that action, there will be a storedvalue in the Value network for that state, stabilising thetraining. If the DQN and Double DQN agents have neverfaced that state-action pair, they will have no idea of its

value and will be in an entirely new situation. This makestraining less stable while giving better results for knownsituations (known as over-fitting to known situations).
4.2. Three Lanes Scenario

4.2.1. 2 PhasesLooking at the results from the scenario with three lanesand two phases (Fig 10), it is possible to see that they fol-low the same tendency as the ones from the scenario withone lane and two phases (Fig 8, page 7), except in the col-lisions graph. The absence of collisions is due to the waySUMO’s vehicles handle this intersection and not due toagents’ actions. Once more, Dueling DQN was the worstperformer agent. Also, there were more stable agents thistime. Having an action space with only three possibili-ties (the two phases plus all lights red) puts most of theresponsibility on the agent’s Value network. Adding twolanes on each road makes the observation space increaseconsiderably, destabilising the Value network. ComparingDQN with Double DQN, this time, DQN appears to be morestable, which is expected as we have a low number of pos-sible actions. The advantages of Double DQN over DQN arebest noticed in problems with large action spaces.
4.2.2. 4 PhasesWhen we have the same three-lane roads, but with four-phase traffic lights, the training of all agents stabilises(Fig 11). As in the previous scenario, Dueling DQN is theworst performer and the less stable agent. The differencesbetween DQN and Double DQN are negligible, and they areexpected to be the top performers in this scenario. Com-paring this scenario with the one-lane scenario from Fig 9(page 7), all agents managed to be more stable and achievebetter results. Fig 5 from page 6 shows that only trafficfrom one road can move at a time. In the three-lane sce-nario, this means that three vehicles can pass through theintersection simultaneously (one on each lane), while inthe one-lane scenario, only one vehicle can go through ateach time. The result of those differences is that the three-lane scenario can achieve higher speeds, lower waitinglimes, and, consequently, higher rewards, no matter whataction they choose.
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a) rewards b) average waiting times

c) average speeds d) and average number of collisions
Figure 8. Graphs for rewards during training in scenarios with one-lane roads and two phases.

a) rewards b) average waiting times

c) average speeds d) and average number of collisions
Figure 9. Graphs during training in scenarios with one-lane roads and four phases.
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4.3. Testing

We tested the trained agents in the same traffic demandfor each scenario, as explained in Subsection 3.6 on page5. This means that the same number of vehicles enter thesimulation at the same time steps and follow the sameroutes for all the agents. During testing, we analyse threemetrics: the average rewards, the total number of acci-dents, and the throughput (number of vehicles that passedthrough the intersection) of each agent for 3,600 steps(equivalent to one hour).
4.4. One Lane

DQN is a good agent in scenarios with one-lane roads.However, if we see the subsection 4.1, it was the least sta-ble agent and suffered the most from over-fitting. Thatbecomes clear in the four-phase scenario from Table 2,where it obtained a highly negative reward despite havinga low number of accidents and a high throughput. In the4,096 testing simulation, it is clear that the DQN agentexploited one action where only cars from one road cango through, keeping high speeds for that road and highthroughput for the overall system. However, all the otherroads stayed at a standstill for most of the simulation, low-ering the reward value. This is a methodology to avoidin a real-life scenario due to its stability and over-fittingissues.

Table 2. Performance of DQN, Double DQN, and Dueling DQN agents inscenarios with one-lane roads.
Nr. Phases Metric DQN Double DQN Dueling DQNaverage reward 9 -2690 102 number of accidents 51 37 50throughput 1533 1497 1422average reward -1347 8 -64 number of accidents 18 47 43throughput 1550 1493 1371

Comparing Double DQN with Dueling DQN, selectingwhich one is better is not straightforward. Dueling DQNis more consistent than Double DQN. However, it tends togenerate more collisions, which can be a problem relatedto the reward function used and not the method itself. TheDouble DQN still manages to be a good choice, especiallyin scenarios with large action spaces.
4.5. Three Lanes

In the three-lane scenarios, the results were different(Table 3). All agents managed to keep the intersectioncollision-free with similar through-puts in scenarios withtwo or four phases, which is excellent. The rewards of theDueling DQN are lower than the other agents due to thespeeds and waiting times of the vehicles. Both DQN andDouble DQN agents managed to keep the intersection freeof long queues of vehicles (consistently below five vehi-cles), while the Dueling DQN agent occasionally formed a

a) rewards b) average waiting times

c) average speeds d) and average number of collisions
Figure 10. Graphs during training in scenarios with three-lane roads and two phases.
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a) rewards b) average waiting times

c) average speeds d) and average number of collisions
Figure 11. Graphs during training in scenarios with three-lane roads and four phases.

Table 3. Performance of DQN, Double DQN, and Dueling DQN agents inscenarios with three-lane roads.
Nr. Phases Metric DQN Double DQN Dueling DQNaverage reward 52 53 -812 number of accidents 0 0 0throughput 2700 2699 2682average reward 67 67 14 number of accidents 0 0 0throughput 2699 2697 2691

big queue on one of the roads, but only for short periods.Finally, Table 3 shows that increasing the number ofphases in a traffic light is not adequate to keep traffic flow-ing.
5. Conclusions

In this paper we consider the problem of controlling AGVsin signalized intersections. Such scenarios are typicalin different industrial settings, such as warehouse shop-floors, where the crossing of AGVs needs to be coordinated.We formalised the problem of Intelligent Traffic Light Man-agement as a MDP. The states of environment have infor-mation about the number of vehicles on each lane, thewaiting times, the number of waiting vehicles, the per-centage of space occupied, the speeds of each vehicle, anda video frame of the intersection. The action space con-sists of the possible traffic light phases. We performeda preliminary analysis and evaluated the performance of

three well-known RL methods: DQN, Double DQN andDueling DQN. We conclude that for the task at hand theDQN approach shows to be the least stable one and suffersfrom over-fitting to the initial observations of the training.The Double DQN method shows a fair exploration of theaction space, leading to more stable and better results. TheDueling method agent does not have the best results, how-ever, it is highly stable, especially when the action spaceincreases. Future work will consider more complex scenar-ios with multiple intersections and a more extensive analy-sis of other RL approaches. Furthermore, a step forward inimproving this work is to explore Multi-Agent Reinforce-ment Learning (MARL) methods in controlling multipleAGV intersections. However, these methods bring aboutnew challenges, similar to those that Nguyen et al. explorein Nguyen et al. (2020), such as non-stationarity, partialobservability issues, transfer learning in multi-agent re-inforcement learning techniques, and training schemesamong others.
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