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Abstract

Intersection management in the presence of automated guided vehicles (AGVs) in industrial settings is a major problem that the
artificial intelligence community tries to tackle. In this paper, we perform a comparative analysis of three well-known reinforcement
learning techniques that produce policies to control a signalized intersection to coordinate traffic flow among automated guided
vehicles. We implemented and tested four scenarios with different numbers of lanes and traffic light phase configurations. The analysis
allowed us to gain critical insight into ways to improve the coordination of single intersections operating AGVs. The results suggest that
decreasing the number of phases and increasing the number of lanes can be beneficial. As for the algorithms used, the Deep
Q-Networks (DQN) and Double DQN performed better in simpler scenarios, whereas Dueling DQN seems to be more appropriate for

more complex intersection settings.
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1. Introduction

Nowadays, humans are required to drive vehicles reliably.
However, if one can fully automate vehicle driving, it can
provide a competitive advantage to the industries that use
it. “Automated Guided Vehicles (AGVs) are mobile robots
which are extensively used in the industry to transport
goods from A to B” (De Ryck et al., 2020). They can be
automobiles, trucks, drones, forklifts, or other industrial
vehicles. Managing conflicts with AGVs is a complex task
and several efforts in the Artificial Intelligence commu-
nity try to address issues associated with their coordina-
tion. A prominent problem is the control of AGV traffic
light intersections. The intersections can have different
complexity levels; one possibility is to vary the number of
roads that meet at each intersection or the number of lanes

on each street. Combining more complex intersections,
like roundabouts or multiple junctions, is possible as well.
However, what they all have in common is that multiple
vehicles might want to cross the same area simultaneously
yielding countless conflicting situations. Therefore, it is
desirable to develop a system capable of training models
to handle any intersection, assuming that every vehicle on
the road is autonomous (driven by a computer).

The hypothesis in this study is whether RL is a suitable
methodology for representing control systems in dynamic
environments such as AGV traffic light intersections. To
assess such a hypothesis, we perform a comparative analy-
sis of three well-known RL algorithms that model an inter-
section. We consider as the most suitable system the one
capable of achieving the highest traffic flow while keeping
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collisions from happening.

The remainder of this paper is organized as follows.
Section 2 presents the background knowledge and some
relevant to support work herein reported. Section 3 dis-
cusses the methodological approach to designing intersec-
tion management strategies. In Section 4 we present and
discuss the results of our experiments. Finally, Section
5 draws the conclusions and suggests routes for future
work.

2. Background & Related Work
2.1. Q-Learning

According to Jang et al.(Jang et al., 2019) Q-Learning is a
model-free RL method that allows agents to act optimally
in Markovian domains, defined by a Markov Decision Pro-
cess (MDP). Q-learning is an off-policy method because it
separates the learning policy from the acting policy using
Equation 1 to calculate the Q-values of the state-action
pairs. The agent uses these values to select the best ac-
tion to be performed at each state. In the same equation,
o € [0,1] is the learning rate used by the agent in each
iteration of the g-values update, R is the reward obtained
by taking action a at state s, and vy is the reward discount
factor. This process must be repeated several times until
it converges to optimal values used to solve the problem at
hand.

Qs, @) « Q(s, @) + «[R +ymax Q(s',a’) = Qls, )] (1)

2.2. Deep Q-Networks

With the evolution of Deep Learning, Deep Q-Networks
(DQNs) emerged naturally. They can extract essential fea-
tures from the data without human handcrafting domain-
specific features (Sewak and Sewak, 2019). According
to (Jang et al., 2019), DQNs combine Convolution Neural
Networks (CNNs) with Q-learning. The key idea behind
this method is to use experience replay to reduce the cor-
relations between different states, actions, and rewards
that the CNN could exploit. A replay buffer stores samples
from the states, actions, and rewards and every time the
CNN learns, random samples are extracted from the replay
buffer to the CNN. However, remember that using more
samples at each step means it takes longer for the CNN to
update its values.

In combination with the experience replay technique, a
target network (Qg- ) is used separately from the Q network
(Qo) to increase training stability. The first one must be
updated only periodically, while the second must be con-
tinuously updated. Thus, we end up with a new formula
for the updates of the Q-values (Equation 2), where we use
the target network Qg to get subsequent Q-values for the
next state-actions and the current network Qg to get the
current Q-value for the current state-action.

Qo(s,a) « Qo(s,a) + a[R +ymaxQo/(s', @) = Qo (s, )] (2)

However, suppose the size of possible states S is con-
siderable. In that case, before the agent can learn enough
information from the environment, it may get stuck to ex-
ploiting the already explored environment, even if better
options exist which have not yet been explored. A solu-
tion to this problem is to use Double DQN (DDQN) (Sewak
and Sewak, 2019). This method still has a target Qg- and a
current Qg network. The difference is that we select what
action is the best to be taken from the Q network Qq, but
we use the value from the target network (Qg-) to update
the Q network (Qg ), as seen in Equation 3.

Qo (styar) (1 — o)Qo(st, ap)+
o(Rp4q +v Qo (s',argmaxy Qo (s’, a’))

(3)
Finally, Dueling DQN (Wang et al., 2016) branches the
neural network into two sub-networks (Fig 1). The first
one corresponds to the “Value” function V(s) of each state,
and the second one to the “Advantage” function A(s, a)
that computes the advantage of each action over the base
value of being in state s. This separation does training
much quicker: it has a global value for each state, updated
upon any action. To get the Q-values for each state action,
we must use Equation 4, where « is the parameter vector
of the “Advantage” sub-network, g is the parameter vec-
tor of the “Value” sub-network, and 0 is the parameter
vector of the convolutional layer which is common to both
networks (Sewak and Sewak, 2019).

Qo ,8)(S1 @) =Vo,p)(S)*+

<A(e,“)(s,a) — ﬁ ZA(S,Oc)(S)a)> (4)

The previous Equation (4) could be as simpleas Q(s, a) =
V(s) + A(s, a); however, identificability would be lost. This
means that the opposite would not be true despite being
able to get the Q-value given the values of s and a. One
could not retrieve the values of s and a from the given
value of Q. The solution is to subtract the mean value of the
advantage values for state s, given by ITII >a A(eya)(s, a),

from the advantage value of taking action a in state s.

2.3. Related Work

Intersection control in noisy scenarios where non-
stationarity occurs not only due to the changing volume
of vehicles, but also because of the random behavior in
driving operational tasks is problem that research com-
munity constantly tries to tackle de Oliveira et al. (2006);
Vilarinho et al. (2016).
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Figure 1. Schema of a Dueling Q-Network, from (Sewak and Sewak,
2019).

Authors in Cabrejas-Egea et al. (2021) considered a traf-
fic signal control system using the leading RL approaches
to date. Their goal was to compare those approaches to
the ones used by commercial systems such as Fixed-Cycle
Miller (1963) (seen in most traffic signals), MOVA Vincent
and Peirce (1988), and SURTRAC Smith et al. (2013) in two
scenarios: a)“Cross straight”, where there is an intersec-
tion with four two-way one-lane roads where vehicles can
only go straight through the intersection and b) “Cross
triple”, where there is an intersection with four two-way
three-lane roads with one dedicated left turn lane. Their
proposed solution uses three different methods: Double
DQN (DDQN), Dueling Double DQN (DDDQN) and Advan-
tage Actor Critic (A2C). The first two algorithms were used
in combination with Prioritised Experience Replay that
optimises the sample selection from the replay buffer by
prioritising the temporal-difference error of the samples
Wang et al. (2020). In Wei et al. (2018) is discussed the
IntelliLight, “a Reinforcement Learning Approach for In-
telligent Traffic Light Control”. The proposed RL method
to control traffic lights is tested it against real-world traf-
fic data gathered from surveillance cameras and showed
case studies of policies learned from that data. It defends
that in real-world scenarios, the reward obtained by the
RL agents is not enough to produce the best policy. Dif-
ferent policies can create the same reward. However one
can be more suitable than the other if, for example, it has
fewer phase changes.

The study in (Palos and Huszak, 2020) conducts a com-
parison of Q-Learning based traffic light control methods
and objective functions. It analyses the performance of
DQN, DDQN, Dueling DQN and DDDQN methods to control
traffic lights in a single intersection environment. The
intersection is composed of four one-lane two-way roads
where traffic can go straight through or turn right. Kav-
icka et al. (2021) propose a study to assess traffic variants
that use different traffic control signal plans, especially
within a central intersection. In Chen et al. (2017) dis-
cusses an analytic hierarchy process method to determine
the weights of evaluation indicators of traffic lights, to-
gether with microscopic simulation to optimize the sig-
nalized intersection for the objectives of efficient design

Qs,2) Estimates
| = computedirom
V(s) and Als;a)
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and control. Both of these two efforts could be consider
similar cases of controlling vehicles within a manufactur-
ing compound or industrial warehouse. Authors in Pereira
and Rossetti (2012) consider the integration of a micro-
scopic traffic simulator with a game engine to simulated
autonomous vehicles. Elbouzidi et al. (2022) presents a
study that aims to assess the maturity of Al application
within warehouse digital twins, namely techniques, ob-
jectives, and challenges. Finally, in Bruzzone et al. (2017),
authors address the safety issues related to the develop-
ment of new solutions based on autonomous systems for
industrial applications.

3. Materials and Methods

This project aims to achieve Intelligent Traffic Light Man-
agement for AGV intersections (Fig 2). When replacing
human drivers with computers controlling vehicles, new
opportunities arise. There is no longer the need to use
the typical yellow lights to let humans know they must
slow down because the red light is coming soon. If the
AGV receives a red signal (can be visual or through direct
communication with the intersection controller), it will
slow down; if it gets a green signal, it will proceed within
its path. Another advantage of using AGVs is lower reac-
tion times (humans need hundreds of milliseconds to start
their reaction to a visual stimulus (Vis, 2006), compared
to computer processing times in the nanoseconds range),
so it is possible to change between light phases more of-
ten. Finally, computers are more predictable drivers than
humans.

Figure 2. Example of an AGV intersection from SUMO (Lopez et al.,
2018).

3.1. Problem Formalisation

The selected approach to solving the problem of Intelligent
Traffic Light Management for AGVs are the DQN-based
methods.

In the first place, DQN is an RL method, and therefore
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the problem must be defined as an MDP. To do so, the tuple
< S,A,P,R,vy > is defined by the following attributes:

- Environment States (S)

— An RGB bird view image of the intersection.

— A tensor with the speeds of the inbound and out-
bound vehicles from the intersection

— Finally, four arrays, each one with information about
the following features:

* The percentage of space occupied for each lane.

* The number of vehicles halting (with speed under
0,1 m/s) for each lane.

* The sum of the vehicle’s halting times for each
lane.

* The number of vehicles on each lane.

- Action Space (A) — For the action space, we use an
integer value indicating the next phase of the traffic
light. The phases are the different possible combina-
tions for the green/red lights of the traffic signals and
are predefined for each experiment.

- Reward Function (R) — The main goal of the reward
function is to penalise collisions between vehicles while
keeping a high traffic flow. To achieve the goal, six
parameters define the reward function (Equation 5 and
Table 1):

— S: The average speed in m/s of all vehicles in oncom-
ing lanes (that have not passed through the intersec-
tion yet). This is one of the most critical factors of
the reward function because higher speeds directly
lead to higher traffic flow.

— L: It measures the throughput of the intersection.
Higher throughput leads to more increased traffic
flow.

— W: The sum of waiting times from all vehicles in
oncoming lanes. A vehicle is waiting if its speed is
below 0.1m/s. It prevents the agent from allowing
only one lane to pass through the intersection at high
rates while keeping all the others at a standstill.

— I: The number of vehicles in oncoming lanes. If many
vehicles accumulate in oncoming lanes, the traffic
signal must allow more vehicles to go through.

— P: Traffic light phase factor (see Equation 6).

— C: Collision factor (see Equation 7).

R=wi«S+wyxL+w3«W+w, «xI+wsxP+wg=«C (5)

p={ Db last_phase # current_phase (6)
" | o, last_phase = last_phase
_ [ S, collision = True
€= { 0, collision = False @)

Finally, the solutions are evaluated by letting the agents
act in a traffic setup they have never seen before and mea-

Table 1. Reward coefficients.
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Figure 3. Intersection

suring the obtained rewards, the number of accidents,
and the throughput of the intersection during 3,600 steps
(each step corresponds to one second of simulation, to-
talling one hour).

3.2. Methods and materials

The proposed solution to check whether or not RL is a suit-
able methodology to control AGV traffic light intersections
consists in developing three different DQN-based agents,
using DQN, Double DQN, and Dueling DQN. Those agents
are trained for 100,000 steps in 6 different scenarios (Sub-
section 3.3), following the Training Pipeline Loop (Subsec-
tion 3.4). Afterwards, a final testing loop of 3,600 steps is
performed to evaluate the trained agents (Subsection 3.5).

3.3. Scenarios

A total of six different scenarios were developed to train
and test each agent. All the scenarios consist of an intersec-
tion with four two-way roads controlled by a traffic light,
where only AGVs with the same characteristics are allowed
to go through. The differences between the scenarios are
divided into two groups:

- Number of lanes: Regarding the number of lanes on the
roads, there are two possibilities (Figs 3a and 3b). In Fig
3a, there is an intersection where all the roads have one
lane in each direction. That one lane is responsible for
traffic going in all three possible directions (left, front,
and right). Fig 3b shows an intersection where all roads
have three lanes in each direction. The left lane handles
traffic turning left, the middle lane only handles traffic
going straight, and the right lane handles traffic going
straight and turning right.

- Number of phases: There are three different phase se-
tups for each intersection in the previous point (Figs



4 and 5). In Fig 4, there is a setup with 2 phases. The
first one allows traffic to flow from north and south di-
rections, while the second allows traffic to flow from
east and west directions. In this setup there is actually
a third phase that blocks traffic from all directions to
let the agent clear the intersection if it wants to. Fig 5
shows a traffic light setup with 4 phases. Going from (a)
to (d), each phase allows traffic to flow from north, east,
south, or west, respectively. As seen in the 2 phases
setup, the 4 phases setup also has a fifth phase that
blocks traffic from all directions.

Figure 4. Traffic light with 2 phases.

3.4. Training Pipeline Loop

Before the DQN Agent gets into the Training Pipeline Loop
(Fig 6), it receives an initial representation of the starting
state of the simulation from the Environment module, and
then the loop starts (steps 1to 4).

- Step 1: The Agent tells the Environment which action it
chooses (an action corresponds to setting a phase at the
traffic light, as seen in Section 3.1). Selecting an action
depends on some randomness defined by the coefficient
between exploration and exploitation (e). defined as an
exponential function (Eq. 8) to decrease that value until
a minimum of 0.10 during training.

s s
e(s) = { 0.5 x0.999°, 0.5x*0.999° > 0.1 (8)

0.1, otherwise

- Step 2: The Environment, directly connected to SUMO
via TraClI (Lopez et al., 2018), performs the chosen ac-
tion. Upon exchanging information with SUMO, the En-
vironment builds the new state representation, detailed
in the previous section, calculates the value/reward of
that state, and sends that information (state and re-
ward) back to the Agent.

- Step 3: The tuple (Previous State, Action, Reward, State)
is pushed to a Replay Buffer that stores up to 5,000 tu-
ples, acting as the Agent’s memory.

- Step 4: Abatch of 64 random tuples is sampled from
the Replay Buffer to train the Agent’s neural network.

Cardosoetal. |

This step is only processed after 64 steps of simulation
to have enough tuples to perform the batch training
of the Agent. Despite only performing 100,000 steps
of simulation, the use of the Replay Buffer to train the
agent allows it to repeat past experiences and update
the neural network almost 6,400,000 times.

3.5. Testing Pipeline Loop

The Testing Pipeline Loop is based on the training one but
without the training features. Only one hour of simulation
is performed (3,600 steps). All actions are chosen using
the Agent’s policy (no more exploration is needed), and no
updates are done in the Agent’s neural network, so there
is no need to have the Replay Buffer. This loop aims to
collect data about the performance of the multiple agents
in different scenarios.

3.6. Simulating the Intersection

To simulate the intersection we use the SUMO traffic sim-
ulator (Lopez et al., 2018). It is possible to interact with the
graphic interface of the simulator through TraClI, creating
aview centred in the middle of the intersection and record-
ing the frames of the view at every step. The video frames
are then used to build the state representation. Through
TraClI we can collect further data to augment the environ-
ment state with additional information. For the purpose of
this paper we have devised two scenarios, one for the one-
lane and another for the three-lane configurations. They
both consist of four perpendicular roads with 100 meters
that meet at a traffic light controlled intersection. We have
created two route files for each scenario, one for training
and another for testing. The training files contain flows (a
flow repeatedly generates vehicles in the same path with
different departure times) from every road to every other
road. According to it, our scenarios have four roads and
12 flows, three from each road. In each flow, we defined
a probability of 0.05 for a new vehicle joining the simula-
tion in each step. The testing files were generated with a
different method to remove randomness and compare all
agents with the same traffic demands.

4. Results and Discussion
4.1. One Lane Scenario

4.1.1. 2 Phases

Here we are analysing the scenario where we have one-
lane roads and a two-phased traffic light. The most ob-
vious conclusion we can take by generally looking at the
graphs from Fig 8 is that the agent with the worst perfor-
mance during training is Dueling DQN. It shows the lowest
values for rewards and average speeds and the highest val-
ues for average waiting times and the number of collisions.
However, despite having the worst results, Dueling DQN
shows to be the most stable approach. Comparing DQN
with Double DQN, we see that DQN can achieve marginally
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better results. However, the results from DQN and Double
DQN are not stable. This shows that these agents might be
over-fitting to some experiences, and whenever it faces a
new situation, the agents do not know what the best action
is.

4.1.2. /4 Phases

Now, analysing the scenario where we have roads with one
lane and the traffic light has four phases (Fig 9), the Du-
eling DQN agent gets the worst overall results once again.
However, it still manages to be the more stable agent in
every metric. The main contributing factor to being more
stable is using two separate networks (Value and Advan-
tage, seen in Section 2.2) to obtain the Q-values. One of
the networks has the value of each state, and the second
has the advantage of taking one action over the others in
that state. Even if the agent faces a state-action pair it has
never faced before, it might have faced that same state with
another action. So, despite no value being stored in the
Advantage network for that action, there will be a stored
value in the Value network for that state, stabilising the
training. If the DQN and Double DQN agents have never
faced that state-action pair, they will have no idea of its

value and will be in an entirely new situation. This makes
training less stable while giving better results for known
situations (known as over-fitting to known situations).

4.2. Three Lanes Scenario

4.2.1. 2 Phases

Looking at the results from the scenario with three lanes
and two phases (Fig 10), it is possible to see that they fol-
low the same tendency as the ones from the scenario with
one lane and two phases (Fig 8, page 7), except in the col-
lisions graph. The absence of collisions is due to the way
SUMO’s vehicles handle this intersection and not due to
agents’ actions. Once more, Dueling DQN was the worst
performer agent. Also, there were more stable agents this
time. Having an action space with only three possibili-
ties (the two phases plus all lights red) puts most of the
responsibility on the agent’s Value network. Adding two
lanes on each road makes the observation space increase
considerably, destabilising the Value network. Comparing
DQN with Double DQN, this time, DQN appears to be more
stable, which is expected as we have a low number of pos-
sible actions. The advantages of Double DQN over DQN are
best noticed in problems with large action spaces.

4.2.2. /4 Phases

When we have the same three-lane roads, but with four-
phase traffic lights, the training of all agents stabilises
(Fig 11). As in the previous scenario, Dueling DQN is the
worst performer and the less stable agent. The differences
between DQN and Double DQN are negligible, and they are
expected to be the top performers in this scenario. Com-
paring this scenario with the one-lane scenario from Fig 9
(page 7), all agents managed to be more stable and achieve
better results. Fig 5 from page 6 shows that only traffic
from one road can move at a time. In the three-lane sce-
nario, this means that three vehicles can pass through the
intersection simultaneously (one on each lane), while in
the one-lane scenario, only one vehicle can go through at
each time. The result of those differences is that the three-
lane scenario can achieve higher speeds, lower waiting
limes, and, consequently, higher rewards, no matter what
action they choose.
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4.3. Testing

We tested the trained agents in the same traffic demand
for each scenario, as explained in Subsection 3.6 on page
5. This means that the same number of vehicles enter the
simulation at the same time steps and follow the same
routes for all the agents. During testing, we analyse three
metrics: the average rewards, the total number of acci-
dents, and the throughput (number of vehicles that passed
through the intersection) of each agent for 3,600 steps
(equivalent to one hour).

4.4.. One Lane

DQN is a good agent in scenarios with one-lane roads.
However, if we see the subsection 4.1, it was the least sta-
ble agent and suffered the most from over-fitting. That
becomes clear in the four-phase scenario from Table 2,
where it obtained a highly negative reward despite having
alow number of accidents and a high throughput. In the
4,096 testing simulation, it is clear that the DQN agent
exploited one action where only cars from one road can
go through, keeping high speeds for that road and high
throughput for the overall system. However, all the other
roads stayed at a standstill for most of the simulation, low-
ering the reward value. This is a methodology to avoid
in a real-life scenario due to its stability and over-fitting
issues.
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Table 2. Performance of DQN, Double DQN, and Dueling DQN agents in
scenarios with one-lane roads.

Nr. Phases Metric DQN  DoubleDQN  Dueling DQN
average reward 9 -2690 10

2 number of accidents 51 37 50
throughput 1533 1497 1422

averagereward  -1347 8 -6

A number of accidents 18 47 43
throughput 1550 1493 1371

Comparing Double DQN with Dueling DQN, selecting
which one is better is not straightforward. Dueling DQN
is more consistent than Double DQN. However, it tends to
generate more collisions, which can be a problem related
to the reward function used and not the method itself. The
Double DQN still manages to be a good choice, especially
in scenarios with large action spaces.

4.5. Three Lanes

In the three-lane scenarios, the results were different
(Table 3). All agents managed to keep the intersection
collision-free with similar through-puts in scenarios with
two or four phases, which is excellent. The rewards of the
Dueling DQN are lower than the other agents due to the
speeds and waiting times of the vehicles. Both DQN and
Double DQN agents managed to keep the intersection free
of long queues of vehicles (consistently below five vehi-
cles), while the Dueling DQN agent occasionally formed a
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Figure 10. Graphs during training in scenarios with three-lane roads and two phases.
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Figure 11. Graphs during training in scenarios with three-lane roads and four phases.

Table 3. Performance of DQN, Double DQN, and Dueling DQN agents in
scenarios with three-lane roads.

Nr. Phases Metric DQN  DoubleDQN  Dueling DQN
average reward 52 53 -81

2 number of accidents o] 0 o]
throughput 2700 2699 2682

average reward 67 67 1

4 number of accidents 0 0 0
throughput 2699 2697 2691

big queue on one of the roads, but only for short periods.

Finally, Table 3 shows that increasing the number of
phases in a traffic light is not adequate to keep traffic flow-
ing.

5. Conclusions

In this paper we consider the problem of controlling AGVs
in signalized intersections. Such scenarios are typical
in different industrial settings, such as warehouse shop-
floors, where the crossing of AGVs needs to be coordinated.
We formalised the problem of Intelligent Traffic Light Man-
agement as a MDP. The states of environment have infor-
mation about the number of vehicles on each lane, the
waiting times, the number of waiting vehicles, the per-
centage of space occupied, the speeds of each vehicle, and
a video frame of the intersection. The action space con-
sists of the possible traffic light phases. We performed
a preliminary analysis and evaluated the performance of

three well-known RL methods: DQN, Double DQN and
Dueling DQN. We conclude that for the task at hand the
DQN approach shows to be the least stable one and suffers

from over-fitting to the initial observations of the training.
The Double DQN method shows a fair exploration of the

action space, leading to more stable and better results. The

Dueling method agent does not have the best results, how-
ever, it is highly stable, especially when the action space

increases. Future work will consider more complex scenar-
ios with multiple intersections and a more extensive analy-
sis of other RL approaches. Furthermore, a step forward in

improving this work is to explore Multi-Agent Reinforce-
ment Learning (MARL) methods in controlling multiple

AGV intersections. However, these methods bring about

new challenges, similar to those that Nguyen et al. explore

in Nguyen et al. (2020), such as non-stationarity, partial

observability issues, transfer learning in multi-agent re-
inforcement learning techniques, and training schemes

among others.
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