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Abstract: Bioluminescence (BL) and chemiluminescence (CL) are remarkable processes in which light
is emitted due to (bio)chemical reactions. These reactions have attracted significant attention for
various applications, such as biosensing, bioimaging, and biomedicine. Some of the most relevant and
well-studied BL/CL systems are that of marine imidazopyrazine-based compounds, among which
Coelenterazine is a prime example. Understanding the mechanisms behind efficient chemiexcitation
is essential for the optimization and development of practical applications for these systems. Here,
the CL of a fluorinated Coelenterazine analog was studied using experimental and theoretical
approaches to obtain insight into these processes. Experimental analysis revealed that CL is more
efficient under basic conditions than under acidic ones, which could be attributed to the higher
relative chemiexcitation efficiency of an anionic dioxetanone intermediate over a corresponding
neutral species. However, theoretical calculations indicated that the reactions of both species are
similarly associated with both electron and charge transfer processes, which are typically used to
explain efficiency chemiexcitation. So, neither process appears to be able to explain the relative
chemiexcitation efficiencies observed. In conclusion, this study provides further insight into the
mechanisms behind the chemiexcitation of imidazopyrazinone-based systems.

Keywords: chemiluminescence; bioluminescence; coelenterazine; chemiexcitation

1. Introduction

Bioluminescence (BL) and chemiluminescence (CL) represent processes in which light
is emitted because of (bio)chemical reactions [1,2]. These systems have gathered consider-
able attention within the research community, with a focus on their diverse applications
in sensing [3], real-time imaging [4,5], hygiene control [6], mapping pollution in ecosys-
tems [7,8], and even in drug discovery [9] and development [10,11]. The heightened interest
in BL and CL systems stems, in part, from their association with a reduced probability of
autofluorescence originating from background signal, as they do not necessitate photoexci-
tation [12,13]. Consequently, luminescent signals are generated with minimal background
noise [11]. BL is widespread in nature and can be found in living organisms as diverse
as fireflies, jellyfish, and fungi [14–16]. However, about 80% of all luminescent organisms
are present in oceans [17]. Imidazopyrazinone-based BL substrates are among the most
common substrates, with marine Coelenterazine being one of the most well-known and
studied compounds (Scheme 1) [18–24]. Coelenterazine is an interesting compound as it is
capable of both CL (when triggered by reactive oxygen species or in aprotic solvents, such
as Dimethyl sulfoxide, DMSO, and Dimethylformamide (DMF)) [25–28], and BL (when in
the presence of photoproteins or luciferase enzymes) [28–30]. Despite these differences,
BL/CL reactions of Coelenterazine follow the same general mechanism (Scheme 2), which
is initiated by oxygenation of the imidazopyrazinone core [31,32], with the formation of a
high-energy peroxide intermediate. This latter compound is highly unstable and undergoes
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thermolysis almost instantly. During this reaction, the reacting molecules can cross to sin-
glet excited states, which generates the chemiexcited light-emitter Coelenteramide [33–36].
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Among different research efforts made by the community regarding this type of
system is the development of new Coelenterazine analogs with enhanced properties,
such as brighter light-emission and a longer emission half-life, toward their optimized
application [37–40]. It should be highlighted that for the rational development of new
Coelenterazine analogs, a precise understanding of the different steps involved in their CL
and BL reaction mechanisms in needed. However, there are still some issues that require
clarification. For instance, the mechanism behind singlet chemiexcitation is not yet fully
understood, nor is the ionization state of the dioxetanone intermediate that is associated
with efficient chemiexcitation agreed upon.

The first mechanism used to rationalize efficient singlet chemiexcitation was Chem-
ically Induced Electron-Exchange Luminescence, or CIEEL [40]. It is based on electron
transfer from an electron-donating group to the peroxide group, followed by back electron
transfer, which generates the chemiexcited light-emitter [40,41]. This mechanism has been
used to rationalize efficient CL/BL in diverse systems, such as in fireflies [42]. CIEEL
was indeed shown to be operative in the efficient peroxyoxalate system [41]. However,
re-evaluations of other previously thought efficient model CIEEL systems revealed them to
be less efficient than expected [43,44].

Other researchers have tried to re-formulate the CIEEL mechanism in terms of more
gradual charge transfer and back charge transfer between the electron-rich group and
peroxide moiety, usually involving anionic species. This alternative version was termed
Charged Transfer-Initiated Luminescence, or CTIL [45,46]. However, it should be noted that
the requirements of either electron-transfer-based or charge-transfer-based mechanisms are
similar, and that charge transfer encompasses electron transfer [41,47].

Specifically regarding imidazopyrazinone-based systems, Saito and co-workers claimed
that CIEEL/CTIL mechanisms are not applicable for explaining the efficient chemiexcitation
yield in aqueorin BL [48]. They also stated that they were not able to validate the expecta-
tions that electron-donating groups could enhance the singlet chemiexcitation yield [48].
In turn, Hirano et al. indicated that efficient chemiexcitation involving an imidazopyrazi-
none analog is explained by considering a neutral dioxetanone intermediate [49]. This is
relevant as theoretical studies have shown that the chemiexcitation of neutral dioxetanone
species tends not to follow the CIEEL/CTIL mechanism [23,50,51]. Furthermore, a lack
of correlation between charge/electron transfer and efficient singlet chemiexcitation for
imidazopyrazinone systems has been observed [33,50–52].

Given this, it is important to further clarify the CL and BL mechanism of imidazopyrazinone-
based systems. To that end, we investigated the CL reaction of a fluorinated Coelenterazine analog
(F-CLA, Scheme 1). To try to understand the potential effects of charge/electron transfer, we
replaced the electron-donating hydroxyl group of the phenyl moiety of native Coelenterazine
(Scheme 1) with electron-withdrawing fluorine [53,54]. This analog also replaced the benzyl
and p-cresol moieties of Coelenterazine with a hydrogen atom and a methyl group. This was
performed to decrease the functionalization degree to facilitate analysis of the results by reducing
the potential effects exerted by other moieties present in Coelenterazine. With this study, we
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aimed to provide further insight into the CL reaction of Coelenterazine, which can help to develop
future analogs with enhanced properties.
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2. Materials and Methods

The synthesis of F-CLA followed a general synthetic pathway, starting with a Suzuki–
Miyaura cross-coupling reaction between 5-bromopyrazin-2-amine and the correspond-
ing organoborane. This step yielded an intermediate known as Coelenteramine, an
aminopyrazine-based compound. More specifically, a solution containing methyl glyoxal
and 3-bromo-5-(4-fluorophenyl)pyrazin-2-amine (a fluorinated Coelenteramine analog,
F-CLM), dissolved in ethanol, was deoxygenated with N2 [25]. It should be noted that the
Coelenteramine analog was prepared as described in [55]. Following deoxygenation, the
mixture was cooled to 0 ◦C, treated with hydrochloric acid, and stirred until it reached
room temperature. The solution was then stirred at 70 ◦C for 2.5 h and left at room temper-
ature overnight. After concentration under reduced pressure, a brown oil was obtained,
redissolved in minimal ethyl acetate, and subsequently precipitated with diethyl ether. The
resulting product, F-CLA, was vacuum-dried, presenting as a solid ochre. The fluorinated
Coelenteramide analog, F-CLMD (Scheme 1), was obtained by the N-acetylation of F-CLM
using pyridine as a base to avoid the formation of a disubstituted subproduct, as depicted
in [56]. The structural confirmation of both F-CLA and F-CLMD was conducted through
NMR and FT-MS analysis, as demonstrated in [25] and [56], respectively.

CL kinetic measurements were performed using a homemade luminometer equipped
with a Hamamatsu HC135-01 photomultiplier tube in a setup that included a sample holder,
an automatic burette, and a PC for data acquisition. This homemade setup has been used
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before in the study of both CL and BL reactions [21,24,25]. The reactions were performed
at least in sextuplicate at room temperature in DMSO, to which either sodium acetate
buffer pH 5.2 or sodium hydroxide solution was added (to a common final concentration of
0.1 M). Final volumes of 500 µL and an F-CLA concentration of 5 µM were used. Light was
integrated and recorded at 0.1 s intervals. CL was triggered spontaneously by the addition
of DMSO mixtures to F-CLA.

The fluorescence of F-CLMD was monitored using a Horiba Jovin Fluoromax 4 spec-
trofluorimeter, with an integration time of 0.1 s and slit widths of 5 nm for both the
excitation emission monochromators. UV-Vis spectra for F-CLMD were obtained using a
UV-3100PC spectrophotometer. Both types of spectra were obtained in 2 mL solutions of
DMSO, with either sodium acetate buffer pH 5.2 or sodium hydroxide (final concentration
of 0.1 M for both buffer and base), with a final compound concentration of 5 µM.

Theoretical calculations were performed using the Gaussian 09 program package [57].
S0 geometry optimization and frequency calculations of the transition state of neutral
and anionic species of F-CLM dioxetanone were conduced with the ωB97XD density
functional [58,59] and 6-31G(d,p) basis set. An open-shell approach was used, along with
broken-symmetry technology, to make an initial guess for a biradical [60]. The transition
states were located considering initial guesses based on previous studies on this type
of system [24,33,50–52]. ωB97XD was chosen as long-range-corrected hybrid exchange-
correlation functionals, including this one, are known to provide good results for this
type of system [25,34,51–53]. S0 single-point energy calculations were performed at the
ωB97XD/6-31+G(d,p) level of theory, on top of S0 ωB97XD/6-31G(d,p) geometries. Single-
point calculations were performed in implicit DMSO, whereas geometry optimizations
were performed in the gas phase. Implicit solvation was considered using a polarizable
continuum model (IEFPCM). This calculation framework has been used previously in
different studies [23,24,33,50–52,60,61].

3. Results and Discussion

The aim of this study was to obtain more insight into the CL and BL mechanism of
imidazopyrazinone-based compounds, with a focus on the chemiexcitation step and the
reason that controls its efficiency. To that end, we studied F-CLA, a Coelenterazine analog
that possesses an electron-withdrawing fluorine instead of the native electron-donating
hydroxyl group present in the native compound. With this difference, we intended to obtain
more information on the potential role of electron/charge transfer in chemiexcitation, as
postulated by CIEEL and CTIL mechanisms [40,41,45,46]. This study was performed in
DMSO, a polar aprotic solvent in which Coelenterazine and other imidazopyrazinones
readily chemiluminesce upon mixing [24,48–50,62]. It should be noted that the CL reactions
of imidazopyrazinones have been typically considered a common and reliable model for
their BL reaction [24,48–50,62–65], which means that the results of this CL-focused study
should also be of interest and applicable to imidazopyrazinone-based BL systems.

Measurements were performed in solutions to which sodium acetate buffer solution
(pH 5.2) or sodium hydroxide was added. This was performed to achieve acidic and basic
conditions in order to consider the neutral-anionic chemical equilibria of imidazopyrazine-based
dioxetanones and their impact on the chemiexcitation step (Scheme 2) [23,51]. Namely, the
chemiexcitation of neutral dioxetanones is expected to occur via non-CIEEL/CTIL pathways,
whereas anionic dioxetanones are associated with CIEEL/CTIL mechanisms [23,50,51,66,67]. To
reduce potential interfering factors, both buffer and base were added at the same concentration
and with the same counter cation (sodium ion).

The CL kinetic profiles were then obtained for F-CLA in both DMSO/sodium acetate
buffer and DMSO/sodium hydroxide (Figure 1A). The obtained profiles show a typical
flash-profile for this type of system, with a quick burst of light, followed by decay to basal
levels within the first 200 s of the reaction [21,24,25,50,55]. Although the kinetic profiles
appear to be qualitatively identical, we also observed that the emission lifetime of F-CLA
appeared to be longer in acidic conditions. The measured CL half-life (in s) is 46.6 ± 1.0 s
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and 28.9 ± 3.6 s in acidic and basic conditions, respectively. This shorter emission lifetime
in basic media is consistent with previous reports of halogenated imidazopyrazinone-based
CL reactions [68,69].
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To evaluate whether these different emission lifetimes correlated with higher/lower
light production, a quantitative analysis was performed by measuring both the calculated
area of light emission (in RLU, Figure 1B) and the light-emission intensity maxima (in
RLU, Figure 1C). The area corresponds to emitted light as a function of time and can be
considered as a measure of total light output, and so, is indicative of CL quantum yield [24].
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The area was calculated between times of 0 and 600 s. We observed that both the total light
output and the light-emission intensity maxima were significantly higher and to similar
degrees in basic conditions compared to acidic ones. The area of light emission was also
calculated at smaller time intervals (0–50 s, 0–100 s, and 0–300 s, in Figure 2A), to verify
whether the observed relative differences were consistent throughout the entire reaction.
In fact, there was no difference in relative light output during the CL reactions in acidic
and basic conditions at these different times. This means that the lower emission lifetime in
basic conditions is not associated with less efficient light production.
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Figure 2. (A): Total light output (area) measured for F-CLA in either DMSO/sodium acetate buffer
pH 5.2 or in DMSO/sodium hydroxide. The number 1 accounts for the first 50 s of the reaction,
2 accounts for the first 100 s, and 3 accounts for the first 300 s. (B): Integrated fluorescence (FL)
intensity (area of the spectrum) measured for F-CLMD in either DMSO/sodium acetate buffer pH 5.2
or in DMSO/sodium hydroxide, with excitation at 300 nm.

Considering these results, it was important to understand why F-CLA is more efficient
in the generation of light in basic conditions than in acidic conditions. It should be noted
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that both BL and CL quantum yields are controlled by three different parameters [1,2]. This
includes the yield of the S0 chemical reaction, the singlet chemiexcitation yield, and the
fluorescence quantum yield of the light-emitter in this type of system, Coelenteramide.
Thus, the observed pH-dependency could potentially originate from one parameter or from
a combination of effects regarding two or three parameters.

In these experiments, we measured light-emission until and well after reaching basal
levels in both acidic and basic conditions (with measurements up to 600 s). We observed
similar kinetic profiles with the addition of either buffer solution or sodium hydroxide
(Figure 1A), indicating similar completions of the reaction and levels of F-CLA consumption.
In fact, Figure 1A indicates that basal levels are reached at similar reaction times for both
pH conditions. Given this, we did not expect the differences in relative light output to
result from pH-induced differences in the S0 chemical reaction yield.

Consequently, both the chemiexcitation and fluorescence quantum yields remained
under consideration. Both are possible explanations for the observed pH-dependent
light-emission efficiency. Namely, chemiexcitation involves the dioxetanone intermediate,
which presents a neutral–anionic chemical equilibrium (Scheme 2) [23,51]. The Coelen-
teramide light-emitter also presents a neutral–anionic equilibrium, which involves the
amide group [70]. Direct evaluation of the chemiexcitation step is experimentally difficult;
therefore, it should be assessed indirectly by the exclusion of other parameters. Thus,
combined with our opinion that the S0 chemical reaction was complete (or at least the
yield was identical at both pH ranges), we shifted our attention to the analysis of the
fluorescence-related parameter.

To that end, we synthesized the corresponding F-CLMD, the expected light-emitter
of the CL reaction, [56] and measured its fluorescence in both DMSO/sodium acetate
buffer and DMSO/sodium hydroxide. The resulting 2D excitation–emission contour plots
are provided in Figure 3. The obtained results are consistent with the existence of the
neutral–anionic amide equilibrium for F-CLMD (Scheme 2) [70]. More specifically, in
DMSO/sodium acetate buffer, F-CLMD presents an emission wavelength maximum at
~375 nm. This is in line with the fluorescence of this compound as measured previously in
DMSO only [56]. However, under basic conditions, we observed a red-shift in emission
to ~460 nm. This increase in emission wavelength maxima, with changes in pH, can be
attributed to the deprotonation of the amide groups of Coelenteramide compounds [27,70].
So, the fluorescence of F-CLMD appears to be pH-dependent and is a possible explanation
for the pH-dependent CL of F-CLA.

The fluorescence quantum yield of a fluorophore is considered as the ratio of absorbed
photons to photons emitted via fluorescence. In essence, it is the probability of excited
states being deactivated by fluorescence instead of nonradiative pathways. Fluorescence
quantum yields can be measured using comparative methods, in which two fluorophores
with identical absorbance at the excitation wavelength are assumed to absorb the same
number of photons. Given this, the fluorescence quantum yield ratio of the two fluo-
rophores is obtained by considering the ratio of the integrated fluorescence intensities of
the compounds.

Considering this, we measured the integrated fluorescence intensities of F-CLMD
at the same concentration (5 µM) in both DMSO/sodium acetate and DMSO/sodium
hydroxide when using the same excitation wavelength (300 nm). These measurements
were performed as a simple approximation for evaluating the fluorescence quantum yield
ratio of F-CLMD at acidic and basic pH. That is, the difference in fluorescence quantum
yields between neutral and anionic amide species of this light-emitter. With this approach,
we intended to assess whether the higher CL light output measured at basic pH could be
attributed to the higher fluorescence quantum yield of the light-emitter (anionic amide
F-CLMD) associated with higher pH values.
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Figure 3. Two-dimensional excitation–emission contour plot for F-CLMD, measured in either
DMSO/acetate buffer pH 5.2 (top) or in DMSO/sodium hydroxide (bottom).

Contrary to this hypothesis, we found that the integrated fluorescence intensity was
relevantly higher at acidic pH than at basic pH (Figure 2B). This result points to the
fluorescence quantum yield of neutral F-CLMD being higher than that of the corresponding
anionic species. It should be noted that the absorbance measured at 300 nm, in either
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DMSO/sodium acetate or DMSO/sodium hydroxide, was not the same. In fact, it was
lower in the former mixture than in the latter mixture (0.06 versus 0.14). Thus, it is expected
that F-CLMD absorbs more photons at basic pH than in acidic conditions. However, despite
this, the integrated fluorescence intensities were lower in basic conditions, as mentioned
before (Figure 2B). Considering the notion that fluorescence quantum yield is the ratio
of absorbed photons to photons emitted via fluorescence, these results indicate that this
parameter is lower for anionic F-CLMD than for the corresponding neutral species. This is
consistent with the 2D excitation–emission contour plots, in which the overall fluorescence
intensities were lower under basic conditions than in an acidic buffer (Figure 3).

Having reached this conclusion, the next logical step was to attribute the higher CL
light output at basic pH to a higher chemiexcitation yield in those conditions, considering
the exclusion of other parameters responsible for the CL quantum yield. In fact, the
difference in chemiexcitation yields between the pH ranges should be particularly relevant
to allow higher overall yields under basic pH, despite the relatively lower fluorescence
quantum yield of the light-emitter at those pH conditions. Given that these expected
differences in chemiexcitation yields occur under acidic/basic conditions, they can be
attributed to the known neutral–anionic chemical equilibrium of dioxetanone intermediate
(Scheme 2). That is, it is the decomposition of this intermediate that leads to chemiexcitation,
with diverse studies indicating that the two species (neutral/anionic) are associated with
different chemiexcitation pathways [23,33,50–52,66,67].

It should be noted that these results are particularly interesting because they are
different from what has been reported in previous studies involving Coelenterazine and
other imidazopyrazinones. That is, pH-dependency has already been previously reported
for this type of system, but contrary to what is observed here, higher light outputs have
been measured under acidic conditions [49,50,52,62,68]. Moreover, these higher yields have
been attributed to chemiexcitation with neutral dioxetanones [49,50,52,62,68], whereas, in
this study, it appears that anionic dioxetanone leads to higher chemiexcitation yields and,
consequently, higher light outputs.

Given this, understanding the reason behind the differences observed between the re-
sults obtained in this study and in previously published works might help us obtain further
insight into the mechanisms behind the chemiexcitation efficiencies of imidazopyrazinone-
based systems. To that end, we then performed DFT-based calculations to evaluate the
chemiexcitation mechanisms of F-CLA. More specifically, we optimized the S0 geome-
try of the TS structures of the thermolysis reactions of both neutral and anionic F-CLA
dioxetanone species at the ωB97XD/6-31G(d,p) level of theory. Subsequent single-point
energy calculations were then performed at the ωB97XD/6-31+G(d,p) level of theory in
implicit DMSO to assess the electron and charge transfer character of the TS structure of
both species. This was conducted to evaluate whether the experimentally induced relative
chemiexcitation yields could be explained by either CIEEL or CTIL mechanisms.

Previous theoretical research has shown that the thermolysis reaction of dioxetanones
usually follows a stepwise pathway that consists of an initial peroxide O-O bond breaking,
followed by C-C bond stretching (Scheme 3) [1,2,23,33,50–52,60,61,66,67]. This yields a
chemiexcited ketone (here, F-CLMD) and CO2. The TS of these reactions is achieved by O-O
bond breaking, which results in the formation of a biradical [1,2,23,33,50–52,60,61,66,67].
In the case of neutral species, the biradical tends to be formed by homolytic cleavage of the
peroxide O-O bond, whereas for anionic species, it results from electron-transfer from an
electron-rich group to the dioxetanone moiety [1,2,23,33,50–52,60,61,66,67].

Analysis of both neutral and anionic TS structures revealed <S2> values of ~1 (1.0
for neutral species and 0.9 for the anionic TS) for both species, which indicates that
they possess biradical character. As indicated, this is consistent with existing litera-
ture [1,2,23,33,50–52,60,61,66,67]. For both species, the dioxetanone ring of the TS structure
is associated with a broken peroxide O-O bond, but not with a cleaved C-C bond, which
is in line with the typical stepwise biradical pathway associated with this type of com-
pound [1,2,23,33,50–52,60,61,66,67].
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with authorization from [62].

To assess the electron transfer of both TS structures, we plotted their electron spin
density isosurfaces (Figure 4). These were obtained using MultiWFN software, v. 3.8 [71],
considering the calculations at the ωB97XD/6-31+G(d,p) level of theory (with Gaussian 09).
The results obtained for the anionic species are consistent with existing literature regard-
ing dioxetanones with this deprotonation state [1,2,23,33,50–52,60,61,66,67]. Namely, the
electron spin density was delocalized between the two oxygen heteroatoms that constitute
the peroxide O-O bond and the amidopyrazine moiety (with a focus on the deprotonated
amide). This indicates that reaching the TS structure is associated with electron transfer
between the amidopyrazine structure and the dioxetanone moiety, as is consistent with the
CIEEL mechanism [1,2,23,33,50–52,60,61,66,67]. In fact, Saito and co-workers mentioned
that the nitrogen anion could serve as a strong electron donor [48].
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The analysis of possible charge transfer between amidopyrazine and dioxetanone
was also performed by measuring the charge separation between moieties. This was
achieved by calculating both the Hirshfeld atomic charges and the Voronoi deformation
density atom population, which were obtained using MultiWFN software, v. 3.8 [71],
considering the calculations at the ωB97XD/6-31+G(d,p) level of theory (with Gaussian
09). These results are presented in Table 1. Both charge analyses indicated that reaching
the anionic TS structure is also associated with charge transfer from the amidopyrazine
structure to the dioxetanone moiety, as is consistent with the CTIL mechanism and previous
studies [1,2,24,34,51–53,61,62,67,68].
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Table 1. Charge separation between the amidopyrazine and dioxetanone moieties of both neutral
and anionic species of F-CLA dioxetanone. Charge separation was measured by calculating both
the Hirshfeld atomic charges and the Voronoi deformation density atom population, which were
obtained using MultiWFN software, v. 3.8 [71], considering calculations at the ωB97XD/6-31+G(d,p)
level of theory (with Gaussian 09).

Neutral F-CLA Dioxetanone

Hirshfeld Charges Voronoi Deformation
Density

Amidopyrazine 0.79 0.83

Dioxetanone −0.79 −0.83

Anionic F-CLA Dioxetanone

Hirshfeld Charges Voronoi Deformation
Density

Amidopyrazine −0.16 −0.14
Dioxetanone −0.84 −0.86

Given that anionic F-CLA dioxetanone is associated with both CIEEL/CTIL and
more efficient singlet chemiexcitation, this could mean that one or both of these mech-
anisms could indeed explain the observed chemiexcitation, especially considering that
the decomposition of neutral dioxetanones is typically associated with non-CIEEL/CTILL
pathways [1,2,23,33,50–52,60,61,66,67]. That is, there is little charge separation between the
moieties at the TS, and the homolytic cleavage of the peroxide O-O bond occurs instead of
electron transfer to the dioxetanone moiety at the TS. However, this is not the case for neu-
tral F-CLA dioxetanone. Interestingly, the decomposition of the neutral species is not the
result of a homolytic peroxide O-O bond [1,2,23,33,50–52,60,61,66,67]. Instead, the electron
spin density (Figure 4) indicates that the TS of this species is reached by electron transfer
between the amidopyrazine and dioxetanones moieties, an indication of the involvement of
the CIEEL pathway. Moreover, the electron spin density delocalization observed for neutral
F-CLA dioxetanone was quite similar to what was seen for the corresponding anionic
species (Figure 4).

Charge analysis, considering both Hirshfeld atomic charges and Voronoi deformation
density, was also performed for neutral F-CLA dioxetanone (Table 1). The measurement of
charge separation between the moieties revealed that this species also presents different behavior,
in terms of charge transfer, than other neutral dioxetanones [1,2,23,33,50–52,60,61,66,67]. That is,
we observed significant charge transfer from the amidopyrazine structure to the dioxetanone
moiety, considering a relevant charge separation between the moieties, which is an indication of
the involvement of the CTIL mechanism.

In short, the theoretical analysis indicated that the decomposition reaction of both
neutral and anionic F-CLA dioxetanones should occur via a similar stepwise biradical
pathway, with the TS being reached with electron/charge transfer from the amidopyrazine
structure to the dioxetanone moiety. This signals the involvement of both CIEEL and CTIL
mechanisms in the reactions of both species. Although the results regarding the anionic
species are in line with existing literature [1,2,23,33,50–52,60,61,66,67], this is not quite the
case for neutral dioxetanone.

Considering all the obtained evidence, different conclusions can be reached. First,
both species were found to undergo thermolysis via both CTIL and CIEEL mechanisms.
Moreover, the behavior of these mechanisms was quite similar (electron/charge transfer
between the amidopyrazine and dioxetanone moieties). Given this, it is difficult to ascertain
what the actual differences between CTIL and CIEEL are, how/why they can be considered
as independent mechanisms, and how one can explain behaviors that the other cannot.
In fact, it should be remembered that the requirements of either electron-transfer-based
or charge-transfer-based mechanisms are similar, and that charge transfer encompasses
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electron transfer [41,47]. Thus, it is not clear whether there is enough evidence to justify
treating CIEEL and CTIL as two independent mechanisms.

Furthermore, irrespective of their differences/similarities, both CIEEL and CTIL were
developed to explain efficient chemiexcitation [40,41,45,46]. Thus, if they are valid regard-
ing imidazopyrazinone CL/BL, it is expected that they could explain the differences in
chemiexcitation efficiency. However, both neutral and anionic F-CLA dioxetanones were
associated with both mechanisms, whereas the experimental results indicated that the
chemiexcitation yield of the latter is higher than that of the former. Thus, neither CTIL
nor CIEEL appears to explain the relative chemiexcitation efficiency of both species. In
fact, the overall charge separation between moieties is significantly higher for neutral
species than for anionic species (1.66e versus 0.73e). If these mechanisms were operative
here, one could even expect that the species with the highest chemiexcitation yield would
be the neutral species; however, the results indicate the opposite. Given this, the results
indicate that neither CIEEL nor CTIL mechanisms explain the observed relative chemiexci-
tation yields, which is further evidence for the lack of applicability of these mechanisms
for imidazopyrazinone-based systems. This is in line with the previously observed lack
of correlation between charge/electron transfer and efficient chemiexcitation [33,48–52].
Therefore, alternative explanations for the chemiexcitation of imidazopyrazinone-based
dioxetanones should be considered.

4. Conclusions

In this study, the CL reaction of a fluorinated F-CLA analog was investigated to gain
insight into the possible mechanisms that control the chemiexcitation step of imidazopyrazinone-
based CL and BL reactions. More specifically, the electron-donating hydroxyl group of native
Coelenterazine was replaced by an electron-withdrawing fluorine (among other substitutions)
to obtain more information regarding potential electron and/or charge transfer processes that
may occur. The relevance of this study results from the fact that different researchers are
using electron/charge-transfer-based mechanisms (CIEEL and CTIL) to explain chemiexcitation
efficiencies, despite conflicting reports from the literature.

Luminometric analysis of the CL of this analog in aprotic media revealed significantly
higher light-emission under basic conditions than under acidic conditions. Further analysis
indicated that this higher light output was the result of the higher relative chemiexcitation
efficiency of an anionic dioxetanone intermediate over the corresponding neutral species
and not due to other factors. In fact, the results indicate that light output is higher under
basic conditions despite lower fluorescent yields at that pH range, which further highlights
the required higher chemiexcitation efficiency.

Interestingly, theoretical calculations indicated that the decomposition of both anionic
and neutral dioxetanones occurred with both electron and charge transfer, which signals
the involvement of both CIEEL and CTIL mechanisms in the resulting chemiexcitation
step. However, the involvement of both mechanisms in the chemiexcitation of species
with different chemiexcitation yields puts in question their capacity to explain relative
chemiexcitation efficiencies in this type of system. Furthermore, the occurrence of both
mechanisms in the same reaction and in similar conditions also cast doubts on how truly
differentiated and independent CTIL and CIEEL really are.

In conclusion, this study was able to obtain further insight into the potential mecha-
nisms underlying the chemiexcitation step of imidazopyrazinone-based CL/BL systems,
while providing evidence that indicates that the pursuit of alternative explanations for the
chemiexcitation of imidazopyrazinone-based dioxetanones should be considered.

5. Patents

WO20219211808—Chemiluminescent Imidazopyrazinone-Based Photosensitizers with
Available Singlet and Triplet Excited States.
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