
Detection of computationally-intensive functions in a medical image
segmentation algorithm based on an active contour model

Carlos A. S. J. Gulo, CNPq National Scientific and Technological Development Council, Research Group PIXEL -
UNEMAT, Brazil, Programa Doutoral em Engenharia Informática, Instituto de Ciência e Inovação em Engenharia Mecânica
e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Portugal, sander@unemat.br

Antonio C. Sementille, Departamento de Ciências da Computação, Faculdade de Ciências, Universidade Estadual
Paulista-UNESP, Brazil, antonio.sementille@unesp.br

João Manuel R. S. Tavares, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departa-
mento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Portugal, tavares@fe.up.pt

Abstract Common image segmentation methods, to a large extent, are computationally expensive, particularly when run on large medical
datasets, and require powerful hardware to achieve image-based diagnosis in real-time. For a medical image segmentation algorithm that is
based on an active contour model, our work presents an efficient approach that detects computationally-intensive functions and adapts the
implementation for improved performance. We employ profiling methods that assess algorithm performance taking into account the overall
cost of execution, including time, memory access, and performance bottlenecks. We apply performance analysis techniques commonly
available in traditional computing operating systems, which obviates the need for new setup or measurement techniques ensuring a short
learning curve. Thus, the approach is well-suited for the community of researchers in the area of medical image processing and analysis.
The article presents guidelines to aid researchers in a) using profiling tools and b) detecting and checking potential optimization snippets
in medical image segmentation algorithms by measuring overall performance bottlenecks. For the profiling tools used in this work, gprof
and perf, both offered a similar cost in terms of execution time and gathered accurate data about the relationship between execution time
and paths in the call graph. Call graph visualization provides developers a quick graphical overview of the execution time of codes as well
as throughput in memory accesses, and performance bottlenecks, significantly easing the performance analysis.

Keywords Medical Image Processing and Analysis, Profiling Tools, Performance Analysis, High-performance Computing

1 Introduction

Image segmentation is an imperative operation in medi-

cal image analysis, being responsible for identifying and de-

lineating key regions within an image. To achieve the best

results, an adequate image segmentation is essential for sev-

eral tasks, such as 3D vision, image registration, image clas-

sification, and interpretation [1].

Active contour models (ACM), or “snakes” as com-

monly known in the scientific community [2, 3, 4, 5, 6], offer

an attractive approach to addressing contour detection prob-

lems. Because of their application to fundamental medical

image analysis problems, ACMs are capable of segment-

ing, matching, and tracking images of anatomical structures

by exploiting features such as the location, size, and shape

of these structures. The Chan-Vese algorithm is an image

segmentation method based on active contours; it employs

internal and external energy forces using graph theory to

track a contour as it moves toward the structure of inter-

est [7]. However, this method entails complex calculations,

and there is a need to develop new optimization strategies

that reduce the required runtime. To this end, we can em-

ploy profiling methods which deployment has contributed

effectively to identify and evaluate portions of code bound

to consume excessive computational resources [5, 8].

Under normal operation, profiling tools can count the

activation instances of a function accurately during runtime

of the algorithm, indicating thus timing information of the

function [9]. Profiling, at this level, is a useful technique to

assist algorithm’s optimization based on collecting and mea-

suring data related to memory space requirement, frequency,

and duration of the function calls, as well as time complex-

ity of the algorithm. Many profiling tools such as gprof [9],

perf [10], tiptop [11] and others [12, 13, 14] have been

2 J. Comput. Sci. & Technol.

proposed to assist programmers in identifying performance

bottlenecks when executing an algorithm on CPU under a

given workload [10, 15].

In this work, we aim to identify time-consuming func-

tions in the Chan-Vese ACM algorithm using profiling tools.

The performance analysis based on profiling can be adapted

to effectively reduce the processing time of the algorithm,

making it suitable for real-time diagnosis. For this, we ex-

ploit available computational power commonly available on

a typical computer. In this scenario, the term “performance”

refers to the efficiency of computing systems when execut-

ing algorithms, including the factors of throughput, latency,

and availability.

The article is mainly focused on medical image process-

ing and analysis applications and provides important guide-

lines that support researchers in identifying time-consuming

functions in their algorithms using profiling tools. The ex-

perimental findings show that profiling information can in-

dicate majority bottlenecks in the algorithm. This study also

provides insight into the significance of profiling data.

This is the first time that the chosen profiling tools are

used to support the parallelization of a medical image seg-

mentation algorithm. The findings contribute to a better un-

derstanding of image processing and analysis. Today, there

is a steady rise in the number of images with high resolution

that need to be processed and analyzed fast, e.g., in real-

world clinical scenarios. Also, computers with multi-core

processors are commonly available in medical environments

with adequate computational power for efficient image pro-

cessing and analysis. The insights achieved with the pro-

filing process can aid in efficient implementation of these

algorithms with substantial impact in the area. One major

limitation is the sequential code is not parallelized automat-

ically by our approach.

This article is organized as follows: Section 2 introduces

the background concepts and methods that have been pro-

posed to accelerate the processing of image segmentation

algorithms. Section 3 presents methodologies commonly

used in this research area; Section 4 details our findings and

presents the discussion concerning the use of the profile in-

formation gathered about the medical image segmentation

algorithm under study. Finally, Section 5 contains the con-

clusions and suggestions for future studies.

2 Background and Related Work

This section introduces two topics: the segmentation of

medical images with a focus on the Chan-Vese ACM al-

gorithm, and the profiling method used to pinpoint bottle-

necks that present excessive CPU consumption. In addition,

a literature review covering studies of image processing and

analysis methods accelerated by high-performance comput-

ing architectures is presented.

2.1 Medical Image Segmentation

Segmentation is the technique of partitioning an im-

age into its constituent homogeneous regions. Partitioning

is commonly carried out based on the desired image fea-

ture(s), such as color, intensity, or texture [16, 4]. Medi-

cal image segmentation is crucial, for example, for the suc-

cessful extraction of image features and their subsequent

classification, and for aiding in the visualization by per-

forming the detection process efficiently. Briefly, medical

image segmentation has application in image-based diag-

nosis and monitoring, and planning and navigation during

surgery [16, 3].

Image segmentation methods have been applied for par-

titioning images that are important for a medical point

of view, and are acquired from a range of objects , e.g.,

lungs [17], skin lesions [18, 19], and vessels [20, 4]. Dif-

ferent imaging modalities have been used to acquire clini-

cally useful information about anatomical structures includ-

ing magnetic resonance, computed tomography, ultrasound,

and others, and many image segmentation methods have

been developed to segment the acquired images [4, 16, 17,

Shortened Title Within 45 Characters 3

20, 21, 22].

Image segmentation techniques can be grouped into

four categories: pixel-based, region-based, edge-based, and

model-based [16]. Region and pixel-based techniques are

based on the concept of the discontinuity of pixel values,

whereas pixel valuesśimilarity is the basis of the edge-based

techniques. Region-based techniques rely on similar pat-

terns in intensity values within a region of neighboring pix-

els, including approaches such as thresholding, region grow-

ing, region splitting and merging. In the edge-based tech-

niques, boundaries are detected based on abrupt changes in

the intensity levels of an image. For these methods, the fo-

cus is on finding discontinuities, i.e., points, lines and edges,

concerning features such as color, intensity, or texture. In

model-based techniques, image segmentation is framed as a

statistical optimization problem [23].

By convention, image segmentation can be defined as

the problem of finding partition(s) Sk of a dataset such that

each partition Sk ⊂ I represents a homogeneous region. The

union of all such partitions makes up the entire image I.

Thus, the sets that perform a segmentation must satisfy:

I =
K!

k=1

Sk, (1)

where Sk
"

S j = φ for k ∕= j, and each Sk is connected.

Ideally, a segmentation method finds those sets that corre-

spond to distinct anatomical structures or regions of interest

in the image.

The work in Kass et al. [2] introduced the concept of

active contours which was widely accepted as a new ap-

proach to image segmentation. Of the main limitations of

active contour models is the requirement for the initial con-

tour being close to the boundary of interest. Moreover, ac-

tive contours have difficulties to progressing into boundary

concavities. The work in Chan and Vese [7] proposed an

algorithm to address the limitations of the traditional snake

model. The Chan-Vese algorithm derives from a compila-

tion of two other techniques: the level set method, used in

edge detection through a topological change of the curves,

and the Mumford-Shah region-growing technique, applied

in image segmentation.

The core computation in the Chan-Vese algorithm is the

massive local window matching between input images, and

this has proven to be a powerful and fast technique for both

contour detection and region-based segmentation. In partic-

ular, the Chan-Vese algorithm achieved notable results in the

segmentation of different objects with various shapes and

with inner contours.

In many instances, the algorithm successfully detected

and preserved the location of boundaries, even for objects

which boundaries are not very smooth or defined by gradi-

ent. Internal forces are computed within the curve to keep it

smooth throughout the deformation. External forces are usu-

ally derived from the input images to drive the curve towards

the desired features of interest [3]. Dynamic equations gov-

ern the movement of an active contour model which per-

forms successive minimization iterations of a given energy

associated with the curve. The Chan-Vese ACM is based

on variational methods; each successive iteration is updated

with the preceding curve points. The energy functional of

the Chan-Vese model is defined in terms of the level set

function φ(x,y) as follows:

F(c1,c2, f) = µ ·
#

o
de(f (x,y))|∇ f (x,y)|dxdy

+λ1

#

o
|u0(x,y)− c1|2He(f (x,y))|dxdy

+λ2

#

o
|u0(x,y)− c2|2(1−He(f (x,y)))|dxdy

(2)

where µ, λ1 and λ2 are positive constants used to modu-

late the contribution of each term, f is any variable curve,

and the constants c1, c2, depending on f , are average inten-

sity inside and outside a zero level set, respectively. This

minimization problem is solved using the level set method

which replaces the unknown curve f by the level set func-

tion φ(x,y), considering that φ(x,y)> 0 if the point (x,y) is

inside f , φ(x,y)< 0 if (x,y) is outside (x,y) and φ(x,y) = 0,

4 J. Comput. Sci. & Technol.

if (x,y) is on f . Hε(z) and δε are the regularized approxi-

mation of Heaviside function H(z) and Dirac delta function

δ(z) as follows:

H(z) =

!
1 if z ! 0,
0 if z < 0.

and d(z) =
d
dz

H(z). (3)

The solution to Equation 2 is found by successive it-

erations, and in each iteration, the curve is updated point

by point. Hence, by analyzing the neighborhood of each

point, it is possible to calculate the energy involved, move

the curve towards image features, and approach the object

boundary [23, 2]. The Chan-Vese method has been vali-

dated by a range of numerical results as reported in [7]. Al-

gorithm ?? lists the pseudocode of the Chan-Vese algorithm.

2.2 Profiling Method

In this section, we review the use of profiling as means

to measure the computation time of each function in an al-

gorithm. Profiling is commonly used to discern the behavior

of an algorithm and measure its performance by collecting

relevant information during execution.

Program profiling is typically used to measure the use

of the instruction set to identify and assess portions of code

presenting excessive CPU consumption. In addition, it is

used to locate both memory allocation, usage, or leaks,

cache performance, execution time, or even energy con-

sumption [14, 24]. Profiling methods include instrumented,

event-based, statistical, and simulation [9, 10, 8].

Performance analysis based on profiling consists of the

following steps applied in order: instrumentation or modifi-

cation of the algorithm to produce performance data, mea-

suring important execution aspects that generates these data,

data analysis, and finally visualization of the performance

data [13] (Fig. 1).

2.2.1 Instrumentation

Instrumentation is the process of incorporating measure-

ment code within an algorithm at compile time, aiming to

have a precise measurement of execution times. This pro-

cedure adds a detailed listing of the running statistics to the

object file and links the executable with standard libraries

with profiling information enabled. However, it requires the

availability of the source code and the compiler [13, 5].

When using a profiling method, a key consideration is

to effect a minimum change in the algorithm’s intended be-

havior. Monitoring algorithm runtime behavior involves in-

strumenting the binaries to record desired events; the system

event data, in essence, keeps track of the interaction between

programs and the hardware.

2.2.2 Measuring

Gathering profile data is the second step of the profiling

method. In this step, we monitor hardware interrupts, oper-

ating system calls and performance counters [9, 25]. After

performance data from one or more executions have been

recorded, information linked with functions is extracted and

stored in output files. In a properly implemented profiling

process, gathering of profiling data does not interfere with

the algorithm execution.

Performance counters are available in most modern pro-

cessors, enabling the count of various hardware performance

events such as clocks per cycle, floating-point operations,

cache misses. In summary, performance counters are incre-

mented when either comparison or arithmetical instructions

are issued.

2.2.3 Data analysis

The resulting binaries which contain the execution pro-

file are available in the output files called perf.data and

gmon.out, for the perf and gprof profiler respectively.

Data is analyzed to extract performance statistics, for in-

stance, the number of times a function is called and the time

Shortened Title Within 45 Characters 5

Figure 1. Diagram of the profiling method. Each part of the diagram shown is described in the text.

spent in each function. The profilers also record the arc in

the call graph that activates the function [10, 9, 13]. The

returning address of a function is used for identifying the

source of the arc referred as caller, and the destination of

the arc referred as callee [12].

For finding the most costly function in an algorithm, it

is critical to collect the arcs of the dynamic call graph tra-

versed during the algorithm execution. Hence, in the post-

processing of the data, it is possible to visualize the call

graph and to show the measures collected from the algo-

rithm execution.

2.2.4 Visualization

The last step concerns visualization of the collected data.

Call stack walking is a technique that shows the function-

ing internal to any algorithm without source code access.

The technique can show functions being called and the CPU

usage time for these function. The profilers, gprof and

perf provide dynamic call graph information for all instru-

mented code snippets. A call graph is binary and sometimes

is treated as a multi-graph, i.e., instead of simple relations,

there can be multiple relations between the same two nodes.

For example, it has relation over functions, or procedures de-

fined in an algorithm [10, 9]. The edges represent the calls

between the functions being run in the algorithm and their

call frequency. The nodes show the individual functions in

the executable.

2.3 Related Work

With the emergence of multi-core processor architec-

tures, one can no longer avoid parallelizing applications.

Besides, while writing parallel algorithms from scratch has

always been considered a difficult task, parallelizing legacy

algorithms written by someone else, today a common sce-

nario in the medical image processing and analysis area, is

even harder [26]. On the other hand, several studies have

been proposed to address the segmentation of medical im-

ages using high-performance computing [27, 28, 26]; how-

ever, it is not common for medical image processing and

analysis developers make use of profiling methods to detect

costly function in their algorithms.

An updated overview of image processing and analy-

sis methods accelerated by high-performance computing ar-

chitectures is given by Gulo et al. [29]. Many authors de-

ploy approaches of image segmentation based on thresh-

olding [30, 31, 32], clustering [33] and deformable mod-

els [34], on a PC-cluster [35, 36, 33], using graphics pro-

cessing unites (GPUs) [37, 38, 39, 26, 30, 40, 41] or multi-

core processors [33, 41, 42, 43].

Daggett and Greenshields [35] and Yeh and Fu [36] de-

signed a parallel algorithm using a PC-cluster to segment

magnetic resonance (MR) images in order to reduce the

inter-process communication overhead. This parallel algo-

rithm was based on the virtual shared memory technique,

which enables processes to communicate by directly shar-

6 J. Comput. Sci. & Technol.

ing data as though it existed in a global shared memory

space. This approach was designed using the Message Pass-

ing Interface (MPI) programming model and the Single Pro-

gram, Multiple Data Stream (SPMD) data decomposition

model. Examples of application include automating the

clinical diagnosis of schizophrenia and multiple sclerosis.

In the Gabriel et al. [33] approach, they used a multi-core

processor and a PC-cluster to compare the speed-up, com-

munication overhead, different memory systems, and dif-

ferent number of used threads. The multi-core architecture

achieved the highest speed-ups, which were up to 11x faster

compared to the PC-cluster.

The performance of GPUs was exploited to acceler-

ate image segmentation algorithms, such as level set-based

segmentation [30, 39] and Bias Field Correction Fuzzy C-

Mean [26]. However, the expensive computation required

by the algorithms demanded optimization strategies in order

to reduce the run-time; hence, Lamas-Rodríguez et al. [39]

aimed to divide the active domain of the input images into

fixed-size tiles and therefore, intensively use shared mem-

ory space, resulting in a low latency close to that of the

register space. Balla-Arabé and Gao [30] designed a selec-

tive entropy-based energy functional method, robust against

noise, and new selective entropy external forces for the Lat-

tice Boltzmann method (LBM). However, neither Lamas-

Rodríguez et al. [39] nor Balla-Arabé and Gao [30] ap-

proaches achieved volume image segmentation in real time.

Hence, the authors identified a need for future studies to

extend their approach to a GPU cluster environment. In

the approach of Aitali et al. [26], the GPU implementation

achieved real time in segmenting volume images.

Zhuge et al. [37, 38] took advantage of the CUDA ar-

chitecture, mainly by supporting atomic read/write opera-

tions in the GPU global memory, in order to develop a semi-

automatic segmentation method based on the Fuzzy Con-

nected technique. Shi et al. [40] proposed an automatic

image segmentation method for medical images based on a

Pulse Coupling Neural Network combined with the 2D Tsal-

lis entropy, resulting in stronger adaptability and high image

segmentation precision. The results with this GPU-based

approach was in real time using ray tracing.

In the Saran et al. [41] approach, a rigid mutual in-

formation registration of magnetic resonance venography

(MRV)/magnetic resonance angiography (MRA) images

was used to increase vessel segmentation accuracy in MR

images. The unfavorable effects of Rician noise and Radio-

frequency (RF) inhomogeneity in MR, MRA, and MRV im-

ages during vessel segmentation are removed by applying a

subtraction scheme. In this scheme, the cost function and

choice of the minimization method are executed simultane-

ously using multi-core and GPU.

3 Material and methods

As described in Section 2.1, the usual image segmenta-

tion algorithm consists of multiple steps, including general

tasks such as image reading and setting up the segmenta-

tion parameters. On the other hand, opportunities to opti-

mize their implementations can be identified by recognizing

parallelization options, by using profiling tools [5, 44], see

Section 2.2.

3.1 Experimental Setup

Our test and development infrastructure included a desk-

top computer with the Linux Debian 8 operating system,

GNU gcc/g++ compiler 4.9.2, the application programming

interface OpenMP 3.1, Visual Studio Code 1.57.1, the pro-

filers gprof 2.25 and perf 3.16.7-ckt20. Also, we used

gprof2dot 1, and dot 2 2.38, 16 GB of RAM (DDR3-1600

1gprof2dot is an open source script written in Python that converts the output from a range of profiles into a dot graph. This script can be downloaded
for free at https://github.com/jrfonseca/gprof2dot.

2dot is a Graphviz feature for producing hierarchical drawings of directed graphs. Graphviz is an open source visualization software for representing
structural information such as diagrams of abstract graphs. More information is available at http://graphviz.org

https://github.com/jrfonseca/gprof2dot
http://graphviz.org

Shortened Title Within 45 Characters 7

MHz), and an Intel(R) Core(TM) i7-4790 3.60 GHz proces-

sor. This processor has four physical cores, and two log-

ical threads can be run simultaneously in each core using

the support of a feature referred hyper-threading technol-

ogy. Thus, effectively, we can choose to run from a single

thread to a maximum of 8 threads considering if we use each

core partially or fully.

3.2 Dataset

The study used Multiple Sclerosis (MS) images se-

lected from the MS Longitudinal Challenge Data Set repos-

itory [45] which access is open for research purposes. We

picked thirteen images from the initial dataset to study

the effectiveness of the chosen segmentation method. The

images were chosen randomly and were subjected to the

same preprocessing, with the data acquired using a 3.0

Tesla MR imaging scanner from Philips Medical System,

Best, The Netherlands. The parameters are as follows:

T1-weighted (T1 −w) magnetization prepared rapid gradi-

ent echo (MPRAGE) with TR=10.3 ms, TE=6 ms, flip

angle=8°, and 0.82x0.82x1.17 mm3 voxel size; a double

spin echo (DSE) which produces PD-w and T2 − w im-

ages with TR=4177 ms, TE1=12.31 ms, TE2=80 ms, and

0.82×0.82×2.2 mm3 voxel size; and a T2−w fluid attenuated

inversion recovery (FLAIR) with TI=835 ms, TE=68 ms,

and 0.82x0.82x2.2 mm3 voxel size [45]. Figure ?? shows

an example of a segmentation obtained with the algorithm

under analysis.

3.3 Segmentation Evaluation

Dice Similarity Coefficient (DSC) is a statistical metric

commonly used to evaluate the performance of the repro-

ducibility of ground truth segmentation and the spatial over-

lap accuracy of automated probabilistic fractional segmen-

tation. The DSC value is a simple and useful summary mea-

sure of spatial overlap, and can be applied to studies of re-

producibility and accuracy in image segmentation [46, 47].

The DSC value ranges from zero indicating no spatial over-

lap between two segmentation results to one indicating a

complete overlap. Thus, DSC measures the spatial overlap

between two segmentation X and Y , and is defined as:

DSC =
2|X

"
Y |

|X |+ |Y | , (4)

where |X | and |Y | are the number of pixels in X and Y re-

spectively; X is the segmentation area obtained by the algo-

rithm, Y is the area of the ground truth segmentation, and

X
"

Y is the overlapping area of the two segmentation.

3.4 Performance Evaluation

For measuring the speedup of the Chan-Vese algorithm,

we focused on the runtime taken by each function in the

algorithm, using the profiling tools: gprof and perf. We

selected gprof and perf tools as they combine three pro-

filing methods: instrumented, event-based, and statistical.

gprof, commonly considered as easy to use and portable,

is limited in scope; it is designed to produce a detailed call

graph identifying the functions that call other functions and

the frequency of the calls. Moreover, gprof provides in-

formation about the number of calls made to each function,

the percentage of the total time spent in the function, and

computes the time needed to execute that function. perf,

on the other hand, makes use of statistical sampling to col-

lect profile data, thereby generating an interruption at regu-

lar time points. perf can identify all processes running on

the CPU; it captures relevant information such as the pro-

gram counter, the CPU core. It then writes these data to an

output file named perf.data.

We compiled a single thread-based implementation

of the Chan-Vese algorithm to create a working exe-

cutable. The following parameters were applied at com-

pile time: -fno-omit-frame-pointer that enables frame

pointer analysis, -g that generates symbol information and

enables source code analysis, and -pg that compiles and

8 J. Comput. Sci. & Technol.

links the source code with profiling information enabled;

the monitor function mcount is inserted before each func-

tion call.

The compiler parameter -pg causes each profiled func-

tion to call the monitoring function mcountas one of its first

operations. mcount notes its own return address that falls

in the profiled function which is the destination of an arc

in the call graph. The monitoring function also identifies

the source of the arc from the return address of the func-

tion. Arcs representing invocations in the same function are

termed as cycles. When a child function is a member of a

cycle, the time indicated is the fraction of the time for the

whole cycle. Self-recursive routines have their calls failed

into calls from the outside and self-recursive calls; thus, only

the outside calls affect the propagation of time. Importantly,

the algorithm calls libc-2.19 are related to the C runtime

library, and that is not uncommon to use significant amounts

of time in a runtime library and not in the algorithm code

itself.

4 Results and discussion

We performed certain experiments with the aim of col-

lecting useful profiling information, accumulating data that

produce statistically meaningful observations, and reducing

measurement errors of the Chan-Vese algorithm. We re-

port results from these experiments in this section. We seg-

mented each test image with the Chan-Vese algorithm. The

objective of the reported work, however, is not to assess

the accuracy of the used segmentation algorithm. Rather,

we focused on measuring the performance of functions on

the Chan-Vese implementation and for its speed-up with the

multi-thread implementation.

4.1 Algorithm Evaluation

We performed a quantitative evaluation to analyze the

segmentation results, i.e., the ground truth of the segmented

regions was used to confirm whether each lesion present in

the thirteen images was correctly segmented. We compared

the segmented images against the ground truths using Dice

Similarity Coefficient. Results are shown in Table ??.

4.2 Runtime Evaluation

For performance evaluation, we measured the running

time using a C++ function for all the reported experiments.

Each experiment was executed fifty times for each image.

Mean and standard deviation values of the time required to

segment each input image were calculated. The computa-

tions account for the time spent to load the data into the

system memory until the end of the segmentation process,

when the resultant image is produced. The results are shown

in Table ??.

4.3 Performance Analysis

Gathering profile data is the next step in the process. We

collect data while monitoring hardware interrupts, operat-

ing system calls and performance counters. Profiling tools

periodically record new samples by interrupting the operat-

ing system kernel and save these samples in a ring buffer,

generating overhead. perfmitigates sampling overhead by

enforcing sampling buffer locality; it creates one instance of

an event on each CPU. The events are effectively measured

when the thread is executed on that CPU. All the samples

are aggregated into a single output file once all profiles have

been run. For the experiments in this study, we used the sam-

pling mode in perf to trace Chan-Vese algorithm events in

real time. The output files generated by perf are larger in

size than the ones resulting with the gprof. With gprof,

output file size is approximately 7.9 KB (for experiments

with 2, 4, and 8 threads) and 16 KB (for experiments with

a single thread), in contrast to the perf profile where the

output file size is in the order of dozens of megabytes. Ta-

ble ?? lists these results. The great difference in profiling

Shortened Title Within 45 Characters 9

data sizes is primarily because of the manner in which data

is stored. The output file with gprof stores a histogram of

algorithm counter samples and the arc table. The resulting

file size with perf, on the other hand, depends on the sam-

pling frequency at which events are recorded. With a typical

rate of 4000 samples per second, the process generates big

overhead and larger output files.

We analyzed the data to extract performance statistics.

Mainly, we record the arc in the call graph that activates each

profiled function. Call graph represents time-consuming

functions and the number of times such functions are in-

voked. We analyzed the call graph sample for segmentation

of image #1, and generated the call graph shown in Fig. 3.

This call graph incorporates the time required for each func-

tion from its descendants as well as the number of times each

function is called.

For a given function, the call graph displays its children

as well as parents (the call sites that invoke this function).

The call graph also includes the higher level functions that

consume large parts of the total execution time in the func-

tions that they call. In the context of this study, children refer

to the functions that are called by another function (parent).

In Fig. 3, five items are indicated by numbered circles: item

1 indicates the name of the caller function; item 2 concerns

the percentage of algorithm runtime accounted for the func-

tion and its children; item 3 accounts for a time that depends

on whether it is the primary function for that section, the

functions caller or child functions. In the first case, time is

the actual function execution time during running of the al-

gorithm. In the second case, it indicates the amount of the

self-time being propagated to that caller, based on the per-

centage of calls to the primary function made by that caller.

Finally, for descendant functions, it represents the amount of

that descendant functions self-time being propagated to the

primary function based on the percentage of calls made to

the descendant by the primary function. The next item, item

4 is represents the number of times that function was called;

and finally, item 5 is related to the accumulated percentage

of time running a function, taking into account propagation

for each descendant function.

The call graph helps focus the analysis on the rel-

evant parts of the algorithm execution, making the ex-

periments easier to understand. From the call graph,

it is easy to see that the main function called the

ChanVeseSegmentation function, which then called the

functions GetCVC, ReinitPhi, Image::data, min, and

max.

Function ReinitPhi locally computes the signed dis-

tance function to its zero level set. Our method identi-

fied ReinitPhi as the most called function with the max-

imum required running time, approximately 80% of the to-

tal running time, i.e., 12.90 seconds (see Algorithm ??,

lines 6 to 12). Function GetCVC computes the coefficients

needed in the Chan-Vese algorithm for the level set func-

tion. Image:data assigns a point to minimal energy neigh-

borhood (Algorithm ??, line 2); the auxiliary functions min

and max are used in the minimization of the functional with

respect to c1, c2, and f (Algorithm ??, line 9).

Fig. 4 shows a percentage chart of the most used func-

tions in the studied segmentation algorithm. The measure-

ment depicted reflects the time spent on each function based

on counter events. All times are obtained by running Chan-

Vese algorithm fifty times, saving the time elapsed in each

run as reported by the profiling tool, and calculating the av-

erage of these times. In all cases, the execution times for

different runs of the implementation were quite consistent.

Functions ReinitPhi and GetCVC appeared the most fre-

quent in the run stack; responsible for taking up the pro-

cessor time for 23.50 seconds (in exclusive usage), which

implies 98.60% of the total runtime. In particular, these

functions accounted for a hundred iterations, making them

interesting targets for parallelization. The algorithm is re-

sponsible for large computations, and since each element on

10 J. Comput. Sci. & Technol.

Figure 3. Call graph generated by perf representing the most often functions called by the Chan-Vese algorithm.

the input image can be computed independently, the algo-

rithm can greatly benefit from a high degree of instruction

parallelism.

In general, the segmentation algorithm is considered

computationally-intensive due to the high number of itera-

tions and computations per iteration. The suggestions gener-

ated by the profiling tools have pointed to the most promis-

ing targets for efficiency gains. The function that iterates

over the lines of the input image and solves Equation 2 rep-

resents the highest computation, and takes up the most exe-

cution time.

4.4 Effect of the Number of Used Cores

We discuss how using different number of physical cores

impact the performance of the multi-threaded Chan-Vese

segmentation algorithm. With a given number of cores, we

allocate equal number of execution threads to each core. We

implemented ReinitPhi, the most intensive function, using

OpenMP. The experiments performed previously in sequen-

tial execution mode were repeated under a parallel mode.

We evaluated the performance in different degrees of paral-

lelism, i.e., using 1, 2, 4 and 8 threads. As shown in Fig. ??,

using the parallel OpenMP-based implementation, there is

significant reduction in algorithm runtime when compared

to the single thread based implementation.

For large images with dimensions over 768×576 pixels,

we see a noticeable speed-up of the OpenMP-based imple-

mentation. In particular, Fig. ?? suggests performance scale

up is almost exponential, being the processing time of the

parallel implementation approximately 7 times faster than a

single thread based implementation. Our results confirm that

multi-core processors have the capacity to lend high perfor-

mance gains when using parallel OpenMP-based implemen-

tations. For a fixed number of cores, we used an equal num-

ber of threads for the execution, one thread on each core.

Fig. ?? clearly shows that for each image size the execution

time decreases as we increase the number of cores. In sum-

mary, the insights gained with the profiling tools output aids

in better implementations, in particular, writing parts of the

Shortened Title Within 45 Characters 11

Figure 4. Most time-consuming functions detected by the profiling tools perf and gprof.

code with parallelized implementation. This computational

parallelization can significantly increase the application per-

formance.

5 Conclusion and Future Work

In this work, we described an approach that uses profil-

ing tools to detect and evaluate code snippets that present

as performance bottlenecks in a particular implementation.

The implementation that we considered is an image segmen-

tation algorithm based on the active contour, namely the

Chan-Vese algorithm. We developed a parallel OpenMP-

based implementation of the same algorithm using insights

achieved with the profiling process. We compared the per-

formance of the parallel implementation against a base-line

single threaded implementation in several experiments. Par-

allelizing the implementation of the costly algorithm func-

tion reduced the runtime by up to 7 times when compared to

a single thread based implementation.

The novelty of the proposed method lies in using profil-

ing as means to efficient deployment of medical image pro-

cessing and analysis applications. The method presented an

effective solution for the applications with high processing

demands. The output of the profiling method is a detailed

profile that is combined with the source level information

to identify and evaluate performance bottleneck snippets in

the algorithm. The approach detected the available paral-

lelism targets, as well as, substantially reduced the total time

needed to parallelize the sequential code.

Our findings confirmed that parallel computing can pro-

vide substantial acceleration in processing speeds. The pro-

cessing time decreased in all cases, as the number of threads

increased. Many factors impact the improvement in the ex-

ecution including compiler optimizations, runtime support,

data layout, operating system noise, workload balancing etc.

In addition, it may depend on the regions needing to be

merged in the structure of the graph of the input image. Un-

der parallel mode, any thread that completes execution must

wait for the last running thread. This leads to slack time, i.e.,

keeping the operating system from possibility of executing

12 J. Comput. Sci. & Technol.

another task in the meantime. Nevertheless, the time im-

provement with parallelization is significant and promising.

For future work, we aim to optimize the time-consuming

functions detected by the presented method. For this, we

will use heterogeneous parallel computing platforms based

on GPUs. Program parallelization aided with profiling tools

would increase the maximum application performance and

reduce the manual implementation efforts, thereby, offering

an interesting alternative for developers to adopt the method-

ology.

Shortened Title Within 45 Characters 13

References

[1] Duan J, Pan Z, Yin X, Wei W, Wang G (2014) Some

fast projection methods based on Chan-Vese model

for image segmentation. EURASIP Journal on Im-

age and Video Processing 2014(1):7, DOI 10.1186/

1687-5281-2014-7

[2] Kass M, Witkin A, Terzopoulos D (1988) Snakes:

Active Contour Models. International Journal of

Computer Vision 1:321, DOI https://doi.org/10.1007/

BF00133570

[3] McInerney T, Terzopoulos D (1996) Deformable mod-

els in medical image analysis: a survey. Medical Im-

age Analysis 1(2):91 – 108, DOI http://dx.doi.org/10.

1016/S1361-8415(96)80007-7

[4] Pham DL, Xu C, Prince JL (2000) A survey of cur-

rent methods in medical image segmentation. Annual

Review of Biomedical Engineering 2:315–337, DOI

10.1146/annurev.bioeng.2.1.315

[5] Li Z, Atre R, Huda Z, Jannesari A, Wolf F (2016) Un-

veiling parallelization opportunities in sequential pro-

grams. Journal of Systems and Software 117:282 –

295, DOI http://dx.doi.org/10.1016/j.jss.2016.03.045

[6] Zhang Y, Tian Y (2022) A new active contour med-

ical image segmentation method based on fractional

varying-order differential. Mathematics 10(2), DOI

10.3390/math10020206

[7] Chan T, Vese L (1999) An active contour model with-

out edges. In: Nielsen M, Johansen P, Olsen OF,

Weickert J (eds) Scale-Space Theories in Computer

Vision: Second International Conference, Springer

Berlin Heidelberg, Berlin, Heidelberg, Lecture Notes

in Computer Science, vol 1682, pp 141–151, DOI

10.1007/3-540-48236-9_13

[8] Rul S, Vandierendonck H, Bosschere KD (2010) A

profile-based tool for finding pipeline parallelism in

sequential programs. Parallel Computing 36(9):531

– 551, DOI http://dx.doi.org/10.1016/j.parco.2010.05.

006

[9] Graham SL, Kessler PB, McKusick MK (2004) gprof:

A call graph execution profiler. ACM SIGPLAN Notes

39(4):49–57, DOI 10.1145/989393.989401

[10] Dimakopoulou M, Eranian S, Koziris N, Bambos N

(2016) Reliable and efficient performance monitoring

in linux. In: Proceedings of the International Confer-

ence for High Performance Computing, Networking,

Storage and Analysis, IEEE Press, Piscataway, NJ,

USA, pp 1–13

[11] Rohou E, INRIA (2012) Tiptop: Hardware perfor-

mance counters for the masses. In: 2012 41st Interna-

tional Conference on Parallel Processing Workshops,

IEEE, DOI 10.1109/ICPPW.2012.58

[12] Schulz M, de Supinski BR (2007) Practical differential

profiling. In: Euro-Par 2007 Parallel Processing, Lec-

ture Notes in Computer Science, Springer, pp 97–106,

DOI 10.1007/978-3-540-74466-5_12

[13] Spivey JM (2004) Fast, accurate call graph profiling.

Softw Pract Exper 34(3):249–264, DOI 10.1002/spe.

562

[14] Ball T, Larus JR (1994) Optimally profiling and tracing

programs. ACM Transactions on Programming Lan-

guages and Systems 16(4):1319–1360, DOI 10.1145/

183432.183527

[15] Shende S (1999) Profiling and tracing in Linux. In:

Proc. Second Extreme Linux Workshop, USENIX An-

nual Technical Conference, pp 26–30

14 J. Comput. Sci. & Technol.

[16] Masood S, Sharif M, Masood A, Yasmin M, Raza M

(2015) A survey on medical image segmentation. Cur-

rent Medical Imaging Reviews 1:3–14, DOI 10.2174/

157340561101150423103441

[17] Filho PPR, Cortez PC, Barros ACdS, Albuquerque

VHC, Tavares JMRS (2017) Novel and powerful 3D

adaptive cristp active contour method applied in the

segmentation of CT lung images. Medical Image Anal-

ysis 35:503–516, DOI 10.1016/j.media.2016.09.002

[18] Oliveira RB, Filho ME, Ma Z, Papa JP, Pereira

AS, Tavares JMRS (2016) Computational methods

for the image segmentation of pigmented skin le-

sions: A review. Computer Methods and Programs

in Biomedicine 131:127–141, DOI 10.1016/j.cmpb.

2016.03.032

[19] Oliveira RB, Marranghello N, Pereira AS, Tavares

JMRS (2016) A computational approach for detect-

ing pigmented skin lesions in macroscopic images.

Expert Systems with Applications 61:53 – 63, DOI

http://dx.doi.org/10.1016/j.eswa.2016.05.017

[20] Jodas DS, Pereira AS, Tavares JMRS (2016) Lu-

men segmentation in magnetic resonance images

of the carotid artery. Computers in Biology and

Medicine 79:233 – 242, DOI http://dx.doi.org/10.

1016/j.compbiomed.2016.10.021

[21] Tina, Dubey SK, Bhatt AK, Mittal M (2022) Anal-

ysis of algorithms in medical image processing. In:

Tomar A, Malik H, Kumar P, Iqbal A (eds) Machine

Learning, Advances in Computing, Renewable Energy

and Communication, Springer Singapore, Singapore,

pp 99–111

[22] Jiang D, Qu H, Zhao J, Zhao J, Hsieh MY (2021) Ag-

gregating multi-scale contextual features from multi-

ple stages for semantic image segmentation. Connec-

tion Science 33(3):605–622, DOI 10.1080/09540091.

2020.1862059

[23] Lu H, Li Y, Wang Y, Serikawa S, Chen B, Chang

J (2013) Active contour model for image segmenta-

tion: A review. In: International Conference on In-

dustrial Applications Engineering, pp 104–111, DOI

10.12792/iciae2013.022

[24] SharifAbadi HVZMRHPHH (2020) A genetic

algorithm-based tasks scheduling in multicore proces-

sors considering energy consumption. International

Journal of Embedded Systems 13(3):264–273,

DOI https://dx.doi.org/10.1504/IJES.2020.109957

[25] Nikov K, Nunez-Yanez J (2020) Intra and inter-core

power modelling for single-isa heterogeneous pro-

cessors. International Journal of Embedded Systems

12(3):324–340, DOI 10.1504/IJES.2020.107046

[26] Aitali N, Cherradi B, Abbassi AE, Bouattane O

(2016) Parallel implementation of bias field correc-

tion fuzzy C-Means algorithm for image segmentation.

In: (IJACSA) International Journal of Advanced Com-

puter Science and Applications, vol 7(3), pp 375–383,

DOI 10.14569/IJACSA.2016.070352

[27] Jeon M, Alexander M, Pizzi N (2005) Parallel image

segmentation with level set methods. In: Proceedings

on the 5th IASTED International Conference on Visu-

alization, Imaging, and Image Processing, Bonidorm,

Spain, pp 394–399

[28] Bader D, Jaja J, Harwood D, Davis LS (1996) Parallel

algorithms for image enhancement and segmentation

by region growing with an experimental study. In: Pro-

ceedings of International Conference on Parallel Pro-

cessing, IEEE, DOI 10.1109/IPPS.1996.508089

[29] Gulo CASJ, Sementille AC, Tavares JMRS (2017)

Techniques of medical image processing and analy-

Shortened Title Within 45 Characters 15

sis accelerated by high-performance computing: a sys-

tematic literature review. Journal of Real-Time Image

Processing DOI 10.1007/s11554-017-0734-z

[30] Balla-Arabé S, Gao X (2014) Geometric active curve

for selective entropy optimization. Neurocomputing

139:65–76, DOI http://dx.doi.org/10.1016/j.neucom.

2013.09.058

[31] Saiviroonporn P, Robatino A, Zahajszky J, Kikinis

R, Jolesz F (1998) Real-time interactive three-

dimensional segmentation. Academic Radiology

5(1):49–56, DOI 10.1016/S1076-6332(98)80011-1

[32] Yang P, Song W, Zhao X, Zheng R, Qingge L

(2020) An improved otsu threshold segmentation algo-

rithm. International Journal of Computational Science

and Engineering 22(1):146–153, DOI 10.1504/IJCSE.

2020.107266

[33] Gabriel E, Venkatesan V, Shah S (2010) Towards

high performance cell segmentation in multispectral

fine needle aspiration cytology of thyroid lesions.

Computer Methods and Programs in Biomedicine

98(3):231–240, DOI http://dx.doi.org/10.1016/j.cmpb.

2009.07.008

[34] Salomon M, Heitz F, Perrin GR, Armspach JP (2005)

A massively parallel approach to deformable match-

ing of 3D medical images via stochastic differential

equations. Parallel Computing 31(1):45–71, DOI http:

//dx.doi.org/10.1016/j.parco.2004.12.003

[35] Daggett T, Greenshields I (1998) A cluster com-

puter system for the analysis and classification of

massively large biomedical image data. Computers

in Biology and Medicine 28(1):47–60, DOI 10.1016/

S0010-4825(97)00032-2

[36] Yeh JY, Fu J (2007) Parallel adaptive simulated an-

nealing for computer-aided measurement in func-

tional MRI analysis. Expert Systems with Applications

33(3):706–715, DOI http://dx.doi.org/10.1016/j.eswa.

2006.06.018

[37] Zhuge Y, Cao Y, Udupa JK, Miller RW (2011) Parallel

fuzzy connected image segmentation on GPU. Medical

Physics 38(7):4365–4371, DOI 10.1118/1.3599725

[38] Zhuge Y, Ciesielski KC, Udupa JK, Miller RW (2013)

GPU-based relative fuzzy connectedness image seg-

mentation. Medical Physics 40(1), DOI 10.1118/1.

4769418

[39] Lamas-Rodríguez J, Heras DB, Argüello F, Kain-

mueller D, Zachow S, Bóo M (2016) GPU-

accelerated level-set segmentation. Journal of Real-

Time Image Processing 12(1):15–29, DOI 10.1007/

s11554-013-0378-6

[40] Shi W, Li Y, Miao Y, Hu Y (2012) Research on the key

technology of image guided surgery. Przeglad Elek-

trotechniczny 88(3B):29–33

[41] Saran AN, Nar F, Saran M (2014) Vessel segmentation

in MRI using a variational image subtraction approach.

Journal of Electrical Engineering and Computer Sci-

ences 22(2):499–516, DOI 10.3906/elk-1206-18

[42] Weng TH, Chiu CC, Hsieh MY, Lu H, Li KC (2020)

Parallelisation of practical shared sampling alpha mat-

ting with openmp. International Journal of Computa-

tional Science and Engineering 21(1):105–115, DOI

10.1504/IJCSE.2020.105217

[43] Weng TH, Chen YS (2019) On parallelisation of image

dehazing with openmp. International Journal of Em-

bedded Systems 11(4):427–439, DOI https://dx.doi.

org/10.1504/IJES.2019.100859

[44] Prema S, Jehadeesan R (2013) Analysis of paralleliza-

tion techniques and tools. International Journal of In-

formation and Computation Technology 3(5):471–478

16 J. Comput. Sci. & Technol.

[45] Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E,

Gherman A, Button J, Nguyen J, Prados F, Sudre

CH, Cardoso MJ, Cawley N, Ciccarelli O, Wheeler-

Kingshott CA, Ourselin S, Catanese L, Deshpande

H, Maurel P, Commowick O, Barillot C, Tomas-

Fernandez X, Warfield SK, Vaidya S, Chunduru A,

Muthuganapathy R, Krishnamurthi G, Jesson A, Ar-

bel T, Maier O, Handels H, Iheme LO, Unay D,

Jain S, Sima DM, Smeets D, Ghafoorian M, Platel

B, Birenbaum A, Greenspan H, Bazin PL, Calabresi

PA, Crainiceanu CM, Ellingsen LM, Reich DS, Prince

JL, Pham DL (2017) Longitudinal multiple sclerosis

lesion segmentation: Resource and challenge. Neu-

roImage 148:77 – 102, DOI https://doi.org/10.1016/j.

neuroimage.2016.12.064

[46] Zou KH, Warfield SK, Bharatha A, Tempany CM,

Kaus MR, Haker SJ, Wells WM, Jolesz FA, Kikinis

R (2004) Statistical validation of image segmentation

quality based on a spatial overlap index. Academic Ra-

diology 11(2):178–189, DOI https://doi.org/10.1016/

S1076-6332(03)00671-8

[47] Shivhare SN, Kumar N (2022) A study on brain tumor

segmentation in noisy magnetic resonance images. In:

Gupta G, Wang L, Yadav A, Rana P, Wang Z (eds) Pro-

ceedings of Academia-Industry Consortium for Data

Science, Springer Singapore, Singapore, pp 153–166

