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Abstract 

 

Aquaculture fish production has increased in recent decades as an answer to the 

challenges of food security for an increasing world population, and as a way of reducing 

pressure on natural stocks. However, this increase resulted in the need to develop new 

techniques and technologies to improve production efficiency, contributing to the 

improvement of the quality of fish products, as well as to the reduction of production 

costs and the ecological footprint. Over the last decade, interest in precision fish farming 

and feed formulation has been growing, and a key aspect is the development of accurate 

mathematical models that support it. Thus, the main focus of this work was to develop 

different mathematical models to predict the growth and body composition of Nile tilapia 

(Oreochromis niloticus), in order to optimize feed formulations and rearing practices for 

this species, and validate them against independent data. Another objective was to 

extend this framework to other economically relevant species (e.g., gilthead seabream, 

European seabass, rainbow trout, Atlantic salmon, Senegalese sole and turbot) in order 

to better understand the similarity relationships between species. To achieve the stated 

goals, data on fish growth and body composition was collected from growth trials 

published in the scientific literature, and a structured approach to model development 

was undertaken, by comparing different model designs and calibration methods under 

objective measures of generalization capacity (e.g., cross-validation error), before 

calibrating and validating the final model. Comparison between species was achieved 

by re-calibrating the models developed for tilapia with data for other species, and 

evaluating changes in model parameters and predictions. The results of this work 

contribute to the development of Nile tilapia precision farming, through the development 

and validation of growth and body composition models. They also contribute to a better 

understanding of certain questions of scientific (e.g., plausibility of universal metabolic 

scaling, and of isometry in Nile tilapia) and technical nature (e.g., optimal error models 

and calibration methods) regarding the modelling of growth and body composition in Nile 

tilapia and other economically relevant species.  

In conclusion, this research contributes for advances in the field of aquaculture 

and fish nutrition by providing valuable tools for precision feed formulation and fish 

farming and by enhancing the understanding of growth and body composition modelling 

for various economically important species, paving the way for more efficient and 

environmentally responsible aquaculture practices in the future. 
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Resumo 

 

A produção de peixe em aquacultura tem aumentado nas últimas décadas como 

resposta aos desafios da segurança alimentar de uma população mundial crescente e 

como forma de reduzir a pressão sobre os stocks naturais. No entanto, este aumento 

resultou na necessidade de desenvolver novas técnicas e tecnologias para melhorar a 

eficiência da produção aquícola, melhorando a qualidade dos produtos e reduzindo os 

custos de produção e a pegada ecológica. Na última década, o interesse pela 

aquacultura de precisão tem vindo a crescer, sendo um aspeto fundamental o 

desenvolvimento de modelos matemáticos precisos. Assim, o foco principal deste 

trabalho foi desenvolver diferentes modelos matemáticos para prever o crescimento e a 

composição corporal da tilápia do Nilo (Oreochromis niloticus), para otimizar as 

formulações de rações e as práticas de cultivo para esta espécie, e validá-los contra 

dados independentes. Outro objetivo foi alargar esta metodologia a outras espécies 

economicamente relevantes (p. ex., dourada, robalo, truta arco-íris, salmão, linguado e 

pregado), para compreender melhor as relações de semelhança entre espécies. Para 

atingir os objetivos propostos, foram recolhidos dados sobre o crescimento e a 

composição corporal dos peixes publicados na literatura científica. Foi também seguida 

uma abordagem estruturada para o desenvolvimento de modelos, comparando 

diferentes conceções de modelos e métodos de calibração, através medidas objetivas 

de capacidade de generalização (p. ex., erro de validação cruzada), antes de calibrar e 

validar o modelo final. A comparação entre espécies foi feita através da recalibração dos 

modelos desenvolvidos para a tilápia, com dados de outras espécies, e da avaliação 

das alterações nos parâmetros e previsões do modelo. Os resultados deste trabalho 

contribuem para o desenvolvimento da aquacultura de precisão da tilápia do Nilo, 

através do desenvolvimento e validação de modelos de crescimento e composição 

corporal. Contribuem também para uma melhor compreensão de certas questões de 

natureza científica (p. ex., plausibilidade do expoente metabólico universal e da 

isometria na tilápia do Nilo) e técnica (p. ex., modelos de erro ótimos e métodos de 

calibração) relativas à modelação do crescimento e da composição corporal da tilápia 

do Nilo e de outras espécies economicamente relevantes.  

Em conclusão, esta investigação contribui para os avanços no domínio da 

aquacultura e nutrição de peixes, fornecendo ferramentas valiosas para a aquacultura 

de precisão e melhorando a compreensão da modelação do crescimento e da 

composição corporal de várias espécies economicamente importantes, abrindo caminho 

para práticas de aquacultura mais eficientes e ambientalmente mais responsáveis no 

futuro.  
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Chapter 1 - Introduction 

 

1.1. Current sustainability issues in aquaculture  

Sustainability is a term that refers to “the ability of human societies and natural 

ecosystems to meet the needs of the present without compromising the ability of future 

generations to meet their own needs”, according to the Brundtland definition (Brundtland, 

1987). It involves balancing economic, social, and environmental considerations to 

ensure that development is pursued in a way that is sustainable in the long term. In 

today's world, sustainability is more important than ever. The increase of world 

population and consequently human activities have put tremendous pressure on the 

natural world. Therefore, it is imperative to adopt adequate strategies in order to avoid 

environmental degradation, social and economic inequalities, and food and water 

scarcity. 

Fish consumption is growing with the increase of the world population. In fact, 

between 1961 and 2017, the global fish consumption increased at an average annual 

rate of 3.1%, outpacing the annual world population growth (1.6%) for the same period, 

as well as the growth in other animal protein food sectors (meat, dairy, milk, etc.)  

(FAO, 2020b). Within this period, the aquaculture sector has clearly emerged as an 

essential factor in reducing the pressure in fish wild stocks, while improving food security. 

Additionally, global fish production in 2020 reached 178 million tons, with aquaculture 

representing 49% of the total production (FAO, 2022). The growth and intensification of 

the aquaculture sector have created new sustainability challenges that call for efficient 

fish production with high nutritional value, while ensuring sector profitability 

 (Boyd et al., 2020). In this sense, different strategies are being used in the aquaculture 

sector to tackle sustainability challenges (Figure 1). 

In the last 30 years, the aquafeed industry has been dealing with a significant 

pressure to replace the traditional feed ingredients like fish meal and fish oil with 

alternative ingredients (e.g., plants, algae, insects, yeasts, bacteria, processed animal 

proteins) which offer a wide range of nutritional profiles (Boyd et al., 2020). Nowadays, 

significant efforts have been made to adopt sustainable fishing practices, so the main 

concern lies in the availability and high costs of fish-based ingredients. Consequently, 

these fish-based ingredients have found more extensive use in feeding small fish 

juveniles, where the evidence of their benefits is more pronounced (Jackson, 2006; 

Tacon & Metian, 2008; Turchini et al., 2009), while alternative ingredients have 

progressively displaced them from grow-out formulas. Nevertheless, there are many 

factors that define the formulation of a good feed: nutritional requirements of the species, 

feed production technology, feed ingredient source, their impact on physical properties 
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of the pellets, and chemical composition – all these factors must be considered. Thus, 

for fish feeds to meet both fish nutritional demands and cost-minimization criteria, 

commercial feed mills are increasingly adopting a “precision feed formulation”. This 

enables feed mills to cope with a variable and diverse range of commodity and 

specialized ingredients, that often display strong fluctuations in terms of availability and 

cost. Therefore, instead of static formulas with fixed ingredient proportions, the feed 

formulation adapts dynamically. It responds to specific purposes and market conditions, 

allowing for variable ingredient proportions within the nutritional specifications. The 

challenge is that this requires prior knowledge on the nutritional requirements of a 

species, to ensure a precise balance of nutrients in fish diets to meet the nutritional needs 

of the target species at different life stages. Thus, factors such as growth rate, health 

and environmental conditions must be considered. Furthermore, to ensure that the 

flexibility in formulation does not compromise the (nutritional) formulation targets, precise 

characterization of ingredients is essential. This involves not only considerations in terms 

of ingredients cost and carbon footprint, but also in terms of composition and digestibility, 

Overall, this is a big challenge for feed formulators, along with the difficulty of finding 

alternative ingredients as highly nutritious as fish meal or fish oil (Daniel, 2018; Hodar et 

al., 2020). Promising results have emerged from academic and industrial research in the 

last years, but much work remains to be done to increase the sustainability, reduce 

carbon footprint, improve circularity, reduce costs and increase scalability of alternative 

ingredients in the formulation of commercial diets (FAO, 2020a). 

Besides the need to find and use alternative ingredients, there are also pressures to 

increase production in cultivation systems while maintaining product quality, profitability 

and reducing environmental impacts. An efficient production system depends strongly 

on monitoring and prediction of several aspects that determine the success of fish 

production. In this context, within the last decade there has been a significant effort 

towards “precision fish farming” (PFF). PFF is a concept that aims to revolutionize 

aquaculture by applying control-engineering principles to fish production  

(Føre et al., 2018). To achieve this, PFF focuses on improving accuracy, precision and 

repeatability in farming operations while facilitating autonomous and continuous 

monitoring of fish biomass and behaviour (Føre et al., 2018). This means that data-driven 

management is done to improve the farmer's ability to monitor, control and document 

biological processes on fish farms, including monitoring environmental conditions and 

extracting insights from fish behaviour to inform operational decisions 

 (O’Donncha et al., 2021). The integration of modern information technology, such as 

artificial intelligence, also plays a crucial role in the advancement of PFF. 

 Yang et al. (2020) highlights that artificial intelligence is a key technology for developing 
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intelligent decision-making systems in aquaculture. It enables data-driven production 

and decision-making through the utilization of sensors, big data, the internet, and camera 

devices (Bownik & Wlodkowic, 2021; Hu et al., 2020; Wang et al., 2021;  

Zhou et al., 2018). For instance, sensors collect real-time data on environmental 

parameters, while models analyse this data to predict fish growth, feeding requirements 

and health. In turn, automation systems enable precise control of feeding and water 

quality based on the sensor and model outputs. This close integration allows for data-

driven decision-making, optimized resource utilization and reduced environmental 

impact, enhancing the profitability and long-term sustainability of aquaculture operations. 

In the 1990s, it was argued that promoting the production of omnivorous species 

instead of carnivorous species would enhance sustainability in aquaculture. This was 

because species like salmon required substantial amounts of protein, which, at that time, 

were largely supplemented through fish meal and fish oil, leading to overfishing and 

environmental degradation (Naylor et al., 2000). However, a significant progress has 

been made in fishery management and fish feed industry to address these concerns. 

Currently, fishmeal and fish oil are derived mostly from small pelagic fishes, which are 

among the most sustainable of all fisheries (Hilborn et al., 2022). Most fisheries in 

developed nations of the world are now managed by independently set quotas based on 

targeting a maximum sustainable yield (MSY) and operate within those quota systems 

(Glencross, 2023). Thus, a reduction in fishing pressure has been central to that success. 

Moreover, Glencross (2023) also stated that as of 2021 almost a third of all fishmeal and 

more than 50% of all fish oil are coming from food production by-products of fishery and 

aquaculture produce comprising a circular nutrient recovery and thus contributing to 

aquaculture sustainability. Over the past 20 years, research efforts have led to a 

significant decrease in the Feed Conversion Ratio (FCR), particularly for salmon, which 

has decreased from 1.54 to 1.27 (Glencross, 2023; Henriksson et al., 2021). Apart from 

improvements in FCRs, there has been a reduction in the utilization of fishmeal and fish 

oil in diet formulation, resulting in a decline in sustainability metrics like Life Cycle 

Assessment (LCA) (Glencross, 2023; Henriksson et al., 2021). Therefore, the 

composition of aquaculture diets has undergone significant changes (Kaushik & Troell, 

2010; Tacon et al., 2009; Tacon & Metian, 2015). For instance, feeds used for farmed 

Atlantic Salmon (Salmo salar) in Norway have seen a reduction in total fish protein 

inclusion from 65% in 1990 to under 15% in 2016, largely replaced by plant-based 

proteins, oils, and carbohydrates (Aas et al., 2019). Similarly, tilapia feeds decreased 

from approximately 30% fish protein in 1995 to nearly 6% in 2019 (Henriksson et al., 

2021). This shift in diet composition has led to some trophic levels being interpreted 

differently in the aquaculture sector, prompting authors to suggest that the designation 



 

 

4 

 

of trophic levels in aquaculture requires further examination to develop policy positions 

and best practice guidelines for improving aquaculture sustainability (Cottrell et al., 

2021). As a result of increased research and development efforts, production systems 

for carnivorous species have become more efficient, while omnivorous species, such as 

tilapia, have seen more modest performance gains due to limited research and 

development in breeding and feeding practices, as well as limited access to quality feed 

(FAO, 2019). However, tilapia is a fast-growing species that can be raised in small-scale 

operations, making it accessible to small-scale farmers, providing a source of income 

and contributing to food security. As a result, Nile tilapia is a valuable source of protein, 

particularly in developing countries where aquaculture is an important industry, providing 

socio-economic benefits to those communities (Tacon et al., 2009). 

In summary, the development of tools to improve precision of feed formulation and 

fish farming practices can be seen as essential steps for a sustainable aquaculture 

sector. This is particularly important for species such as Nile tilapia that, despite having 

high socio-economic relevance and low trophic level, are still often reared under 

suboptimal practices.  

 

 
Figure 1 – Diagram illustrating the different strategies that are used to tackle sustainability challenges in the 
aquaculture sector. 
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1.2. Tilapia aquaculture production 

Tilapia is a popular fish in many parts of the world, including Asia, Africa and Latin 

America, and is becoming increasingly popular also in North America and Europe. The 

expansion of aquaculture production of tilapia is evident in the relative growth rates of 

global per capita consumption in recent years (FAO, 2018). The aquaculture production 

of Nile tilapia Oreochromis niloticus between 2000 and 2020 has increased 350% 

 (FAO, 2022) and its global production is expected to reach 7.3 million tons in 2030 

 (FAO, 2020a). There are several reasons that justify the economic relevance and 

interest in Nile tilapia production. Firstly, tilapia is known for its rapid growth rate which 

allows it to reach market size in a relatively short period of time. Additionally, it is able to 

tolerate a wide range of environmental conditions - low oxygen levels, high temperatures 

and salinity - without suffering adverse effects (Burggren et al., 2019;  

Lawson & Anetekhai, 2011; Pandit & Nakamura, 2010; Watanabe et al., 1985). In 

addition, tilapias are resistant to disease and parasite outbreaks. Therefore, tilapia can 

be successfully farmed in a variety of environments and production systems  

(El-Sayed, 2006), which makes them an attractive choice for fish farmers. 

 

1.2.1. Current challenges in tilapia production 

Nile tilapia is one of the most important freshwater fish species globally, with high 

demand in both domestic and international markets. However, the production of Nile 

tilapia faces several challenges and constraints. One of the main challenges facing Nile 

tilapia production is the social-economic difficulties in Asiatic countries where most 

production is concentrated. Many farmers in developing countries face numerous 

challenges, including inadequate funding, poor infrastructure, and lack of access to 

modern technology (Antwi et al., 2017; Arifianto, 2022; Arumugam et al., 2023;  

Minapoli, 2022; Moyo & Rapatsa, 2021; Munguti et al., 2022; Singh, 2019;  

Toledo et al., 2008). These challenges lead to low productivity, high production costs, 

and low profitability, which limits the potential for expansion of Nile tilapia production. In 

2022, the rise in feed prices has become a major concern for farmers, as it is increasingly 

challenging to achieve cost-efficiency in production. This creates a significant challenge 

for farmers who must manage their costs while ensuring their product remains 

competitive in the market. Adding to this challenge is the issue of fluctuating prices in 

local markets, which can vary widely between regions (Arifianto, 2022). This can create 

significant disparities in profitability for farmers and limit their ability to expand their 

businesses. 
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Another major constraint of Nile tilapia production is the lack of education and 

technical knowledge among farmers. Most farmers in developing countries lack the 

necessary knowledge and skills to efficiently produce Nile tilapia. This lack of knowledge 

leads to poor management practices, which results in low-quality fish and high mortality 

rates. Furthermore, farmers lack access to information on market trends and the latest 

technologies, which limits their ability to make informed decisions regarding their 

production. In turn, those with access to knowledge and that use new technologies, still 

face challenges due to their dependence on traditional markets (Minapoli, 2022). The 

adoption of new technologies often requires significant additional costs, making it difficult 

to compete in the short term with farmers who do not use such innovations. Some 

farmers have started selling frozen fish (Eltholth et al., 2015; Minapoli, 2022;  

Ogello et al., 2022) as a strategy to overcome some of the challenges associated with 

the traditional market, such as the need to transport live fish long distances or maintain 

stock for extended periods. 

The availability and quality of fry are critical for the success of Nile tilapia farming 

and are strongly affected by diseases outbreaks and environmental issues (e.g., floods 

and upwellings in lakes can affect temperature, dissolved oxygen, salinity and water pH). 

Bacterial diseases such as infectious Aeromonas sp. and Streptococcus sp. can cause 

mass mortality and reduce survival rates to values as low as 30% (Amal & Zamri-Saad, 

2011; Mai-xin, 2010; Puneeth et al., 2022). Parasites and fungi may also affect fry during 

the hatchery and nursery stages (Akoll et al., 2012; Awosolu et al., 2018;  

Chauhan, 2014). Furthermore, Tilapia Lake Virus (TilV) has been emerging in tilapia 

production worldwide, affecting all live stages of tilapia, causing up to 90% mortality 

 (Aich et al., 2022; Jansen et al., 2019; Nicholson et al., 2020). The supply of high-quality 

fry is still limited, and too costly for many small-scale farmers, which limits their ability to 

expand their production. To overcome the diseases and environmental challenges, 

several tilapia strains have been selected in the last two decades. Overall, the efforts 

have been concentrated on the selection of more disease resistant  

(Adamek et al., 2022; Chen et al., 2022; Kayansamruaj et al., 2023; Zhu et al., 2021), 

with faster growth rates (Dos Santos et al., 2022; Herkenhoff et al., 2020;  

Trinh et al., 2021) and higher tolerance to environmental conditions  

(Qin et al., 2022; Setyawan et al., 2022; Washim et al., 2022). 

In order to overcome some of these challenges, it is important that tilapia farmers 

have wider access to technological tools for precision farming. In particular, 

mathematical models of Nile tilapia biology can be a valuable asset in this context, 

contributing to a better understanding, monitoring and prediction of relevant processes 

in tilapia farming and, thus, their optimization. 
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1.3. Mathematical models and their use in aquaculture  

A mathematical model is a simplified and formal representation of a complex 

process or system using mathematical equations or formulas. It aims to capture the 

essential characteristics and behaviour of a real system, enabling the analysis and 

understanding of its dynamics, prediction-making and problem-solving. By abstracting 

the system using mathematical terms, it is possible to study its properties, draw logical 

deductions, and even predict future behaviour. 

This capacity of mathematical models to encapsulate prior information about a 

process and predict future behaviour makes them key elements in the development and 

application of precision fish farming and feed formulation strategies. Thus, mathematical 

modelling should be seen as a powerful tool that can help farmers optimize production 

processes, improve productivity and ensure the sustainability of the industry and, in this 

sense, different types of models can be (and have been) developed and applied for 

different purposes in aquaculture. 

 

1.3.1. Types of models 

The pursuit of accurate prediction and understanding of complex systems has led to 

the development of many different types of models and modelling approaches. An 

important distinction that has to be made between model types relates to their time 

dependency, where we can consider static models and dynamic models. Static models 

do not consider time as a variable or factor and are thus appropriate to use when the 

process to be predicted is essentially static.  Conversely, in dynamic models, time is an 

explicit or implicit variable and can be used to simulate the behaviour of the system along 

time under different scenarios. However, under specific circumstances, such as when 

equilibrium or steady-state conditions can be assumed, it becomes feasible to treat a 

dynamic process as if it was static. In such cases, static models can be employed to 

represent the underlying dynamics of the process. Furthermore, it is often also possible 

to model a dynamic variable using a static model by using a prediction variable that works 

as a proxy of time (e.g., fish weight or fish length). Furthermore, dynamic models can be 

distinguished according to the time category: continuous or discrete. In continuous 

dynamic models, the models use differential equations to describe the changes in the 

system being studied over time (Cuenco, 1989). These models assume that the changes 

in the system occur continuously and smoothly over time, without any sudden jumps or 

changes. Discrete dynamic models, on the other hand, use difference equations to 

describe the changes in the system and assume those changes can occur in discrete 
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steps or intervals, with sudden jumps or changes between these intervals  

(Cuenco, 1989).  

There are several mathematical modelling approaches, with some of them being 

extremely simple and others more complex, depending on the level of understanding on 

which the models are based on (Dumas et al., 2010; Marion & Lawson, 1995). Empirical 

or phenomenological models usually are often simpler and merely seek to describe a 

relation between more than two variables, and not necessarily explain their underlying 

mechanisms (Dumas et al., 2010; Sun et al., 2016a). In aquaculture, it is common to use 

empirical models (e.g., relative/specific growth rate, feed conversion rate or thermal 

growth coefficient) as the underlying parameters are easily determined. The main 

advantage of using simple models is that they are easy to calibrate and require little 

information. Conversely, they often lack a clear biological interpretation and/or neglect 

fundamental properties of aquatic animals (e.g., variations in growth trajectory across life 

stages) (Cuenco, 1989; Ellner & Guckenheimer, 2006). Another problem is that they only 

work well under specific conditions (e.g., they assume that fish are being well fed; they 

only work in the context for which they have been calibrated) and are insensitive to 

important factors that affect the growth and composition of fish (e.g., protein content in 

the diet). Alternatively, mechanistic or explanatory models rely on a theory or hypothesis 

that explains the nature of the systems, hence being capable of both describing a 

particular set of data and explain why the observed relationships exist, at least in theory 

(Fishwick & Modjeski, 1991), but tend to be more complex and difficult to calibrate 

compared to empirical models. Mechanistic models provide insight into relevant factors 

and their relationships. They help to identify key factors to incorporate into a factorial 

design, thereby suggesting appropriate factor levels based on underlying mechanisms. 

Since they try to follow (as closely as possible) the mechanism that generates the data, 

it is expected that, when well calibrated, they generalize and extrapolate better (for 

unknown situations) compared to empirical models.  

Models can also be classified or distinguished based on the type of outcome they 

predict. In deterministic models, a set of equations is used to describe the expected 

behaviour of a system. These models are calibrated assuming that there is randomness 

in the outputs of the process being predicted, but this randomness (or noise) is simply 

considered a nuisance and not replicated in the outputs of the model. Furthermore, these 

models are relatively easy to interpret and can be used to test various hypotheses and 

scenarios. On the other hand, stochastic models not only assume that there is inherent 

variability in the system being studied, like deterministic models do, but also seek to 

incorporate this variability or uncertainty into the model outputs. However, stochastic 
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models are generally more complex and computationally intensive than deterministic 

models, and can also be more difficult to interpret. 

 

1.3.2. Modelling process 

The modelling process involves creating simplified representations of complex 

systems in order to better understand and predict their behaviour. However, modelling 

is not a simple task and involves a series of actions that require careful consideration 

and attention to detail (see Figure 2). Firstly, it is necessary to identify the problem or 

system to be modelled and the model’s goal. Then, an appropriate modelling approach 

and methodology should be selected, considering the specific context and requirements 

of the model. However, accuracy is not guaranteed without careful consideration of the 

following steps in the modelling process:  

I. Data collection  

The step of data collection is one of the most important steps in modelling. Models 

rely on data to accurately represent the behaviour of the system being studied, and the 

quality of the data used to develop the model directly affects the accuracy and reliability 

of its predictions (Budach et al., 2022; Klein & Rossin, 1999). Thus, the development of 

an optimal model depends on the quantity and quality of the collected data. However, 

collecting high-quality data can be a challenging task, and may involve the use of 

specialized equipment, such as water quality sensors or fish tracking devices, as well as 

skilled personnel to collect and analyse the data. As an alternative, or as a complement, 

collecting data from the scientific literature allows researchers to access a large amount 

of existing data from a variety of sources. Nevertheless, literature sources may use 

different units of measurement, sampling methods, or definitions of key variables, which 

can make it difficult to compare and integrate data from multiple sources. In addition, 

data may be incomplete or missing, or may have been collected using methods that are 

not well-documented, which can make it difficult to assess their reliability and validity. 

Moreover, it can be a time-consuming and resource-intensive process. 
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Figure 2 – Diagram displaying the different steps in the modelling process after identifying the problem or system to be modelled, the models’ goal and the appropriate 
modelling approach and methodology. 
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II. Data analysis 

After data collection, a careful analysis is imperative to evaluate data quality and detect 

any possible contaminants and outliers. In order to do that, data should be first analysed using 

a series of practices to summarize and describe the set of data in a simple way, such as: 

• Analysis of univariate descriptive statistics such as the mean (average), median, 

minimum, maximum and standard deviation. These statistics give a general 

overview of the central tendency, variability, and range of a dataset; 

• Univariate analysis of distributions, to identify any underlying patterns or trends in 

the data, as well as any variations from expected patterns by using histograms, 

boxplots and Q-Q plots. 

Furthermore, conducting an exploratory multivariate analysis of the data is crucial to 

detect outliers, gain insight into the behaviour of the data, understand the assumptions that 

can be made, and anticipate the expected outcomes of the predictors. One common technique 

for exploratory analysis is to analyse correlations between variables, which can be visualized 

using scatterplots and correlograms, or use tools like Principal Component Analysis (PCA), 

when handling higher-dimensional datasets. This allows for the assessment of whether pairs 

of variables are related and, if so, whether they tend to move in the same or opposite 

directions. 

III. Model design  

It is important to understand how the system to be modelled works in order to design 

reasonable models. However, sometimes the information available about a process is 

insufficient. In this case, the use of statistical tools to explore relationships between data (e.g., 

linear and non-linear regression models, classification and clustering tools) can be beneficial 

to explore relationships between data and derive insights from the available information. 

 In constructing models, the relationship between input variables and the output variable 

is a critical consideration (Cuenco, 1989). Many equations are available to define these 

relationships (see Table 1 for a non-exhaustive list of examples). Models can be constructed 

with different number of parameters (e.g., polynomial equations with different degrees), being 

the models more complex as the number of parameters increase. However, more complex 

models do not necessarily mean that they are more accurate. In fact, in some cases, it is 

preferable to use a simpler model (Katsikopoulos et al., 2018; Wenger & Olden, 2012). 

Following Occam's razor, which states that “the simplest explanation is most likely the right 

one", a model with as few variables and hypotheses as possible should be selected from 

among multiple appropriate and possible explanations for the same set of data (Sober, 1990). 

Incorporating additional parameters to capture more nuanced relationships between variables 
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can improve model accuracy and predictive power. However, it may also increase the risk of 

the model to perform exceedingly well on the training data, but then fail to generalize well to 

unseen or new data (i.e., model overfitting). This may occur when the model becomes too 

complex and captures not only the underlying patterns but also the noise or random 

fluctuations present in the training data. Thus, it is important to carefully consider model 

complexity and balance it against the amount and quality of available data. This can help avoid 

overfitting and ensure that the model is both accurate and generalizable to new data. By 

selecting an appropriate level of complexity, models can be constructed to effectively 

represent the relationship between input and output variables while maintaining interpretability 

and generalizability. 

 

Table 1 - Several univariate functions commonly used to model biological processes. y = dependent variable; x = 
independent variable; e = base of the natural logarithm; A, B, n > 0 = parameters of the equation (adapted from 

Cuenco, 1989). 

 Function Nº of parameters 

Linear 𝑦 = 𝐴𝑥 1 

Affine 𝑦 = 𝐴𝑥 + 𝐵 2 

Exponential 𝑦 = 𝐴𝑒𝑛𝑥 2 

Power function 𝑦 = 𝐴𝑥𝑛 2 

Exponential saturation 𝑦 = 𝐴(1 −  𝑒−𝑛𝑥) 2 

Modified power function 𝑦 = 𝐴𝑥𝑛 + 𝐵 3 

 

 

IV. Model calibration  

Calibrating a model is a process of finding the optimal set of parameters, based on given 

datasets (i.e., observations and corresponding input sets), in order to minimize a measure of 

prediction error. The objective is to maximize the model's ability to accurately predict outputs 

for any valid input by minimizing prediction errors on the calibration data. It is important to note 

that the determination of the "optimal" parameter set, as well as the method employed to 

identify it, typically rely on the specific measure of "prediction error" being utilized. 

The assumptions that are made to adjust the model to the calibration data are other 

important factors to consider in model calibration. Assumptions are the simplifying conditions 

or constraints imposed on the model to make it tractable or representative of the real-world 

system, and thus can vary depending on the specific modelling context and goals. For 

example, to calibrate models, the equation normally used is one of the following, depending 

on the different assumptions: 
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𝑦 = 𝑓(𝑥, 𝛽) +  𝜀𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒   (1) 

𝑦 = 𝑓(𝑥, 𝛽)  ×  𝜀𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒   (2) 

where y are measurements, f (x,β) is the linear or nonlinear functional, 𝑥 is the vector of known 

inputs, β is the vector of unknown parameters to be estimated, εadditive the additive error and 

εmultiplicative is the multiplicative error. In equation (1), it is assumed that the error is additive, 

meaning that the size of the error will not change with the size of the measurements (e.g., the 

measurements of fish with 10 g or 100 g of body weight are going to display errors of 1 g). On 

the other hand, in equation (2) there is the assumption that the error is multiplicative, meaning 

that the error size is going to change with the sizes of measurements (e.g., the measurements 

of fish with 10 g of body weight are going to have errors of 1 g, while fish with 100 g of body 

weight will have 10 g) (Figure 3). Essentially, the first equation assumes that the size of errors 

is constant on an absolute scale, while the second assumes that the size of errors is constant 

on a relative scale. Therefore, determining whether the error is additive or multiplicative is 

critical to accurately parameterize the model and evaluate its performance (Gaganis, 2009). 

Failing to account for the correct type of error can lead to biased estimates of the model 

parameters and inaccurate predictions.  Moreover, different assumptions can lead to different 

calibration processes because they determine the nature of the relationships to be captured 

and the parameters to be estimated. The calibration process will involve techniques specific 

to the model assumptions, such as least squares estimation, maximum likelihood estimation, 

or Bayesian inference. 

 

 

 

 

 

 

 

 

 

 

Figure 3 - True measurements vs. predicted measurements in the presence of additive error (a.) and multiplicative 
error (b.), when plotted on an absolute scale (adapted from Wu et al. (2019)). 
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The most important and straightforward way of evaluating model calibrations is to use 

quantitative metrics that are either positively (in the case of “goodness-of-fit” metrics) or 

negatively correlated (in the case of “error” metrics) with reasonable measures of prediction 

quality. The ideal quantitative metric depends on the specific modelling objectives, the nature 

of the data being modelled and the noise model assumed, so it is common for people to 

simultaneously consider more than one metric when evaluating models and calibrations. 

Some examples of the most common metrics are: 

 

a. The R-squared measure of goodness-of-fit   

The R-squared is the proportion of the variance in the dependent variable that is 

predicted from the independent variable(s). It provides information on how well the 

observed results are replicated by the model, though it is highly sensitive to outliers 

(Gaganis, 2009; Smith et al., 1996). Values of R2 lie between 0 and 1, with higher values 

indicating better goodness-of-fit. The formula can be expressed as: 

𝑅2 = 1 − 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
, 

𝑅2 = 1 − [
∑ (ŷ𝑖 −  𝑦𝑖)2

𝑖

∑ (𝑦𝑖 −  ȳ)2
𝑖

] 

where ŷi is the predicted value, yi is the observed value and ȳ is the arithmetic mean of y 

(Ellis, 1972). 

 

b. Root Mean Square Error (RMSE)  

This metric expresses the standard deviation of the residuals (prediction errors) and 

it reveals how closely the data is clustered around the line of best fit. While this metric is 

also sensitive to outliers, it is particularly useful for measuring additive errors. It is also an 

effective criterion for assessing the accuracy of a model, with a lower value indicating 

higher accuracy, being 0 the lower limit (Kim & Kim, 2016). The formula is expressed as: 

𝑅𝑀𝑆𝐸(𝑔) =  √ 
Σ𝑖=1 

𝑛 (ŷ𝑖 −  𝑦𝑖)2

𝑛
 

where, ŷi is the predicted value, yi is the observed value and n the number of data points. 

In normal (least squares) linear regression, this is the error that is explicitly minimized. 
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c. Mean absolute error (MAE) 

The MAE provides an average assessment of the absolute errors between 

predictions and observations, and it offers insight into the bias and variance of the model 

predictions. Like the RMSE, it is appropriate for gauging additive errors, while being less 

susceptible to outliers. The MAE is calculated as: 

𝑀𝐴𝐸 =  
∑ |ŷ𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛
 

where, ŷi is the predicted value, yi is the observed value and n the number of data 

points (Willmott & Matsuura, 2005). This is the error measure that is explicitly minimized 

when applying least absolute deviation regression methods. 

d. Mean absolute percentage error (MAPE) 

The MAPE is the mean or average of the absolute percentage errors of predictions 

and is commonly employed as an indicator of a model's prediction accuracy. This 

measure is advantageous because it is scale-independent and provides errors in terms 

of percentages, which are simple to comprehend (Swamidass, 2000). Additionally, since 

absolute percentage errors are used, the issue of positive and negative errors cancelling 

each other out is avoided (Swamidass, 2000). This metric is less sensitive to outliers and 

is well-suited for evaluating multiplicative errors. A lower MAPE score indicates greater 

accuracy. This metric is calculated as: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 Σ𝑖=1 

𝑛 |
𝑦𝑖 − ŷ𝑖

𝑦𝑖
| × 100 

where, ŷi is the predicted value, yi is the observed value and n the number of data 

points. 

e. The coefficient of residual mass (CRM) 

The CRM provides information about bias: the tendency of the model to 

underestimate (CRM>0) or to overestimate (CRM<0), with the optimum = 0 

 (Bonfante et al., 2010; Smith et al., 1996). This is a scale-independent metric and 

sensitive to outliers. The equation is expressed as: 

𝐶𝑅𝑀 =  
(Σ𝑖=1 

𝑛 𝑦𝑖 −  Σ𝑖=1 
𝑛  ŷ𝑖)

Σ𝑖=1 
𝑛 𝑦𝑖

 

where, ŷi is the predicted value, yi is the observed value and n the number of data 

points (Bonfante et al., 2010; Smith et al., 1996). 
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Different error metrics and assumed error models generally lead to different calibration 

processes, as they define the optimization problem during calibration. Since the aim of the 

calibration is to minimise the chosen error metric, this optimisation process may require 

different algorithms or techniques, depending on the properties of the metric.  

In many cases, outliers in the data can have a significant impact on the model 

performance, leading to inaccurate predictions. Therefore, it is important to consider the 

presence of outliers and their effect on the model during the calibration process. One approach 

to dealing with outliers is to perform robust calibration, which aims to minimize the influence 

of outliers on the model parameters (Hodge & Austin, 2004; Pell, 2000;  

Rousseeuw & Hubert, 2011). One example of a robust calibration method is robust linear 

regression, which is a variation of linear regression that uses a different loss function to down 

weight the contribution of outliers (Sadouk et al., 2020). This approach is particularly useful 

when the data contains a few extreme values that can significantly affect the estimated 

regression coefficients. Another approach is to use mixed-effects models, which allow for the 

incorporation of both fixed and random effects (Fang, 2011; Pinheiro & Bates, 2000; 

Schielzeth et al., 2020). This can be useful when there is heterogeneity in the data, such as 

different experimental conditions or sampling locations, which can lead to different sources of 

variation. By accounting for this heterogeneity, mixed-effects models can produce more 

accurate predictions. 

 

V. Evaluation of models and calibration methods 

 This step involves testing the process of obtaining a calibrated model from a calibration 

dataset, which involves the combination of the model and a specific calibration method. The 

main objective is to verify that the process used to derive the final model, calibrated with all 

the calibration data and prepared for validation against independent data, results in models 

that demonstrate strong performance when evaluated with data that was not included in the 

calibration set. In other words, the objective is to ensure that the calibrated models exhibit low 

generalization errors (e.g., a measure of model accuracy when predicting future samples), 

indicating their ability to accurately predict outcomes beyond the data used for calibration. 

Simply using “calibration error” (e.g., a measure of model accuracy on previously seen 

samples) as a proxy is overly optimistic and can lead to the selection of excessively 

complicated models that generalize poorly. A good option to estimate the generalization error, 

when no independent validation data is available, is to use cross-validation errors. 

The principle of the cross-validation (CV) is to split the data in equal k folds to estimate 

the error of each algorithm. Consequently, a portion of the data is utilized to train each 

“combination of model + calibration method” (the training sample), while the remaining data is 
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used to gauge the algorithm's error (the validation sample). The algorithm with the lowest 

estimated error is then selected (Arlot & Celisse, 2010; Hastie et al., 2001). The optimal 

number of folds (k) utilized to split the data is dependent on the data's structure. However, 

when the goal is model selection for estimation purposes, a recommended range for k is 

between 5 and 10. This is due to the fact that statistical performance does not improve beyond 

a certain point with higher values of k (Arlot & Celisse, 2010). Moreover, as the k value 

decreases, less data is available for the algorithm to be calibrated (training) – e.g. in a  

10-fold CV, 90 % of the data is used as a training data set and 10 % is used for testing 

(validate) the algorithm; in a 5-fold CV, 80 % of data is used for training and 20 % is used to 

test; and in a 2-fold CV, 50 % of the data is used for calibration and 50 % to test the algorithm. 

There is also the Leave-one-out cross-validation (LOOCV) method. In this case, the k is equal 

to the number of the data set (k = n), so this method uses every data point to train the algorithm 

except one, using the left-out point for testing the algorithm (with this process being then 

applied for every other point). The LOOCV is a deterministic method, so there is no need to 

repeat the process, whereas in k-fold CV it is advisable to repeat it ensuring a large number 

of data split combinations are covered. In addition, the LOOCV performs a low-error bias 

estimation and it is asymptotically optimal. Nevertheless, it suffers from a large variability in 

the prediction error, especially when there are outliers, and is computationally expensive 

 (Arlot & Celisse, 2010). Therefore, a cross-validation with k < n usually is the best approach 

to obtain an algorithm with a small error. However, it must be considered that cross-validation 

with lower k-values is more restrictive and therefore imposes great penalty on more complex 

models, compared to cross-validation with higher k-values, which are more flexible 

 (Hastie et al., 2001). 

When cross-validation is used, a relevant error metric (e.g., MAPE) can be calculated for 

each fold. Then, the average of the respective metric values across all folds is calculated. 

Thus, by using cross-validation, it is possible to obtain a more accurate estimate of the 

performance of the model calibration method as it is evaluated on multiple independent test 

sets, reducing the risk of overfitting.  

Besides quantitative criteria, it is also important to consider qualitative criteria during 

model evaluation. The qualitative analysis provides relevant information about the data  

(e.g., differences, trends, types of error and distribution patterns of the simulated and observed 

values), highlighting the qualities of model structure (Smith et al., 1996). These methods 

usually comprehend the residual analysis and refer to visual evaluation of plots, like normal 

Q-Q plots, residuals vs. fitted, scale-location or Cook’s distance plots. Basically, it involves 

examining the differences between the predicted values from a model and the actual observed 

values, which are known as residuals. These residuals represent the errors in the model and 

provide insights into how well the model is performing. Furthermore, it allows to check the 
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assumptions of the model (Andel, 1997; Verran & Ferketich, 1987). For example, Figure 4 

illustrates an example of models with different assumptions calibrated with the same data 

predicting the water component of fish. Despite differences in their behaviour, the models 

perform as expected (e.g., water composition approaching zero as body weight also 

approaches zero) and they fit the provided data adequately. Residual plots can reveal patterns 

in the data that the model did not capture, such as heteroscedasticity or nonlinearity, which 

can suggest that the model may need to be refined or a different approach may be required 

to improve the accuracy of the model and the reliability of its predictions. Moreover, it assists 

in determining whether the model is overfitting (i.e., model is too complex and captures noise 

in the data, which leads to poor performance on new data) or underfitting (i.e., model is too 

simple and fails to capture important patterns in the data). Therefore, it is a powerful tool for 

understanding the strengths and weaknesses of a model. 

In summary, when selecting a model type and calibration method, it is important to 

consider objective criteria (e.g., cross-validation), particularly given that multiple models may 

perform well in adapting to the available data and exhibit low calibration errors, yet their 

predictions may still be inaccurate when presented with independent data. Therefore, it is 

essential to assess both qualitative and quantitative indicators to measure the models' 

accuracy and reliability. By doing so, one can identify the most appropriate model that not only 

fits the available data, but also has good generalization capabilities, which is crucial for making 

reliable predictions. 

 

 

 

 

 

 

 

 

 

 

Figure 4 - Scatter plot illustrating the behaviour of different types of models when trying to fit body 
composition data. Herein models were developed with different assumptions in order to predict the 
absolute amount of water (in grams) in function of the fish body weight. All models were calibrated with 
the same dataset and seem to fit well the data, but present different behaviours, particularly when 
extrapolated. 
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Thus, overall, the process of obtaining a calibrated model needs to be evaluated against 

various criteria to select the best combination of "model + calibration," including: 

 

• Quantitative  

- Low empirical (i.e., training/calibration set) errors: these errors refer to the model's 

ability to predict well with the data it has seen during the training phase. A good 

model should be able to capture the important patterns in the training data and 

accurately predict the response variable. 

- Low generalization (i.e., independent/validation set) errors: these errors refer to 

the model's ability to predict well with data it has not seen during the training phase 

(e.g., estimated using k-fold CV). A good model should be able to capture not only 

the important patterns in the training data, but also provide accurate predictions of 

the response variable for unseen data. 

• Qualitative  

- Residual dependence: the residuals should reflect a non-pathological fit, meaning 

that they should not display any systematic patterns or trends. If residuals exhibit 

systematic patterns or trends, this suggests that the model has not captured all 

the relevant information in the data and may need further refinement. 

- Residual distribution: the residual distribution should be consistent with assumed 

error distribution (e.g., normality, constant variance). If the residuals' distribution is 

not consistent with the assumed error distribution, this may suggest that the 

model's assumptions are incorrect or that there are outliers in the data that need 

to be addressed.  

 

VI. Validation/testing of calibrated models 

Once the evaluation of various combinations of "model + calibration method" has been 

conducted, and the appropriate method(s) have been selected based on cross-validation 

results, these chosen combinations are applied to the entire calibration dataset to generate 

the final models. However, for a thorough validation of these models, it is crucial to assess 

their performance against truly independent data (i.e., data that was not involved at any 

previous stage of the modelling process), both quantitatively and qualitatively. This evaluation 

is essential to obtain an accurate estimate of the model's ability to predict unseen data. By 

assessing the models against this independent dataset, we can gain valuable insights into 

their predictive capabilities and understand how well they generalize to new and unobserved 

data. Until here, several changes can be done in the modelling process (e.g., collect more 
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data to calibrate the models, try different models or calibration methods). However, after 

performing the validation step, no changes in the model calibration processes should be done 

based on those results, or else the choice of the optimal models is no longer guaranteed to 

be unbiased, since the used data is no longer independent from the model construction 

process. 

The evaluation of the models is done based on the methodology described in the previous 

step (e.g., calculation of metrics and residual analysis), and at the end of this step, if all prior 

steps have been executed accurately, a final list of calibrated models with unbiased estimates 

of their generalization errors is obtained. This provides an objective foundation for selecting 

the prediction model to use and informs the user on the expected magnitude of future 

prediction errors when using the model. 

 

1.3.3. Models used in aquaculture 

In a general sense, mathematical models can be (and have been) used with different 

purposes within the aquaculture sector. These include models focused on the biology of 

marine organisms, which can be used (e.g.) to estimate and predict fish growth (Bar et al., 

2008; Conceição et al., 1998; Hua et al., 2010; Kuebutornye et al., 2020; Machiels & Henken, 

1986; Oviedo-Rondón et al., 2014; Santos et al., 2019; Soares et al., 2023; Strand, 2005), 

energetic and nutritional requirements (Bavčević et al., 2020; Cho & Bureau, 1995; Hartman 

& Brandt, 1995; Lupatsch, 2003; Lupatsch et al., 1998, 2003, 2010; Nobre et al., 2019), body 

composition (Breck, 2014; Chowdhury et al., 2013; Chowdhury & Bureau, 2009;  

Dumas et al., 2010; Shizari, 2020), feed intake (Sun et al., 2016b), metabolic kinetics 

(Rønnestad & Conceição, 2012), waste outputs (Cho & Bureau, 1998; Chowdhury et al., 2013; 

Lupatsch & Kissil, 1998; Nobre et al., 2019; Wik et al., 2009; Yulisa et al., 2023) or 

susceptibility to diseases (Alaliyat & Yndestad, 2015; Ferreira et al., 2021;  

Mikkelsen et al., 2009; Salama & Rabe, 2013; Thrush et al., 2011), as well as many other 

types of models focused on other important aspects of aquaculture, such as (e.g.) the use of 

spatial models to estimate environmental variables within cages (Alver et al., 2022), or the use 

of geospatial models for optimal cage placement (Koniyo & Kasim, 2017; Zeichen et al., 2022). 

Many of these processes are complex, interdependent, and influenced by a variety of factors, 

including genetics, environmental conditions, feed intake, and water quality, making them 

challenging to represent using simple mathematical models. 

In the context of precision feed formulation and fish farming, understanding how fish 

assimilate energy and nutrients from the feed to grow is essential, and mathematical models 

provide a useful formalization of this knowledge. In specific, mathematical models of fish 

growth and body composition are straightforward tools that enable aquaculture managers to 
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manage production parameters, such as feeding rates, feed type and stocking density, such 

that growth and nutrient utilization is maximized, while mortality rates and feed conversion 

rates are minimized. Additionally, they offer an objective and practical way to describe growth 

patterns, being a useful tool to estimate the time needed to reach a certain target weight 

 (e.g., market weight) (Bureau et al., 2000; Mansano et al., 2017). 

 

1.3.4. Current challenges in modelling 

Mathematical models have become an indispensable tool in the aquaculture sector, as 

they enable predictions on how various factors impact the efficiency of fish production. 

However, in many published studies, authors do not clearly explain the criteria that drove their 

choice of models. Often, no details are provided on the calibration methods used, so there is 

no way to understand how the process of adjustment of the model parameters was done. 

Moreover, it is common to find scientific articles in which authors only rely on goodness-of-fit 

or error metrics that are evaluated on the data used for calibration when selecting a model. 

However, this approach may not provide a clear understanding of the model's generalization 

capabilities. Therefore, there is a need for standardization and clear reporting of methods in 

fish modelling research to facilitate comparability and reproducibility. Overall, it is important to 

test different combinations of models and calibration methods in order to explore different 

assumptions. Moreover, the use of both qualitative and quantitative model evaluation methods 

– rather than just relying on one or two goodness-of-fit measures – and their combination with 

cross-validation methods (or other validation method), is essential to obtain robust and 

predictive models which can generalize to unseen samples. In addition, the documentation of 

the whole process is equally important so that information can be easily shared and 

understood by the interested parties. 

Another important problem related to most mathematical models used in the aquaculture 

sector is that they are often very simple and lack the ability to predict the effect of nutritional 

factors on fish growth and composition. Thus, there is a need to assist the industry in 

transitioning from simpler models to more advanced models. This is because advanced 

models have the ability to predict not only fish growth, but also fish body composition, feed 

requirements and production waste, under different (and varying) contexts. Thus, advanced 

models can help reduce production costs and minimize waste. Nevertheless, it is necessary 

to develop these mathematical models based on biological, biochemical, and statistical 

principles in order to ensure high-quality and robust predictions. 

Ultimately, the interconnection between the body composition and growth of fish poses a 

challenge in modelling them accurately. Therefore, to develop high-quality growth models for 

tilapia it is important to have a prior comprehensive understanding and predictive capability of 
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body composition. This knowledge not only facilitates the development of mathematical 

models to estimate feed requirements and waste production, but also ensures the accuracy 

and reliability of the overall growth modelling process. 

 

 

1.4. Prediction of fish body composition 

 

1.4.1. Fish body composition 

The whole-body composition of fish is usually referred to as proximate composition and it 

comprehends the components of moisture, crude protein, crude lipid (ether extract), crude 

fibre, crude ash (minerals) and nitrogen-free extracts (NFE) (Greenfield & Southgate, 2003). 

The word “crude” is often used before some terms (e.g., protein) to emphasize that it is a 

determination of a group of closely related substances together (Hart & Fisher, 1971)  

(Table 2). The proximal composition is usually expressed as a percentage of the original 

weight of the sample, though in some cases it is given as a percentage of the dry weight. 

Generally, in routine analysis, moisture, crude protein, crude lipid and crude ash, are 

determined through chemical procedures and then the NFE is calculated by subtracting the 

sum of these percentages from 100%. It can also be referred as the “carbohydrates by 

difference", or "total carbohydrates" (Hart & Fisher, 1971). Although present in the body 

composition of fish, carbohydrates are often neglected due to their small quantity and, 

therefore, usually ignored in chemical analysis (Aitken et al., 2001; Breck, 2014;  

Brett & Groves, 1979). The body composition in fish results from the uptake and utilization of 

nutrients from the diet. Proteins, lipids and other nutrients are broken down into their basic 

components during digestion and absorbed into the intestine and further transported to the 

bloodstream (Bakke et al., 2010; Webster & Lim, 2002). These components are then 

transported to the different tissues and organs of the fish, where they are utilized for energy 

production, growth, and maintenance. 
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Table 2 - Target substances and other substances that can be present when the different whole body proximate 
composition groups are analysed. 

Proximate 
composition 

Target substances Other substances 

Moisture Water Volatile substances 

Crude ash Minerals  Organic residue 

Crude lipid (ether 
extract) 

Triacylglycerides, phospholipids, 
fatty acids, steroids  

Liposoluble vitamins, 
waxes, lipoproteins, 
carotenoids 

Crude protein Proteins, peptides, amino acids Non-protein compounds 
(e.g., nucleotides, 
vitamins, polyamines or 
other kind of amines) 

 

Nutrients in excess are often stored as fat, which can be further mobilized as an energy source 

when needed. The body composition of fish can be affected by multiple factors – such as, 

species, genotype, environment, diet – during their life cycle, with consequences for many 

biological functions of fish (e.g., appetite, reproduction) (Breck, 2014). 

 

Direct methods for body composition assessment 

There are distinct methods for measuring the chemical composition of food products, 

including fish, which involve analytical methodologies standardized by the Association of 

Analytical Chemists (AOAC, 2005). The most commonly used analytical methods for 

measuring the components of fish body composition are described below. 

 

Moisture/water content 

Water content is usually measured by oven-drying samples at 105 ºC and then calculating 

the loss of mass after total evaporation of water, which is until constant weight is achieved 

(Aitken et al., 2001; Aurand et al., 1987): 

 

𝑊𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%𝑊𝑊) =  
𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑟𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡

𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡
 × 100 
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Minerals/ash 

Minerals are the inorganic components of fish, often called ash because of the method of 

measuring them. To estimate this fraction, dry samples are weighted and then, organic 

compounds are either decomposed or released under high temperatures (500 – 600 °C); the 

remaining residue is then weighted (Aurand et al., 1987). The amount of ash (crude ash) is 

then estimated as the remaining mass after incineration of the organic matter (Aitken et al., 

2001): 

 

𝐶𝑟𝑢𝑑𝑒 𝑎𝑠ℎ (%𝑊𝑊) =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑠ℎ

𝑤𝑒𝑖𝑔ℎ𝑡  𝑠𝑎𝑚𝑝𝑙𝑒
× 100 

 

Crude lipid 

The most common methods to assess crude lipid from a sample is through an organic 

solvent extraction. The solvent is added to a dry, ground sample to dissolve the fats and all 

liposoluble substances, and then evaporated, leaving a mass that is weighted to calculate the 

percentage of crude lipid (Aitken et al., 2001; Aurand et al., 1987; Hart & Fisher, 1971): 

 

𝐶𝑟𝑢𝑑𝑒 𝑓𝑎𝑡 (%𝑊𝑊) =  
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑎𝑡 𝑒𝑥𝑡𝑟𝑎𝑐𝑡

𝑤𝑒𝑖𝑔ℎ𝑡  𝑠𝑎𝑚𝑝𝑙𝑒
× 100 

 

 

Crude lipid in fish is usually determined by gravimetric methods, such as (Bligh & Dyer, 

1959) and Soxhlet (Aitken et al., 2001; Aurand et al., 1987). In these methods lipophilic 

substances are extracted with nonpolar and polar organic solvents to eliminate the bonds 

between sample matrix and lipids (Srigley & Mossoba, 2017). Bligh & Dyer (1959) 

recommended to use chloroform and methanol to obtain an organic phase and then the 

solvent is evaporated to obtain the fat content. In Soxhlet, ether and hexanes are used in 

multiple extraction cycles in a specialized glassware setup (Srigley & Mossoba, 2017). 

 

Crude protein 

Crude protein content is generally assessed by determining the percentage of nitrogen 

(as NH3) and assuming that this nitrogen was released from protein during digestion (Aurand 

et al., 1987; Mariotti et al., 2008). The nitrogen content of many proteins is about 16 %, so the 

crude protein in a certain fish sample is conventionally estimated by multiplying the determined 

nitrogen content by a nitrogen-to-protein conversion factor of 6.25 (Aitken et al., 2001; Aurand 

et al., 1987; Hart & Fisher, 1971). One standard method for determining nitrogen is the 

Kjeldahl procedure. The nitrogen content in fish can be calculated by: 
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𝑁(%) =  
0.7(𝑉1 − 𝑉0)

𝑀
 

 

where V1 is the mean volume in millilitres (mL) of 0.1 M hydrochloric acid required to 

neutralize or react with the nitrogenous compounds present in the fish sample, V0 is the mean 

volume in millilitres (mL) 0.1 M hydrochloric acid required for blank (control sample that 

contains no nitrogenous compounds) and M is the actual weight of the sample being analysed 

in grams (Aitken et al., 2001). Nowadays, the Dumas method (nitrogen combustion) i is also 

widely used to assess the crude protein content. During the sample combustion, nitrogen is 

released and quantified by gas chromatography (Nielsen, 2014). 

 

Estimation of body composition by indirect non-invasive methods 

Mathematical models that relate body composition to measurable variables such as 

body weight, length, condition factor, conductivity or impedance (Copeland et al., 1999;  

Cox & Hartman, 2005; Eyduran et al., 2010; Hanson et al., 2011; Muchlisin et al., 2017;  

Naeem & Salam, 2010) are increasingly used due to their non-destructive nature, allowing 

repeated measurements over time, and avoiding analysis costs. These methods can 

comprehend two main approaches: methods that rely on specific instrumentation, and models 

that rely on easily and trivially measured variables. Both approaches have their unique 

characteristics and serve different purposes. Methods that involve specific instruments, such 

as TOBEC (total body electrical conductivity) (Barziza & Gatlin, 2001; Brown et al., 1993), 

 BIA (bioelectrical impedance analysis) (Duncan, 2008; Fitzhugh et al., 2010;  

Hartman et al., 2015; Pothoven et al., 2008), CT scans (computed tomography) 

 (Ceballos-Francisco et al., 2020; Ding et al., 2019) and DEXA (dual-energy x-ray 

absorptiometry) (Hussain et al., 2013; Johnson et al., 2017; Ndiaye et al., 2020; Wood, 2004), 

offer advanced and accurate determination of fish body composition. Some of these 

techniques provide detailed information about tissue types, organ sizes and body shape, 

allowing for precise estimation of different components of body composition. However, these 

methods can be costly and require expertise. 

On the other hand, models that rely on easily and trivially measured variables  

(e.g., weight, length) are the most economical indirect non-invasive methods for estimating 

fish body composition. In fact, it is crucial to have models based on trivial measurements as 

baseline references. These baseline models require minimal data inputs and provide a 

benchmark for evaluating the performance of more complex techniques. Thus, any indirect 

methodology that utilizes instrumentation should be rigorously evaluated against these 

baseline models to ensure its reliability and effectiveness in fish body composition estimation. 
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Usually, empirical models, which are based on the analysis of data from large numbers of fish 

of different species, sizes and conditions, are used for this purpose. These models use 

regression analysis to relate body composition to variables such as body weight and length 

(Breck, 2014; Chowdhury et al., 2013; Chowdhury & Bureau, 2009;  

de Castro Silva et al., 2015; Dumas et al., 2010; Furuya et al., 2014; Shizari, 2020). 

Furthermore, these models enable the extraction of more information from the data (e.g., 

farmers can use their production data to estimate environmental impacts) which may 

contribute for important decisions in aquaculture management. 

 

 

1.4.2. Fish body composition models 

The relationship between body weight and body components is usually described either 

with isometric and/or allometric models (Dumas et al., 2010): 

 

𝐼𝑠𝑜𝑚𝑒𝑡𝑟𝑖𝑐                 𝑦 = 𝑎 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 

 

𝐴𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑖𝑐                 𝑦 = 𝑎 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡𝑏 

 

where a is the scaling factor and b is the BW exponent of the model. The values of a and b 

are estimated using statistical techniques such as regression analysis, and determine the 

scaling relationship between body weight and the specific body component (y). The isometric 

model assumes that the proportion between body weight and a specific body component (y) 

remains constant regardless of the size or weight of the fish. On the other hand, the allometric 

model assumes that the proportion between body weight and body components changes as 

the fish grows in size. Furthermore, it allows examination of how the proportion of a body 

component changes with increasing fish size, as it recognises that different body components 

can grow at different rates relative to body weight. 

Implicitly, in body composition models, the absolute amount of each component is 

assumed to follow either a linear relationship (isometric models) or a power law relationship 

(allometric models) with body weight. However, the different body components of fish can also 

be predicted using different models. Breck (2014), for instance, used a linear regression to 

obtain equations to predict protein and ash from water, in several freshwater species. Then, 

the fish’ water mass was used to predict protein, ash and lipids by subtracting the previous 

components from wet weight. This is a good concept to develop a model that only requires 

water composition and body weight of fish.  
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The modelling of fish body composition is typically approached from a static perspective, 

providing a simplified representation of the relationship between body components and body 

weight. This provides an understanding of the general patterns and proportions of the different 

body components at a given time, which can serve as a starting point for further research. It 

can also be refined or complemented with dynamic models that consider changes in body 

composition over time. 

 

 

1.4.3. Challenges in predicting the body composition of fish 

Predicting the body composition of fish poses several challenges due to the complexity 

and dynamic nature of fish physiology. One of the main challenges is the inter- and intra-

species variability, where different fish species and individual fish within a species exhibit 

variation in their body composition.  

There are also several challenges associated with data collection that can contribute to 

difficulties in predicting fish body composition. One major challenge is the lack of uniform 

language and reporting among authors. For example, some authors may refer to "whole-body" 

composition but actually use the carcass (i.e., fish without internal organs) in their chemical 

analysis. Additionally, some authors report values on a dry weight basis, others on a wet 

weight basis. Also, some body components are measured indirectly by difference, which in 

some cases contributes to dubious data quality. Some of these issues are easy to identify than 

others, but they all can contribute to prediction errors if not detected early in the analysis. 

Another challenge in predicting the body composition of fish lies in the lack of 

standardized methods to predict fish body composition. In the scientific literature, different 

methodologies have been used to predict the body composition of fish. Comparing and 

reconciling data obtained from different methods becomes difficult, hindering the 

establishment of consistent models. Additionally, many methods have some inherent 

problems being either poorly described or lacking explanation about the model’s choice. For 

instance, (Breck, 2014), who developed a model to estimate fish body composition that only 

requires water composition and body weight of fish, compared the predicted to the observed 

values of lipids, by linear regression relying only on a F-test, RMSD and R2 to evaluate the 

obtained models. However, information about the calibration methods was not provided, nor 

a cross-validation or an independent validation was performed. In turn, both TOBEC and BIA 

are methods that require calibration using data specific to the fish species being studied. 

These methods present some limitations when used in fish. For instance, with BIA, the 

accuracy of the method can be affected by factors such as fish size, shape and fish body 

orientation, as well as water conductivity and temperature (Ducan, 2008; Hartman et al., 2011; 
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Pothoven et al., 2008; Vue et al., 2015). TOBEC in turn, can be less accurate for species with 

a more irregular body shape and less accurate on measuring protein content  

(Robin et al., 2002). Image-based methods also present some challenges for predicting fish 

body composition. The CT scan is not only expensive but also involves exposure to 

 X-radiation. Moreover, such equipment is not suitable for field use. Regarding the use of 

DEXA in fish, there are still few studies conducted, and there appears to be an underestimation 

of fat due to bias in the quantification of the ratio of water/fat-free tissues (hydration) 

 (Johnson et al., 2017; Lovett et al., 2019; Ndiaye et al., 2020; Wood, 2004). 

Model assumptions can also present some challenges when predicting fish body 

composition. Models often rely on assumptions, such as linear relationships between body 

weight and body components or constant growth patterns. However, these assumptions may 

not hold true for all species or under different environmental conditions, potentially introducing 

inaccuracies in predictions. Moreover, authors often fail to provide explicit information 

regarding the calibration methods and other inherent processes involved in modelling. This 

lack of transparency makes it challenging to understand the specific assumptions that were 

considered during the development and calibration of the model. 

Regarding Nile tilapia (Oreochromis niloticus), there are contradictory opinions 

concerning the type of model that should be used when predicting body composition. Some 

authors defend the use of isometric models (de Castro Silva et al., 2015; Hanley, 1991), while 

others use different models for different components (Chowdhury et al., 2013;  

Chowdhury & Bureau, 2009; Shizari, 2020; Van Trung et al., 2011). Chowdhury et al. (2013) 

tested isometric and allometric models on Nile tilapia body composition and reported that the 

allometric equations may be better suited to predict the lipid content of fish with body weight 

below 5 g, though the isometric models had better predictions overall. But no explanation was 

given to support this statement. In addition, the authors mentioned that an independent data 

set was used to validate the model, but no information was provided on the method used, 

whilst only residuals sum squares (RSS) and the R2 were used to choose the models. 

Overall, it is common to come across various body composition models for a given 

species, and some of these models may even use different types of models applied to different 

body components. However, the reasoning behind these choices is often unclear or not well 

explained. Moreover, it is common to encounter situations where different authors use varying 

methods to calculate the same parameters, making it challenging to compare and integrate 

results. For instance, some authors may use length-based models, while others use weight-

based models to estimate fish body composition. Such discrepancies can lead to confusion, 

inconsistencies, and difficulties in interpreting the data. Furthermore, all studies mentioned 

above that used the isometric model shared something in common: they all (presumably) 

tested the isometric model calibrated under the assumption of additive constant-variance 
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errors. In fact, it is the most straightforward choice. However, it is imperative to understand if 

one’s data displays additive or multiplicative error through the residual analyses.  

 

1.5. Prediction of fish growth 

 

1.5.1. Fish growth  

On a basic level, fish growth can be defined as an increase in body weight and length that 

occurs due to the accumulation of tissues such as muscle, bone and fat (Bureau et al., 2000). 

In simple terms, the growth of fish relies on the food they eat, and whether their nutritional 

needs are met, which in turn will also determine their body composition. In an aquaculture 

production context, fish seldom have access to natural food, so nutrients (e.g., protein, fat, 

minerals) for growth are usually supplied through formulated feeds. An important aspect to 

consider is that macronutrients in fish feeds do not get directly assimilated into fish tissues: 

they must first be digested into simple molecules, absorbed, transported and often 

transformed, before being accumulated in the fish body. All these processes, and many other 

processes involved in the maintenance of life, require additional costs in terms of nutrients 

and energy. Thus, since energy is obtained through the oxidation of nutrients, this implies that 

the supply of nutrients in feeds must cover not only their use as building blocks for tissue 

growth, but also their use as energetic fuel for both growth-related and maintenance-related 

metabolism. Furthermore, there are nutrients and energy losses during the growth and 

physiological processes, which will determine the nutrient and energy retention. Thus, the 

determining factor in growth lies in the balance of retained nutrients, specifically protein, and 

energy after the metabolic needs of maintenance and other physiological processes have 

been met (Lupatsch et al., 1998). Maintenance costs cover a range of energy expenditures 

necessary for basic survival, including activities such as swimming and maintaining body 

temperature, and are influenced by body size and temperature (Figure 5). In summary, the 

nutritional and energetic requirements of a certain fish species are generally estimated based 

on the assumption that the total requirement can be obtained by summing the requirements 

for maintenance and growth (Booth et al., 2010). 

Thus, to formulate appropriate feeds, it is important to understand the nutritional and 

energetic requirements of fish: what nutrients and in which quantities should be present in a 

fish feed such that they are supplied with enough building blocks and fuel to support both their 

maintenance as well as their growth? This is a challenging question to address since the 

amount of energy and nutrients required for fish to growth and maintain their biomass change 

throughout their lifespan, as do cell structure responses and functions (Mansano et al., 2017). 

Thus, and given that fish growth is directly associated with changes in the amount of water, 
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protein, lipids and minerals retained in fish body, achieving a better understanding of nutritional 

requirements, feed formulation and optimal feed practices depends on a solid knowledge on 

both the dynamics of fish growth and the composition of the accumulated biomass. In practice, 

the processes of growth and nutrient retention in fish are highly complex, being affected by a 

wide range of factors (Figure 6). These factors can be intrinsic (e.g., fish species, fish 

strain/genetic factors, fish size, swimming activity, maturity, metabolic/energetic status) or 

extrinsic, which can be subdivided in abiotic (e.g., temperature, dissolved oxygen, 

photoperiod, pH, ammonia, nitrite, salinity) and biotic (e.g., diets, feeding rate and frequency) 

(Bureau et al., 2000; Cuenco, 1989; Dumas et al., 2010; From & Rasmussen, 2017;  

Mansano et al., 2017; Sun et al., 2016a). Furthermore, intrinsic and extrinsic factors can 

interact in various ways, which further constitutes a challenge when studying fish growth and 

nutrient retention. 

In general, it has been reported that fish can drive their energy needs mostly from lipids 

when fed high-fat diets and thus spare protein to be used primarily to growth (i.e., protein-

sparing effect) (Orire & Sadiku, 2011; Vergara et al., 1996). However, to achieve the protein-

sparing effect, fish need to be fed a well-formulated diet that meets the nutritional requirements 

of the target species. In the specific case of Nile tilapia, its primary energy sources are, like 

for many other species, lipids, carbohydrates, and proteins. However, the omnivorous nature 

of tilapia allows for more efficient carbohydrate digestion compared to highly carnivorous fish 

species. This makes the replacement of lipid by non-protein energy more straightforward, 

without compromising growth performance and reducing the feed costs (Kabir et al., 2020; 

Maas et al., 2019, 2020; Peres et al., 2022). However, the amount of energy that this species 

is able to extract from different carbohydrates can vary, and their ability to digest certain types 

of carbohydrates may be limited (Anderson et al., 1984; Maas et al., 2020; NRC, 2011; 

 Shiau & Chen, 1993; Shiau & Lin, 1993).  
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Figure 5 – Diagram illustrating the relationships between growth, body composition, nutritional and energy 
requirements, as well as the influence of various nutritional and environmental factors. The full circles represent 
the effects that different factors (green for fish size, light green for feed aspects and orange for temperature) can 
have on the respective processes, while the full squares denote the influence of certain processes (pink for growth 
and light blue for body composition) on others. Arrows indicate the flow of outputs from one process to serve as 

inputs for others.  
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Figure 6 – Diagram illustrating the relationships among the processes of growth, body composition, and nutrient 
retention in fish, highlighting some of the various factors that may influence these processes. The factors marked 
in yellow indicate some of the most important ones, that are the main focus of this work. 

 

1.5.2. Fish growth models 

Since growth is a dynamic process, the use of dynamic mathematical models is essential 

for understanding the variation in the growth of animals as a function of time (age)  

(Mansano et al., 2017). These models can consider various environmental and physiological 

factors that can influence growth, such as temperature, feeding rates, genetic factors and 

disease. Depending on the model, these equations may be based on empirical observations, 

biological principles or a combination of both. They are often used to optimize feeding regimes 

and predict fish growth in different environments with the aim of accurately predicting growth 

patterns. By obtaining this information, it is then possible to adjust feeding schedules and other 

management practices to ensure that fish reach their target size in a time-efficient manner. 
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In terms of mathematical methods, simple fish growth models can often be solved by 

analytical integration of ordinary differential equations (Jones et al., 2009). However, complex 

models often require the use of numerical methods to solve the system of equations that 

describe the growth and energy balance of the fish (Dumas et al., 2010; Teleken et al., 2017). 

In both cases (simple and complex growth models) equations must refer to measurable traits 

of the fish or its environment (Cuenco, 1989).  

 

Simple growth models 

In the aquaculture sector, the most commonly used simple fish growth models are the 

Specific Growth Rate (SGR), the Thermal-unit Growth Coefficient (TGC), and the feed 

conversion rate (FCR) models. These models are considered simple models, since they are 

more empirical and based on simple relationships between growth and environmental or 

physiological variables and tend to assume that these relationships are constant over time.  

 

Specific Growth Rate (SGR) 

The SGR model is the simple model that is most often used to describe growth as a 

function of time. This model assumes that growth rate is proportional to the current weight. 

Therefore, growth can be expressed as a relative increase in body weight per unit of time and 

the following differential form is used: 

 

𝑑𝑊

𝑑𝑡
= 𝑆𝐺𝑅 × 𝑊 

 

dW/dt is the rate of change in weight (i.e., growth rate) with respect to time (i.e., the 

growth rate) and SGR is a constant that represents the relative rate at which fish are growing. 

When integrated assuming constant SGR, the following expression is obtained: 

 

𝑊𝑡 =  𝑊0 × 𝑒(𝑆𝐺𝑅 × 𝑡) 

 

where W0 is the initial weight, Wt is the final weight and t is time in days. The SGR parameter 

itself can be readily estimated from data, by using a rearranged version of the integrated form 

(Bureau et al., 2003): 

 

𝑆𝐺𝑅 =  
𝑙𝑜𝑔(𝑊𝑡) − 𝑙𝑜𝑔(𝑊0)

𝑡
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From the integrated form, we can see that the SGR model assumes indefinite exponential 

growth. However, it has been shown that this assumption is not entirely realistic, even at 

relatively short timescales. As a result, growth predictions based on the SGR model may need 

to be recalculated when the predicted growth curve deviates significantly from the observed 

growth trajectory (Brett, 1979; Dumas et al., 2010).  

 

Thermal-unit Growth Coefficient (TGC)  

Theoretically, the TGC model allows the use of growth data collected from fish of given 

size at one temperature to predict the growth of fish of a different size when held at other 

temperatures (Jobling, 2003). This makes the model more flexible than the SGR model. The 

application of this model in fish, specifically for salmonids, was initially conducted by 

 Iwama & Tautz, 1981 and it assumes the following differential form: 

𝑑𝑊

𝑑𝑡
= 𝜇 𝑇 𝑊𝑏 

where  (> 0) has units of g1-b (°C Day)-1, T is water temperature (°C) and the allometric 

exponent b (> 0) is dimensionless (Iwama & Tautz, 1981). When this expression is integrated 

assuming constant 𝜇 and 𝑇, the following expression is obtained: 

𝑊𝑡 = {𝑊0
1−𝑏 + [(1 − 𝑏) × 𝜇 × (𝑇 × 𝑡)]}

1
1−𝑏 

If, furthermore, a standard value of 2/3 is assumed for b and a “
𝑇𝐺𝐶

1000
= (1 − 𝑏) × 𝜇” 

substitution is performed, the following expression is obtained: 

𝑊𝑡 = {√𝑊0
3 + [(

𝑇𝐺𝐶

1000
) × (𝑇 × 𝑡)]}

3

 

where W0 is the initial weight, Wt is the final weight, T is the average temperature in °C 

and t is time in days (Jobling, 2003). Furthermore, the TGC parameter can be easily estimated 

from available data by utilizing a rearranged version of the integrated form (Jobling, 2003): 

 

𝑇𝐺𝐶 =  [
(√𝑊𝑡

3 −  √𝑊0
3 )

(𝑇 × 𝑡)
] × 1000 
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Feed conversion ratio (FCR)  

The FCR is a commonly used metric for measuring the efficiency of fish in converting 

consumed feed into body mass, and is obtained by dividing the total amount of feed given by 

the total weight gain during a specific period of time. A low FCR indicates that the fish are 

converting feed efficiently and growing quickly, while a high FCR indicates that the fish are not 

converting feed efficiently and may be experiencing slower growth rates. Whenever FCR is 

used as a metric, the growth rate is implicitly assumed to be independent of fish size or 

temperature, and simply proportional to feed rate: 

 

𝑑𝑊

𝑑𝑡
=

1

𝐹𝐶𝑅
 𝐹𝐼 

 

where FI represents feed intake in (e.g.) g/day. When integrated assuming a constant FCR, 

we obtain the following expression: 

 

𝑊𝑡 =  𝑊0 +
1

𝐹𝐶𝑅
 𝑐𝑢𝑚𝐹𝐼 

 

where cumFI represents the cumulative feed intake (e.g., in g) between “time = 0” and  

“time = t”. 

The FCR growth model is often used in practice as a prediction tool in fish farming. 

Nevertheless, factors such as water quality, stocking density, and temperature can also affect 

fish growth (Abdel-Tawwab et al., 2019; Azim et al., 2003; Gislason et al., 2010; Pauly, 1979; 

Viadero, 2004), which should be taken into consideration when using the FCR model as a 

prediction tool. The advantages of the FCR growth model is its simplicity, not requiring 

complex data and thus being very practical. However, this simplicity can also be seen as a 

disadvantage, since it does not consider feed properties, temperature or energy metabolism, 

which makes the FCR a model that provides limited predictive power. 

 

Complex growth models 

Complex growth models consider changes in the environment and other factors over time, 

and may be better suited for predicting growth under more complex and variable conditions. 

Bioenergetic and nutrient-based models are examples of complex growth models that are 

commonly used in aquaculture to estimate the growth and feeding requirements of fish 

species. These models are based on the principles of energy and nutrient balance:  
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Net balance = gain – losses 

 

Thus, mathematical equations are used to simulate the flow of energy and nutrients through 

the fish’s body over time (Dumas et al., 2010). 

 

Bioenergetic growth models 

Bioenergetic growth models generally relate growth to the accumulation of energy in fish 

body and are structured to ensure that the predictions comply with energy conservation: fish 

cannot retain more energy than their intake of energy (Kooijman & Kooijman, 2010). This 

implies that they are sensitive to important properties of the feed (e.g., digestible energy 

content), which makes them suitable for situations where simple growth models can be 

inadequate (e.g., simulating growth under time-varying energy intake levels). In a general 

sense, bioenergetic models start with an energy budget: 

𝐸𝑖𝑛𝑡𝑎𝑘𝑒 = 𝐸𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 𝐸𝑙𝑜𝑠𝑠𝑒𝑠 

and then use it to express energy retention as the difference between a “intake/gain” (or 

“anabolic”) term and a “loss” (or “catabolic”) term: 

𝐸𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝐸𝑖𝑛𝑡𝑎𝑘𝑒 − 𝐸𝑙𝑜𝑠𝑠𝑒𝑠 

𝑑𝐸

𝑑𝑡
= 𝐸𝑖𝑛𝑡𝑎𝑘𝑒 − 𝐸𝑙𝑜𝑠𝑠𝑒𝑠 

A growth model can then be obtained from this relationship by assuming a relationship 

between fish body energy (E) and fish body weight (W), and applying the chain rule: 

𝑑𝑊

𝑑𝑡
=

𝑑𝑊

𝑑𝐸

𝑑𝐸

𝑑𝑡
 

𝑑𝑊

𝑑𝑡
=

𝑑𝑊

𝑑𝐸
(𝐸𝑖𝑛𝑡𝑎𝑘𝑒 − 𝐸𝑙𝑜𝑠𝑠𝑒𝑠) 

If we assume an allometric model, then the relationship between energy and weight is 

 𝐸 = 𝑎 × 𝑊𝑏, which is the same as saying that 𝑊 = (
1

𝑎
)

1/𝑏
 × 𝐸1/𝑏. Thus: 

𝑑𝑊

𝑑𝐸
= (

1

𝑎
)

1/𝑏

× (1/𝑏) × 𝐸
1−𝑏

𝑏   

Under a simple isometric model, fish have a constant energy density (𝛿𝐸). In this case, 

the b parameter is 1, so the expression further simplifies to: 
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𝑑𝑊

𝑑𝐸
=

1

𝑎
=

1

𝛿𝐸
 

Thus, in this case, the resulting bioenergetic growth model would be: 

𝑑𝑊

𝑑𝑡
=

1

𝛿𝐸

(𝐸𝑖𝑛𝑡𝑎𝑘𝑒 − 𝐸𝑙𝑜𝑠𝑠𝑒𝑠) 

As we explore the mechanisms underlying fish growth, a critical component is 

understanding how energy flows through these organisms. Bioenergetic models can be used 

to predict not only fish growth, but also feed requirements and waste outputs 

 (Brigolin et al., 2010). Thus, they offer a sound basis for aquaculture models, since all major 

components are comprised: food consumption (frequently the most important cost item), 

excretion (excretion products pollute the environment and affect growth), respiration 

(dissolved oxygen is a major limiting factor) and growth itself (Cuenco, 1989). In this regard, 

bioenergetic models enable the description of energy partitioning from dietary sources for 

catabolism and anabolism processes, with a factorial approach (Bureau et al., 2003).  

Figure 7 shows the partitioning of dietary energy yielding components as a relatively simple 

way of looking at dietary component utilization by fish. Basically, it describes the partitioning 

of food energy into excretory energy (FE, UE and ZE), heat production/increment (HiE) and 

recovered/retained energy (RE) (Brett & Groves, 1979; Xie et al., 2011). The RE can therefore 

be calculated as: 

RE = IE − FE − (UE + ZE) − HiE  

where IE represents the 𝐸𝑖𝑛𝑡𝑎𝑘𝑒 component, while FE+(UE+ZE) +HiE represents the 

𝐸𝑙𝑜𝑠𝑠𝑒𝑠 component (Xie et al., 1997, 2011) 

. 

However, this type of model can be converted to a simpler equation, where the losses are 

subdivided into two components: intake-dependent losses (COG*DE) and intake-independent 

losses (FM) – the advantage of this approach is that it is simpler (i.e., has less parameters) 

and thus easier to calibrate: 

 

RE = (1 − COG) × DE − FM 

or 

RE = 𝑘𝑒 × DE − FM 

where COG represents the costs of growth – in this case the costs of energy deposition 

(Bureau et al., 2000; Conceição et al., 1998) – usually equated with the specific dynamic action 

(SDA), DE is the digestible energy, used for growing and maintenance, and FM the fasting 
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maintenance losses, which is usually assumed to depend on body weight and water 

temperature. A common expression for the fasting maintenance costs is: 

 

𝐹𝑀(𝐵𝑊, 𝑇) = 𝑎 × 𝐵𝑊𝑏 × 𝑒𝑐×𝑇 

 

where BW is the body weight, T is temperature and a, b (exponent that determines the 

variation in metabolic rate as a function of body weight) and c are estimated parameters. 

Furthermore, although the cost of growth (COG) in mammals has been shown to be 

constant (Kirkwood & Webster, 1984), with fish being aquatic animals in constant motion, it is 

difficult to perform experiments that are representative of reality. However, empirical models 

demonstrated that the COG (i.e., one minus the slope of the RE in function of ME or DE) was 

fairly constant and easy to predict (Bureau et al., 2000). Thus, the term COG represents the 

metabolic losses dependent on the level of digestible energy intake (DE) and can also be 

expressed as ke = 1 – COG (energy retention efficiency coefficient).  

In order to better understand the energetic costs and benefits of fish growth, reproduction 

and other physiological processes, models that describe the energy balance of these 

organisms have been developed. For example, static energy budget models (SEB), which 

uses a set of allometric functions to describe the relationship between rates of energy budget 

parameters in fish (e.g., food consumption, growth, and respiration) and fish size as modified 

by abiotic factors like temperature (van der Veer et al., 2009). In turn, the dynamic energy 

budget (DEB), aims to determine the quantitative aspects of metabolism explicitly based on 

the conservation of mass, isotopes, energy and time, including the inherent loss of energy 

associated with all processes (Kooijman & Kooijman, 2010; Nisbet et al., 2000, 2012; Sousa 

et al., 2010). In other terms, they focus on describing the rates at which the organism 

assimilates and utilizes energy and elemental matter from food for its maintenance, growth, 

reproduction and development in a dynamic environment (Nisbet et al., 2000, 2012).  
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Figure 7 – Diagram illustrating the partitioning of dietary energy yielding components. Adapted from  
Smith, (1980) and Bureau et al. (2003). 
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Nutrient-based models  

Nutrient-based models consist of mathematical descriptions of the relationships between 

nutrient deposition and weight gain that ensure the principle of conservation of mass 

 (Dumas et al., 2010). In contrast to bioenergetic models, which assume that growth is driven 

by energy intake and utilization (Phan et al., 2019), nutrient-based models focus on the role 

of specific nutrients in organism growth and development (Konnert et al., 2022ab). These 

models are more complex because they make distinction between different types of nutrients, 

beyond relying on a “total energy” budget. Furthermore, some of them consider the availability 

and utilization of nutrients, often relying on metabolic pathways of nutrients and their 

precursors, and representing energy in terms of ATP (Dam & Penning De Vries, 1995;  

Dumas et al., 2010; Hua et al., 2010). Thus, they generally consider the composition of diets 

in terms of macronutrients or even at the level of micronutrients (e.g., amino acids, fatty acids). 

These models, besides being used to predict growth, can be used to optimize fish feed 

formulations and feeding strategies, as well as to evaluate the environmental impacts of fish 

farming.  

Most nutrient-based models can be considered nutrient budget models, since they 

consider nutrient inputs, outputs and internal nutrient storage, following a mass balance 

(similar to the energy balance implicit in bioenergetic models). For example,  

(Dam & Penning De Vries, 1995) developed and calibrated a model to predict the growth and 

fat percentage of Oreochromis niloticus and Oncorhynchus mykiss under different feeding 

levels and feed compositions. The developed model considered as main state variables the 

amount of body protein and fat, which were driven by synthesis and oxidation processes. 

Therefore, the model accounted for factors such as, feeding rate, feed composition, 

digestibility of feed components, temperature and on the stoichiometry of the reaction 

equations of biosynthesis. In addition, it considered the amount of energy consumed through 

feeding, the energy expended in various physiological processes and the energy used for 

growth (i.e., description of the energy budget of the fish). The results showed that the model 

was able to accurately predict growth and fat content on both species. The work of  

Lupatsch (2003) was also of great importance and contributed significantly with critical findings 

regarding the protein and energy metabolism. In the work of Lupatsch (2003), a set of growth 

and metabolism experiments were performed which allowed the quantification of energy and 

protein fluxes as a function of body weight and feed intake, digestible feed intake (discounting 

faecal losses), fasting metabolism and retention. The study focused on determining the 

optimal energy and protein requirements of gilthead seabream (Sparus aurata) for efficient 

production. For this purpose, a factorial approach was used to determine the energy and 

protein requirements, by systematically varying the levels of dietary protein and lipids, while 
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keeping the other nutrients constant. The growth performance, feed intake and nutrient 

utilisation of the fish were measured to determine the optimum dietary energy and protein 

requirements. For this, once more, one of the approaches was to take into consideration the 

contribution of protein and energy from diets. In this case, the author quantified the energy 

and protein requirements according to the factorial model with the addition of a parameter for 

the efficiency of dietary energy and protein to deposit new body tissues as growth. The author 

has thus shown that the parameters derived from energy and protein demand can be used to 

develop models that dictate the required dietary composition, at least in terms of protein and 

energy, for fish at any stage of their life cycle. Additionally, by defining the maintenance and 

growth requirements of fish, an energy budget can be derived to quantify the energy fish need 

to consume to reach their growth potential, at any specific temperature, and part of their growth 

cycle (Lupatsch, 2003). Following this framework, Nobre et al. (2019) developed an energy 

and protein flux model (EP) to simulate fish production in commercial farms. This type of model 

considers not only the energy requirements of a species (as bioenergetic models do), but also 

its protein requirements and translate those into individual weight gain and proximate 

composition over time (Nobre et al., 2019). In these types of models, besides feed 

composition, the initial fish body weight, temperature, feed intake and feed digestibility are 

also considered. Moreover, the model avoids including the fish energy and nutrient function 

decoupled from body weight as suggested by (Canale & Breck, 2013). Thus, these types of 

models constitute a useful tool to simulate fish growth in a commercial farm, where field data 

is limited (Nobre et al., 2019).  

Another type of nutrient-based models are the metabolic flux models. These models try 

to replicate all the major metabolic pathways of the fish. Thus, these models consider the 

influence of the amino acid composition of the feed and may simulate the fundamental 

physiological and metabolic mechanisms of fish, such as amino acid oxidation and conversion, 

protein synthesis and degradation, glycolysis, gluconeogenesis, glycogenesis and 

glycogenolysis. For example, (Bar et al., 2007) developed a model that could predict growth, 

body composition, and first limiting amino acid for a variety of diets over time in Atlantic 

salmon. Such model provides a detailed description of the flow of nutrients and metabolites 

through major metabolic pathways in growing tissues as a function of time. Despite being an 

incomplete representation of nutrient metabolism in fish, the model demonstrated good 

predictive capability. Further on, Hua et al. (2010) adapted a non-ruminant model to describe 

the utilization of energy-yielding nutrients and metabolites for body protein deposition (Pd) and 

body lipid deposition (Ld) in fish whole-body. The model is based on rules that define how 

retained nutrients are partitioned between Pd and Ld, which are constrained by three key 

parameters: PdMax (the maximum daily rate of Pd), minLP (the minimum ratio of whole-body 

lipid to protein mass), and the maximum efficiency of using intake of the first limiting dietary 
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amino acids (AAs) for Pd. The authors, however, noted significant discrepancies between the 

model predictions and experimental observations. While the model accurately predicted 

energy retention, it did not always accurately predict growth rate, Pd, and Ld. The authors 

suggest that these discrepancies are likely due to differences in nutrient utilization and 

partitioning mechanisms between fish and non-ruminant animals. Although metabolic flux 

models may not always provide optimal predictions, they offer valuable insights into the 

process of fish growth and the underlying factors that influence it. 

 

1.5.3. Challenges in predicting the growth of fish 

The models most commonly used in the aquaculture sector are very simple and lack the 

ability to predict the effect of some environmental, nutritional and genetic factors on fish growth 

and composition. They often ignore feed properties, lack a clear biological interpretation and/or 

neglect fundamental properties of aquatic animals (e.g., variations in growth trajectory across 

life stages) (Dumas et al., 2010; Sun et al., 2016a). Additionally, they only work well when it is 

assumed that the fish are in optimal rearing conditions, and factors such as diet composition 

are not considered. For instance, the SGR model presents serious problems: it assumes that 

fish growth is exponential and unbounded, which can lead to gross overestimation of weight 

when data is extrapolated (Bureau et al., 2000; Dumas et al., 2010). Moreover, it does not 

consider the influence of environmental factors on fish growth, such as temperature, water 

quality and food availability, which can significantly impact fish growth rates. Therefore, it may 

not accurately represent long-term growth trajectories or capture growth patterns beyond the 

experimental or observational period. The TGC model on the other hand, incorporates 

temperature as a key factor in the growth equation, allowing for a more accurate 

representation of the temperature-growth relationship. However, the model works over 

assumptions, such as that growth increases in a steady and predictable way when 

temperature increase and that growth is proportional to temperature expressed in degrees 

Celsius (Jobling, 2003). As Jobling (2003) and Jobling et al. (1994) demonstrate, growth does 

not necessarily follow a steady increase with increasing temperature. Thus, a TGC calculated 

under certain temperature conditions does not necessarily lead to good growth predictions at 

other temperature ranges, even if covered by the growth curve’s temperature profile (see 

Jobling (2003) for more details). The FCR model, in turn, although it considers the feed intake 

of the fish, does not consider temperature, fish size and feed properties, which can often result 

in misleading predictions (particularly at very high or very low feed intake rates). 

While complex models seek to tackle some of the limitations previously described  

(by, e.g., explicitly considering feed properties as relevant factors), they may also present 

problems and limitations. One important aspect is that, given the relationships between 
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growth, requirements and maintenance costs, the development of complex growth models 

requires some levels of understanding about these processes and how they inter-relate. For 

instance, regarding bioenergetic models, (Canale & Breck, 2013) reported that, when 

conventional bioenergetic models are incorrectly applied to simulate fish growth or feed 

consumption, and it is assumed that the energy density of a fish is a function of its wet weight 

or a time-independent function, the fundamental principles of energy conservation are 

disregarded. Thus, the errors associated with bioenergetics models depend on how quickly 

the energy density of fish changes with size (Canale & Breck, 2013). Assuming a constant 

energy density for fish can avoid mathematical errors, but may not be suitable for most 

applications and can lead to significant biological inaccuracies. Additionally, bioenergetic 

models may oversimplify the complex physiological processes involved, potentially leading to 

inaccurate results. For example, they often rely on simplified assumptions about energy 

allocation, nutrient utilization, and metabolic processes, and thus do not fully capture the 

dynamic nature of fish physiological systems. DEB models, while not purely bioenergetic due 

to the fact that they additionally consider mass balances, do not distinguish different types of 

nutrients (e.g., lack of information on the chemical composition, such as, moisture, protein, 

lipid and ash of biomass gain) (Dumas et al., 2010; Kooijman & Kooijman, 2010), which limits 

their capacity to accurately predict the effect of essential nutrients on fish growth. Finally, 

nutrient-based models also have limitations that need to be considered. For instance, the 

parameterization of these models can be challenging due to the lack of accurate species-

specific data on nutrient requirements and utilization efficiencies. Moreover, as simplifications 

of reality, they may overlook important factors, such as minor essential nutrients or metabolic 

pathways, which can restrict the predictive capacity of these fish growth models. Moreover, 

the individual variability within fish populations, in addition to the complexity of nutrient-growth 

interactions, can also pose challenges in accurately representing these processes in models.  

Overall, simple fish growth models are still used as standard in the industry, while 

nutritional models are mainly used by the scientific community. There is a need to explore and 

develop models that are easy to use by fish farmers and still have the ability to predict fish 

growth and composition based on fundamental properties of fish metabolism.  Therefore, it is 

imperative for the scientific community to dedicate more effort to overcome some scientific 

(e.g., biological and individual fish variability) and technical (e.g., tools to easily apply and 

interpret the models) issues regarding the implementation of these models by the industry and 

thus bridge the gap between the two.   
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Objectives 

The work presented in this thesis aimed to advance the current state-of-the art in 

mathematical modelling and prediction of body composition and growth for economically 

relevant fish species, contributing to the improvement of efficiency and sustainability in 

aquaculture. To do so, the following main objectives were set: 

1) Develop a reference static body composition model for Nile tilapia using cross-

validation to choose the best combination of model and calibration method; 

 

2) Develop a reference dynamic growth and body composition model for Nile tilapia using 

cross-validation to choose the best combination of model and calibration method; 

 

3) Provide a robust validation of the reference models developed using independent 

datasets; 

 

4) Extend the developed framework to other commercially relevant fish species and use 

it to compare them in terms of model parameters, to evaluate possible differences in, 

e.g., growth potential, body composition, physiology and metabolism. 
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Abstract 

 

Mathematical models can be used as an alternative to conventional analytical methods 

(AOAC), allowing to indirectly estimate the body composition of fish without, in some cases, 

being necessary to sacrifice animals. To develop models with high predictive capacity, in 

addition of having access to representative data, it is important to use calibration methods that 

minimize the estimation of the generalization error.  

In this work, Nile tilapia whole-body composition data were collected from 138 scientific 

publications, covering fish from 0.01 g to 1470 g. Predictive models were obtained for each 

body component using different combinations of models and calibration methods. The 

different combinations were evaluated through cross-validation approaches in order to select 

the models with the best predictive capacity. Such models were compared against other 

published Nile tilapia body composition models, using an independent validation dataset.  

The results show that model predictions are greatly affected by the type of model, 

calibration method and amount of calibration data available. Models calibrated under the 

assumption of multiplicative error had better predictive capacity than those calibrated 

assuming additive error, which indicates that, in this particular case, performing regression on 

log-transformed data, even for isometric models, is advantageous. From the models tested, 

the ones with the best predictive capacity are the allometric model (al_mu; calibrated 

assuming multiplicative error) and a robust hybrid model (hyb_rob; ensemble of isometric and 

allometric models, calibrated assuming multiplicative error using a robust regression method), 

with both having good prediction capacity when compared with models published by other 

authors.  

Although the results obtained support the hypothesis that Nile tilapia body composition 

is essentially allometric, isometric models can also potentially be used without much 

performance loss, if they are calibrated assuming multiplicative error (i.e., using log-

transformed data).  

 

Keywords: Mathematical models, Body composition, Nile tilapia, Regression analysis, 

Prediction tools 
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1. Introduction 

 

Currently, there is pressure to sustainably increase fish farming production while 

keeping production profitability, good product quality, and fish welfare and environmental 

impacts within acceptable limits. An efficient and sustainable fish farming system depends 

strongly on informed management decisions, based on comprehensive monitoring of several 

indicators (e.g., environmental, economic, quality, welfare, health) that determine the state 

and success of production. In an aquaculture context, the measurement of body composition 

is important for the determination of mass balances which can be applied in the estimation of 

nutrient retention (or nutrient retention efficiencies), estimation of nutritional requirements 

and/or estimation of environmental impacts. Usually, the body composition of fish is 

determined using standard analytical methods (e.g., AOAC methods). On the other hand, 

mathematical models can also be used to estimate the body composition of fish and thus 

reduce the associated cost. Additionally, there is no need to use toxic chemicals, it is less time 

consuming and, in some cases, does not require euthanizing fish. Thus, body composition 

models can be useful tools to estimate body composition of fish in a low-cost way when it is 

otherwise logistically and/or economically unviable.  

The most common body composition models available in the scientific literature use 

linear regression analysis to predict the body composition of fish through the relationships 

between body weight (BW) and the main body composition components: water, crude protein, 

crude lipids and ash (Lupatsch et al., 2003; Dumas et al., 2007). The use of this specific 

method usually implies either an isometric relationship measured under additive error (if data 

is not transformed) or an allometric relationship measured under multiplicative error (if data is 

log-transformed). In the specific case of Nile tilapia (Oreochromis niloticus), there are several 

published models and it is interesting to note that some authors only use isometric models 

(Hanley, 1991; Chowdhury et al., 2013; de Castro Silva et al., 2015), while others use different 

models for different components (Chowdhury et al., 2013; Chowdhury & Bureau, 2009; 

Shizari, 2020; van Trung et al., 2011), with the justification associated with these choices being 

unclear, as well as the consequences in terms of predictive capacity. For instance, Chowdhury 

& Bureau (2009) report in their work an isometric relationship for water and crude protein, and 

an allometric relationship for crude lipids and ash, with respect to BW. There are other authors 

that also support an isometric relationship between BW and crude protein in Nile tilapia 

(Chowdhury et al., 2013; Chowdhury & Bureau, 2009; de Castro Silva et al., 2015;  

Hanley, 1991; van Trung et al., 2011). However, Chowdhury et al. (2013) findings suggest that 

the relationship between BW and crude lipids can be explained by isometry, and that the same 

is applicable for the relationship between BW and crude protein. The authors found, however, 

that lipid growth in tilapia below 5 g can also be described by allometry. Thus, overall, there is 
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no clear scientific consensus regarding the relationship between BW and body composition in 

Nile tilapia (and the best way to model it). This is compounded by the general lack of 

information regarding the methods of development, calibration and validation of the reported 

models: the criteria for choosing the type of model assumed and the method used to calibrate 

it are often subjective (e.g., based on visual evaluations), suboptimal (e.g., based on 

calibration error metrics/goodness-of-fit measures) or simply unreported, which hampers an 

objective evaluation of the relative merit of the competing underlying hypotheses  

(e.g., isometry vs. allometry). 

According to statistical learning theory, a model calibrated under a specific method is 

optimal if it minimizes the estimation of the generalization error (i.e., the expected error when 

predicting unseen data) or also called validation error. Thus, to objectively evaluate the 

adequateness of a particular model (or calibration method), it is essential not only to evaluate 

how well it fits the data used to calibrate it (i.e., calibration error), but also to estimate how well 

it performs against independent data (i.e., cross-validation error). In order to do that, the 

developing models are subjected to the standard method of cross-validation. In such 

approaches, data is split in k folds and part of the data is used to train each algorithm (the 

training sample), while the remaining part is used to estimate the error of the algorithm (the 

validation sample), with the process being repeated for different partitions  

(Arlot & Celisse, 2010; Hastie et al., 2001).  Although there other alternative (and potentially 

less computationally demanding) methods to compare models in regards to their generalization 

errors , such as the Akaike information criterion (AIC) (Akaike, 1973; Stone, 1977;  

Zhang & Yang, 2015), the Bayesian information criterion (BIC) (Schwarz, 1978;  

Findley, 1991), or the generalized cross-validation (GCV) (Craven and Wahba, 1978;  

Chaves et al., 2019), these methods generally rely on asymptotic approximations and do not 

display the same quasi-universality properties as CV methods do (see section 10.4 of  

Artlot & Celisse, 2010).  

In this work, we explore in detail different body composition models and calibration 

methods, using objective criteria based on cross-validation approaches, to determine the best 

combination of model and calibration method for Nile tilapia. 

 

2. Materials and methods  

2.1 Data collection 

Extensive research was carried out to collect Nile tilapia whole-body composition  

(i.e., water, crude protein, crude lipids and ash) and respective whole-body weight data from 

scientific literature sources. Since carbohydrates are present in the body composition of fish 

in small quantities (Brett & Groves, 1979; Breck, 2014), and usually unreported, they were left 
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out of this analysis. Overall, only studies in which the whole fish content (usually referred by 

authors as “whole-body” or “carcass” composition) was determined according to the standard 

analytical methods of the Association of Official Analytical Chemists (AOAC) were used. In 

addition, data in which the sum of components exceeded 102 % (sum of water, crude lipids, 

crude protein and ash) were assumed to be contaminated by measurement or reporting errors 

and therefore excluded from the analysis. Data expressed on a dry matter basis were 

converted into a wet weight basis, according to Shearer’s (1994) recommendation.  

 

2.2 Evaluation of models and calibration methods 

Several models were developed from simple (e.g., isometric models) to more complex 

(e.g., polynomial and ensemble averaging models), and calibrated based on different 

calibration methods (e.g., least squares vs. robust calibration; assumption of additive errors 

vs. multiplicative errors). To further make a fair comparison with Nile tilapia body composition 

models from other authors, we implemented similar models, such as mixed models that use 

isometric submodels to predict water and crude protein, and allometric submodels to predict 

crude lipids and ash (following the Chow_bureau model in Chowdhury & Bureau (2009)) 

(Table 1). In addition, we used an allometric model following the 95 % confidence interval 

(CI95%) to determine the intervals for body weight exponents. Therefore, 23 combinations of 

"model + calibration method" were developed models were developed and pre-analysed.  

However, only 6 of them were ultimately selected as being reliable enough for validation 

purposes (Table 1). 

Regression analysis was performed for each body component and models were tested 

with different calibration methods. The “model + calibration method” combinations were 

evaluated with qualitative (prediction and residual diagnostic plots) and quantitative methods, 

with several specific error metrics being considered, such as root mean square error (RMSE), 

as root mean square log error (RMLSE), mean absolute percentage error (MAPE) and 

coefficient of residual mass (CRM), described as follows: 

 

𝑅𝑀𝑆𝐸 =  √ 
Σ𝑖=1 

𝑛 (ŷ𝑖− 𝑦𝑖)2

𝑛
      (1) 

𝑅𝑀𝑆𝐿𝐸 =  √ 
Σ𝑖=1 

𝑛 (log (ŷ𝑖)− log (𝑦𝑖))2

𝑛
     (2) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 Σ𝑖=1 

𝑛 |
𝑦𝑖− ŷ𝑖

𝑦𝑖
| × 100      (3) 

𝐶𝑅𝑀 =  
(Σ𝑖=1 
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Σ𝑖=1 
𝑛 𝑦𝑖

      (4) 
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where, ŷi is the predicted value, yi is the observed value and n the number of data 

points. 

 

For an objective quantitative evaluation of the different combinations, in addition to 

calibration error metrics, focus was given on cross-validation errors obtained through different 

cross-validation methods (leave-one-out cross-validation (LOOCV), 100 repetitions k-fold 

cross-validation with k=10, k=5, k=2), to ensure that the chosen models display the best 

performance when predicting outside their calibration set. To determine the risk of overfitting, 

cross-validation was performed with different values of k in order to subject the combinations 

to different levels of "difficulty", since, as the value of k decreases, less data is available for 

the model to be calibrated. 

All analyses were performed using R version 4.1.2 (R Core Team, 2021), where the rlm 

function from the MASS package (Venables & Ripley, 2002) was used to calibrate the robust 

models. 

 

2.3 Validation of calibrated models 

The body composition models were validated using unpublished independent body 

composition data from a Nile tilapia (Oreochromis niloticus) growth trial. In this trial, fish of 

different initial body weights were fed ad libitum with a range of experimental diets (with crude 

protein content between 28 and 36 %, and gross energy content between 17.8 and  

19.8 MJ/kg), 2 times per day, for 141 days. The dataset consists of the measured whole-body 

composition of 29 fish with body weights ranging from 54 g to 454 g. Frozen whole-body 

samples were minced without thawing, using a meat grinder and moisture content was 

determined (105 °C for 24 h). Freeze-dried whole fish were finely milled and homogenised 

prior to further analysis. Samples were then analysed for ash content (550 °C for 6 h), crude 

protein (N x 6.25, Leco N analyser, Model FP-528, Leco Corporation, USA) and crude lipid 

(petroleum ether extraction, Soxtherm, Germany). 

The performance of models published by other authors (Chowdhury & Bureau, 2009; 

Chowdhury et al., 2013; Shizari, 2020) were also validated with the same independent dataset, 

in order to make a fair comparison against the models developed in this study (Table 2). 

 

3. Results 

3.1 Data analysis 

The data was collected from 138 sources (with 946 sets of measurements), covering 

fish with body weights ranging from 0.01 g to 1470 g. However, data referred to fish weighing 
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mostly < 500 g, with half of the data corresponding to fish between 14.5 g and 116.3 g  

(Figure A.1), with a median weight of 38.1 g. 

Nile tilapia’s body components seemed to be relatively constant when expressed in a 

relative basis (as a percentage of total body weight), displaying a median of 73.5 % for water, 

15.3 % for crude protein, 5.9 % for crude lipids, and 4.0 % for ash. However, it should be 

pointed out that components seemed to vary with body weight (Figure 1). Regarding the sum 

of components, most data summed up to below 100 % with a median of 99.4 %  

(IQR = 100.0 – 98.5 %). 

 

3.2 Evaluation of models and calibration methods 

In general, all the models seem to have fitted the data reasonably well and presented 

similar calibration errors (Figure 2). In a first analysis, based on the calculated metrics, 8 out 

of 23 models showed to have acceptable cross-validation errors (Table 2), with a mean 

absolute percentage error (MAPE) of the order of ≈ 4 % for water, ≈ 10 % for crude protein, ≈ 

45 % for crude lipids and ≈ 26 % for ash.  The calibration errors were slightly higher than the 

cross-validation errors across all CV methods, except for the 2-fold CV, in which the calibration 

errors were slightly lower than the cross-validation errors. Also, the relative order of models 

listed in Table 2, in terms of calibration and cross-validation errors, depended on the CV 

method used: CV with lower k (e.g., 2-fold CV) tend to privilege the simpler models  

(e.g., al_mu: allometric model calibrated under the assumption of multiplicative error), being 

the al_mu model the one with lower errors, whereas CV with higher k (e.g., LOOCV) seem to 

benefit the more complex models (e.g., lcub: cubic model in log-space calibrated under the 

assumption of multiplicative error; lcub_rob: the robust form of lcub) (Table 2). In a second 

analysis, the performance of the 8 models was evaluated. Therefore, although the lcub and 

the lcub_rob models displayed the lowest CV errors when using the LOOCV method, they 

seemingly had problems predicting the body composition of the fish with the lowest and 

highest body weights, with the sum of components for such extrapolations exceeding the total 

body weight by 2% (Figure A.2). This suggested that these models where overly complicated 

and at risk of overfitting the calibration data and/or providing unreasonable predictions. 

Therefore, the lcub and lcub_rob models were subsequently excluded from downstream 

validation.   

Overall, isometric models seem to have had higher calibration and cross-validation 

errors compared to allometric models. The errors were also higher when models were 

calibrated under the assumption of additive error rather than multiplicative error.  

Considering all quantitative (calibration and cross-validation metrics) and qualitative 

criteria (analysis of predictions, residuals and violation of constraints), 6 models from a list of 



 

 

68 

 

23 were chosen for downstream validation and comparison with other published models. 

Across all cross-validation methods (Table 3), 6 models (Table 4), the al_mu model (allometric 

model calibrated under the assumption of multiplicative error) displayed the best performance. 

Comparing the values predicted by these 6 models with the observed values (Figure 3), for 

the fish weight range where most data has been observed, most models did not diverge much 

from each other. The biggest differences were found for smaller and larger fish weights, where 

data were sparser, and as well for the water component, where there was greater 

disagreement between models. Furthermore, a clear qualitative difference between the 

woutwater_iso (isometric model) and the allometric models was seen.  Visual inspection of 

the observed data suggested trends with nonzero slopes, being particularly visible in terms of 

the amount of water and crude lipids in Figure 3, which give additional support to the 

hypothesis that Nile tilapia body composition does not follow an exactly isometric pattern. 

Regression analysis further supported this: the body weight exponents recovered by linear 

regression of log-transformed data were close to 1, but the exponent of value 1 were not within 

any of the calculated 95% confidence intervals (as shown in Table 5). 

The residuals in log-space of all models generally followed an approximately normal 

distribution with approximately constant variance. Further analysis demonstrated a negative 

correlation between the residuals of water and the residuals of crude protein and crude lipids. 

This is possibly related to laboratory errors during the determination of water content, which 

can affect the accurate determination of the other components (Breck, 2014).   

 

3.3 Validation of calibrated and published models 

Out of all tested models (6 best developed models, plus the other authors models), the 

hyb_rob and the al_mu models (developed in the current study) display the best performance: 

both models present validation errors that are either similar or lower than the calibration errors, 

with a validation MAPE of the order of ≈ 3 - 5 % for water, ≈ 5 - 9 % for crude protein, ≈ 40 % 

for crude lipids, and ≈ 20 % for ash (Table 6).  Model hyb_rob, which was the one with the 

best prediction capability, was able to predict well the validation data regarding all 

components, including lipid content. Model al_mu on the other hand, presented a bigger 

variation between the predicted and the observed lipid content, but good predictions for the 

rest of the components. Thus, overall, both models predict the validation data well (compared 

to other competing models), demonstrating their good capacity to predict the body composition 

of Nile tilapia (Figure 4 and 5).  

Though three of the models previously reported in the literature (namely, 

Chowdhury2013_mixed, Shizari2020_alo and Shizari2020_iso) display validation errors 

comparable to the best models developed in this study (hyb_rob and al_mu), some 
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shortcomings of these and other published models can be noted. They show relatively higher 

validation errors for crude lipids and ash (see Table 6), higher errors for crude lipids when 

tested against our calibration dataset (see Figure 6), and/or displayed predictions of the 

individual components which, when added together, are inconsistent with the fish body weight 

(see Figure B.1 for an example with the Chow_bureau model).  

Nevertheless, in general, all tested models show fair predictions for Nile tilapia body 

composition and display lower validation errors than calibration errors, suggesting that there 

is no model overfitting (Figure 6).  

Analysing the residuals of all tested prediction models, when predicting the validation 

dataset, a strong negative correlation is visible between the errors of water and crude lipids 

(see Figure 7 for an example with the hyb_rob and al_mu models). Thus, when the models 

underestimate one component, the other tends to be overestimated, and vice-versa, which 

suggests that these two components were affected by a common factor.  More detailed 

analysis confirms that this effect seems to be related to the nutritional state of fish (i.e., related 

to the different nutritional factors fish were subjected to): data related to fish subjected to high-

energy diets display higher-than-predicted crude lipid contents, while data related to fish 

subjected to restricted feeding conditions display lower-than-predicted crude lipid contents 

(Figure 8 – a. and b.). The opposite pattern can be seen for water content (Figure 8 – c. and 

d.).   

 

4. Discussion 

Cross-validation methods, which provide an estimate of the expected generalization 

error of several models and calibration methods, complemented with the application of other 

quantitative and qualitative analyses, allow to more objectively identify the best combination 

of “model + calibration method" to predict the body composition of Nile tilapia. This reduces 

reliance on subjective and arbitrary decisions about the structure of models and how best to 

calibrate them. Even so, it could be said that there is still some degree of subjectivity, since 

one can choose to apply different cross-validation methods to estimate the generalization error 

(e.g., different cross-validation approaches, along with alternatives such as AIC, BIC, GCV). 

Thus, this work sought to reduce this problem by considering different CV methods and 

evaluating whether there is an agreement among methods or not. In fact, through the use of 

CV methods with different k values, it was possible to see a certain general agreement: models 

that perform poorly according to one CV method also tend to perform poorly according to the 

others. Similarly, models that perform well with one CV method tend to perform at least 

reasonably when evaluated under other CV methods. However, this consensus was not exact 

since the different CV methods do not exactly agree on the order/ranking of the models 
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according to the calibration and validation errors. More restrictive methods (k-fold CV with low 

k) tend to give preference to simpler models (e.g., penalise complex models more) than the 

less restrictive methods (k-fold CV with high k or leave-one-out CV). This is mainly due to the 

fact that as the value of k decreases, less data is available for the algorithm to be calibrated 

(training), which increases the risk of miscalibration for more complex models. Therefore, the 

amount of data available to calibrate the model seems to affect the prediction capacity, with 

more complex models generally requiring larger amounts of data for effective calibration. 

Another important observation is that models calibrated under the assumption of 

multiplicative error seem to have a better predictive capacity than those in which error was 

assumed to be additive. This suggests that regression in "log-space" is not only convenient, 

but advisable, even for isometric models, as it helps to ensure that the assumptions of normal 

distribution of errors and homogeneity of variance are met. Though log-transformation of data 

does not automatically mean that the assumptions of homoscedasticity and normality of errors 

are met, the log-transformation of data does reduce heteroscedasticity and lead to better 

model calibrations in this particular case (regardless of whether an isometric or allometric 

model is assumed). Most of the published studies that have used the isometric model have 

something in common: they all (presumably) tested the isometric model calibrated under the 

assumption of additive constant-variance errors. In fact, it is the most obvious choice, as the 

majority of statistical methods assume additive error. However, it is imperative to evaluate 

(e.g., through residual analyses and cross-validation methods) whether such assumption is 

valid, as this affects the performance of models. Thus, it can be concluded that the use of 

complementary evaluation methods is useful, as it ensures that the selected combinations of 

“model + calibration method” perform well under different conditions, and also that the 

hypothesis of the presence of multiplicative error is more likely to be correct than that of 

additive error. 

Despite the usefulness of CV methods to compare the expected validation error of 

different combinations of "model + calibration method”, the validation error for the final 

selected combination, as well as the comparison with other published models, should always 

be made using a completely independent dataset (i.e., one that has not been used during the 

cross-validation process neither for the calibration of any of the tested models). In this work, 

a challenging validation dataset was used, corresponding to Nile tilapia of different sizes and 

subjected to different nutritional conditions, which allowed us to demonstrate the effectiveness 

of the model development and evaluation process. The results demonstrate the good capacity 

of the resulting models to generalize in novel contexts, since no overfitting of the models was 

apparent. In general, the models developed to predict Nile tilapia body composition presented 

lower validation errors than those previously reported in the scientific literature  

(i.e., Chowdhury & Bureau, 2009; Chowdhury et al., 2013; Shizari, 2020). This can be 
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explained by the use of a large calibration dataset, but also by the tools and methodologies 

that were used to iteratively develop, calibrate and evaluate the predictive capacity of the 

developed models. Since the hyb_rob and al_mu models display lower calibration and 

validation errors than other alternatives, we recommend their use to predict Nile tilapia body 

composition as a function of body weight.  

 Allometry has been used to describe the effect of body weight (BW) on the body 

composition of several animals, including fish. Though there seems to be a lack of consensus 

regarding the type of model that is optimal to describe the body composition of Nile tilapia, 

with some authors suggesting that an isometric model may be more appropriate than an 

allometric model, in the present work, most results are indicative of a generally allometric 

pattern when describing the body composition of Nile tilapia. In particular, visual inspection of 

the observed data, which suggests trends with nonzero slopes (particularly visible in terms of 

the relative amount of water and crude lipids), along with the good quantitative performance 

of the allometric models, gives support to the notion that the body composition of Nile tilapia 

does not follow an exactly isometric pattern. Furthermore, the estimation of 95% confidence 

intervals for the BW exponents presents intervals that do not include the value 1 for all 

components, causing the null hypothesis of isometry to be statistically rejected.  Considering 

the results obtained through the validation process, allometric models, like the hyb_rob and 

the al_mu, seem to have quantitatively better prediction capacity than isometric models. 

Moreover, models with greater flexibility than allometric models, such as the lcub and 

lcub_rob, while appearing to be quantitatively good in some cases (e.g., LOOCV), showed 

signs of overfitting in other cases (e.g., 2-fold CV). 

According to the results obtained, the relative amounts of water and crude lipids in Nile 

tilapia clearly depend on BW, which is consistent with reports from other studies  

(Salam & Davies, 1994; Lupatsch et al., 2001; Bureau et al., 2003; Dumas et al., 2010; van 

Trung et al., 2011; de Castro Silva et al., 2015). On the other, the relative amounts of crude 

protein and ash do not seem to depend as clearly on BW, unlike what Xie et al., (1997) 

reported for Nile tilapia. Moreover, in contrast to what Chowdhury & Bureau (2009) reported, 

in this study no isometric relationship was found for water with respect to BW. In fact, the 

model that was developed based on the logic described in Chowdhury & Bureau (2009) 

showed higher calibration and validation errors. Overall, it seems that some components are 

more correlated to BW than others. This is probably why the hybrid model in its robust form 

(hyb_rob), which provides estimates that are a compromise between an allometric and an 

isometric model using an outlier-resistant calibration method, presents better predictive 

capacity than the pure allometric model.  

Though the results of this study support the hypothesis that Nile tilapia body composition 

is essentially allometric, given that the BW exponents are effectively close to 1  
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(e.g., quasi-isometry), it may be justifiable to use isometric models, as well as intermediate 

models between a purely isometric and allometric model (e.g., hyb_rob model). It is particularly 

relevant to consider these types of approaches when few data are available to calibrate the 

models. 

Besides genetic and other intrinsic factors (like BW), the body composition of fish can 

also be affected by different environmental and dietary factors during their life cycle  

(Dumas et al., 2007, 2010; Shizari, 2020). This study provides evidence of such effects in the 

context of Nile tilapia body composition, since there was a direct relationship between 

prediction errors and the nutritional factors fish were subjected to. For example, crude lipids 

are consistently overestimated and water consistently underestimated for fish fed low-energy 

diets or subjected to restricted feeding conditions, while the opposite effect was observed for 

fish fed high-energy diets. The analysis of validation residuals demonstrates these patterns in 

all models developed in this study, as well as in models from other authors, which supports 

the hypothesis that nutrition has an important effect on Nile tilapia body composition. This 

may, at least in part, explain the generally higher prediction errors obtained across all models 

when trying to predict Nile tilapia body composition.  

This sensitivity of Nile tilapia body composition to nutritional factors and, in general, to 

their nutritional state, suggests that the developed Nile tilapia body composition models can 

be used as a reference to evaluate their nutritional state. By comparing measurements against 

a reference model, it may be possible to detect situations of nutritional deficiency  

(e.g., relatively low crude lipid and high water content) or excess (e.g., relatively high crude 

lipid and low water content).  

 

5. Conclusion  

The predictions of the Nile tilapia body composition models developed in this study were 

consistent with that of other published models. However, some models developed in this 

study, such as the hyb_rob (ensemble of isometric and allometric models, calibrated assuming 

multiplicative error using a robust regression method) and al_mu (allometric model calibrated 

under the assumption of multiplicative error), demonstrated better performance when tested 

against an independent dataset, compared to other published models. This highlights the 

importance of having a good and vast calibration dataset and of using cross-validation to 

evaluate model performance, prior to the validation step. This methodology also allowed us to 

conclude that Nile tilapia body composition follows a quasi-isometric allometric pattern, which 

means that both isometric and allometric models seem to provide reasonable predictions, as 

long as they are calibrated under the assumption of multiplicative error. This also suggests 

that when few data are available to calibrate models it may be preferable to use isometric 



 

 

73 

 

models, as well as ensemble of isometric and allometric models.  Furthermore, a relation 

between prediction errors and the nutritional factors was observed, which implies that the 

composition models can also be used as a reference to evaluate fish nutritional state and 

detect situations of nutritional deficiency. Therefore, mathematical models can be used both 

as a practical and low-cost tool to estimate the body composition and as reference models to 

assist in the interpretation of body composition data. 

Finally, this study shows the importance of testing body composition models and their 

assumptions, in order to ensure high predictive capacity. It also underlines the importance of 

making an evaluation of models based on objective criteria (e.g., combination of qualitative 

and quantitative criteria with cross-validation methods) which is a necessary strategy to help 

us answer both scientific questions (e.g., “which is more plausible: isometry or allometry?”) 

and technical questions (e.g., “what is the nature of measurement errors?”, “what is the best 

method to calibrate each model?”). 

In the future, it will be interesting to explore the relationships between the different 

components of fish body composition. Breck, 2014 reported that there is a strong relationship 

between fish weight and the amount of water and ash. Therefore, it would be interesting to 

use the water and ash measurements and relate them to fish weight to predict the other 

components of body composition (i.e., protein and lipids). Thus, the model predictions would 

not only be based on fish weight. The study and definition of this type of relationship could 

lead to the possibility of replacing the direct methods for determining some components of 

body composition by indirect ones, at least for some purposes. 
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Figure 1 - Overview of the calibration data: relative abundance of water (a.), crude protein (b.), crude lipid (c.) and ash (d.) in relation to whole body weight (BW(g)) of Nile 

tilapia (O. niloticus); red line represents the linear regression of each component in function of Nile tilapia body weight in log scale.
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Figure 2 - Mean absolute percentage error (MAPE) for calibration and validation errors of the 23 models, when applying a 5-fold cross-validation. 
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Figure 3 – Scatter plots showing each component (in relative terms) as a function of body weight (log scale). Points represent measured data, while lines represent the 
predictions of the 6 chosen models. 
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Figure 4 – Scatter plot of the independent data (black) against the predictions (orange) of the hyb_rob model. 
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Figure 5 - Scatter plot of the independent data (black) against the predictions (orange) of the al_mu model. 
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Figure 6 - Mean absolute percentage errors (MAPE) for the different models, measured against the whole calibration dataset and against an independent validation dataset. 
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a. b. 

Figure 7 - Scatter plots showing the relationships between log(BW) and the prediction residuals obtained when predicting the independent dataset using the developed models: a. 
model hyb_rob; b. model al_mu. 
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Figure 8 - Scatter plot of crude lipids (a.) and water (c.) residuals in function of feed energy. Box plots of crude lipids (b.) and water (d.) residuals in function of fish feeding 

regime. The residuals of both components were calculated with an allometric model. 
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Table 1 – Overview and description of the models developed and the models used from other authors. 

Model Equation Description 

al_mu 𝑦 = 𝑎 × 𝐵𝑊𝑏 Linear regression after log-transformation 

al_mu_rob 𝑦 = 𝑎 × 𝐵𝑊𝑏 Robust linear regression after log-transformation 

hyb 𝑦 = 𝑎1 × 𝐵𝑊 + 𝑎2 × 𝐵𝑊𝑏 Predicts the average of the i_mu and al_mu predictions 

woutwater_alo 𝑦 = 𝑎 × 𝐵𝑊𝑏 Predicts components using allometric models, except for water, which is predicted 
by difference (to ensure sum of components is 100%) 

hyb_rob 𝑦 = 𝑎1 × 𝐵𝑊 + 𝑎2 × 𝐵𝑊𝑏 Predicts the average of the i_mu and al_mu predictions 

woutwater_iso 𝑦 = 𝑎 × 𝐵𝑊 Predicts components using isometric models, except for water, which is predicted 
by difference (to ensure sum of components is 100%) 

Models already published by other authors 
1Chowdhury2013_mix 𝑦 = 𝑎 × 𝐵𝑊 Predicts crude protein and lipids using isometric models and allometric model to 

predict ash. Water is predicted by difference (to ensure sum of components is 
100%) 

 𝑦 = 𝑎 × 𝐵𝑊𝑏 

1Chowdhury2013_alo 𝑦 = 𝑎 × 𝐵𝑊𝑏 Predicts components using allometric models, except for water, which is predicted 
by difference (to ensure sum of components is 100%) 

2Shizari2020_iso 𝑦 = 𝑎 × 𝐵𝑊 Predicts components using isometric models, except for water, which is predicted 
by difference (to ensure sum of components is 100%) 

2Shizari2020_alo 𝑦 = 𝑎 × 𝐵𝑊𝑏 Predicts components using allometric models, except for water, which is predicted 
by difference (to ensure sum of components is 100%) 

3Chow_bureau 𝑦 = 𝑎 × 𝐵𝑊 Predicts water and crude protein using isometric models. Crude lipids and ash are 
predicted with allometric models.  

 𝑦 = 𝑎 × 𝐵𝑊𝑏  

1Chowdhury et al. (2013)  
2 Shizari (2020) 
3 Chowdhury & Bureau (2009)
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1Chowdhury et al. (2013)  
2 Shizari (2020) 
3 Chowdhury & Bureau (2009) 

 

 

 

 

 

  Water (g) Crude protein (g) Crude lipids (g) Ash (g) 

Model Equation a b a b a b a b 

1Chowdhury2013_mix 

𝑦 = 𝑎 × 𝐵𝑊 - - 0.160 - 0.085 - - - 

𝑦 = 𝑎 × 𝐵𝑊𝑏 - - - - - - 0.036 1.039 

1Chowdhury2013_alo 𝑦 = 𝑎 × 𝐵𝑊𝑏 - - 0.141 1.020 0.044 1.042 0.036 1.039 

2Shizari2020_iso 𝑦 = 𝑎 × 𝐵𝑊 - - 0.161 - 0.093 - 0.045 - 

2Shizari2020_alo 𝑦 = 𝑎 × 𝐵𝑊𝑏 - - 0.131 1.033 0.039 1.115 0.023 1.100 

3Chow_bureau 

𝑦 = 𝑎 × 𝐵𝑊 0.728 - 0.161 - - - - - 

𝑦 = 𝑎 × 𝐵𝑊𝑏 - - - - 0.042 1.047 0.036 1.047 

Table 2 - Equations and coefficients of the models published by other authors to estimate Nile tilapia body composition. 
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Table 3 – Cross-validation errors of 8 out of 23 models chosen in the first analysis for each method of cross-validation. 

  RMSE (g) RMLSE (log(g)) MAPE (%) CRM (g) 

  
Water 

Crude 
protein 

Crude 
lipids 

Ash Water 
Crude 
protein 

Crude 
lipids 

Ash Water 
Crude 
protein 

Crude 
lipids 

Ash Water 
Crude 
protein 

Crude 
lipids 

Ash 
LOOCV 

lcub  3.43 1.38 2.56 1.04 0.04 0.10 0.39 0.26 3.69 9.96 42.65 27.10 0.00 0.00 0.08 0.04 

lcub_rob  3.52 1.37 2.63 1.04 0.04 0.10 0.38 0.33 3.69 9.93 43.85 27.46 0.00 0.01 0.11 0.07 

al_mu  3.72 1.37 3.31 1.09 0.04 0.10 0.40 0.26 3.74 9.84 44.53 27.48 0.00 0.00 0.09 0.05 

al_mu_rob  3.74 1.37 3.19 1.10 0.04 0.10 0.40 0.26 3.75 9.84 45.73 27.87 0.00 0.01 0.12 0.07 

hyb  4.09 1.39 3.47 1.03 0.04 0.10 0.40 0.26 3.80 9.85 44.44 27.29 0.00 0.01 0.09 0.04 

woutwater_alo  4.68 1.37 3.31 1.09 0.05 0.10 0.40 0.26 4.39 9.84 44.53 27.48 0.03 0.00 0.09 0.05 

hyb_rob  3.83 1.36 3.18 1.04 0.05 0.10 0.47 0.26 4.32 10.11 67.55 27.55 0.02 0.02 0.46 0.06 

woutwater_iso  5.75 1.50 3.64 1.01 0.05 0.11 0.40 0.26 4.58 10.03 44.66 27.36 0.03 0.01 0.08 0.04 

10-Fold CV                 

lcub_rob  6.47 2.00 5.22 1.71 0.05 0.13 0.46 0.31 3.87 9.59 42.80 26.80 0.00 0.00 0.02 0.00 

lcub  6.31 2.02 5.16 1.73 0.05 0.13 0.47  3.87 9.59 41.88 26.21 0.00 0.00 0.06 0.03 

al_mu  6.88 2.00 6.88 1.75 0.05 0.13 0.47 0.31 3.89 9.42 43.05 26.60 0.01 0.00 0.14 0.02 

al_mu_rob  6.92 2.01 6.53 1.78 0.05 0.13 0.47 0.31 3.89 9.44 44.12 21.99 0.01 0.00 0.10 0.03 

woutwater_alo  8.94 2.00 6.88 1.75 0.05 0.13 0.47 0.31 4.51 9.42 43.05 26.60 0.04 0.00 0.14 0.02 

hyb  7.82 2.06 7.32 1.64 0.05 0.13 0.47 0.31 3.94 9.44 42.99 26.55 0.02 0.02 0.18 0.01 

hyb_rob  6.78 1.99 5.89 1.67 0.06 0.13 0.56 0.31 4.41 9.78 64.66 26.85 0.01 0.01 0.10 0.00 

woutwater_iso  11.42 2.33 7.79 1.60 0.06 0.13 0.48 0.32 4.66 9.67 43.26 26.73 0.05 0.03 0.21 0.04 

5-Fold CV                 

lcub_rob  6.87 2.07 5.66 1.81 0.04 0.13 0.47 0.32 3.88 9.61 42.76 27.06 0.00 0.00 0.03 0.01 

al_mu  7.30 2.07 7.50 1.82 0.05 0.13 0.48 0.32 3.88 9.42 42.88 26.50 0.01 0.00 0.17 0.02 

lcub  6.70 2.09 5.62 1.84 0.05 0.13 0.47 0.32 3.91 9.63 41.85 26.32 0.00 0.01 0.08 0.03 

al_mu_rob  7.35 2.07 7.14 1.86 0.05 0.13 0.48 0.32 3.89 9.41 43.92 27.03 0.01 0.00 0.14 0.03 

hyb  8.34 2.12 8.06 1.71 0.05 0.13 0.48 0.32 3.94 9.42 42.84 26.46 0.02 0.02 0.21 0.01 

woutwater_alo  9.55 2.07 7.54 1.82 0.06 0.13 0.48 0.32 4.51 9.39 42.88 26.50 0.04 0.00 0.17 0.02 

hyb_rob  7.13 2.04 6.34 1.74 0.06 0.13 0.56 0.32 4.41 9.75 64.18 26.76 0.01 0.01 0.06 0.00 

woutwater_iso  12.42 2.42 8.62 1.66 0.06 0.13 0.48 0.32 4.66 9.65 43.09 26.65 0.06 0.04 0.24 0.04 
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(continuation)  RMSE (g) RMLSE (log(g)) MAPE (%) CRM (g) 

  
Water 

Crude 
protein 

Crude 
lipids 

Ash Water 
Crude 
protein 

Crude 
lipids 

Ash Water 
Crude 
protein 

Crude 
lipids 

Ash Water 
Crude 
protein 

Crude 
lipids 

Ash 
2-Fold CV  

al_mu  7.59 2.17 8.02 1.90 0.05 0.13 0.48 0.32 3.91 9.49 43.20 26.72 0.01 0.00 0.19 0.02 

al_mu_rob  7.67 2.12 7.58 1.93 0.05 0.13 0.48 0.32 3.92 9.45 44.21 27.20 0.01 0.00 0.15 0.03 

hyb  8.66 2.15 8.58 1.78 0.05 0.13 0.48 0.32 3.95 9.48 43.08 26.64 0.02 0.02 0.22 0.01 

woutwater_alo  9.88 2.17 8.02 1.90 0.06 0.13 0.48 0.32 4.54 9.49 43.20 26.72 0.04 0.00 0.19 0.02 

lcub_rob  7.70 2.19 7.05 1.99 0.05 0.14 0.48 0.33 4.00 9.68 43.17 29.54 0.00 0.00 0.03 0.11 

lcub  7.49 2.26 7.11 2.06 0.05 0.14 0.49 0.33 4.03 9.73 42.23 28.12 0.00 0.00 0.07 0.03 

hyb_rob  7.56 2.08 6.71 1.81 0.06 0.13 0.56 0.32 4.44 9.78 63.80 26.86 0.01 0.01 0.03 0.00 

woutwater_iso  12.98 2.47 9.20 1.73 0.06 0.13 0.49 0.32 4.68 9.70 43.28 26.81 0.06 0.04 0.26 0.04 
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Table 4 - Parameters of the calibrated equations of the 6 best models to predict body components in grams. 

  
Water (g) 

Crude  

protein (g) 

Crude  

lipids (g) 
Ash (g) 

Model Equation a b a b a b a b 

al_mu 𝑦 = 𝑎 × 𝐵𝑊𝑏 0.763 0.989 0.141 1.019 0.047 1.053 0.034 1.034 

al_mu_rob 𝑦 = 𝑎 × 𝐵𝑊𝑏 0.764 0.989 0.141 1.019 0.047 1.053 0.034 1.034 

hyb 
𝑦 = 𝑎1 × 𝐵𝑊 + 𝑎2

× 𝐵𝑊𝑏 

a10.366 

a20.382 
0.989 

a10.076 

a20.071 
1.019 

a10.028 

a20.023 
1.053 

a10.019 

a20.017 
1.034 

woutwater_alo 𝑦 = 𝑎 × 𝐵𝑊𝑏 - - 0.141 1.019 0.047 1.053 0.034 1.034 

hyb_rob 
𝑦 = 𝑎1 × 𝐵𝑊 + 𝑎2

× 𝐵𝑊𝑏 

a10.367 

a20.382 
0.989 

a10.077 

a20.071 
1.019 

a10.030 

a20.023 
1.053 

a10.020 

a20.017 
1.034 

woutwater_iso 𝑦 = 𝑎 × 𝐵𝑊 - - 0.151 - 0.057 - 0.038 - 
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Table 5 – Lower and upper bound of the 95 % confidence intervals for body weight exponents, estimated 

assuming the al_mu model, following the approximation CI95% = mean ± (2 x standard error). 

  

 95 % confidence intervals 

 Lower bound Upper bound 

Water 0.987 0.991 

Crude protein 1.003 1.014 

Crude lipids 1.033 1.073 

Ash 1.020 1.047 
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Table 6 – Estimates of the generalization errors of the compared models predicting unseen data (validation errors). The greener cells indicate lower estimates of the 
generalization errors, and the reddish ones indicate higher ones. 

 

 

 

 Water Crude protein Crude lipids Ash 

Models 

RMSE 

(g) 

RMLSE 

(log(g)) 
MAPE CRM (g) 

RMSE 

(g) 

RMLSE 

(log(g)) 
MAPE CRM (g) 

RMSE 

(g) 

RMLSE 

(log(g)) 
MAPE CRM (g) 

RMSE 

(g) 

RMLSE 

(log(g)) 
MAPE CRM (g) 

hyb_rob 8.34 0.04 3.31 0.01 3.59 0.07 5.07 0.03 8.15 0.43 38.64 0.10 3.20 0.22 18.02 0.00 

al_mu 10.02 0.04 3.33 0.03 3.71 0.07 5.00 0.04 11.77 0.44 36.83 0.29 3.20 0.23 18.85 0.02 

Chowdhury2013_mixed 9.19 0.04 3.45 0.02 3.43 0.07 5.22 0.03 7.63 0.45 42.80 0.05 3.57 0.26 23.48 0.13 

Shizari2020_alo 12.04 0.05 3.93 0.04 3.47 0.06 4.77 0.03 8.76 0.38 32.48 0.16 3.18 0.24 19.60 0.00 

al_mu_rob 10.07 0.04 3.34 0.03 3.51 0.06 4.93 0.03 10.95 0.42 35.68 0.26 3.23 0.23 19.27 0.04 

Shizari2020_iso 7.98 0.05 3.53 0.01 3.33 0.07 5.24 0.02 7.11 0.49 49.55 0.04 3.48 0.25 22.79 0.11 

woutwater_alo 15.81 0.06 5.19 0.06 3.71 0.07 5.00 0.04 11.77 0.44 36.83 0.29 3.20 0.23 18.85 0.02 

hyb 12.40 0.05 4.11 0.04 4.50 0.08 5.83 0.06 12.74 0.47 38.69 0.33 3.21 0.22 17.85 0.01 

Chow_bureau 13.56 0.05 4.56 0.04 3.33 0.07 5.24 0.02 13.97 0.51 39.44 0.38 3.65 0.26 24.32 0.14 

Chowdhury2013_alo 16.66 0.06 5.51 0.06 3.55 0.06 4.92 0.03 13.92 0.51 39.47 0.38 3.57 0.26 23.48 0.13 

woutwater_iso 20.89 0.08 6.99 0.08 5.39 0.09 7.09 0.08 13.74 0.51 40.58 0.37 3.28 0.22 17.12 0.05 



 

 

91 

 

Appendixes 

 

Table A.1 - List of references from which the data used was retrieved. 

Source DOI/URL 

Abdelghany & Ahmad, 2002 DOI: 10.1046/j.1365-2109.2002.00689.x 

Abdelghany et al., 1998 DOI: 10.1046/j.1365-2109.1998.00219.x 

Abdelghany et al., 2002 DOI: 10.1111/j.1749-7345.2002.tb00507.x 

Abdel-Hakim et al., 2010 DOI: 10.21608/EJABF.2010.2058 

Abdel-Tawwab & Ahmad, 2009 DOI: 10.1111/j.1365-2109.2009.02254.x 

Abdel-Tawwab et al., 2006 DOI: 10.1300/J028v18n03_02 

Abdel-Tawwab et al., 2008 DOI: 10.1016/j.aquaculture.2008.03.055 

Abdel-Tawwab et al., 2010 DOI: 10.1016/j.aquaculture.2009.10.027 

Abdel-Tawwab et al., 2015 DOI: 10.1007/s10499-015-9882-y 

Abonorag et al., 2018 DOI: 10.1016/j.fsi.2018.05.051 

Abozaid et al., 2016 
http://www.aensiweb.net/AENSIWEB/rjfh/rjfh/2016/Oct-
Dec/10-15.pdf 

Afuang et al., 2003 DOI: 10.1046/j.1365-2109.2003.00920.x 

Ahmad et al., 2005 DOI: 10.1111/j.1365-2109.2004.01201.x 

Ahmad et al., 2008 https://www.cabdirect.org/cabdirect/abstract/20133318727 

Ahmad et al., 2011 DOI: 10.1080/10454438.2011.626350 

Ahmad et al., 2011 DOI: 10.1080/10454438.2011.626350 

Al-Asgah & Ali, 1997 DOI: 10.1051/animres:19970404 

Al-Hakim et al., 2013 DOI: 10.21608/EJABF.2013.2169 

Ali & Al-Asgah, 2001 DOI: 10.1051/animres:2001119 

Ali & El-Feky, 2013 DOI: 10.21608/ejap.2013.93679 

Ali et al., 2003 DOI: 10.33997/j.afs.2003.16.1.007 

Ali et al., 2007 DOI: 10.1111/j.1439-0426.2007.00897.xU 

Ali et al., 2008 https://ageconsearch.umn.edu/record/276669 

Ali et al., 2016 DOI: 10.1016/j.ejar.2016.06.004 

Ayisi et al., 2017 DOI: 10.1016/j.aaf.2017.02.001 

Azaza et al., 2008 DOI: 10.1007/s10499-008-9220-8 

Badwy et al., 2008 https://www.researchgate.net/publication/267768354 

Bahnasawy, 2009 DOI: 10.3923/pjn.2009.674.678 

Bake et al., 2014 DOI: 10.11648/j.aff.20140304.14 

Belal et al., 2004 DOI: 10.1111/j.1749-7345.2004.tb00110.x 

Belal et al., 2015 DOI: 10.12720/jomb.4.6.457-460 

Belal, 1999 DOI: 10.1111/j.1749-7345.1999.tb00877.x 

Belal, 1999a DOI: 10.1046/j.1365-2109.1999.00323.x 

Biswas & Takeuchi, 2003 DOI: 10.1046/j.1444-2906.2003.00720.x 

Boonanuntanasarn et al., 2018 DOI: 10.1016/j.aquaculture.2018.07.011 

Boonanuntanasarn et al., 2018a DOI: 10.1016/j.aquaculture.2017.09.032 

Cao et al., 2008 DOI: 10.1111/j.1365-2095.2007.00508.x 

Chakraborty et al., 2011 DOI:10.4194/trjfas.2011.0117  

Cheng et al., 2019 DOI: 10.46989/001c.20972 

Cho & Jo, 2002 DOI: 10.1111/j.1749-7345.2002.tb00477.x 



 

 

92 

 

Chowdhuru, 2011 http://hdl.handle.net/11250/186022 

Daudpota et al, 2016 https://www.researchgate.net/publication/288990411 

Daudpota et al., 2014 https://www.researchgate.net/publication/276273338 

Devic et al., 2017 DOI: 10.1111/anu.12573 

Ebrahim et al., 2007 
http://arabaqs.org/journal/vol_2/1/Text%2007%20-
%2003.pdf 

Eid et al., 2008 https://www.cabdirect.org/cabdirect/abstract/20133318679 

El Sayed, 2003 DOI: 10.1016/S0044-8486(02)00252-1 

El-Hakim et al., 2007 DOI: 10.21608/ejabf.2007.1937 

El-Haroun et al., 2006 DOI: 10.1111/j.1365-2109.2006.01584.x 

El-Kasheif et al., 2011 DOI: 10.21608/EJABF.2011.2082 

El-Saidy & Gaber, 2003 DOI: doi.org/10.1046/j.1365-2109.2003.00914.x 

El-Saidy & Gaber, 2005 Doi: 10.1111/j.1365-2109.2004.01201.xr2004  

El-Saidy & Hussein, 2015 DOI: 10.5376/ija.2015.05.0003 

El-Saidy et al., 2012 
https://www.researchgate.net/profile/Deyab-El-
Saidy/publication/268503324 

El-Sayed et al., 1992 DOI: 10.1016/0044-8486(92)90278-S 

El-Sayed et al., 1996 Doi: 10.1046/j.1365-2109.1996.00776.x 

El-Sayed et al., 2006 
https://cals.arizona.edu/azaqua/ista/ISTA7/Abstracts/Date_
pits_ISTA7.doc 

El-Sayed et al., 2013 DOI: 10.1111/anu.12031 

El-Sayed, 1992 DOI: 10.1111/j.1365-2109.1992.tb00607.x 

El-Sayed, 1998 DOI: 10.1046/j.1365-2109.1998.00199.x 

El-Sayed, 2002 DOI: 10.1046/j.1365-2109.2002.00700.x 

El-Shafai et al., 2004 DOI: 10.1111/j.1365-2109.2004.01055.x 

Ergün et al., 2009 DOI: 10.1007/s10499-008-9207-5 

Fasakin et al., 2001 DOI: 10.1300/J028v11n04_09 

Fasakin et al., 2005 DOI: 10.1016/j.aquaculture.2005.02.059 

Focken et al., 2000 
https://www.researchgate.net/profile/Ulfert-
Focken/publication/267790564 

Furuya et al., 2005 https://www.researchgate.net/publication/262473959 

Gaber & Hanafy, 2008 DOI: 10.1080/10454430802329721 

Gaber et al., 2014 DOI: 10.4236/gep.2014.22010 

Gaber, 2005 DOI: 10.1111/j.1749-7345.2005.tb00338.x 

Gaber, 2006 DOI: 10.1111/j.1365-2109.2006.01517.x 

Gaber, 2006a DOI: 10.1111/j.1749-7345.2006.00008.x 

Gan et al., 2016 DOI: 10.1111/jai.12997 

Gao et al., 2015 DOI: 10.1007/s00343-015-4246-z 

Gaye-siessegger et al., 2006 DOI: 10.1007/s10695-006-9000-1 

Gaye-Siessegger et al., 2007  DOI: 10.1111/j.1095-8649.2007.01469.x 

Goda et al., 2012 https://www.researchgate.net/publication/285160866 

Güroy et al., 2007 https://journals.tubitak.gov.tr/veterinary/vol31/iss2/2 

Hafedh, 1999 DOI: 10.1046/j.1365-2109.1999.00343.x 

Hanley, 1991 DOI: 10.1016/0044-8486(91)90224-U 

Hassaan et al., 2014 DOI: 10.1016/j.ejar.2014.04.001 

Hussein et al., 2016 
https://jades.journals.ekb.eg/article_67386_a8973faf8660e
3cc11ded3448f9efd93.pdf 



 

 

93 

 

Jatta, 2013 
https://www.grocentre.is/static/gro/publication/260/docum
ent/jatta13prf.pdf 

Jiang et al., 2019 DOI: 10.1111/anu.12983 

Kaya & Bilgüven, 2015 https://dergipark.org.tr/tr/download/article-file/154224 

Khalil et al., 2012 https://www.researchgate.net/publication/258927420 

Khalil et al., 2015 https://www.researchgate.net/publication/279513431 

Leal et al., 2009 DOI: 10.1007/s10499-009-9284-0 

Li et al., 2011 DOI: 10.1016/j.anifeedsci.2011.09.002 

Madalla, 2008 http://hdl.handle.net/1893/795 

Mambrini & Kaushik, 1994 DOI: 10.1016/0300-9629(94)90152-X 

Michelato et al. 2013 DOI: 10.1590/S1516-35982013000100002 

Michelato et al., 2016a DOI: 10.1016/j.aquaculture.2016.06.038 

Michelato et al., 2016b DOI: 10.1016/j.aquaculture.2016.02.022 

Mohammad et al., 2012 https://www.researchgate.net/publication/294697795 

Mostafa et al., 2009 http://ajbasweb.com/old/ajbas/2009/1234-1245.pdf 

Mugo-bundi et al., 2013 DOI: 10.1111/are.12181 

Nobrega et al., 2016 DOI: 10.1016/j.aquaculture.2016.12.026 

Ogunji & Wirth, 2002 DOI: 10.46989/001c.20316 

Opiyo et al., 2019 DOI: 10.1016/j.sciaf.2019.e00103 

Pan et al., 2003 DOI: 10.1016/S0044-8486(03)00306-5 

Pechsiri & Yakupitiyage, 2005 DOI: 10.1111/j.1365-2109.2004.01182.x 

Pereira et al., 2017 DOI: 10.1016/j.aquaculture.2017.01.033 

Pouomogne et al., 1997 DOI: 10.1016/S0044-8486(97)00091-4 

Reda et a., 2016 DOI: 10.1016/j.fsi.2016.01.040 

Richter et al, 2003 DOI: 10.1016/S0044-8486(02)00497-0 

Ritcher, 2019 https://tede2.uepg.br/jspui/handle/prefix/2877 

Schamber et al., 2013 DOI: 10.1007/s10499-014-9776-4 

Schneider et al., 2004 DOI: 10.1111/j.1365-2109.2004.01179.x 

Schulz et al., 2007 DOI: 10.1111/j.1365-2109.2007.01699.x 

Sena et al., 2012 DOI: 10.4025/actascianimsci.v34i3.1317 

Shahkar et al., 2014 DOI: 10.1080/09712119.2014.928626 

Shalaby et al., 2006 DOI: 10.1590/S1678-91992006000200003 

Siddhuraju & Becker, 2003 DOI: 10.1046/j.1365-2109.2003.00836.x 

Siddiqui et al., 1988 DOI: 10.1016/0044-8486(88)90007-5 

Silva et al., 2014 DOI: 10.1007/s10811-014-0453-9 

Silva et al., 2015 DOI: 10.1590/S1806-92902015000400001 

Soltan et al., 2002 https://www.researchgate.net/publication/273023780 

Soltan et al., 2009 https://dx.doi.org/10.3923/pjn.2009.395.407 

Subandiyono & Hasturi, 2020 http://www.bioflux.com.ro/docs/2020.2468-2476.pdf 

Telli et al., 2014 DOI: 10.1016/j.fsi.2014.05.025 

Tian et al., 2013  DOI: 10.1016/j.aquaculture.2013.01.032 

Tian et al., 2014 DOI: 10.1007/s10695-014-0001-1 

Tian et al.,2017 DOI: 10.1017/S0007114517003063 

Tidwell et al., 2000 DOI: 10.1111/j.1749-7345.2000.tb00912.x 

Tidwell et al., 2007 DOI: 10.1111/j.1749-7345.2000.tb00912.x 

Trosvik et al., 2012 DOI: 10.1111/j.1749-7345.2012.00595.x 



 

 

94 

 

Trosvik et al., 2013 DOI: 10.1080/01448765.2013.810123 

Urbich, 2020 https://tede2.uepg.br/jspui/handle/prefix/3040 

Valente et al., 2015 DOI: 10.1007/s10811-015-0590-9 

Vechklang et al., 2012 DOI: 10.1080/10454438.2012.678786 

Wee & Ng, 1986 DOI: 10.1111/j.1365-2109.1986.tb00094.x 

Wu et al., 2015 DOI: 10.1007/s10499-014-9877-0 

Xie et al., 1997  DOI: 10.1016/S0044-8486(97)00142-7 

Ye et al., 2016 DOI: 10.1111/jai.13004 

Yigit & Olmez, 2011 DOI: 10.1111/j.1365-2095.2010.00789.x 

Younis et al., 2017 DOI: 10.1016/j.sjbs.2017.06.012 

Yousef et al., 2014 DOI: 10.21608/jalexu.2014.160513 

 



 

 

95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2 - Behavior of the lcub model. Measured (black) and predicted (orange) sum of body components (as 
fraction of total body weight) of Nile tilapia (O. niloticus) in relation to the body weight in log-scale; median measured 
value for the sum in grey and the limit of 100% in red. Blue circles indicate the problematic areas.  
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Figure A.1 - A) Nile tilapia (O. niloticus) body weight histogram in absolute scale (g); B) Nile tilapia body weight 
histogram in log-scale. 
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Figure. B.1 - Sum of individual component predictions of the Chow_bureau model (which uses isometric 
models to predict water and protein, and allometric models to predict lipids and ash). Independent data 
(black) and predicted (orange) sum of body components (as fraction of total body weight) of Nile tilapia (O. 
niloticus) in relation to the body weight in log-scale; median measured value for the sum in grey. 
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Abstract 

ficoEst – Fish Composition Estimator is a public web tool to estimate the whole-body 

proximate composition of farmed fish (https://webtools.sparos.pt/ficoest/). The tool was 

designed for researchers in fish nutrition and fish farmers, and is available for six 

commercially relevant species: gilthead seabream (Sparus aurata), European seabass 

(Dicentrarchus labrax), meagre (Argyrosomus regius), rainbow trout (Onchorhynchus 

mykiss), Atlantic salmon (Salmo salar), and Nile tilapia (Oreochromis niloticus). ficoEst 

uses three different types of mathematical models (BC1, BC2, and BC3) to estimate the 

body composition of fish in terms of crude protein, crude lipids, water, ash, phosphorus, 

and energy. The models differ in the input data used to perform the estimates. BC1 

models consider only body weight, BC2 models consider both body weight and water, 

and BC3 models consider body weight, water, and ash as inputs. The model evaluation 

results demonstrate that considering water and ash as additional inputs to body weight 

(BC3 models) significantly improves the accuracy in predicting some body composition 

components, such as crude lipids (e.g., up to 67.9% and 28.1% more accurate, 

compared to BC1 and BC2 models, respectively, depending on the species considered). 

ficoEst can be used as a complementary tool to analytical methods to obtain additional 

information about fish body composition. As a public web tool, ficoEst has the potential 

to be a valuable resource for researchers and fish farmers interested in estimating the 

body composition of farmed fish. 

Key-words: Fish farming; Aquaculture; Body composition; Mathematical modelling. 

 

1. Introduction 

Fish whole-body proximate composition is an important aspect commonly measured 

in fish nutrition studies and in commercial fish farming activities. Research in fish nutrition 

often relies on body composition measurements as a way to calculate nutrient retention, 

namely to estimate nutrient requirements (Caceres‐Martinez et al., 1984; Lupatsch et al., 

1998; Tulli et al., 2010; Van Trung et al., 2011), evaluate the nutritional value of 

ingredients and aquafeeds (Fournier et al., 2003; Encarnação et al., 2006;  
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Glencross et al., 2008; Dias et al., 2009), and quantify nutrient waste outputs  

(Cho et al., 1994; Azevedo et al., 1998; Dias et al., 2005). In addition, fish farming 

companies usually measure the body composition of fish during product quality 

assessment activities, since it is related to several nutritional and organoleptic 

characteristics (Freitas et al., 2020). 

Typically, fish body composition is estimated through analytical methods, such as the 

ones described by the Association of Official Analytical Chemists (AOAC, 2005). Despite 

being reliable and robust, analytical methods are not always a viable option to estimate 

the body composition of fish, since they are time-consuming and expensive. This can 

translate into a limitation of the number of samples collected for body composition 

analysis, which can hinder a detailed analysis of nutrient flux in fish and more regular 

assessments of product quality and environmental impact. 

The relationships between the different body composition components, and between 

them and body weight, are well described in the literature (Shearer et al., 1994;  

Lupatsch et al., 1998, 2001, 2003b; Dumas et al., 2007; Chowdhury et al., 2013;  

Breck, 2014; Raposo et al., 2023). As a result, several researchers have proposed 

mathematical models as practical tools to estimate body composition in fish  

(Yeannes and Almandos, 2003; Dumas et al., 2010; Chowdhury et al., 2013;  

Breck, 2014; Raposo et al., 2023). However, most of the models developed so far are 

only made available as mathematical notation in published material. To the best of our 

knowledge, there is no publicly available tool at this time, based on mathematical models, 

that can be used to estimate the proximate composition of farmed fish. In our view, 

implementing such a tool and making it freely available to the public could be of great 

interest and utility for various agents that work in research and industrial environments 

within the fish farming sector. 

Here we present ficoEst – Fish Composition Estimator, a public web tool directed to 

researchers and fish farmers, developed and implemented to be used as a simple 

method of estimating the body composition of farmed fish 

(https://webtools.sparos.pt/ficoest/). This tool uses mathematical models to provide 

estimates on the body composition of different fish species, i.e., gilthead seabream 

(Sparus aurata), European seabass (Dicentrarchus labrax), meagre (Argyrosomus 

regius), rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar) and Nile 

tilapia (Oreochromis niloticus). All models behind ficoEst were calibrated and validated 

at the species level using datasets mostly collected from the scientific literature. ficoEst 

was developed to serve as a complementary tool, supporting studies on fish nutrition 

and increasing the information gathered at the farm level when analytical methods may 

not be feasible. 
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2. Materials and methods 

The entire process of making ficoEst available consisted of four main steps, briefly 

described in the diagram in Figure 1 and in detail in the following subsections. 

 

Figure 1. Diagram illustrating the four main steps behind ficoEst development. 

 

2.1. Data collection and analysis 

Datasets on the whole-body proximate composition of gilthead seabream, European 

seabass, meagre, rainbow trout, Atlantic salmon and Nile tilapia were collected from the 

scientific literature and from trials carried out by Sparos Lda., and its partners, in R&D 

projects. All datasets were stored in a database, following ‘tidy data’ principles  

(Wickham, 2014), and processed whenever necessary to ensure standardization and 

uniformity of data. 

Figure 2 shows a diagram illustrating the general structure of the database, which 

includes, in addition to whole-body proximate composition data, other relevant 

information related to the context in which the fish were reared and the data generated. 

Table 1 includes a summary of the datasets included in the database, per species. 

After the data collection and processing phase, data were visualized and analysed 

at the species level, in the R software (R Core Team, 2023). During this process, outliers 

were removed after sum of components analysis and the main relationships between 

body weight, body composition components and other variables (e.g., feed composition) 

were characterized. The outcomes of this process were crucial in providing a solid 

foundation and guidance for the model development phase. 
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Figure 2. Diagram describing the main variables included in the body composition database (DB). 

 

Table 1. Summary of the datasets included in the body composition database, per species. 

Attributes Units 
Gilthead 
seabream 

European 
Seabass 

Meagre 
Rainbow 
trout 

Atlantic 
salmon 

Nile 
tilapia 

Data points - 442 161 152 331 368 392 

Data sources - 69 30 37 49 51 97 

Year range - 
1977 – 
2019 

1983 – 
2020 

2010 – 
2022 

1972 – 
2019 

1974 – 
2020 

1986 – 
2020 

Countries - 11 8 6 11 8 23 

Body weight 
range 

g 0.1 – 582.1 
4.7 – 
482.0 

0.2 – 
1280.8 

1.6 – 
3251.3 

0.2 – 
4950.0 

0.1 – 
1302.2 

Temperature 
range 

°C 17.5 – 27.0 
13.4 – 
28.8 

17.0 – 
34.0 

6.0 – 19.4 2.0 – 23.0 
17.0 – 
32.0 

 

 

2.2. Model development and selection 

Different types of models and calibration methods were developed and tested, aiming 

to select the best methods in estimating the body composition of fish. All developed 

models fall into one of the following three families, differing from each other in terms of 

the type of input data considered (all expressed in a wet basis): 

(i) BC1: models that consider only the body weight of fish as input;  

(ii) BC2: models that consider the body weight and water percentage of fish as 

inputs; 

(iii) BC3: models that consider the body weight, water and ash percentage of fish 

as inputs. 

Differences between models belonging to the same family are essentially related to 

approaches used to estimate the body composition components. Some models estimate 

a specific component using isometric or allometric functions, or a mix of both by using 
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ensemble averaging. Other models estimate a specific component simply by difference, 

assuming that the sum of crude protein, crude lipids, water and ash comprise the whole-

body composition of fish (i.e., should add up to about 100% when expressed as a 

percentage). To estimate the energy content a single method was used for all models, 

where energy is calculated based on protein and lipids content using the energetic 

coefficients estimated by Lupatsch et al., 2003a (proteinenergy = 23.1 kJ/g and lipidsenergy 

= 35.8 kJ/g). Carbohydrate contents in fish body normally represent less than 0.14% 

(Breck, 2014), and were thereby considered negligible. An overview of all developed 

models is available as Supplementary Material. 

For each model, different calibration methods were implemented in the R software 

based on various regression techniques, such as least squares (lm function from the 

‘stats’ package; R Core Team, 2023), Huber loss minimization (rlm function from the 

‘MASS’ package; Venables and Ripley, 2002), mixed-effects (lme function from the 

‘nlme’ package; Pinheiro and Bates, 2000), and seemingly unrelated regressions 

(systemfit function from the ‘systemfit’ package; Henningsen and Hamann, 2007). 

The model and the respective calibration method to use per family (i.e., BC1, BC2 

and BC3) were selected through cross-validation (5-fold with 2 repetitions) following a 

two-step approach (Figure 3). In the first step, all models within a family were compared 

to each other, when calibrated using the two simplest calibration methods (i.e., least 

squares and Huber loss minimization). In the second step, all calibration methods related 

to the models selected in the previous step were compared to each other, aiming to 

select the most appropriate one. In both steps, several error metrics were used in cross-

validation to assess model performance (e.g., mean absolute percentage error, absolute 

error, root mean squared error, mean squared error, mean percentage error), but 

decisions were taken primarily based on the mean absolute percentage error (MAPE; 

equation 1). 

 

 

Figure 3. Diagram illustrating the two-step approach followed to select the model and calibration method per 

family. 
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2.3. Model calibration and evaluation 

Model calibration and evaluation were performed using the dataset available for each 

species (without outliers). For each model family, calibration was done using the 

previously selected model and calibration method combination. Model evaluation was 

focused on providing an estimate of the accuracy in predicting each body composition 

component, calculated here as the mean absolute percentage error (MAPE; equation 1): 

𝑀𝐴𝑃𝐸 (%) =  
100

𝑛
∑ |

𝑃𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1

 (1) 

where 𝑛 is the number of predicted-observed value pairs, 𝑃𝑖 is the predicted value, and 

𝑂𝑖 is the observed value. This metric provides an indication of the average deviation 

models are expected to have for each body composition component. Nonetheless, it 

should be noted that part of the error associated to this metric (and others) is not only 

directly related to the model itself, but inevitably contains part of the error associated with 

the data. Most of the empirical datasets used to calibrate and evaluate the models come 

from published studies, where only the group-level mean and standard deviation (sd) 

values are presented. This means that the data contains inherent variation from multiple 

sources (e.g., technical methods, biological replicates), often aggregated and presented 

in scientific publications as a single measure (e.g., standard deviation or standard error). 

Here, the variation associated with observed data was estimated as the average 

coefficient of variation, using the following formula (PEobservations, percentage error of 

observations): 

𝑃𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (%) =  
100

𝑛
∑ (

𝑠𝑑_𝑣𝑎𝑙𝑢𝑒𝑖

𝑚𝑒𝑎𝑛_𝑣𝑎𝑙𝑢𝑒𝑖
)

𝑛

𝑖=1

 (2) 

where 𝑛 is the number of mean-sd value pairs, 𝑚𝑒𝑎𝑛_𝑣𝑎𝑙𝑢𝑒𝑖 is the observed mean value 

of a body composition component, and 𝑠𝑑_𝑣𝑎𝑙𝑢𝑒𝑖 is the observed standard deviation 

value of a body composition component. This metric can be interpreted as the 

uncertainty of the observed values and used to relativize the model evaluation errors, 

since it is expressed in the same basis (i.e., in percentage). 

 

2.4. Tool implementation 

All modules that comprise the ficoEst tool were implemented in R. The back-end 

engine consists of different functions used to: compile, process, and plot data; calibrate, 

evaluate and run models; and generate reports. The front-end (i.e., user interface) 
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consists of functions used to create input controls, informational, and navigational 

elements. 

The following R packages were used in the back-end: ‘readxl’ (Wickham and Bryan, 

2023), ‘openxlsx’ (Schauberger and Walker, 2023), ‘dplyr’ (Wickham et al., 2023), 

‘ggplot2’ (Wickham, 2016), ‘patchwork’ (Pedersen, 2022), ‘GGally’  

(Schloerke et al., 2021), ‘officer’ (Gohel, 2023), ‘stringr’ (Wickham, 2022), ‘yardstick’ 

(Kuhn et al., 2022), ‘MASS’ (Venables and Ripley, 2002), ‘nlme’ (Pinheiro and Bates, 

2000), and ‘systemfit’ (Henningsen and Hamann, 2007); and the following ones in the 

front-end: ‘shiny’ (Chang et al., 2022), ‘shinyjs’ (Attali, 2021), ‘shinyBS’ (Bailey, 2022), 

‘shinydashboard’ (Chang and Borges, 2021), ‘shinydashboardPlus’ (Granjon, 2021), 

‘shinybusy’ (Meyer and Perrier, 2022), ‘shinymanager’ (Thieurmel and Perrier, 2022), 

and ‘DT’ (Xie et al., 2023). 

 

3. Results and discussion 

3.1. Data analysis 

The subsections below present just a small snapshot of the data analysis performed, 

with particular focus on the sum of components and the relationships between body 

weight and body composition components. For more details on the analysis carried out 

per species, see the data analysis reports available in the Supplementary Material. 

 

3.2. Sum of body composition components 

Body composition data were initially evaluated in terms of the sum of the main 

components that make up the fish (i.e., crude protein, crude lipids, water and ash). These 

four components, when expressed as a percentage, should add up to about 100%. Small 

deviations may occur as the data inevitably have variation associated with them and, in 

addition, fish is also made up of carbohydrates (not considered in this work due to the 

scarcity of data collected for this component and the fact that it typically constitutes less 

than 0.14% of the whole-body composition of fish; Breck, 2014). However, data points 

that show large deviations in the sum of components from 100% should be considered 

unreliable, as it is a sign of having one or more components misestimated. To objectively 

define a range based on which to consider the data points as unreliable, the average 

variation of each component (i.e., mean standard deviation) was chosen. In the data we 

collected per species, the sum of the mean standard deviations of body composition 

components is around 2.50 percentage units, with the exception of salmon which 

presents lower values (seabream: 2.39%; seabass: 2.43%; meagre: 2.78%;  
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trout: 2.44%; salmon: 1.43%; tilapia: 2.91%; see the data analysis reports available in 

the Supplementary Material). In this sense, all data points where the sum of crude 

protein, crude lipids, water and ash was outside the 100.00 ± 2.50% range were 

considered as outliers and removed. At the species level, this accounted for the following 

percentages of data points removed: 7% for gilthead seabream, 18% for European 

seabass, 15% for meagre, 3% for rainbow trout, 5% for Atlantic salmon, and 14% for Nile 

tilapia. 

The data were not normalized to add up to 100%, although some of the raw data 

collected were already in a normalized form and, therefore, were kept as they were. The 

fact that the components do not add up to exactly 100% can be caused by poor 

estimation of a single component. In such cases, normalizing the data will inevitably 

propagate the error to other components, which is undesirable for model calibration and 

evaluation purposes. 

 

3.3. Relationships between body weight and body composition components 

The relationships between body weight and body composition components are 

something that has already been described in the literature for almost all fish species 

considered in this work (with the exception of meagre), e.g., gilthead seabream 

(Lupatsch et al., 1998, 2003b), European seabass (Lupatsch et al., 2001), rainbow trout 

(Dumas et al., 2007; Breck, 2014), Atlantic salmon (Shearer et al., 1994), and Nile tilapia 

(Chowdhury et al., 2013; Raposo et al., 2023). Hence, this section does not bring any 

new findings in relation to what has already been presented in other works. The main 

objective here is to provide a consolidated view of how the whole-body proximate 

composition of the target fish species varies across the body weight range, what are the 

strongest correlations that can be found in data, and the rationale behind the developed 

models. 

Figure 4 shows the variation in body composition (expressed as % of body weight) 

across the body weight range, where common patterns can be found among species. In 

general, body composition varies more markedly in smaller fish, tending to stabilize or 

changing at lower rates as body weight increases. When expressed as a percentage, 

water decreases, crude protein and lipids increase (at different rates though), and ash 

does not significantly change with increasing body weight. All species show similar 

magnitude of change in crude protein content across the body weight range, with greater 

rates of change in the lower body weight range. However, the same does not occur with 

crude lipids and water. Despite similar trends shared across species for these two 

components (i.e., crude lipids increase and water decreases as body weight increases), 
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the magnitude of such changes is not the same among species. The magnitude of 

change in crude lipids and water as body weight increases is much greater in gilthead 

seabream, European seabass, rainbow trout and Atlantic salmon than in meagre and 

Nile tilapia.  

All of the above suggests that, for each model family, a model with a common 

structure can be used to describe the body composition of the target fish species (since 

the pattern of change of each component, across the body weight range, is similar 

between species), but it needs to be calibrated specifically for each species (since the 

magnitude of change of some components, across the body weight range, is different 

between species). 

 

Figure 4. Scatter and line plots showing the relationships between body composition components (i.e., crude 

protein, crude lipids, water, ash and phosphorus), expressed as percentage, across the body weight range, 

for each species. 
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In addition, Figure 5 shows the variation in body composition (expressed as % of 

lipid-free mass) across the lipid-free mass range (displayed in log10 scale). For most 

species, the variation of crude lipids as a fraction of lipid-free mass is higher compared 

to the other components (with the exception of meagre). The higher variation in crude 

lipids is essentially related to the fact that most lipids are an energy-storage component 

and, therefore, prone to the fluctuations that arise from the balance of energy inputs (that 

come from feeding) and outputs (essentially from metabolism and activity), which are 

generally dependent on the context in which the fish are reared. As protein, water and 

ash are mostly related to structural functions, this means that these components are 

constrained to each other and, therefore, show less variation when expressed on a lipid-

free mass basis. For a more complete description and discussion about these 

relationships, see for example the work of Breck (2014). 

Correlation matrices were generated for each species, to assess the correlation 

coefficients between body composition components and between these and body 

weight. Table 2 shows the strongest correlations found in data (log-transformed), when 

expressed as absolute values (i.e., in grams or kJ).  For other correlations see the data 

analysis reports available in the Supplementary Material. 

 

Table 2. Strongest correlation coefficients found in data (log-transformed), when expressed as absolute 

values (i.e., in grams or kJ), for each species. 

Pairs 
Gilthead 
seabream 

European 
seabass 

Meagre 
Rainbow 
trout 

Atlantic 
salmon 

Nile 
tilapia 

log(body weight) – log(crude 
protein) 

0.999 0.998 0.997 0.998 0.999 0.999 

log(body weight) – log(water) 0.999 0.999 0.999 1.000 1.000 0.999 

log(crude protein) – log(energy) 0.994 0.996 0.994 0.991 0.990 0.992 

log(crude lipids) – log(energy) 0.993 0.997 0.989 0.994 0.988 0.983 
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Figure 5. Scatter plots showing the relationships between body composition components (i.e., crude protein, 

crude lipids, water, ash and phosphorus), expressed as percentage of lipid-free mass, across the lipid-free 

mass range (displayed in log10 scale), for each species. 
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Strong correlations have been found between body weight and crude protein, as well 

as between body weight and water. This suggests that these two components of body 

composition can be better predicted based on body weight. In contrast, the remaining 

components, namely crude lipids and ash, have lower correlation coefficients and a wider 

variation across the body weight range. Therefore, estimating these components solely 

as a function of body weight may not guarantee accurate estimates in all cases. To 

improve estimates, it is recommended to consider water and ash content as model 

inputs, in addition to body weight. By doing so, the variation inherent to ash that cannot 

be explained by body weight can be eliminated, and the estimates for other components 

can be improved. Additionally, using water and ash fractions as inputs allows for the 

estimation of crude protein content based on body weight, while crude lipids can be 

estimated by difference (i.e., by subtracting the other components from 100%), which 

reduces the inherent high variation associated with this component (see Figure 5 which 

illustrates the high variation of crude lipids, compared to the other components, when 

expressed as % of lipid-free mass). These recommendations are the basis for the BC2 

and BC3 models, which use water and ash content as inputs. Since these two 

components are relatively easy and cheap to estimate using analytical methods, this 

approach stands out as a practical solution for estimating the body composition of fish. 

The expected strong correlations found between crude protein and energy, as well 

as between crude lipids and energy, reinforce the use of energetic coefficients applied 

to crude protein and crude lipids as a viable option to estimate the energy content. 

 

3.4. Selected models and calibration methods 

The overall results of the two-step cross-validation process indicate that, from the list 

of developed models and calibration methods, the best combinations per model family 

are the following: (i) for the BC1 family, the best model is the BC1.10 when calibrated 

with the Huber loss minimization method; (ii) for the BC2 family, the best model is the 

BC2.14 when calibrated with the Huber loss minimization method; and (iii) for the BC3 

family, the best model is the BC3.6 when calibrated also with the Huber loss minimization 

method. Although there was not a full consensus from cross-validation results (i.e., the 

best combination in terms of model and calibration method differed between some 

species), we were able to select a combination of model and calibration method, per 

model family, that ensures performance that practically matches the best solution across 

all species. These results can be explored in more detail in the cross-validation reports 

available in the Supplementary Material. Table 3 presents a simplified description of the 

selected models. 
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Table 3. Simplified description of the selected models per family, i.e., BC1.10, BC2.14, and BC3.6. 

Model and 
inputs 

Description 

BC1.10 
 
Inputs: 
body weight 
(g) 

Absolute values 

𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔) = 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠𝑐𝑎𝑙𝑒 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑒𝑥𝑝 

𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔) = 𝑙𝑖𝑝𝑖𝑑𝑠𝑠𝑐𝑎𝑙𝑒 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)𝑙𝑖𝑝𝑖𝑑𝑠_𝑒𝑥𝑝 

𝑤𝑎𝑡𝑒𝑟 (𝑔) = 𝑤𝑎𝑡𝑒𝑟𝑠𝑐𝑎𝑙𝑒 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)𝑤𝑎𝑡𝑒𝑟_𝑒𝑥𝑝 

𝑎𝑠ℎ (𝑔) = 𝑎𝑠ℎ𝑠𝑐𝑎𝑙𝑒 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)𝑎𝑠ℎ_𝑒𝑥𝑝 

𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (𝑔) = 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠𝑠𝑐𝑎𝑙𝑒 × 𝑎𝑠ℎ (𝑔) 

𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽) = 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔) +  𝑙𝑖𝑝𝑖𝑑𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔) 

Relative values 
𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (%) = (𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (%) = (𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑤𝑎𝑡𝑒𝑟 (%) = (𝑤𝑎𝑡𝑒𝑟 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑎𝑠ℎ (%) = (𝑎𝑠ℎ (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (%) = (𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽/𝑔) = (𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) 

BC2.14 
 
Inputs: 
body weight 
(g) 
water (%) 

Absolute values 
𝑤𝑎𝑡𝑒𝑟 (𝑔) = 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 (%) × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) 

𝑎𝑠ℎ (𝑔) = 𝑎𝑠ℎ𝑠𝑐𝑎𝑙𝑒 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)𝑎𝑠ℎ_𝑒𝑥𝑝 

𝑟𝑒𝑠𝑡 (𝑔) = 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) − (𝑤𝑎𝑡𝑒𝑟 (𝑔)  + 𝑎𝑠ℎ (𝑔)) 

𝑙𝑝𝑟𝑎𝑡𝑖𝑜 = 𝑒
(𝑙𝑝𝑟𝑎𝑡𝑖𝑜𝑖𝑛𝑡 +(𝑙𝑝𝑟𝑎𝑡𝑖𝑜𝑤𝑎𝑡𝑒𝑟𝑙𝑖𝑛

×log(𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑎𝑐))+(𝑙𝑝𝑟𝑎𝑡𝑖𝑜𝑤𝑎𝑡𝑒𝑟𝑞𝑢𝑎×log(𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑎𝑐)
2

))
 

𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 1 (𝑔) = 𝑟𝑒𝑠𝑡 (𝑔) − (1/(1 + 𝑙𝑝𝑟𝑎𝑡𝑖𝑜)) 

𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 2 (𝑔) = 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠𝑐𝑎𝑙𝑒 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑒𝑥𝑝 

𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔) = 𝑚𝑒𝑎𝑛(𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 1 (𝑔), 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 2 (𝑔)) 

𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔) = 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) − (𝑤𝑎𝑡𝑒𝑟 (𝑔) + 𝑎𝑠ℎ (𝑔) + 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔)) 

𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (𝑔) = 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠𝑠𝑐𝑎𝑙𝑒 × 𝑎𝑠ℎ (𝑔) 

𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽) = 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔) +  𝑙𝑖𝑝𝑖𝑑𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔) 

Relative values 
𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (%) = (𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (%) = (𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑤𝑎𝑡𝑒𝑟 (%) = 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 (%) 

𝑎𝑠ℎ (%) = (𝑎𝑠ℎ (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (%) = (𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽/𝑔) = (𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) 

BC3.6 
 
Inputs: 
body weight 
(g) 
water (%) 
ash (%) 

Absolute values 
𝑤𝑎𝑡𝑒𝑟 (𝑔) = 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 (%) × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) 

𝑎𝑠ℎ (𝑔) = 𝑎𝑠ℎ 𝑖𝑛𝑝𝑢𝑡 (%) × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) 

𝑟𝑒𝑠𝑡 (𝑔) = 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) − (𝑤𝑎𝑡𝑒𝑟 (𝑔)  + 𝑎𝑠ℎ (𝑔)) 

𝑙𝑝𝑟𝑎𝑡𝑖𝑜 = 𝑒
(𝑙𝑝𝑟𝑎𝑡𝑖𝑜𝑖𝑛𝑡 +(𝑙𝑝𝑟𝑎𝑡𝑖𝑜𝑤𝑎𝑡𝑒𝑟𝑙𝑖𝑛

×log(𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑎𝑐))+(𝑙𝑝𝑟𝑎𝑡𝑖𝑜𝑤𝑎𝑡𝑒𝑟𝑞𝑢𝑎×log(𝑤𝑎𝑡𝑒𝑟𝑓𝑟𝑎𝑐)
2

))
 

𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 1 (𝑔) = 𝑟𝑒𝑠𝑡 (𝑔) − (1/(1 + 𝑙𝑝𝑟𝑎𝑡𝑖𝑜)) 

𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 2 (𝑔) = 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠𝑐𝑎𝑙𝑒 × 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)𝑝𝑟𝑜𝑡𝑒𝑖𝑛_𝑒𝑥𝑝 

𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔) = 𝑚𝑒𝑎𝑛(𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 1 (𝑔), 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 2 (𝑔)) 

𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔) = 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) − (𝑤𝑎𝑡𝑒𝑟 (𝑔) + 𝑎𝑠ℎ (𝑔) + 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔)) 

𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (𝑔) = 𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠𝑠𝑐𝑎𝑙𝑒 × 𝑎𝑠ℎ (𝑔) 

𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽) = 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔) +  𝑙𝑖𝑝𝑖𝑑𝑠𝑒𝑛𝑒𝑟𝑔𝑦 × 𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔) 

Relative values 
𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (%) = (𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (%) = (𝑐𝑟𝑢𝑑𝑒 𝑙𝑖𝑝𝑖𝑑𝑠 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑤𝑎𝑡𝑒𝑟 (%) = 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 (%) 

𝑎𝑠ℎ (%) = 𝑎𝑠ℎ 𝑖𝑛𝑝𝑢𝑡 (%) 

𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (%) = (𝑝ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 (𝑔))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) × 100 

𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽/𝑔) = (𝑒𝑛𝑒𝑟𝑔𝑦 (𝑘𝐽))/(𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) 
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3.5. Model calibration and evaluation 

All models selected in the previous step were calibrated for each species with the 

selected calibration method (i.e., Huber loss minimization). Subsequently, the models 

were validated using the same datasets used for calibration purposes. The model 

evaluation results for BC1.10, BC2.14 and BC3.6 are presented in Figures 6 to 8, 

respectively. 

 

Figure 6. BC1.10 model evaluation plots, for each species. Inside each plot, the bars on the left represent 

the error associated with the model predictions, given by the mean absolute percentage error (MAPE), and 

the bars on the right the error associated with the data used to validate the model, given by the percentage 

error of observations (PEobservations). 
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Figure 7. BC2.14 model evaluation plots, for each species. Inside each plot, the bars on the left represent 

the error associated with the model predictions, given by the mean absolute percentage error (MAPE), and 

the bars on the right the error associated with the data used to validate the model, given by the percentage 

error of observations (PEobservations). For this model, the error associated with water is defined as 0%, since 

this component is provided as input. 

 

 

Figure 8. BC3.6 model evaluation plots, for each species. Inside each plot, the bars on the left represent the 

error associated with the model predictions, given by the mean absolute percentage error (MAPE), and the 

bars on the right the error associated with the data used to validate the model, given by the percentage error 

of observations (PEobservations). For this model, the errors associated with water and ash are defined as 0%, 

since these components are provided as inputs. 
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In general, for all models and species, the largest prediction errors found are related 

to crude lipids (20.6 – 33.8% for BC1.10; 10.3 – 34.1% for BC2.14; 9.1 – 20.1% for 

BC3.6). The BC1.10 and BC2.14 models also show large prediction errors for ash when 

compared to other components (e.g., crude protein and energy), although generally 

lower than the error found for crude lipids (at least for the BC1.10 model). The large 

prediction errors found for phosphorus in some species (i.e., gilthead seabream, rainbow 

trout and Nile tilapia) seems to be related to the high variability of values reported in the 

different data sources considered and also to the relatively small number of data points 

collected for this component. For all species, considering water and ash as additional 

inputs to body weight (e.g., BC2.14 and BC3.6) improves the crude lipids estimates, but 

does not guarantee improvements for other body composition components, such as 

crude protein and energy. 

The error in the data used to calibrate and evaluate the models, specifically the 

observation error (PEobservations), is generally lower for water, crude protein, and energy, 

but higher for crude lipids, ash, and phosphorus, in all species. It is important to note that 

model evaluation errors, in addition to including the error due to an incomplete fit of the 

model to the data, are also compounded in part by inherent variation in observational 

data. Therefore, the observation error can be used as a rough estimate of the variation 

associated with observational data and considered to relativize the model errors. Model 

evaluation errors close to observation errors indicate that, on average, the values 

predicted by the model are within the variation in the observational data. For example, in 

the case of meagre, the BC3.6 model evaluation error for crude protein (4.7%) is close 

to observation error (4.5%), which means that, on average, the model error is similar to 

the variation in the observational data used to evaluate the model. 

 

 

3.6. Tool overview 

ficoEst is freely available as a public web tool (https://webtools.sparos.pt/ficoest/). Its 

user interface is reactive and currently consists of four different pages (version 2023.08): 

1. About, where users can access general information about the tool;  

2. Estimate composition, where users can select the species and model, enter 

input data, and get body composition estimates. In addition, it is also possible 

to download a model evaluation report for the selected model and species; 

3. Explore database, where users can explore the body composition data 

available in the database and export a data analysis report for each species; 

4. Video tutorial, where users can watch a quick video tutorial illustrating how 

the tool can be used to estimate the body composition of fish. 
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Figures 9 and 10 show snapshots of the ficoEst user interface (Estimate composition 

and Explore database pages, respectively). To enter input data, users must have access 

to Microsoft ExcelTM, LibreOffice Calc, or other similar software that allows editing 

spreadsheets in XLSX (Office Open XML) format. 

 

Figure 9. Snapshot of ficoEst (version 2023.08) Estimate composition page. 

 

 

 

Figure 10. Snapshot of ficoEst (version 2023.08) Explore database page. 
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4. Conclusions 

Measuring the whole-body proximate composition of fish is an essential step in 

several research activities in fish nutrition, as well as in product quality control and 

environmental impact assessment activities carried out in fish farming enterprises. So 

far, analytical methods have been the most widespread, and sometimes the only, 

approach to estimate the proximate composition of fish. Most of the times analytical 

methods are sufficiently robust and reliable. However, they are time-consuming and 

relatively expensive, thus bringing some limits to the regular determination of fish 

composition. 

The tool presented here was developed with the purpose of serving as a 

complementary approach to determine the whole-body proximate composition of fish. 

When analytical methods are not a viable option, ficoEst can be used to generate 

additional information. The back-end engine of this tool uses different mathematical 

models to perform estimates for the main body composition components (i.e., crude 

protein, crude lipids, water, ash, phosphorus and energy). All models were calibrated 

and evaluated with empirical datasets, most of them collected from the scientific literature 

and, therefore, previously validated by the scientific community. 

The use of mathematical models to estimate the body composition of fish is a solution 

widely proposed and explored by several authors in the past. However, most models 

developed and published in the scientific literature are not implemented in a publicly 

available ready-to-use format. As a public web tool, ficoEst has the potential to be a 

valuable resource for researchers and fish farmers interested in estimating the body 

composition of farmed fish. 
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Chapter 4 

 
Predicting fish body composition: can water and ash inputs 

improve estimations? 
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1. Introduction 

In aquaculture, body composition is important to be measured or estimated, as it 

can affect the quality of the fish and its market value (Azam et al., 2004; Breck, 2014; 

Jobling, 2001). Fish body composition can be directly assessed by analysing its chemical 

composition which comprehends crude protein, crude lipids, ash, and water (e.g., AOAC 

methods). These analyses can be time-consuming and expensive, so there is a need for 

more practical and cost-effective methods. Mathematical models can be an alternative 

and present several advantages over chemical analysis as they are less time-consuming 

and less costly. In fact, mathematical models can predict body composition in a matter 

of minutes to hours, depending on the complexity of the model and the computational 

resources available (Chowdhury & Bureau, 2009; Breck et al., 2014;  

Soares et al., 2023a). Another advantage of using models is that, as a complementary 

practical method, they can contribute to a more comprehensive assessment of body 

composition, allowing to extract more information from data (e.g., farmers can use their 

production data to estimate environmental impacts) and provide additional information 

that may be important for optimizing production (Soares et al., 2023b). Moreover, 

mathematical models can also be used to predict body composition in near real-time 

(e.g., by using dynamic models coupled to data management software), allowing for 

rapid adjustments to feeding practices and diet formulations. This can ultimately lead to 

improved growth, health and production profitability. Thus, mathematical models can 

provide a cost-effective solution for estimating the body composition of fish in situations 

where it is impractical or financially unfeasible to do so through conventional means, as 

suggested by Raposo et al., 2023.  

Different models to predict fish body composition have already been developed for 

several fish species (Bar et al., 2007; Breck, 2011, 2014; Chowdhury et al., 2013; 

Chowdhury & Bureau, 2009; de Castro Silva et al., 2015; Hanley, 1991;  

Raposo et al., 2023; van Trung et al., 2011). Usually, they are based on linear 

regressions between body weight (BW) and the main body composition components 

(e.g., water, crude protein, crude lipids and ash) (Dumas et al., 2010), implying either an 

isometric or allometric relationship. In Raposo et al. (2023) work, the authors developed 

and thoroughly evaluated different types of body composition models for Nile tilapia and 

obtained a robust hybrid model (ensemble of isometric and allometric models using 

robust regression), with a good prediction capacity when compared with models 

published by other authors. SPAROS developed a tool – ficoEst 

(https://webtools.sparos.pt/ficoest/) - which comprehends different types of models that 

uses body weight, water and/or ash content as inputs to estimate the remaining 

components (i.e., crude protein, crude lipids, phosphorus and energy). 
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Herein, we compared the performance of the BCRA model developed by  

Raposo et al. (2023) against the ficoEst models, for 5 commercial fish species (Nile 

tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, gilt head seabream Sparus 

aurata, European seabass Dicentrarchus labrax and rainbow trout Oncorhynchus 

mykiss). The main objective was to assess whether considering information about water 

and ash content improves the accuracy of models to estimate other body composition 

components. 

 

2. Materials and methods 

 

2.1. Data collection and processing 

The dataset used in this study is composed of data collected from the scientific 

literature and from trials developed in the framework of projects coordinated by 

SPAROS, covering a varied range of fish body weights, rearing and feed conditions  

(see Table 1 and Appendice 1.A). Data concerning carbohydrates were not considered, 

due to their minimal contribution to fish whole body composition and because they are 

usually not reported in literature (Breck, 2011). Moreover, only cases where the whole 

fish content (described as “whole-body” composition) was referred and determined 

following the methods described by the Association of Official Analytical Chemists 

(AOAC) were used. Additionally, in some cases, data was processed with the use of 

conversion methods to convert diet and whole-body composition from dry weight to wet 

weight, to calculate the energy content of diets, and to convert coefficient of variation 

(CV) and standard error (SE) to standard deviation (SD). Furthermore, based on the 

analysis of the sum of the mean standard deviation of each body composition 

component, only datasets in which the sum of components ranged from 97.5% to 102.5% 

were considered, in order to exclude contamination by measurement or reporting errors. 

Correlations between body composition components, and these and body weight, were 

also evaluated in relative and absolute terms (Appendice 2). 

 

2.2. Model evaluation and calibration methods 

In this work different models from a tool developed by SPAROS to predict the body 

composition of different species (ficoEst, available at https://webtools.sparos.pt/ficoest/), 

were tested against a model previously published by Raposo et al. (2023). The ficoEst 

tool includes three different families of body composition models: BC1, relies on body 

weight as input; BC2, uses body weight and water percentage as inputs; BC3, considers 

body weight, water and ash percentage as inputs. In turn, the model published by 



 

124 
 

Raposo et al. (2022), herein designated as BCRA, is an ensemble averaging of isometric 

and allometric models in which considers only body weight as input (see Table 2 for 

details about the different models). 

Regression analysis was performed for each body composition component and the 

models were evaluated both qualitatively, by visually observing model behaviour, and 

quantitatively, by calculating the mean absolute percentage error (MAPE) between 

observed and predicted values for each component, as follows: 

 

𝑀𝐴𝑃𝐸 (%) =  
100

𝑛
∑ |

𝑃𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1

 

where: 

𝑛 is the number of predicted - observed value pairs 

𝑃𝑖 is the predicted value 

𝑂𝑖 is the observed value 

 

In addition, a method of cross-validation with 5-folds and 10 repetitions was used to 

assess the model performance. All analyses were performed using R version 4.1.2 (R 

Core Team, 2021). 

 

2.3. Model validation 

Models were validated using independent datasets (i.e., not used during the 

calibration process) and evaluated qualitatively and quantitatively (i.e., MAPE), as 

described in section 2.2. 

Furthermore, to assess the uncertainty of the observed values, the mean percentage 

error (PE) was calculated based on the mean±sd values of the pairs that were used to 

calibrate and validate the models, as follows: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑃𝐸 (%) =  
100

𝑛
∑ (

𝑠𝑑_𝑣𝑎𝑙𝑢𝑒𝑖

𝑚𝑒𝑎𝑛_𝑣𝑎𝑙𝑢𝑒𝑖
)

𝑛

𝑖=1

 

where: 

𝑛 is the number of mean_value - sd_value pairs 

𝑚𝑒𝑎𝑛_𝑣𝑎𝑙𝑢𝑒𝑖 is the observed mean value of a body composition component 

𝑠𝑑_𝑣𝑎𝑙𝑢𝑒𝑖 is the observed standard deviation value of a body composition 
component 
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3. Results 

 

3.1. Model evaluation and calibration methods 

Table 3 shows that, when comparing all models across species, overall, BC3 had 

lower calibration errors than the other models tested. However, all models performed 

similarly for crude protein predictions with a MAPE of approximately 7%, in contrast to 

crude lipids (MAPE: 9 - 40%), ash (MAPE: 9 - 20%) and phosphorus (MAPE: 10 – 55%), 

which displayed higher calibration errors. In particular, for Nile tilapia, the BC3 model 

generally performed better than the other models for all body composition components. 

For salmon, the BC1 model performed better for crude protein (MAPE  5%) and ash 

(MAPE  10%) predictions, while the BC3 model performed better for the remain 

components. However, there were differences between the model’s calibration errors for 

crude lipids, with BC3 displaying the lowest and BCRA the highest deviations  

(MAPE  9% and MAPE  41%, respectively). For seabream and seabass, BC2 

displayed lower calibration errors for crude protein (MAPE  4% and MAPE  5%, 

respectively). As in the other species, there were differences between model calibration 

errors for crude lipids in seabream and seabass, with BC3 displaying the lowest  

(MAPE   9% and MAPE  10%, respectively) and BCRA the higher calibration errors 

(MAPE  31% and MAPE  34%, respectively). Moreover, for seabream the calibration 

errors for phosphorus were the highest one with a MAPE  54%). Regarding rainbow 

trout, the BC1 model performed better for crude protein predictions (MAPE  5%), but 

there were differences between models for crude lipids.  

The BCRA model is similar to the BC1 model, since they both rely only on the body 

weight as input. Comparing the calibration errors of these two models, the BCRA model 

had lower calibration errors for ash (MAPE  21%) and phosphorus (MAPE  35%) in 

tilapia, and for ash in trout (MAPE  15%). For gilthead seabream and seabass, the 

BCRA model had similar errors to BC1 for most nutrients, except for crude lipids and 

energy. Overall, the BC2 and BC3 models had similar errors and both were different from 

BC1 and BCRA. 

Overall, the species that exhibited lower calibration errors was European seabass, 

whereas Nile tilapia had the highest errors. 
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3.2. Model validation 

Overall, the BC3 model displayed lower validation errors for all body composition 

components (Figure 1 – 5). For Nile tilapia, the BC3 model was the best in predicting all 

body composition components. However, the same was not observed for the other 

species, such as salmon, where the BC3 model displayed lower errors for crude lipids 

(MAPE  10%), phosphorus (MAPE  13%) and energy (MAPE  4%), while the BC1 

model showed lower validation errors for protein (MAPE  5%). Likewise for gilthead 

seabream, the BC3 model showed lower validation errors for crude lipids (MAPE  9%), 

phosphorus (MAPE  47%) and energy (MAPE  5%), whereas the BC2 model showed 

lower validation errors for crude protein predictions (MAPE  4%). In European seabass, 

crude protein was more accurately predicted with the BC2 model (MAPE  5%), while 

crude lipids and energy was better predicted with the BC3 model (MAPE  10% and 

MAPE  5%), respectively) and phosphorus with the BCRA model (MAPE  11%). For 

rainbow trout, BC3 only performed better in predicting crude lipids (MAPE  9%), 

whereas for crude proteins and phosphorus, BC1 displayed lower validation errors 

(MAPE  5% and MAPE  13%, respectively), and for energy, the model with the best 

performance was BC2 (MAPE  5%). Regardless of model type, the validation errors 

were generally higher for Nile tilapia, specifically when predicting crude protein (MAPE 

 8%), crude lipids (MAPE  44%) and energy (MAPE  19%).  On the other hand, 

gilthead seabream had the lowest validations errors for crude protein and lipids (MAPE 

 4% and MAPE  9%, respectively), but the highest for phosphorus (MAPE  53%). In 

turn, salmon showed the lowest validations errors for energy predictions with a  

MAPE  4%.  

Analysing the model performance for each body component, all models exhibited 

similar validation errors for predicting crude protein (MAPE between 5 and 8%) across 

all species. Generally, crude protein was the body component with the lowest validation 

errors. Phosphorus predictions had the highest validation errors, with a MAPE ranging 

from 11 to 53% in BC1 and BCRA models, from 13 to 52% for BC2, and from 12 to 47% 

for BC3, which had the lowest range. In terms of crude lipids, the BC3 model displayed 

the lowest range for validation errors with a MAPE between 9 and 20%, while for BC2 

the MAPE ranged from 10 and 24%, for BC1 between 21 and 34%, and for the BCRA 

model between 31 and 44%, the latter being the highest range. Lastly, for energy 

predictions, BC3 had the lowest validation errors with a MAPE ranging from 4 to 8%, 

followed by BC2 (4 to 8%), BC1 (8 to 13%), and BCRA (12 and 19%). 

Overall, validation errors were greater for Nile tilapia, when compared to other 

species, particularly for crude lipids (MAPE 20-44%) and energy (MAPE 7-19%). In 
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contrast, gilthead seabream had in general lower validation errors then the other species 

for crude lipids (MAPE 9-21%) and energy (MAPE 4-12%). 

In general, the mean percentage error (PE) was lower than the prediction errors, 

except for European seabass and rainbow trout (Figure 1-5). Among all the body 

composition components, crude lipids and ash showed higher PE values, particularly for 

Nile tilapia (12% and 11%, respectively), gilthead seabream (6% and 8%, respectively) 

and rainbow trout (7% and 15%, respectively). For European seabass and Atlantic 

salmon, phosphorus exhibited the highest PE values (26% and 8%, respectively). 

 

4. Discussion 

Accurately measuring or estimating the body composition of fish is of extreme 

importance for both nutritionists and fish farmers. To achieve this, it is important to have 

access to low-cost and fast methods for obtaining information on fish body composition. 

The FicoEst tool, developed by SPAROS, was evidenced to be a promising alternative 

to conventional analytical methods.  These tool offers several options for estimating body 

composition based on available information. For example, if data on water and ash 

content are available, the tool can estimate, based on the relationship between crude 

protein and water and ash content, the crude lipids by difference (i.e., ficoEst BC3 

model). If this information is not available, the tool will estimate the body composition 

based only on fish body weight (ficoEst model BC1, likewise the BCRA model from  

Raposo et al., 2023) or based on fish body weight and water (ficoEst model BC2). Among 

all models provided by FicoEst, the BC3 displayed the best performance, whilst BC1 and 

BC2 models displayed higher prediction errors, meaning that providing information on 

water and ash content improve model performance.  

In order to develop robust models, it is of great importance to use good quality 

datasets to calibrate the models. In this study, Nile tilapia had higher mean absolute 

percentage errors (MAPEs) compared to other fish species, possibly due to the quality 

of the dataset. In some publications, incomplete or inaccurate measurements data can 

introduce errors in the model predictions and lead to higher MAPEs. These may explain 

why the correlations between body weight and body composition components were poor 

for this specie when compared to the other ones, especially the correlation between body 

weight and crude protein, and water and crude lipids. Additionally, species strain 

variability can also impact body composition predictions. Different Nile tilapia strains can 

have different body composition profiles and models that do not account for this 

variability can lead to less accurate predictions and, thus, higher MAPEs. It is therefore 

important to visualize and analyse the data, for example using statistical methods  
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(e.g., diagnostic plots), in order to identify outliers and improve the accuracy of body 

composition predictions. It is also recommended to authors to mention the specie strain 

in publications. 

Overall, the BCRA model demonstrated the poorest prediction capability among the 

tested models for all species, displaying higher validation errors. In fact, both BC1 and 

BCRA had higher validation errors for predicting body composition for all species. 

However, when predicting crude lipids, BC1 exhibited lower validation errors compared 

to BCRA. When comparing the validation errors of the BCRA model for Nile tilapia with 

those reported in Raposo et al. (2023) for the same species (see Chapter 2), the errors 

were found to be similar. This suggests that the performance of the BCRA model in 

predicting Nile tilapia body composition was not impacted by the different data used in 

this study. In turn, comparing the higher MAPEs obtained using the BCRA model with 

the lower ones for the BC3 model highlights the importance of considering water and ash 

content as inputs to improve model accuracy. On the other hand, when comparing the 

performance of BC1 and BCRA models (i.e., models with same type of inputs), the 

validation errors were similar except for crude lipids estimations, which in this case may 

be related to differences in the datasets used to calibrate both models. 

Regardless of the type of model used in this study, higher mean absolute percentage 

errors (MAPEs) were observed for phosphorus and ash predictions. It is noteworthy that 

nutritionists typically do not report phosphorus values for body composition. Phosphorus 

is primarily a mineral that plays a crucial role in many physiological processes in the body 

(e.g., bone formation and maintenance). However, authors often prioritize discussing 

broader aspects of nutrient management and environmental impact in fish farming 

studies. Therefore, the lack of data in the literature on phosphorus levels may have 

contributed to the overall higher MAPEs observed for this component. However, 

phosphorus intake can indirectly affect body composition through its role in supporting 

overall health and energy metabolism. For example, a deficiency in phosphorus can lead 

to muscle weakness and decreased physical performance, which can ultimately affect 

body composition (Sugiura et al., 2004; Uyan et al., 2007).  Moreover, recent studies 

have shown that when fishmeal is replaced by vegetable sources, the availability of 

phosphorus is compromised (Lund et al., 2011; Daniel, 2018). This implies that the body 

composition of the fish is affected in terms of phosphorus levels. It is therefore important 

that studies take phosphorus into account in the body composition of fish. In turn, the 

overall higher MAPEs for ash predictions may be related to laboratory errors. This is also 

valid for the higher PE for ash. Ash is the least abundant component of fish whole body 

and is thus difficult to determine with precision, especially during sample homogenization 

and manipulation (e.g., if samples are nor well homogenized, some may have more 
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scales or bones, which will affect the final ash content). Another factor that can impact 

body composition predictions, particularly for ash, is the problem of renormalization of 

data. Renormalization can be used to adjust data so that it conforms to a particular 

distribution or standard (e.g., body components to sum up to 100%).  In the context of 

fish body composition data, renormalization can be a problem because it can introduce 

bias into the data if it is not done properly. For example, renormalization in relative terms 

involves adjusting the body composition data by a factor that is based on the proportion 

of each component in relation to the total body weight, while renormalization in absolute 

terms involves adjusting the body composition data by a fixed amount. When 

renormalization is performed in absolute terms, components with lower abundance in the 

body composition data, such as ash, will be more affected than components with higher 

abundance. Thus, renormalization in relative terms may be more appropriate when the 

goal is to compare body composition between individuals or populations, while 

renormalization in absolute terms may be more appropriate when the goal is to correct 

for analytical or sampling differences.  

Laboratory errors and the sensitivity of chemical measurements can both have a 

significant impact on the accuracy of crude lipids measurements in fish samples and 

thus, may explain the overall higher PE for crude lipids. Different extraction methods 

(e.g., different solvents, extraction times and temperatures) may yield different results, 

and some methods may be more sensitive than others for detecting certain types of 

lipids. Additionally, laboratory errors such as, contamination, improper sample handling 

or storage, and errors in equipment calibration or data analysis, can also affect lipid 

measurements. 

 

5. Conclusion     

In general, the BC3 model was more accurate in estimating fish body composition. 

This suggests that, besides fish body weight, considering water and ash whole body 

content may improve model performance. Therefore, model BC3 in ficoEst seems to be 

a useful tool to estimate fish body composition of Nile tilapia, Atlantic salmon, gilthead 

seabream, European seabass and rainbow trout.  

There are still some challenges in modelling body composition in fish, such as the 

lack of representative and high-quality data for certain species and growth stages. Also, 

the complex nature of fish growth and development makes it difficult to develop models 

that accurately capture all the variables involved (e.g., changes in fish metabolism during 

maturation, nutrient flux such as fatty acids in fish body). Therefore, there is still space 

for further research to overcome these challenges and continue to improve aquaculture 

practices.  
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Body composition | model validation | BC1 | tilapia 

Body composition | model validation | BCRA | tilapia 

Body composition | model validation | BC2 | tilapia 
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Body composition | model validation | BC3 | tilapia 

Figure 1 - Prediction errors (MAPE) from model validation (scatterplots) and mean percentage error (PE) for observations (bar chart) 
for Nile tilapia. 
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Figure 2 - Prediction errors (MAPE) from model validation (scatterplots) and mean percentage error (PE) for observations (bar chart) 
for Atlantic salmon. 
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Figure 3 - Prediction errors (MAPE) from validation (scatterplots) and mean percentage error (PE) for observations (bar chart) for 
gilthead seabream. 
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Figure 4 - Prediction errors (MAPE) from validation (scatterplots) and mean percentage error (PE) for observations (bar chart) for 
European seabass. 

Body composition | model validation | BC1 | seabass 

Body composition | model validation | BCRA | seabass 

Body composition | model validation | BC2 | seabass 

Body composition | model validation | BC3 | seabass 

Crude protein Crude lipids Water Ash Phosphorus Energy 
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Figure 5 - Prediction errors (MAPE) from model validation (scatterplots) and mean percentage error (PE) for observations (bar chart) 

for rainbow trout. 

Body composition | model validation | BC1 | trout Body composition | model validation | BC2 | trout 

Body composition | model validation | BC3 | trout Body composition | model validation | BCRA | trout 

Crude protein Crude lipids Water Ash Phosphorus Energy 
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Table 1 – Summary of the data used to calibrate and validate the models for each species. 

Attributes Unit 
Nile  

tilapia 

Atlantic 

salmon 

Gilthead 

seabream 

European 

seabass 

Rainbow 

trout 

Nr. of data sources - 52 50 58 29 41 

Nr. of observational 

units 

- 377 368 442 161 331 

Body weight range g 1 – 571 1 - 4950 1 – 582 5 - 482 2 - 2008 

Temperature range °C 21 – 32 2– 23 18 – 27 13 - 29 6 - 19 

Body composition        

Water %  62 – 82 60 – 82 58 - 80 58 – 76 59 – 82 

Crude protein %  10 – 22 12 – 20 14 – 22 14 – 21 13 - 20 

Crude lipids %  1 – 17 2 – 20 2 – 22 1 – 22 2 – 22 

Ash %  1 – 8 1 – 2 3 – 7 3 – 7 1 – 4 

Diet composition       

Crude protein % as 

fed 

18 – 56 31 – 61 36 – 68 33 – 57 16 – 65 

Crude lipids % as 

fed 

2 – 18 10 – 39 7 – 34 8 – 29 3– 35 

Gross energy g/MJ 13 – 21 18 – 26 17 - 24 17 – 25 17 - 25 
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Table 2 - Overview and description of models. 

  * ficoEst models 

** Raposo et al. (2023) model 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Crude protein (P) Crude lipids (L) Water (W) Ash (A) Phosphorus (Ph) Energy (E) 

*BC1 
Allometric 

f(BW) 
Allometric 

f(BW) 
Allometric 

f(BW) 
Allometric 

f(BW) 
 Isometric 

f(A) 

Energetic 
f(P, L) 

(based on energetic 
coefficients) 

*BC2 

Ensemble averaging  
f(BW, W, A) 

(allometric and partition 
model) 

Difference 
f(BW, P, W, A) 

input 
Allometric 

f(BW) 
Isometric 

f(A) 

Energetic  
 f(P, L)  

(based on energetic 
coefficients) 

*BC3 

Ensemble averaging  
f(BW, W, A) 

(allometric and partition 
model) 

Difference 
f(BW, P, W, A) 

input input 
Isometric 

f(A) 

Energetic  
f(P, L) 

(based on energetic 
coefficients) 

**BCRA 

Ensemble averaging  
f(BW) 

(allometric and 
isometric) 

Ensemble averaging  
f(BW) 

(allometric and 
isometric) 

Ensemble averaging  
f(BW) 

(allometric and 
isometric) 

Ensemble averaging  
f(BW) 

(allometric and 
isometric) 

Ensemble averaging  
f(BW) 

(allometric and 
isometric) 

Energetic 
f(P, L) 

(based on energetic 
coefficients) 
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Table 3 - Mean absolute percentage error (MAPE) for calibration with 5-fold cross-validation (10 repetitions) for tested models for each species. 
 

Crude protein Crude lipids Water Ash Phosphorus Energy 

Nile tilapia 
Train 
MAPE 

Test 
MAPE 

Train 
MAPE 

Test 
MAPE 

Train 
MAPE 

Test 
MAPE 

Train 
MAPE 

Test 
MAPE 

Train 
MAPE 

Test 
MAPE 

Train 
MAPE 

Test 
MAPE 

BC1 6.97 7.07 33.78 33,96 3.28 3.32 21.24 21.48 29.57 29.79 13.19 13.16 
BC2 6.62 6.68 24.10 24,27 - - 20.97 21.20 34.55 38.23 8.40 8.45 
BC3 6.31 6.39 20.07 20,15 - - - - 23.75 28.19 7.33 7.35 

BCRA 7.53 7.59 44.12 44,24 3.30 3.33 20.88 21.01 30.03 34.58 19.03 19.05 
Atlantic salmon             

BC1 4.99 5.03 21.42 21,61 2.48 2.49 10.39 10.49 18.25 18.02 8.00 8.02 
BC2 5.35 5.40 11.58 11,65 - - 10.52 10.62 26.54 27.30 4.33 4.35 
BC3 5.43 5.47 9.63 9,69 - - - - 12.57 12.76 4.25 4.27 

BCRA 7.63 7.66 41.49 41,52 4.26 4.27 10.83 10.91 14.13 14.72 14.63 14.67 
Gilthead 
seabream 

            

BC1 4.41 4.43 20.61 20,74 3.09 3.11 12.47 12.56 53.30 54.38 9.65 9.72 
BC2 4.19 4.22 10.29 10,34 - - 12.51 12.61 52.38 54.85 5.42 5.42 
BC3 4.58 4.61 9.05 9,09 - - - - 46.97 49.04 4.53 4.53 

BCRA 4.66 4.67 31.13 31,21 3.92 3.93 12.54 12.58 52.28 53.92 14.02 14.09 
European 
seabass 

            

BC1 5.51 5.59 22.63 22,95 3.27 3.30 9.31 9.56 10.57 12.32 9.42 9.49 
BC2 5.19 5.28 11.59 11,82 - - 9.28 9.54 12.63 13.49 5.18 5.21 
BC3 5.25 5.34 10.21 10,41 - - - - 11.68 12.62 4.60 4.62 

BCRA 5.63 5.71 34.37 34,71 4.11 4.16 9.42 9.57 10.49 11.64 12.75 12.83 
Rainbow trout             

BC1 5.33 5.38 28.72 28,97 2.72 2.73 15.12 15.37 16.00 15.97 11.37 11.40 
BC2 5.96 6.02 12.76 12,89 - - 15.05 15.30 13.51 13.89 4.45 4.45 
BC3 6.05 6.11 9.15 9,23 - - - - 20.97 20.99 4.52 4.52 

BCRA 7.63 7.66 38.30 38,51 3.10 3.12 14.89 15.03 14.30 14.57 11.95 11.99 
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Appendix 1  

Appendix 1.A –This table provides a comprehensive list of sources referenced for data utilized within the study. 

Specie Source 

 
Nile tilapia 

 
Abdel-Tawwab, M., Abdel-Rahman, A. M., & Ismael, N. E. (2008). Evaluation of commercial live bakers’ yeast, 

Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) 
challenged in situ with Aeromonas hydrophila. Aquaculture, 280(1-4), 185-189. 

Abdel-Tawwab, M., Ahmad, M. H., Khattab, Y. A., & Shalaby, A. M. (2010). Effect of dietary protein level, initial body weight, 
and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis 
niloticus (L.). Aquaculture, 298(3-4), 267-274. 

Abdel-Tawwab, M., El-Sayed, G. O., & Shady, S. H. (2012). Effects of dietary protein levels and environmental zinc 
exposure on the growth, feed utilization, and biochemical variables of Nile tilapia, Oreochromis niloticus (L.). 
Toxicological & Environmental Chemistry, 94(7), 1368-1382. 

Abdelghany, A. E., & Ahmad, M. H. (2002). Effects of feeding rates on growth and production of Nile tilapia, common carp 
and silver carp polycultured in fertilized ponds. Aquaculture Research, 33(6), 415-423. 

Afuang, W., Siddhuraju, P., & Becker, K. (2003). Comparative nutritional evaluation of raw, methanol extracted residues 
and methanol extracts of moringa (Moringa oleifera Lam.) leaves on growth performance and feed utilization in Nile 
tilapia (Oreochromis niloticus L.). Aquaculture Research, 34(13), 1147-1159. 

Ahmad, M. H., & Abdel-Tawwab, M. (2011). The use of caraway seed meal as a feed additive in fish diets: Growth 
performance, feed utilization, and whole-body composition of Nile tilapia, Oreochromis niloticus (L.) fingerlings. 
Aquaculture, 314(1-4), 110-114. 

Ahmad, M. H., El Mesallamy, A. M., Samir, F., & Zahran, F. (2011). Effect of cinnamon (Cinnamomum zeylanicum) on 
growth performance, feed utilization, whole-body composition, and resistance to Aeromonas hydrophila in nile 
tilapia. Journal of Applied Aquaculture, 23(4), 289-298. 

Al-Asgah, N. A., & Ali, A. (1997). Growth performance and body composition of Oreochromis niloticus reared at different 
water temperatures. In Annales de zootechnie (Vol. 46, No. 4, pp. 331-338). 

Ali, A. (2003). Effect of feeding different levels of alfalfa meal on the growth performance and body composition of Nile 
tilapia (Oreochromis niloticus) fingerlings. Asian Fish. Sci., 16, 59-67. 
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Ali, A., & Al-Asgah, N. A. (2001). Effect of feeding different carbohydrate to lipid ratios on the growth performance and body 
composition of nile tilapia (oreochromis niloticus) fingerlings. Animal Research, 50(1), 91-100. 

Ali, A., Al‐Ogaily, S. M., Al‐Asgah, N. A., Goddard, J. S., & Ahmed, S. I. (2008). Effect of feeding different protein to energy 
(P/E) ratios on the growth performance and body composition of Oreochromis niloticus fingerlings. Journal of 
Applied Ichthyology, 24(1), 31-37. 

Ali, M. S., Stead, S. M., & Houlihan, D. F. (2008). Effects of dietary protein on growth, food consumption and body 
composition of Nile tilapia (Oreochromis niloticus L.). Journal of the Bangladesh Agricultural University, 6(452-2018-
4020), 99-108. 

Belal, I. E., & Al‐Dosari, M. (1999). Replacement of fish meal with Salicornia meal in feeds for Nile tilapia Oreochromis 
niloticus. Journal of the World Aquaculture Society, 30(2), 285-289. 

Bomfim, M. A. D., Lanna, E. A. T., Donzele, J. L., Abreu, M. L. T. D., Ribeiro, F. B., & Quadros, M. (2008). Redução de 
proteína bruta com suplementação de aminoácidos, com base no conceito de proteína ideal, em rações para 
alevinos de tilápia-do-nilo. Revista Brasileira de Zootecnia, 37(10), 1713-1720. 

Bomfim, M. A. D., Lanna, E. A. T., Donzele, J. L., Quadros, M., Ribeiro, F. B., & Araújo, W. A. G. D. (2008). Exigência de 
treonina, com base no conceito de proteína ideal, de alevinos de tilápia-do-nilo. Revista Brasileira de Zootecnia, 
37(12), 2077-2084. 

Boonanuntanasarn, S., Kumkhong, S., Yoohat, K., Plagnes-Juan, E., Burel, C., Marandel, L., & Panserat, S. (2018). 
Molecular responses of Nile tilapia (Oreochromis niloticus) to different levels of dietary carbohydrates. Aquaculture, 
482, 117-123. 

Cho, S. H., & Jo, J. Y. (2002). Effects of dietary energy level and number of meals on growth and body composition of Nile 
tilapia Oreochromis niloticus (L.) during summer and winter seasons. Journal of the World Aquaculture Society, 
33(1), 48-56. 

Chowdhury, D. K. (2011). Optimal feeding rate for Nile tilapia (Oreochromis niloticus), Master thesis, Norwegian University 
of Life Sciences. http://hdl.handle.net/11250/186022 

Daudpota, A. M., Abbas, G., Kalhoro, I. B., Shah, S. S. A., Kalhoro, H., Hafeez-ur-Rehman, M., & Ghaffar, A. (2016). Effect 
of feeding frequency on growth performance, feed utilization and body composition of juvenile Nile tilapia, 
Oreochromis niloticus (L.) reared in low salinity water. Pakistan Journal of Zoology, 48(1). 

Devic, E., Leschen, W., Murray, F., & Little, D. C. (2018). Growth performance, feed utilization and body composition of 
advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) 
larvae meal. Aquaculture nutrition, 24(1), 416-423. 
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El-Hakim, A., Et-Gendy, M., & Salem, M. (2007). Effect of incorporation of fish silage into diets on growth performance and 
body composition of Nile tilapia (Oreochromis niloticus). Egyptian Journal of Aquatic Biology and Fisheries, 11(2), 
101-117. 

El‐Haroun, E. R., Goda, A. S., & Kabir Chowdhury, M. A. (2006). Effect of dietary probiotic Biogen® supplementation as a 
growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquaculture 
Research, 37(14), 1473-1480. 

El‐Saidy, D. M., & Gaber, M. M. (2003). Replacement of fish meal with a mixture of different plant protein sources in juvenile 
Nile tilapia, Oreochromis niloticus (L.) diets. Aquaculture Research, 34(13), 1119-1127. 

El‐Saidy, D. M., & Gaber, M. M. (2005). Effect of dietary protein levels and feeding rates on growth performance, production 
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 Appendix 2 

  

Appendices 2.A – Correlation matrix for body composition components when expressed in absolute values (g or 

kJ), for Nile tilapia. 
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Appendices 2.B - Correlation matrix for body composition components when expressed in absolute values (g or 
kJ), for Atlantic salmon. 



 

162 
 

 

  

Appendices 2.C - Correlation matrix for body composition components when expressed in absolute values (g or 
kJ), for gilthead seabream. 
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Appendices 2.D - Correlation matrix for body composition components when expressed in absolute values (g or 
kJ), for European seabass. 
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Appendices 2.E - Correlation matrix for body composition components when expressed in absolute values (g or 
kJ), for rainbow trout. 
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Abstract 

 

The aquaculture sector has been steadily growing and thus there is an increasing 
need to develop mathematical models that allow the estimation of production-related 
parameters. Prediction of fish growth, feed requirements and waste outputs, are 
essential in order to ensure the profitability and sustainability of the production activities. 
Bioenergetic models have been widely used to estimate growth based on energy 
budgets, but they have some limitations by not explicitly considering the mass-balance 
of the main macronutrients (e.g., protein). In turn, nutrient-based models are more 
explanatory, as they consider both energy and nutrient inputs, and estimate fish growth 
by simulating nutrient accumulation in the fish body. Although some bioenergetic and 
nutrient-base models for predicting Nile tilapia growth exist in the literature, their 
suitability is not entirely clear, since their development is often based on uncertain or 
suboptimal criteria (e.g., relying solely on calibration goodness-of-fit measures). 

In this work, Nile tilapia growth datasets covering a wide range of rearing conditions 
and feed compositions were collected from the scientific literature. An exploratory 
analysis of the collected data was performed to clarify the relationships between 
energy/protein intake and gain. In this analysis, a direct relationship was observed 
between digestible energy intake and energy gain, as well as between digestible protein 
intake and protein gain. Protein gain showed better efficiency than energy gain, even at 
higher intake levels and without clear evidence of a saturation effect. While digestible 
energy intake negatively affects energy retention efficiency, digestible protein intake 
does not significantly impact protein retention efficiency. Furthermore, while energy 
retention efficiency varies with fish body weight, the same effect was not observed for 
protein retention efficiency. Finally, though DP/DE ratio has no apparent effect on energy 
retention efficiency, it seems to negatively affect protein retention efficiency. Considering 
these observations, plausible growth models with different levels of complexity were 
developed and calibrated under a diverse set of assumptions. Additionally, two growth 
models already published for Nile tilapia were calibrated using the same datasets, and 
their performance was compared with the models developed in the present study. 
Furthermore, fish body weight seems to affect the energy retention efficiency. The results 
of model evaluation showed that energy-protein flux models (EP models) have lower 
errors in predicting fish growth than pure bioenergetic models (MAPEbw ~9% against 
~13%, respectively), showing the importance of considering protein intake when 
estimating Nile tilapia growth. Furthermore, assuming the fixed standard metabolic body 
weight exponents of 0.80 and 0.70 (for energy and protein, respectively), rather than 
estimating them from the data, seemingly improved the predictive ability of the models. 
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This approach demonstrates the benefits of coupling bioenergetics with nutrient-based 
models to predict growth and body composition of Nile tilapia along time. 

 

Keywords: Energy-protein flux models, Bioenergetic models, Prediction tools, Precision 

aquaculture, Model selection 

 

Highlights 

• Digestible energy intake has a negative effect on energy retention efficiency. 

 

• The DP/DE ratio has a negative effect on protein retention efficiency. 

 

• Protein intake data is useful for estimation of tilapia growth and body 

composition. 

• Using standard body weight exponents results in the best models. 
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1. Introduction 

To achieve optimal performance in aquaculture, it is important to have good control 

of feeding by adapting it to the current state of production, in order to ensure optimal 

growth at reduced costs and low environmental impact. Therefore, feeding strategies 

should be optimized, among other considerations, through a careful daily estimation of 

the standing biomass. Due to the impracticality of daily measurement of fish biomass, it 

is crucial to understand in an objective and practical way, the growth patterns, and their 

underlying mechanisms, to allow (for example) biomass estimation between 

measurements. Mathematical models are a good tool to use in such cases, where it is 

impracticable to directly measure the system response, and also assist in data 

interpretation and decision support (Føre et al., 2018). 

Traditionally, empirical mathematical models (e.g., SGR, TGC, FCR) have been 

used in aquaculture to predict growth due to their simplicity and ease of parameter 

determination. However, such models often ignore important aspects, such as feeding 

information (e.g., feed quantities or properties), and/or lack clear physical/biological 

support, being inadequate as general context-independent prediction models. In 

academic contexts, other alternatives have been suggested, such as the use of 

bioenergetic and nutrient-based models, which are based on the principles of energy 

and nutrient balance: 

net balance = intake - losses 

These types of models take into consideration feed quantities and (at least some) 

properties, which allows them to provide more precise growth predictions. A common 

bioenergetic modelling approach is to describe the partitioning of food energy into 

excretory energy (FE, UE and ZE), heat production/increment (HiE) and 

recovered/retained energy (RE) (Brett & Groves, 1979; Xie et al., 2011). The RE can 

therefore be calculated as: 

RE = IE − FE − (UE + ZE) − HiE, (Xie et al., 1997, 2011) 

where IE represents the intake component, while FE+(UE+ZE) +HiE represents the 

losses component. However, this type of model can be converted to a simpler model 

where the losses are subdivided into two components: intake-dependent losses 

(COG*DE) and intake-independent losses (FM) – the advantage of this approach is that 

it is simpler (i.e., less parameters) and thus more identifiable and easier to calibrate: 

RE = (1 − COG) × DE − FM 

where COG represents the costs of growth – in this case costs of energy deposition 

(Bureau et al., 2000; Conceição et al., 1998) – usually equated with the specific dynamic 
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action (SDA), DE is the digestible energy, used for growing and maintenance, and FM 

represents the fasting maintenance losses, which are usually assumed to depend on 

body weight and temperature: 

𝐹𝑀(𝐵𝑊, 𝑇) = 𝑎 × 𝐵𝑊𝑏 × 𝑒𝑐×𝑇 

where BW is the body weight, T is temperature and a, b and c are estimated 

parameters. The “b” parameter is often called the “body weight exponent” and has 

biological significance as it represents how costs scale with fish size. 

Bioenergetic models often have significant limitations in describing the chemical 

composition (i.e., moisture, protein, lipid, and ash) of biomass gain (Dumas et al., 2010). 

Additionally, they can present several drawbacks when applied under the overly 

simplistic assumption that the energy density of fish is constant (Canale & Breck, 2013; 

Dumas et al., 2010). In turn, nutrient-based models, such as energy-protein flux models 

(EP models), besides energy, also consider protein intake to predict growth and body 

composition based on protein retention equations along with fish weight and temperature 

(Nobre et al., 2019). In these models, maintenance requirements are influenced by body 

size and temperature, whereas growth requirements are influenced by the magnitude 

and composition of weight gain (Bureau et al., 2003; Lupatsch et al., 1998, 2003b, 2003a; 

Lupatsch & Kissil, 2005). Furthermore, the metabolic expenditure (protein and energy 

losses) for maintenance can be characterized by an exponent that determines the 

change in metabolic rate as a function of body weight (Lupatsch & Kissil, 2005).Thus, in 

this work, we consider an alternative parametrization of the model mentioned above, 

where an explicit “retention efficiency coefficient” (k) replaces the COG parameter, 

applying it both to energy and protein retention: 

RE = 𝑘𝐸 × DE − FME 

RP = 𝑘𝑃 × DP − FMP 

The estimation of these exponents is already documented for different fish families 

(Clarke & Johnston, 1999) and species, such as barramundi Lates calcarifer (Glencross, 

2008), gilthead seabream Sparus aurata (Lupatsch et al., 1998), European seabass 

Dicentrarchus labrax, white grouper Epinephelus aeneus (Lupatsch et al., 2003a; 

Lupatsch, Kissil, & Sklan, 2001) and yellowtail kingfish Seriola lalandi  

(Booth et al., 2010), and generally similar metabolic weight exponents of energy and 

protein have been reported. Therefore, it is broadly accepted to assume standard 

metabolic body weight exponents of 0.80 and 0.70 for energy and protein, respectively. 

Though it is possible to estimate the metabolic body weight exponents for energy and 

protein using calibration data related to experiments performed either with fed and unfed 
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fish, it is not clear whether it is preferable or more correct to do so over assuming fixed 

standard exponents. 

There are still some scientific and technical questions regarding the implementation 

of nutrient-based models, which perhaps hampers their more widespread adoption in 

commercial settings. One could be the lack of transparency regarding the way models 

are developed and the assumptions that are made during calibration, which often makes 

them impossible or very difficult to replicate. During the model development process, it 

is important to assess both calibration and validation errors. First, one should calibrate 

models under different assumptions (i.e., using different calibration methods) and 

estimate the performance of the calibration process (e.g., through cross-validation) in 

generating models that effectively predict new data. This evaluation should be carried 

out as objectively as possible, considering not only quantitative criteria (e.g., error 

metrics), but also qualitative ones (e.g., diagnostic plots), in order to consistently ensure 

an acceptable predictive ability of the models. Ultimately, to ensure that the model can 

effectively predict new data (i.e., data not used during the calibration process), and to 

fairly quantify expected prediction errors, it is necessary to perform a validation with an 

independent data set and assess validation errors.  

There is a need to explore and develop models that can be fairly easy to use by fish 

farmers and still have the ability to predict fish growth and composition based on 

fundamental properties of fish metabolism. Therefore, there must be an effort by the 

scientific community to overcome some scientific and technical issues regarding the 

implementation of these models by the industry and thus bridge the gap between both. 

Herein, Nile tilapia was chosen as a model fish due to its aquaculture importance, since 

it is one of the most economically important fish species in aquaculture. Moreover, it is a 

widespread distribution species - which in part is linked to its remarkable ability to tolerate 

diverse environmental condition (e.g., water temperatures, salinities and oxygen levels). 

Additionally, it is omnivorous species and thus can thrive on a variety of diets. These 

makes Nile tilapia an ideal species for investigating responses not only to environmental, 

but also to different nutritional stressors. In this work, Nile tilapia growth data were 

collected and used to compare different combinations of models and calibration 

methods, using objective criteria based on cross-validation, to determine the best 

combination for this species. Additionally, we also sought to clarify the relative merit of 

different biological and technical hypotheses by calibrating models under these different 

assumptions and comparing them in terms of their capacity to generalize for new data. 
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2. Materials and methods 

2.1 Data collection and analysis 

Nile tilapia growth data were collected from the literature to be further used for model 

calibration and validation, covering a wide range of rearing conditions and feed 

composition (Table 1 and Table 2, respectively). All datasets were converted into a 

standard format where information on the growth, body composition, feed conversion 

ratio (FCR), water temperature and diet properties are stored on a daily resolution basis. 

Missing data was handled by using default values (e.g., apparent digestibility 

coefficients) or by applying interpolation methods (e.g., daily feed intake was estimated 

based on FCR and growth, when not reported in literature. 

An exploratory analysis of calibration data was performed to see how relevant 

responses were affected by different factors (e.g., body weight, feed intake, digestible 

protein intake, digestible energy intake) and to obtain information that could be relevant 

for model development. This analysis consisted mainly of scatter plot visualization and 

trend line evaluation (linear vs. non-linear) of ingested against retained protein and 

energy fractions, using the F-test to assess the statistical significance of results. 

 

2.2 Model evaluation and calibration methods 

Growth models with diverse levels of complexity (FCR, bioenergetic, energy-protein 

flux) were developed. In addition, 2 models already published by other authors 

(Chowdhury et al., 2013; van Trung et al., 2011) were recalibrated with our dataset in 

order to fairly evaluate their performance. Different calibration methods were 

implemented: by considering either least squares or Huber loss; by considering either 

fixed standard or estimated body weight exponents for the fasting maintenance and body 

composition sub-models; and by considering either only fixed effects or both fixed and 

random (mixed model) effects during model calibration. Body weight exponents were 

estimated by considering that protein/energy loss in fasted fish is proportional to body 

weight (BW) raised to a certain exponent. Thus, by applying multilinear regressions of 

log(loss) as a function of log(BW) and temperature, the BW exponents are recovered as 

one of the coefficients. To complement the limited data available for Nile tilapia under 

fasting conditions, the exponent estimates also considered (with low weight) fasting loss 

estimates obtained for growing fish by extrapolation of the trial-wise gain/intake 

relationships to ‘zero intake’. Therefore, by calibrating the different models under the 

different sets of assumptions (see Figure 1), 73 combinations of “models + calibration 

methods” were obtained and their performance was evaluated. The combinations of 

“model + calibration method” were evaluated qualitatively by visual examination of model 
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behaviour (e.g., observed vs. predicted plots) and residuals (e.g., Q-Q plots), and 

quantitatively by calculating the mean absolute percentage error (MAPE) and root mean 

square error (RMSE), as follows: 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 Σ𝑖=1 

𝑛 |
𝑦𝑖 −  ŷ𝑖

𝑦𝑖
| × 100 

𝑅𝑀𝑆𝐸(𝑔) =  √ 
Σ𝑖=1 

𝑛 (ŷ𝑖 −  𝑦𝑖)2

𝑛
 

 

where, ŷi is the predicted value, yi is the observed value and n the number of 

predicted-observed value pairs.  

Moreover, in addition to calibration error metrics, focus was given on cross-validation 

errors obtained through different cross-validation methods (k-fold cross-validation with 

k=10, k=5 and k=2, with 5, 10 and 25 repetitions, respectively), to ensure that the chosen 

models display the best performance when predicting outside their calibration set. To 

determine the risk of overfitting and to decrease the degree of subjectivity, cross-

validation was performed with different k values in order to subject the combinations to 

different levels of "difficulty", since, as the k value decreases, less data is available to 

calibrate the model. 

All analyses were performed using R version 4.1.2 (R Core Team, 2021), where the 

rlm function from the MASS package (Venables & Ripley, 2002) was used to calibrate 

the robust models and nlme function from the nlme package (Pinheiro & Bates, 2000) 

was used to calibrate mixed-effects models. 

 

2.3 Validation of calibrated models 

From the 73 “model + calibration methods” combinations, a representative sample of 

12 models of different types and with different levels of performance were chosen to be 

validated. In addition to the models from Chowdhury et al. (2013) and van Trung et al. 

(2011) that were recalibrated with our data, the same models were also validated using 

their original parametrization (BE_Chow_par model from Chowdhury et al., 2013; 

EPG1_par model from van Trung et al., 2011). 

 

3. Results  

3.1. Data analysis 

 

Exploratory data analysis suggests a direct relationship between digestible energy 

intake and energy gain, and between digestible protein intake and protein gain  
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(Figure 2). It appears that there is better efficiency in protein gain, since the data tends 

to be closer to the y = x line than the energy data. Moreover, since both linear and 

quadratic models fit the data accurately, there is no strong evidence for a saturation 

effect at higher intake levels, on either energy or protein gain. On the other hand, though 

digestible protein intake does not appear to affect protein retention efficiency  

(F-test P > 0.05), which is consistent with the lack of a saturation effect, the same was 

not observed for digestible energy intake, where a negative effect on energy retention 

efficiency (F-test, P < 0.001) was observed (Figure 3). 

Regarding the effect of body weight, while there is no evidence of an effect on protein 

retention efficiency (F-test P > 0.05), a positive effect of fish body weight on energy 

retention efficiency (F-test, P < 0.001) was observed (Figure 4). Furthermore, no effect 

was found for DP/DE ratio on energy retention efficiency (F-test, P > 0.05) (Figure 5 A). 

However, it seems that an increased DP/DE ratio has a negative effect on protein 

retention efficiency (F-test, P < 0.001) (Figure 5 B).  

 

3.2. Model calibration and evaluation 

Considering the results of cross-validation, nutrient-based models, like the EP model 

(energy-protein flux), generally appear to provide better predictions than the simpler 

bioenergetic models. Overall, the results of the different cross-validations were 

consistent, in the sense that the best and worst performing models were generally the 

same regardless of the type of cross-validation used. However, it is important to mention 

that the overall agreement was not entirely exact, since each cross-validation method 

presented a slightly different order/classification for models (Table 3). 

In particular, EP models displayed calibration and cross-validation errors between 7 

and 11% for body weight, and between 12 and 14% for body composition. In turn, 

bioenergetic models had calibration and cross-validation errors between 9 and 26% for 

body weight, and 13% for body composition predictions (Table 3). Additionally, models 

had better prediction capabilities when calibrated under the assumption of fixed standard 

body weight exponents for fasting maintenance (0.80 and 0.70 for energy and protein, 

respectively) or with isometric ones (exponents=1). By visually analysing the models’ 

behaviour, it was evidenced that the same model can display distinct behaviours when 

calibrated with different methods (see, for example, Figure 6).  

The model’s complexity seemed to affect its predictive capability (Table 3). Overall, 

models that only considered energy (i.e., BE models) to predict growth had higher 

prediction errors than models that also consider protein besides energy (i.e., EP models). 

Furthermore, bioenergetic models, like BE, displayed poor growth predictions and 

additionally presented large discrepancies in the initial predictions of body composition 
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(Figure 6). This was further supported by analysis of the calculated metrics (e.g., MAPE), 

in which cross-validation errors were higher than calibration ones. The bioenergetic 

model obtained from Chowdhury et al. (2013) (BE_Chow) was the one with the highest 

calibration and cross-validation errors, with a MAPE of 26% for body weight and 13% 

for body composition. In turn, the BECOG_iso model was the bioenergetic model with 

the best performance, showing calibration and cross-validation errors between 9 and 

12% for body weight, and 14% for body composition.  

The van Trung et al. (2011) model (EPG1) performed better than the BE_Chow, 

obtaining calibration errors with a MAPE  9% for body weight and ≈15% for body 

composition; cross-validation errors with a MAPE of 12% for body weight and ≈16% for 

body composition was also obtained (Table 3). Interestingly, the FCR model had better 

predictions than the bioenergetic models in general and the EPG1 model, in general, 

showing calibration errors with a MAPE of 11% for body weight and ≈13% for body 

composition, and cross-validation errors with a MAPE≈10% for body weight and ≈12% 

for body composition (Table 3). 

The metabolic body weight exponents were estimated for the calibration dataset 

(Table 1) by different methods and varied between 0.71-0.77 for energy and 0.76-0.78 

for protein. However, models in which the standard metabolic body weight exponents 

(0.80 and 0.70, for energy and protein, respectively) were assumed showed a better 

predictive capability than methods that considered the estimated exponents (Table 3).   

 

3.3. Model validation 

Out of all tested models, the EP5_mixed (energy-protein model calibrated assuming 

mixed effects) and the EP5_u_rlm models (energy-protein model calibrated with Huber 

loss linear regression and with fixed body weight exponents for maintenance costs) 

displayed the best performance: both models presented similar validation errors, with a 

MAPE of 9 % for body weight (Table 4). In qualitative terms, both models predicted the 

validation data well, demonstrating a reasonably capacity to predict Nile tilapia growth 

and composition (Figure 6). Although both EP5_mixed and EP5_u_rlm displayed similar 

validation errors in predicting body weight, the EP5_mixed presented slightly lower 

validation errors when predicting body composition (MAPE of 7% vs. 8%), which may 

indicate more accurate body composition predictions (Figure 7).  

Overall, the bioenergetic models have worse performance in predicting Nile tilapia 

growth than EP models, though BECOG_iso seems to be the best tested bioenergetic 

model (MAPEbw ≈13% and MAPEbc ≈8%). Nevertheless, the tested models show fair 

predictions for Nile tilapia growth, except for the BE_Chow (MAPEbw = 28% and  
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MAPEbc = 7%), EPG1_par (MAPEbw = 34% and MAPEbc = 116%) and BE_Chow_par 

(MAPEbw = 178 % and MAPEbc = 10%).  

The FCR model displayed the lowest RMSE validation error (16.81 g) of all tested 

models and one of the lowest MAPE values for both weight and body composition 

(MAPEbw = 11% and a MAPEbc = 7%). 

The Chowdhury et al. (2013) and van Trung et al. (2011) models seem to perform 

better when parameterised with the dataset used in this study  

(BE_Chow MAPEbw = 27 % vs. BE_Chow_par MAPEbw = 178 %;  

EPG1 MAPEbw = 10% vs. EPG1_par MAPEbw = 34%). However, regardless of the 

parameterization used, the model retrieved from Chowdhury et al. (2013) performed 

better when body composition is updated based on the composition of the body weight 

gained (BE_Chow2 and BE_Chow2_par), rather than considering the whole-body weight 

of the fish (BE_Chow and BE_Chow_par) (Table 3). 

 

 

4. Discussion 

Mathematical models can be useful tools to describe the various processes involved 

in fish growth. It is necessary to understand the processes to be modelled, and careful 

and thorough data collection and analysis is of utmost importance. This will help describe 

and clarify the relationships inherent to the processes, before starting developing the 

model. In this context, the relationship between protein and energy intake, and deposition 

is one of the key aspects underlying fish growth. The data collected in this work pointed 

towards a linear relationship between digestible energy intake and energy gain for Nile 

tilapia. This is consistent with what has been previously demonstrated by Lupatsch et al. 

(2010) for Nile tilapia and by Lupatsch et al. (2001, 2003a, b) for gilthead seabream, but 

does not support the quadratic relationship model that Van Trung et al. (2011) reported 

for Nile tilapia. Likewise, the relationship between digestible protein intake and protein 

gain is linear, confirming previous observations (Lupatsch et al., 1998, 2010). 

Nevertheless, other studies reported a quadratic relationship in Nile tilapia  

(Van Trung et al., 2011) and other species (Booth et al., 2010; Glencross et al., 2011; 

Glencross, 2008; Lupatsch, Kissil, Sklan, et al., 2001). Konnert et al. (2022) have 

recently stated that protein gain in Nile tilapia follows a two-phased response to 

increasing protein intake, being described by a linear–plateau model. Their model 

indicates that protein deposition is linear until 8.4 g kg0.8 day-1 and then levels-off. In the 

present study instead of a level-off pattern, a linear relationship was observed, possibly 

because of data scarcity above 8 g kg0.8 day-1. This is mainly because most of the trials 

in the literature do not overfeed tilapia with fat or protein, making it impossible to obtain 
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data showing the effect of saturation on energy or protein gain. Thus, what the results 

show is that the linear model works better than the quadratic model to show the 

relationship between intake and gain when Nile tilapia is fed diets that are not extremely 

dense in terms of protein or fat composition. Furthermore, our analysis shows that the 

energy retention efficiency is body weight-dependent. Likewise, Breck (2011), showed 

that fish energy density varies with body size and should be considered to enhance the 

performance of bioenergetic models. Moreover, DP/DE was shown to negatively affect 

protein retention efficiency, supporting previous studies by Haidar et al. (2018) and 

Konnert et al. (2022) in Nile tilapia. But this does not apply to energy retention efficiency, 

as Konnert et al. (2022) had already reported for Nile tilapia. 

During model evaluation, the quantitative and qualitative analyses were combined 

with different cross-validation methods to objectively identify the best models and 

calibration methods. Though generally consistent, the results of these were not always 

entirely in agreement due to how each method penalizes models according to their 

complexity: methods with lower k-values are more restrictive and therefore exert a higher 

penalty on more complex models, than methods with higher k-values  

(Hastie et al., 2001).  

After the calibration and cross-validation process, the models were validated with an 

independent Nile tilapia dataset, where  EP5_u_rlm and EP5_mixed displayed the lowest 

validation errors and thus, were considered the best models to be used to predict Nile 

tilapia growth. However, it should be noted that the EP5_mixed model has slightly lower 

validation errors for predicting body composition than EP5_u_rlm. This difference may 

be associated with the fact that the EP5_mixed model uses a calibration method where 

body composition is predicted with mixed-effect models. One advantage of using this 

type of approach is that it allows to overcome problems related to data heterogeneity 

(Schielzeth et al., 2020). The dataset used in this study is composed by data collected 

from different sources with distinct number of data/points, and each one with different 

conditions (e.g., types of culture, feeds, temperature, strains) that somehow can affect 

fish growth and body composition. Moreover, mixed-effect models are more flexible and 

thus overcome violations, when present, in distributional assumptions  

(Gelman & Hill, 2006; Schielzeth et al., 2020). Furthermore, such models, can determine 

the appropriate shrinkage (i.e., partial pooling) for low-sample groups, pushing extreme 

values towards the mean (Schielzeth et al., 2020) and therefore, no matter how many 

points each source has, all will have balanced weights when performing regression 

analysis. The use of mixed effects models is therefore strongly advised when using 

heterogeneous datasets for model calibration. 
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In this study, different assumptions were made when developing bioenergetic 

models, which were based on the preliminary data analysis. For instance, for the BE 

model it was assumed that the fish energy density was body weight-dependent, but costs 

of growth (COG) were constant, whereas in BECOG both the costs of growth and fish 

energy density were body weight-dependent. The results showed that assuming that fish 

energy density and cost of growth are both body weight-dependent seems to be the most 

correct assumption, as the BECOG model proved to be the best performing bioenergetic 

model. Moreover, these results emphasize that the energy retention efficiency of Nile 

tilapia is seemingly body weight-dependent and should be taken into consideration when 

modelling growth (Breck, 2011), as also suggested by the preliminary data analysis.  

The models that were developed in this study presented lower validation errors when 

compared to those previously reported by van Trung et al. (2011) and 

Chowdhury et al. (2013) for Nile tilapia. In fact, when these models are parameterized 

with the dataset used in this study (BE_Chow and EPG1), they display better 

performance than when using the original parametrization obtained by the authors 

(BE_Chow_par and EPG1_par), highlighting the relevance of the dataset used to 

calibrate fish growth models as they can affect their prediction quality. Other factors may 

explain the poor performance of BE_Chow and BE_Chow_par models, such as the fact 

that protein intake is not considered and that the update of body composition is forced to 

follow the body composition model in Chowdhury et al. (2013). 

Another important factor that affects models’ performance is how the different body 

components (protein, lipids, water and ash) are updated and predicted. In this work, two 

different approaches were considered: a) predict body composition with a static model, 

directly as a function of fish body weight (e.g., BE, FCR, BE_Chow models); or b) use a 

dynamic model that updates water and ash according to protein retention, which in turn 

is calculated based on feed intake and feed composition. The first approach displayed 

large discrepancies in the initial predictions of body composition when compared to the 

observed ones, besides the poor predictions for growth. In turn, when the body 

composition is predicted based on protein retention equations (e.g., EP models), models 

displayed accurate body composition and growth predictions. However, the EP models 

when considering energy do not include the distinction between fat and carbohydrates. 

Therefore, this type of models may perform better for carnivorous species because the 

energy input comes mainly from fat and protein, while omnivorous species such as Nile 

tilapia use fat, protein and carbohydrates as energy sources (Boonanuntanasarn et al., 

2018; Stone, 2010). Interestingly, the FCR model, although one of the simplest tested 

models, displayed better performance than the bioenergetic ones. Although FCR had 

shown lower absolute errors (RMSE), they translate into higher relative errors for small 
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fish, which explains the suboptimal MAPE displayed by this method. The overall good 

performance displayed by this method can be explained, at least in part, by the fact that 

the daily feed intake in the dataset used in this study was often estimated based on FCR 

values reported in each source, which may provide the FCR model an unfair advantage. 

In addition, the good performance of FCR may also be related to tilapia dietary 

requirements when compared to other finfish species. Nile tilapia can digest 

carbohydrates well (Maas et al., 2020; NRC, 1993) and thus grow well when fed 

carbohydrate-rich and protein-poor diets (Bomfim et al., 2008; Botaro et al., 2007; Furuya 

et al., 2005). Therefore, since FCR ignores variations in diet properties, it makes the 

model perform somewhat reasonably well, even under extreme variations of these 

factors. However, the EP models had  3% more prediction capability compared to FCR, 

which shows that it is however still important to take protein input into account when 

modelling tilapia growth. 

Furthermore, the type of relationship between energy/protein intake and gain is also 

important to be considered.  In fact, this is the main difference between the van Trung et 

al. (2011) models (EPG1 and EPG1_par) and the EP models developed in this study: 

the EPG1 uses quadratic relationships, while the EP5 model assumes linear 

relationships. This does not mean that the van Trung et al. (2011) approach was 

necessarily incorrect, but rather that the assumptions made in model development are 

highly dependent on dataset selection. As previously mentioned, the data collected in 

this study do not describe any kind of quadratic but linear relationship between energy 

and protein. Therefore, linear equations were considered when developing the models. 

It is also for this reason that the EPG1 model calibrated with our data performed slightly 

worse than the EP models developed in present study.  

There is a lack of agreement between authors regarding the exponents for metabolic 

weight of fish. Clarke & Johnston (1999) reported that a metabolic body weight exponent 

for energy of 0.75 can be used for several fish species. Ye et al. (2021) also stated that 

the scaling exponent for Nile tilapia is not significantly different from 0.75, as described 

by “Kleiber’s law” (Kleiber, 1932). Some authors (Lupatsch et al., 1998, 2003b) have 

used measurements obtained under fasting conditions to help examine the relationship 

between changes in energy or protein and body weight. Ultimately, their findings indicate 

that protein and energy loss cannot be described by the same metabolic body weight. 

Others, like van Trung et al. (2011) and Glencross et al. (2011) reported for Nile tilapia 

and Pangasius catfish (respectively) a metabolic body weight exponent of 0.80 for both 

energy and protein. Both argue that it may have to do with the fact that tilapia is a low 

trophic level species, which results in different protein utilisation parameters compared 

to carnivorous species. In this study, we developed models that assumed either 
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fixed/standard exponents for energy and protein (0.80 and 0.70, respectively) according 

to Lupatsch et al (1998, 2003b, 2010) and Glencross (2008) reports, and models in which 

these exponents were estimated.  Although the estimates of body weight exponents 

(0.71-0.77 for energy and 0.76-0.78 for protein) were close to standard, models in which 

the standard metabolic body weight exponents (0.80 and 0.70, for energy and protein, 

respectively) were used showed a better predictive capability than methods that 

considered the estimated exponents. This shows that, apparently, it is possible to use 

the standard values of metabolic body weight exponents (0.80 and 0.70, for energy and 

protein, respectively), even for omnivorous fish species. 

 

5. Conclusion 

The results of this study contributed to a better modelling of the processes involved 

in Nile tilapia growth and body composition regulation and underline the importance of 

having a dataset covering a wide range of rearing and feeding conditions for model 

development. Moreover, the evaluation of models with different calibration assumptions 

and cross-validation methods, allowed an exploration of different possibilities and 

contributed to the clarification of important scientific (e.g., best model to predict growth) 

and technical questions (e.g., best calibration method). This study also highlighted that 

using information on protein intake is important to improve the estimations of Nile tilapia’s 

growth and body composition models. Additionally, the standard body weight exponents 

for maintenance costs for energy and protein (0.80 and 0.70, respectively) seem to be 

applicable also to Nile tilapia. It can, therefore, be speculated that omnivorous fish 

species use energy and protein in a similar way to carnivores. Ultimately, in some cases, 

the use of mixed-effects modelling for model calibration can be a good approach to 

overcome problems related to data heterogeneity. Thus, the developed work provides a 

meaningful contribution to a more widespread adoption of highly predictive nutrient-

based fish growth models for Nile tilapia, along with best practices in their development 

and evaluation, which can also be applied to other fish species. 

Nevertheless, despite the good prediction quality demonstrated by the EP models 

developed in this work, they have some limitations. For example, the inability to predict 

the impact of diets with imbalanced amino acid profiles on fish growth. Therefore, in the 

future it is important to incorporate other mechanistic features in such growth models, 

besides the addition of energy and protein intake. Additionally, modelling of amino acid 

metabolism is likely to increase the predictive accuracy of growth models for Nile tilapia 

and other fish species, providing a useful tool for the aquafeed sector. 
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Figure 1 - Diagram explaining the different types of models and calibration methods that have been developed based on 

different assumptions. 
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Figure 2 - Scatter plot showing the relation between digestible energy intake (kJ/day/kg0.8) and energy gain (kJ/day/kg0.8) (A), and the relation between digestible protein 
intake (g/day/kg0.7) and protein gain (g/day/kg0.7) (B), corrected by adding the fasting maintenance (FM) costs (to ensure a zero intercept). Black points represent measured 
values. Red line represents linear regression. Dashed orange line represents quadratic regression. Grey dotted line represents the “y = x” line (theoretical maximal 
response). 
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Figure 3 - Scatter plot showing the effect of digestible energy intake (kJ/day/kg0.8) on energy retention efficiency (A) and the effect of digestible protein intake 
(g/day/kg0.7) on protein retention efficiency (B). Black points represent measured values. Red line represents linear regression. 
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Figure 4 - Scatter plot showing the effect of fish body weight (g) on energy (A) and protein (B) retention efficiency. Black points represent measured values. Red line 
represents linear regression. 
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Figure 5 - Scatter plot showing the effect of digestible protein and digestible energy ratio (DP/DE) (g/MJ) on energy (A) and protein (B) retention efficiency. Black 
points represent measured values. Dashed orange line represents linear regression. 
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Figure 6 - Line plots showing predicted growth and body composition along time for different models, taking one of 
the calibration/validation datasets as prediction target. Green points represent measured values. Lines represent 
either an interpolated body composition value (dashed grey line) or a model prediction (full coloured lines). 
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Figure 8 - Scatter plot showing the differences between the observed and the predicted body weight points 
of EP5_fast_mixed model. Segmented black line represents the linear regression of y as a function of x 
and the dotted grey line represents the y = x line.  

Figure 7 - Scatter plot showing the differences between the observed and the predicted body weight points of 
EP5_fast_u_rlm model. Segmented black line represents the linear regression of y as a function of x and the 
dotted grey line represents the y = x line. 
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Table 1 - Summary of collected data used to calibrate models. 

Attributes Unit 
Nile 

tilapia 

Nr. of data sources - 27 

Nr. of diets - 
150 

 

Body weight range g 0.51 – 457 

Temperature range °C 23 – 29 

FCR - 0.9 – 3.9 

   

Diet composition range   

Crude protein % as fed 23 – 46 

Crude lipid % as fed 4 – 15 

Gross energy MJ/kg 14 – 20 

 

   

 

Table 2 - Summary of the independent dataset used to validate models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Attributes Unit 
Nile 

tilapia 

Nr. of data sources - 16 

Nr. of diets - 
103 

 

Body weight range g 0.51 – 571 

Temperature range °C 21.4 – 30 

FCR - 0.9 – 3.5 

   

Diet composition range   

Crude protein % as fed 22 – 45 

Crude lipid % as fed 2 – 15 

Gross energy MJ/kg 13 – 21 
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Table 3 – Representative sample of the developed models. Model’s error metrics calculated for each method of cross-validation. The greener cells indicate lower estimates of 
the generalization errors, and the reddish ones indicate higher ones. MAPEbw = Mean absolute percentage error for body weight; MAPEbc = Mean absolute percentage error for 
body composition. FM = fasting maintenance; BC = body composition; BWexp = body weight exponents. COG = costs of growth. 

  CALIBRATION CROSS-VALIDATION 

2-Fold CV Model acronym MAPEbw(%) RMSE (g) MAPEbc(%) MAPEbw(%) RMSE (g) MAPEbc(%) 

Energy-protein linear regression, 
BWexp = fixed 

EP5_u_iso 7,53 10,59 12,27 10,49 16,39 13,96 

Energy-protein linear regression, 
mixed effects to calculate all parameters 

EP5_mixed 8,00 10,49 12,13 10,94 16,41 13,15 

Energy-protein robust regression, 
BWexp = fixed 

EP5_u_rlm _iso 7,47 10,58 13,09 10,08 15,89 14,99 

Hybrid Energy-protein 
allometric/isometric ensemble average, 
linear regression, FM BWexp = fixed, BC 
BWexp = estimated 

EP5hyb_u 7,55 10,20 12,43 10,56 16,26 14,20 

Energy-protein linear regression, 
FM BWexp = fixed 

EP5_u 7,63 10,04 12,54 10,65 16,20 14,33 

Energy-protein linear regression, 
BC BWexp = fixed 

EP5_iso 7,30 9,92 12,23 11,43 16,89 13,72 

Energy-protein robust regression, 
FM BWexp = fixed 

EP5_u_rlm 7,58 10,11 13,48 10,23 15,64 15,49 

Energy-protein linear regression, 
mixed effects only to calculate FM 

EP5_mixed_fm 8,63 10,78 12,66 10,84 15,50 13,42 

FCR,  
BWexp = estimated 

FCR 9,77 16,57 13,40 11,32 17,00 13,41 

Bioenergetic model, linear regression 
FM BWexp = estimated, BC BWexp = 
fixed  
Fish energy density body weight-
dependent, COG body weight-dependent 

BECOG_iso 9,19 21,39 13,85 11,81 33,89 13,96 

*Energy-protein quadratic, 
BWexp = estimated 

EPG1 8,55 10,44 14,82 11,97 15,57 19,70 
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**Bioenergetic, linear regression, 
FM BWexp = estimated, BC BWexp = 
fixed, Fish energy density constant. Body 
composition is updated based on the 
composition of body weight gain. 

BE_Chow2 13,53 36,94 12,73 14,64 37,40 12,72 

Bioenergetic model, linear regression 
BWexp = estimated, Fish energy density 
body weight-dependent, COG constant 

BE 16,25 22,14 13,39 18,55 36,62 13,42 

**Bioenergetic, linear regression, 
FM BWexp = estimated, BC BWexp = 
fixed, Fish energy density constant. Body 
composition is update based on whole-
body weight 

BE_Chow 25,68 57,47 13,11 25,89 57,68 13,10 

    

5-Fold CV        

Energy-protein robust regression, 
BWexp = fixed 

EP5_u_rlm_iso 7,81 10,92 12,46 9,58 11,10 12,98 

Hybrid Energy-protein 
allometric/isometric ensemble average, 
linear regression, FM BWexp = fixed, BC 
BWexp = estimated 

EP5hyb _u 8,18 10,89 12,00 10,38 11,53 12,58 

Energy-protein linear regression, 
BWexp = fixed 

EP5_u_iso 8,13 11,55 11,82 10,31 11,86 12,36 

Hybrid Energy-protein 
allometric/isometric ensemble average, 
robust regression, FM BWexp = fixed, BC 
BWexp = estimated 

EP5hyb_u_rlm 7,87 10,38 12,63 9,64 10,76 13,17 

Energy-protein linear regression, 
BWexp = isometric 

EP5_iiso 9,02 11,92 11,78 10,67 12,29 12,39 

Energy-protein linear regression, 
FM BWexp = fixed 

EP5_u 8,26 10,54 12,12 10,48 11,37 12,74 

Energy-protein robust regression, 
FM BWexp = fixed 

EP5_u_rlm 7,96 10,01 12,90 9,72 10,52 13,45 

Energy-protein linear regression, 
mixed effects for all parameters 

EP5_mixed 8,65 12,91 11,95 10,61 12,09 12,41 
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FCR,  
BWexp = estimated 

FCR 10,49 16,76 12,96 10,05 13,81 12,39 

Bioenergetic model, linear regression 
FM BWexp = estimated, BC BWexp = 
fixed  
Fish energy density body weight-
dependent, COG body weight-dependent 

BECOG_iso 8,93 18,79 13,33 10,27 17,35 12,68 

**Bioenergetic, linear regression, 
FM BWexp = estimated, BC BWexp = 
fixed, Fish energy density constant. Body 
composition is updated based on the 
composition of body weight gain. 

BE_Chow2 14,49 39,80 12,30 14,04 32,07 11,63 

Bioenergetic model, linear regression 
BWexp = estimated, Fish energy density 
body weight-dependent, COG constant 

BE 17,86 19,85 13,02 20,40 23,27 12,34 

*Energy-protein quadratic, 
BWexp = estimated 

EPG1 9,01 10,59 14,86 11,46 12,24 15,76 

**Bioenergetic, robust regression, 
BWexp = estimated, BC BWexp = fixed. 
Fish energy density constant. Body 
composition is update based on whole-
body weight 

BE_Chow 26,30 58,74 12,70 25,86 48,83 12,12 

    

10-Fold CV         

Energy-protein linear regression, 
BWexp = isometric 

EP5_iiso 9,12 11,43 11,78 9,90 9,53 12,93 

Energy-protein linear regression, 
mixed effects for all parameters 

EP5_mixed 8,81 12,87 12,06 9,77 9,80 13,31 

Hybrid Energy-protein 
allometric/isometric ensemble average, 
robust regression, FM BWexp = fixed, BC 
BWexp = estimated 

EP5hyb_u_rlm 8,06 10,42 12,61 9,26 9,25 14,40 

Energy-protein robust regression, 
FM BWexp = fixed 

EP5_u_rlm 8,16 10,04 12,88 9,31 9,03 14,70 
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Energy-protein robust regression, 
BWexp = fixed 

EP5_u_rlm_iso 7,99 10,98 12,44 9,22 9,56 14,20 

Energy-protein linear regression, 
BWexp = fixed 

EP5_u_iso 8,36 11,55 11,83 9,88 9,99 13,41 

Hybrid Energy-protein 
allometric/isometric ensemble average, 
linear regression, FM BWexp = fixed, BC 
BWexp = estimated 

EP5hyb_u 8,42 10,87 12,01 9,93 9,76 13,63 

FCR,  
BWexp = estimated 

FCR 10,55 16,88 13,02 9,88 12,26 12,24 

Bioenergetic model, linear regression 
FM BWexp = estimated, BC BWexp = 
fixed, Fish energy density body weight-
dependent, COG body weight-dependent 

BECOG_iso 8,97 16,91 13,37 10,17 14,28 12,63 

**Bioenergetic, linear regression, 
FM BWexp = estimated, BC BWexp = 
fixed, Fish energy density constant. Body 
composition is updated based on the 
composition of body weight gain. 

BE_Chow2 14,70 41,42 12,37 14,12 28,58 11,45 

Bioenergetic model, linear regression 
BWexp = estimated, Fish energy density 
body weight-dependent, COG constant 

BE 20,87 18,86 13,11 23,26 19,70 12,29 

*Energy-protein quadratic, 
BWexp = estimated 

EPG1 9,34 10,72 14,97 10,98 10,33 15,89 

Energy-protein linear regression, 
FM BWexp = fixed 

EP5_u 9,24 14,08 12,94 10,35 12,50 14,52 

**Bioenergetic, robust regression, 
FM BWexp = estimated, BC BWexp = 
fixed. Fish energy density constant. Body 
composition is update based on whole-
body weight 

BE_Chow 26,43 59,92 12,75 25,96 43,75 11,94 

 

*Van Trung et al. 2011 
**Chowdhury et al. 2013           
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Table 4 – Validation errors metrics for each model after validation with an independent dataset. The 
greener cells indicate lower estimates of the generalization errors, and the reddish ones indicate higher 
ones. MAPEbw = Mean absolute percentage error for body weight; MAPEbc = Mean absolute percentage 
error for body composition. FM = fasting maintenance; BC = body composition; BWexp = body weight 
exponents. COG = costs of growth. 

 

*Van Trung et al. 2011 

**Chowdhury et al. 2013            

Model Model acronym MAPEbw(%) RMSE (g) MAPEbc(%) 

Energy-protein robust regression,  
FM BWexp = fixed 

EP5_u_rlm 9,65 31,64 7,71 

Hybrid Energy-protein 
allometric/isometric ensemble average, 
robust regression, FM BWexp = fixed,  
BC BWexp = estimated 

EP5hyb_u 9,74 33,40 7,71 

Energy-protein linear regression, 
mixed effects for all parameters 

EP5_mixed 9,87 32,49 6,81 

Energy-protein robust regression, 
BWexp = fixed 

EP5_u_rlm _iso 9,88 35,41 8,01 

Energy-protein linear regression, 
FM BWexp = fixed 

EP5_u 10,00 33,67 7,26 

*Energy-protein quadratic, 
BWexp = estimated 

EPG1 10,13 32,13 9,13 

Energy-protein linear regression, 
BWexp = fixed 

EP5_u_iso 10,19 37,24 7,63 

FCR,  

BWexp = estimated 
FCR 11,40 16,81 6,47 

Bioenergetic model, linear regression 
FM BWexp = estimated,  
BC BWexp = fixed  
Fish energy density body weight-
dependent, COG body weight-
dependent 

BECOG_iso 12,74 49,11 7,98 

**Bioenergetic, robust regression, 
FM BWexp = estimated, BC BWexp = 
fixed, Fish energy density body weight-
dependent, COG constant 

BE_Chow2 16,60 57,20 6,67 

Bioenergetic model, linear regression 

BWexp = estimated, Fish energy 

density body  

weight-dependent, COG constant 

BE 19,37 22,46 6,37 

**Bioenergetic, robust regression, 
Fish energy density body weight-

dependent, COG constant, with 

Chowdhury et al. (2013) 

parameterisation 

BE_Chow2_par 21,18 57,14 9,51 

**Bioenergetic, robust regression, 
FM BWexp = estimated,  
BC BWexp = fixed  

BE_Chow 27,38 81,77 6,47 

*Energy-protein quadratic with van 
Trung et al. (2011) parameterisation 

EPG1_par 33,73 59,68 115,78 

**Bioenergetic, robust regression, with 
Chowdhury et al. (2013) 
parameterisation 

BE_Chow_par 178,07 917,40 9,73 
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Chapter 6 

 
Modelling growth and body composition: a comparative 

analysis of seven farmed fish species 
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Abstract 

 

There are a large number of species being produced in aquaculture, and this great 
variability is a challenge. Therefore, characterising the similarity between species is 
important because it makes it possible to generalise and transfer knowledge between 
similar species. A rigorous comparison between species should consider different 
aspects, such as physiological characteristics, morphology, metabolism, ecology, and 
behaviour, giving special importance to criteria that can be assessed objectively. In this 
study, the relationship of similarity between commercial species in terms of parameters 
and predictions of body composition and growth models was evaluated. Different models 
(e.g., isometric and allometric, in the case of body composition models) and calibration 
methods (e.g., least squares, Huber loss regression and quantile regression) were used. 
Species were compared based on the distance between model parametrizations and 
between predictions. Results suggest that the similarities within salmonid species are 
strong and consistent across parameters and thus clearer in the PCA projections. 
Despite having some differences in growth, European seabass and gilthead seabream 
also show similarities, especially in the early life stage. However, flatfish species do not 
group clearly. The variability observed between species in terms of model parameters 
and predictions may be related to taxonomy, physiological stages, ecological features, 
fish activity, body mass, as stated in previous studies. Results also suggest the metabolic 
body weight exponents for energy and protein are likely to be species-specific, ranging 
from 0.60 to 0.90, which agrees with previous studies that challenge the theory of 
universal metabolic allometry. This study provides important insights about body 
composition and growth patterns of different species.  Finally, we argue that this research 
methodology can have a wide range of practical application for both aquaculture and 
fisheries industries by supporting more accurate data quality control, model calibration 
synthetic data generation, and assessment of species similarity for effective resource 
management. 

 
Keywords: Aquaculture, Energy-protein flux model, Regression analysis, Fish nutrition 

Metabolic allometry 
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Highlights 

• Body composition similarity between species decreases as fish grow. 

• Salmonids are the group that show the most consistent similarity. 

• The metabolic body weight exponent is species-specific.  

• Exploiting species similarities can assist in model calibration for new species. 

 

1. Introduction 

Livestock and other animal-source foods are responsible for supplying proteins and 

essential nutrients to the global population. In 2020, 337.3 million tonnes of land animal 

protein were produced (FAO, 2022a), distributed between 12 domesticated land animal 

species (Sandhage-Hofmann, 2016). In turn, production of aquatic animals in 2020 

reached a total of 178 million tonnes, in which 313 species of finfish were produced 

(FAO, 2022b). This suggests that there is significantly more diversity among fish species 

produced compared to land animals, encompassing various aspects such as physiology, 

morphology, metabolism, ecology, and behaviour. Consequently, this heterogeneity 

presents challenges when it comes to, for instance, developing nutritional or growth 

models for every newly proposed species intended for commercial production, since the 

research required for each additional species incurs both time and costs. In this context, 

an important consideration is the generalizability of research findings: can the knowledge 

gained from studying one species be extended to other closely related species? For 

example, if a nutritional or growth model is validated for one species, can it reasonably 

be applied to a similar species? Evaluating generalizability helps determine the broader 

applicability of research findings. This leads to the transferability of knowledge: how can 

the knowledge obtained from studying one species be effectively employed to enhance 

the understanding of other species? By transferring knowledge, it is possible to 

contribute to practical advances in commercial production, conservation, and resource 

management. Thus, the study of the similarity relationships between species through the 

use of objective criteria, such as, genetic (Alarcón et al., 2004; Angienda et al., 2011; 

Ryman, 1983; Yokogawa & Seki, 1995), ecological (Mablouké et al., 2013;  

Parrino et al., 2018; Sazima, 1986) or metabolic/nutritional (Azevedo et al., 2005;  

Bowyer et al., 2013; Breck, 2014; Clarke & Johnston, 1999; Lupatsch et al., 2003a) can 

assist in the development of nutritional models for farmed fish species. Through such 

modelling methodologies, it is possible to answer a range of technical and practical 

questions related to different production aspects, such as, nutritional requirements, 

optimal feed formulation, optimal feeding/rearing practices, expected growth 

performance, environmental impact of rearing activities, among others.  
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In particular, body composition and/or nutrient/energy budget models can be used 

as objective criteria to explore the similarity relationships between species. To do so, 

species-specific models are calibrated and then compared either in terms of 

parametrization (for models with the same structure) or in terms of their predictions, with 

the assumption that the distances/similarities between species-specific models reflect 

the distances/similarities between the underlying species. The usual approach described 

in the literature to predict the body composition of fish is the use of isometric  

(a x body weight) or allometric (a x body weight b) models (Dumas et al., 2010).The 

difference between isometric and allometric models is that the former assumes that the 

absolute content of each fish body component is proportional to body weight, whereas 

the latter assumes a non-proportional relationship between the content of each 

component and fish body weight. In nutrition studies, it is typically not feasible to conduct 

comprehensive evaluations of each parameter related to body composition due to the 

considerable time and effort required for data analysis. As a result, researchers usually 

make certain assumptions, such as “protein and/or ash follows an isometric pattern in 

fish” (Shearer, 1994; Dumas et al., 2007; Chowdhury & Bureau, 2009;  

Chowdhury et al., 2013; Shizari, 2020), often based on limited information or 

arbitrary/undeclared criteria, without considering the available evidence from other fish 

species. However, these assumptions may not always be accurate, particularly when 

assessing body composition in dynamic terms. Unfortunately, the lack of extensive 

comparisons between species hinders the establishment of global patterns and the 

ability to make conclusive statements about the effectiveness of these models in different 

contexts. Therefore, it is necessary to assess the relative merits of isometric vs. 

allometric models for each component to ensure a more accurate understanding of body 

composition and its relationship to nutrition in diverse fish species. 

To estimate fish growth accurately, models that consider the most important 

biological and physiological aspects of fish are often used, such as nutrient-based 

models, in which the fundamentals of energy and nutrient partitioning are considered. 

The energy-protein flux (EP) model, in particular, in addition to fish weight and 

temperature, considers both energy and protein intake to predict growth, while also 

estimating the body composition of fish based on protein retention equations (Nobre et 

al., 2019). The model explicitly assumes that energy requirements comprehend the 

energy for maintenance and growth (Booth et al., 2010), where maintenance metabolic 

expenditure (protein and energy losses) can be defined by exponents that determine the 

change in metabolic rate as a function of body weight (Lupatsch & Kissil, 2005). 

However, there is a disagreement between authors regarding the definition of metabolic 

body weight exponents. Some authors advocate that an exponent of 0.75 can be used 
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for several fish species (Clarke & Johnston, 1999; Kleiber, 1932; Ye et al., 2021), while 

others recommend the use of species-specific exponents (Lupatsch et al., 1998, 2003b; 

Lupatsch & Kissil, 2005). Furthermore, while some authors suggest an exponent of  

0.80 for energy and 0.70 for protein (Beck & Gropp, 1995; Booth et al., 2010; Glencross, 

2008; Lupatsch et al., 1998, 2003a), others argue that, for some species, the same 

exponent should be used for both energy and protein (Glencross et al., 2011; van Trung 

et al., 2011). Therefore, it is unclear whether one should assume the same exponents 

regardless of fish species or whether there are some similarities across a group of 

species that would justify using the same exponents and, ultimately, whether they should 

be different for energy and protein. 

In this work, commercial fish species, such as Atlantic salmon (Salmo salar), gilthead 

seabream (Sparus aurata), European seabass (Dicentrarchus labrax), Nile tilapia 

(Oreochromis niloticus), rainbow trout (Oncorhynchus mykiss), turbot (Scophthalmus 

maximus) and Senegalese sole (Solea senegalensis), were compared on the basis of 

their body composition and growth performance characteristics. The goal was to assess 

certain assumptions and hypotheses present in the literature, such as whether isometric 

or allometric models should be used to describe body composition, the application of 

"universal" or species-specific metabolic body weight exponents, the use of constant or 

non-constant protein/energy efficiency ratios, and the assumption of compositional and 

metabolic similarity between species with similar genetic, morphological, ecological and 

physiological traits. 

 

2. Materials and methods 

2.1. Comparison of body composition models 

2.1.1. Data collection 

Data on whole-body composition and weight were collected from the literature for 

seven species (Atlantic salmon, gilthead seabream, European seabass, Nile tilapia, 

rainbow trout, turbot and Senegalese sole) as shown in Table 1 (see Appendix 1 for list 

of sources). Carbohydrates are usually unreported, as they represent less than 0.14% 

of fish (Breck, 2014), and were thus left out of this analysis. Data were collected only 

from studies in which the whole fish content was determined according to the standard 

analytical methods of the Association of Official Analytical Chemists (AOAC). The data 

initially collected in dry matter units were recalculated to reflect wet weight 

measurements, following Shearer’s (1994) guidance. Each dataset was standardized to 

contain details about growth, body composition, feed conversion ratio (FCR), water 

temperature, and dietary properties, all organized on a daily basis. 
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2.1.2. Model calibration and comparison 

Body composition parameters between species were compared based on a set of 

estimates obtained from two different models (isometric and allometric), both calibrated 

with three different calibration methods (least squares linear regression, Huber loss 

linear regression and quantile regression). Additionally, within this process, we also 

assessed how different data sources affected parameter estimates through  

leave-one-out (LOO) resampling or jackknife resampling (Efron, 1982). This procedure 

provided a measure of the variability of parameter estimates while considering the 

diverse datasets employed for model calibration. 

The equations and analysed parameters used in the isometric model were the 

following: 

 protein  =  aprot   ×  BW 

  water  =   awater ×  BW 

       fat  =   afat    ×  BW 

      ash =   aash   ×  BW, 

  

where a gives information about the relative content of each component (assumes 

proportionality with body weight). 

 

In the allometric model, the following equations and analysed parameters were 

used: 

 protein  =   aprot   ×  𝐵𝑊𝑏𝑝𝑟𝑜𝑡 

  water  =   awater ×  𝐵𝑊𝑏𝑤𝑎𝑡𝑒𝑟   

       fat  =   afat    ×  𝐵𝑊𝑏𝑓𝑎𝑡 

      ash =   aash   ×  𝐵𝑊𝑏𝑎𝑠ℎ, 

 

where a gives information about the relative content of each component at a reference 

weight and b represents the effect of body weight on each component (assumes  

non-proportionality with body weight). 

For species displaying an isometric relationship between components and fish size, 

we expect the b parameter (i.e., body weight exponent) estimates for all components to 

be close to 1 (i.e., their logarithm to be close to zero). Thus, for each species, a 

(multiplicative) “distance from isometry” was calculated using Euclidian distance, as: 

𝑑𝑖𝑠𝑜 = √∑ log (𝑏𝑖)2

𝑖
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where the sum is performed over the square of the logarithm of the body weight 

exponents of protein, water, fat and ash components. This distance is zero only when 

the species displays perfect isometry. Using the calculated distance, an “isometry index” 

was obtained in order to evaluate which species display a more stable body composition 

as they grow: 

𝑖𝑠𝑜𝑚𝑒𝑡𝑟𝑦 𝑖𝑛𝑑𝑒𝑥 = 𝑒−𝑑𝑖𝑠𝑜 

 

This index is equal to 1 for species displaying perfect isometry (perfectly stable 

composition throughout the body weight range), and the lower value, the farther the 

species is from isometry (body composition changes throughout the body weight range). 

The similarity relationships between species in terms of body composition were 

evaluated through Principal component analysis (PCA), by plotting their respective 

parameter estimates along the first two principal components. Furthermore, species 

were compared based on the predictions of isometric and allometric models for their 

body composition components. This comparison was made through visual observation 

of line plots. Additionally, the results of both models were assessed for agreement by 

comparing them through scatterplots. All analyses were performed using R version 4.1.2 

(R Core Team, 2021), where the lm function from the ‘stats' package  

(R Core Team, 2021) was used for least squares regression, the rlm function from the 

‘MASS’ package (Venables & Ripley, 2002) was used for Huber loss linear regression 

(robust regression), and the rq function from the ‘quantreg’ package (Koenker, 2005) 

was used for quantile regression. 

 

2.2. Comparison of energy/nutrient budget models 

2.2.1. Data collection 

Data on growth trials covering a wide range of rearing conditions and feed properties 

were collected from the literature for the selected species (see Table 2 for an overview 

of the collected data). Senegalese sole growth data were too heterogeneous and patchy 

(with regards to the joint “body weight and temperature” distribution) and, thus, were left 

out of the growth comparison to avoid effect confounding and a biased analysis. All 

datasets were converted into a standard format, where information on the growth, body 

composition, feed conversion ratio (FCR), water temperature, feed intake and diet 

properties are stored on a daily resolution basis. Missing data were handled by using 

default values (e.g., apparent digestibility coefficients) or by applying interpolation 

methods (e.g., daily feed intake was estimated based on FCR and growth, when not 

explicitly reported in the data source). 
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2.2.2. Model calibration and comparison 

For each species, an energy-protein flux (EP) model was developed in which, for 

both energy and protein, a balance between a feed-dependent gain and a  

feed-independent loss was calculated: 

 

 

Where: 

 

The feed-dependent gain depends on an efficiency coefficient (k), and the  

feed-independent loss in turn depends on the effect of the body weight and temperature. 

The models were calibrated based on different assumptions, which resulted in four 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑔𝑎𝑖𝑛 − 𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 

                                                 𝐸𝑛𝑒𝑟𝑔𝑦 𝑔𝑎𝑖𝑛 = (𝑘𝐸 ×  𝐷𝐼𝐸) 

                                                    𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 = (𝑓𝑚𝑒𝑎  ×  𝐵𝑊(𝑒𝑥𝑝𝑒 )) ×  𝑒(𝑓𝑚𝑒𝑏  × 𝑇)  

 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑔𝑎𝑖𝑛 − 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑙𝑜𝑠𝑠 

       𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑔𝑎𝑖𝑛 = (𝑘𝑝  ×  𝐷𝐼𝑃) 

        𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑙𝑜𝑠𝑠 = (𝑓𝑚𝑝𝑎  ×  𝐵𝑊(𝑒𝑥𝑝𝑝 )) ×  𝑒(𝑓𝑚𝑝𝑏  × 𝑇)  

𝑒𝑥𝑝𝑒 Metabolic body weight exponent for energy 

𝑒𝑥𝑝𝑝 Metabolic body weight exponent for protein 

T Temperature (°C) 

fmea 
Fasting maintenance costs for energy under reference conditions 
(BW = 1 g; T = 0 °C) 

fmeb Effect of temperature on fasting maintenance costs for energy  

fmpa 
Fasting maintenance costs for protein under reference conditions 
(BW = 1 g; T = 0 °C) 

fmpb Effect of temperature on fasting maintenance costs for protein  

kE 
Efficiency of energy retention (applied before subtracting the 
fasting maintenance costs) 

kP 
Efficiency of protein retention (applied before subtracting the 
fasting maintenance costs) 

𝐷𝐼𝐸 Digestible energy intake 

𝐷𝐼𝑝 Digestible protein intake 
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different calibration methods (see Table 3).  For a better interpretation of the results of 

the effect of temperature on fasting maintenance costs, the fmeb and fmpb parameters 

were converted and reported as Q10 (temperature coefficient) values (i.e., 𝑒(10×𝑓𝑚𝑒𝑏)). 

Due to the occasional presence of extreme outlying parameter estimates for some 

of the leave-one-out folds, which prevents a meaningful PCA analysis, a filtering step 

was added using a simple univariate rule for outlier detection and removal  

(|z-score| > 3). This rule is based on the property of the standard Gaussian distribution 

that 99.7% of its values lie between -3 and 3, thus any z-score greater than +3 or less 

than -3 can be considered as outlier if we assume parameter distributions to be 

approximately Gaussian and the number of observations is relatively low (Sarmad, 2006; 

Shiffler, 1988). 

The similarity relationships between species in terms of protein/energy budgets were 

initially evaluated through PCA analysis, by plotting their respective parameter estimates 

along the first two principal components. Additionally, the predictions from models 

calibrated with different methods were assessed through scatter plots to determine if the 

predictions agreed or not, when fixed universal or estimated parameters were used in 

the calibration process. All analyses were performed using the regression functions 

mentioned in section 2.1.2 Model calibration and comparison.  

3. Results  

3.1. General similarities between species body composition and growth 

parameters 

The similarity between species in terms of model parameters was evaluated using a 

PCA analysis (Figure 1). In this analysis, it can be assumed that the distances between 

points for each species reflect the differences in parameter estimates (e.g., when the 

points are closer, it indicates that the parameter estimates are more similar) Results 

suggest that similarities within salmonids are the strongest, consistent across 

parameters and thus clearer in both PCA projections (Figure 1. a and b). Despite having 

some differences in growth (Figure 1. B and Appendix 2), seabream and seabass show 

strong similarities in terms of body composition parameters (Figure 1. a). Flatfish 

species, however, do not group as clearly. In fact, turbot and sole have distinct body 

composition parameters (Figure 1. a).  

Overall, PCA analysis suggests that water and fat parameters are negatively 

correlated, and that isometry index is more related with these than with the other 

components (Figure 1. a). 
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3.2. Body composition similarities  

Figure 2 shows estimates for the relative content of each body component and how 

they are affected by body weight, for each species, based on the species-specific 

allometric models (see Appendix 3 for details). Overall, the differences between species 

in terms of whole-body composition become more pronounced as they grow. This implies 

that the body composition of small fish (e.g., approximately 1 g) may not be species-

dependent (or only weakly so). For instance, when comparing species at a reference 

body weight of 1 g, fat tends to vary between 2.5 – 7.5 %, whereas when comparing 

species at reference body weight of 1 kg, the variations are between 5 – 30 % 

approximately. Ranking fish species in terms of relative fat content at a reference weight 

of 1kg, seabass and seabream are the fattest species with approximately 20%, followed 

by salmonids (salmon and rainbow trout) with about 15%, sole with 10%, and tilapia and 

turbot as the leanest species with approximately 5% fat relative content.  For water, the 

opposite pattern is observed: turbot is the species with highest water relative content ( 

75% of its body weight), followed by tilapia and sole ( 70%), salmonids ( 65%), and 

seabass and seabream with the lowest values ( 60% water). In terms of protein, sole is 

the species with the highest relative content ( 20%), followed by salmon and seabream  

( 18%), and then seabass, rainbow trout, tilapia and turbot (less than 18% of protein). 

The ash relative content varies greatly even within species and is therefore more difficult 

to analyse. However, tilapia, turbot, seabass and seabream are the species with the 

highest ash relative content, while salmonids and sole are the ones with the lowest 

values. 

In terms of how body components are affected by body weight (parameter b), relative 

water and fat content show high variation, but with clear patterns: water tends to 

decrease with body weight, whereas fat tends to increase (see Figure 2). Despite the 

variation, the water slopes seem to be constant and generally negative (bwater < 1) for all 

species (see Appendix 3.C for details). For fat, slopes are positive (bfat > 1) and variable 

for all species, being higher for seabream and seabass (highest accumulation of fat as 

they grow) and lower for tilapia and turbot (lowest accumulation of fat as they grow) (see 

Appendix 3.B for details). Protein increase as the body weight increases, except for 

seabass, where the protein content in relative terms seems to be less affected by the 

body weight, and thus more constant. In fact, the slope tends to be close to zero and bprot 

much closer to 1 for seabass, when compared with other species (see Appendix 3.A for 

details). In turn, the effect of body weight on relative ash levels does not present a clear 

and consistent pattern across species. The relationship between ash relative content 

and body weight is very variable between and within species (sometimes bash is above 

1, other times below 1), making it unclear whether there is a consistent effect of body 
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weight on ash relative content (see Appendix 3.D for details). Moreover, comparing the 

isometry index between species (Figure 3), tilapia and turbot seem to be the species 

closest to isometry, meaning that the effect of the body weight on body components is 

less strong. In fact, tilapia and turbot BW exponent parameters are in general closer to 

1 (isometry) when compared to other species in this study (see Appendix 3).In contrast, 

seabass and seabream seem to be the ones furthest from isometry, which is consistent 

with what is shown in Figure 2 where the effects of body weight on body components are 

generally noticeable. 

Regarding the parameter a estimates, there was a general agreement between the 

isometric and allometric model for each body component of the different species  

(Figure 4). However, in the specific case of protein, the aprot estimates between the two 

types of models seem to display lower correlation. Despite this, it is possible to see the 

same pattern in both isometric and allometric predictions: tilapia, turbot and rainbow trout 

seem to have lower aprot values than the other species (i.e., lower protein relative 

content). In terms of fat, the afat parameter is higher for seabass/seabream and lower for 

turbot. In turn, the aash parameter is to be lower for salmonids and sole, and higher for 

the other species. 

Consistent with the PCA analysis, there is a clear negative correlation between fat 

and water relative content (F-test, p-value < 0.001), according to both allometric and 

isometric models (Figure 5). Between water and the other two components (protein and 

ash) there is no such clear pattern. Although a statistically significant negative correlation 

is present for the isometric model (F-test, p-value < 0.001), these effects are not as clear 

for the allometric model and are no longer significant for the ash component  

(F-test, p-value > 0.05). 

In general, estimates of the b parameter were also consistent between calibration 

methods (see Appendix 3), except for bash.  

 

3.3. Energy/nutrient budget similarities 

3.3.1. Metabolic body weight exponent 

Overall, the estimated metabolic body weight exponents for energy (𝑒𝑥𝑝𝑒) and 

protein (𝑒𝑥𝑝𝑝) were not far from what is reported in the literature (0.80 and 0.70 for 

energy and protein, respectively (Clarke & Johnston, 1999; Lupatsch et al., 2003ab)). 

The estimate ranges for 𝑒𝑥𝑝𝑒 were slightly different between species:  

salmon 0.82 – 0.87; seabass 0.71 – 0.89; seabream 0.51 – 0.72; tilapia 0.69 – 0.85; 

rainbow trout 0.62 – 0.80; turbot 0.70 – 0.85 (Figure 6). For some species, such as 

salmon and seabream, the estimated range do not include the standard value of 0.80. 
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Moreover, for tilapia and trout, most estimates were below 0.80. Seabass and turbot 

were the only species for which the putative universal exponent (0.80) was found within 

the estimated range for the parameter 𝑒𝑥𝑝𝑒.  

For protein, 𝑒𝑥𝑝𝑝 estimates also seem to be quite different between species: salmon 

0.77 – 0.83; seabass 0.78 – 0.97; seabream 0.54 – 0.88; tilapia 0.73 – 0.85; rainbow 

trout 0.71 – 0.78; turbot 0.61 – 0.74 (Figure 6). In this case, the standard value of  

0.70 is not found within the estimated ranges for salmon, seabass, tilapia and trout. 

Seabream and turbot are the only species for which the estimated range for 𝑒𝑥𝑝𝑝 include 

the assumed universal value of 0.70. 

 

 

3.3.2. Energy fasting maintenance  

When converting the estimates of the fme_b parameter (which gives information on 

the effect of temperature on the maintenance costs for energy) to Q10 values, almost all 

species exhibited values ranging between 1 and 2, with the exception of turbot  

(Figure 7). Turbot is the species where fasting maintenance costs for energy are most 

affected by temperature, exhibiting the highest Q10 estimates (approximately 3.5). In 

turn, rainbow trout appears to be the species in which the energy costs are less 

influenced by temperature, displaying the lowest Q10 values estimates (approximately 

1). The fme_b estimates do not seem to be affected by the calibration methods used 

(see Appendix 4.A for more details).  

The estimates for relative energy fasting maintenance costs generally remain 

consistent when using universal or estimated body weight exponents (see Appendix 3.B 

for details). Species demonstrate differences in relative energy fasting maintenance 

costs, with turbot having the lowest costs under reference body weight and temperature 

conditions, followed by tilapia, seabass, and seabream (see Appendix 4.B). Tilapia is 

particularly close to seabass. Salmon and rainbow trout, on the other hand, exhibit higher 

fasting maintenance costs in comparison (fme_a). 

  

3.3.3. Protein fasting maintenance 

When converting the estimates of the fmp_b parameter into Q10 values, most 

species exhibited values ranging between 1 and 2, apart from turbot and rainbow trout, 

where the estimated Q10 values were > 2. Turbot and rainbow trout seem to be the 

species where the fasting maintenance costs for protein are more affected by 

temperature (see Appendix 4.C). Species such as tilapia, salmon and seabass seem to 

be those where the relative fasting maintenance costs for protein are least affected by 

temperature, followed by seabream (see Appendix 4.C).  
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Tilapia is the species with higher relative fasting maintenance costs for protein under 

reference conditions (fmp_a) (see Appendix 4.D). Other species like salmon, seabass 

and rainbow trout seem to have lower relative fasting maintenance costs for protein when 

compared with tilapia. 

In general, the estimates for fmp_b and fmp_a remain consistent regardless of the 

calibration methods employed, except for tilapia, where some differences are observed 

between the least squares linear regression and Huber loss linear regression 

approaches (i.e., lm and rlm, respectively) (see Appendix 4.C and 4.D for more details).   

 

3.3.4. Retention efficiency 

 Figure 8 shows the estimated values for the energy retention efficiency coefficients. 

In terms of energy retention, species can be separated into two groups: species with 

coefficients between 0.45 and 0.50 (e.g., salmon, seabream and trout) and species with 

coefficients between 0.50 and 0.60 (e.g., seabass, tilapia and turbot). When considering 

protein retention coefficients, salmon, tilapia, trout, and turbot exhibited higher values 

(0.55 – 0.65), while seabass and seabream displayed lower values (0.40 – 0.50). 

Estimates for energy and protein retention efficiency are insensitive to the use of 

either universal or estimated metabolic body weight exponents, but there are some 

differences in terms of the type of linear regression used (e.g., lm and rlm) (see Appendix 

4.F for details).  

Overall, salmonid species (salmon and rainbow trout) can be grouped together 

according to their highest retention efficiency for protein and energy, as illustrated 

previously in the PCA analysis (Figure 1. b). Seabream and seabass present differences 

in energy retention coefficients (see Appendix 3.E for details). In turn, tilapia and turbot 

display closer estimates for both energy and protein retention efficiencies.  

 

 

4. Discussion 

4.1. General similarities between species body composition and growth 

parameters 

It is usually assumed that there should be similarity in terms of body composition and 

growth between species with similar phylogeny, morphology, ecology and/or physiology. 

In this study, species were grouped based on similarities in body composition and growth 

models. In particular: 1) salmonids, with strong and consistent similarities across 

parameters; and 2) Seabream and seabass with body composition similarities but 

differences in growth parameters. Flatfish species, in turn, did not group as clearly.  
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The body composition of the fish is determined by the capacity of species to retain 

the different macronutrients. Here we found similarities between species in both body 

composition and growth analyses. Furthermore, the distances in space between species 

in relation to body composition parameters are, in some cases, similar to those found for 

the parameters of the growth model. While salmonids are generally close in both 

analyses, there is not such a clear homogeneity between seabream and seabass and 

flatfish species. The distance between tilapia and turbot was also different in the two 

analyses. Tilapia showed similar body composition to turbot, although these similarities 

were not reflected in the analysis of growth parameters, which may be related to 

differences in feeding habits (carnivorous vs. omnivorous) and metabolism. 

 

4.2. Body composition similarities  

When analysing the similarities in terms of body composition among different 

species, it was noticeable that species exhibited a higher degree of similarity at very low 

body weights. Results suggest that, as they grow, fish species tend to diverge in terms 

of body composition. Seabream and seabass fish species have higher relative fat content 

than salmonids, when measured at similar body weights. Moreover, salmon tends to 

have higher protein and lower fat relative content than rainbow trout, as reported by 

previous authors (Azevedo et al., 2004; Krogdahl et al., 2004). It is important to note, 

however, that the distribution of data collected for each species varies significantly. For 

example, for salmon, the database mostly contains information on fish weighing around 

51.8 g (median), while for seabass and seabream, the data mostly corresponds to fish 

weighing approximately 90 g (median). Additionally, the data for salmon covers fish 

weighing up to 4950 g, while it does not exceed 1000 g for seabream and seabass. Thus, 

despite these results, some caution should be taken when extrapolating to values outside 

the range of those used to perform the regression. In flatfish species (i.e., sole and 

turbot), this divergence may be related to differences in their trophic level  

(sole 3.2 vs. turbot 4.4) (Froese & Pauly, 2023), metabolism or to other factors that may 

be determined by the different geographic distributions of the two species, such as 

temperature or depth (Killen et al., 2010). Seabream and seabass are the species where 

the fat relative content is most affected by body weight (i.e., furthest from isometry), 

which implies that these species tend to have more variations of fat levels throughout 

their growth. In turn, tilapia and turbot seem to be the species where the body 

composition is less affected by body weight (i.e., closest to isometry). In fact, Raposo et 

al. (2023) reported that, though the body composition of Nile tilapia seems to be 

allometric, the body weight exponent (b parameter) is close to 1 and that, in some cases, 

it may be reasonable to use isometric models or intermediate models between a purely 
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isometric and allometric models (e.g., ensemble models) to predict Nile tilapia body 

composition.  

The estimates for ash, in this study, turn out to be very variable between and within 

species, especially for the b parameter (bash), making it difficult to conclude if there are 

some differences between compared species, and whether bash is generally different 

from (i.e., above or below) 1. Generally, ash is the less abundant body composition 

component in fish and is thus difficult to be determined with precision, due to sample 

homogenization and manipulation (e.g., if fish samples are not well homogenized, some 

may contain more scales or bones, which may affect the measurement of ash content 

by analytical methods). Thus, this may in part explain the variability for bash estimates.  

Furthermore, the variability in bash estimates may also be related to the Leave-One-Out 

(LOO) resample method used. This is because, when a source related to fish that are 

either too big or too small is excluded from the estimation, the estimation of the b 

parameter is performed without this information, leading to variable estimates.  

Additionally, the use of the LOO resampling method, which involves using different 

datasets in each fold, significantly impacts the estimation of these specific parameters 

compared to others. Thus, when estimating exponents (e.g., b parameter or metabolic 

body weight exponent), the obtained estimates tend to be highly sensitive to the chosen 

dataset, contributing significantly to the general variability observed in the estimates. 

Overall, it seems that the general assumption of isometry for ash (bash = 1) is consistent 

with our results and probably will not significantly compromise the accuracy of 

predictions. 

 

4.3. Energy/nutrient budget similarities 

4.3.1. Metabolic body weight exponent 

Fish growth is a result of several metabolic processes that require energy and thus, 

may interactively affect metabolic scaling (Glazier, 2005). However, there is a great 

controversy among authors regarding the exponent of metabolic body weight, which 

complicates the modelling of fish metabolism and growth. The primary point of contention 

lies in determining the appropriate and accurate value for the exponent that describes 

the scaling relationship between metabolic rate and body weight in fish. This controversy 

makes it difficult to establish a consensus or standardized approach for estimating 

metabolic rates in fish and understanding their energetics, growth and ecological 

interactions. In this study, results suggest that the metabolic body weight exponent is 

different for energy and protein, as reported in previous studies (Beck & Gropp, 1995; 

Booth et al., 2010; Glencross, 2008; Lupatsch et al., 1998; Lupatsch et al., 2001). 

Moreover, both energy and protein metabolic body weight exponents may be species-
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specific, ranging from 0.51 to 0.89, challenging the concept of universal metabolic 

allometry (Bokma, 2004; Glazier, 2005, 2009; Killen et al., 2010; White et al., 2007).  The 

metabolic body weights for energy estimated in the present study are either within or 

near the ranges reported for the analysed species: salmon 0.82 – 0.87 vs. 0.85 – 1.06 

reported by (Cook et al., 2000) and (Kazakov & Khalyapina, 1981);  

seabass 0.71 – 0.89 vs. 0.8 (Lupatsch, Kissil, & Sklan, 2001); tilapia 0.69 – 0.85 vs. 0.75 

and 0.8 reported by (Ye et al., (2021) and (van Trung et al., (2011), respectively; rainbow 

trout 0.62 – 0.80 vs. 0.8 (Beck & Gropp, 1995); turbot 0.70 – 0.85 vs. 0.7 (Waller, 1992). 

However, for seabream we obtained a range of 0.51 – 0.72, which does not include the 

value 0.80 reported by (Lupatsch et al., (2003a,b). Although comparable data concerning 

the metabolic body weight for protein is scarce, some reference values exist in the 

literature for seabass, seabream, tilapia and rainbow trout. For seabass, the estimated 

metabolic exponent for protein ranges from 0.78 to 0.97, which does not include the 

value 0.70 reported by (Lupatsch, Kissil, & Sklan, 2001); for seabream, it is between 0.54 

and 0.88 vs. 0.70 (Lupatsch et al., 2003a,b); for Nile tilapia 0.73 to 0.85 vs. 0.80, close 

to the value previously reported by Van Trung et al. (2011); for rainbow trout 0.71 to 0.78, 

similar to the 0.70 value reported by (Beck & Gropp, 1995). The variability of metabolic 

scaling values between species in this study may be related to taxonomy  

(Bochdansky & Leggett, 2001; Clarke & Johnston, 1999; Dosdat et al., 1996;  

Glazier, 2005, 2009), physiological stages (Bochdansky & Leggett, 2001; de Silva et al., 

1986; Post & Lee, 1996), ecological features (Killen et al., 2010, 2016), fish activity  

(Brett & Groves, 1979; Claireaux et al., 2006; Glazier, 2009; Killen et al., 2010, 2016), 

fish metabolism (Azevedo et al., 2004, 2005; Grisdale‐Helland et al., 2007), typical and 

maximum body mass (Glazier, 2005; Urbina & Glover, 2013), as stated in previous 

studies.  

 

4.3.2. Energy and protein fasting maintenance  

Fish fasting maintenance costs are closely correlated with their size and temperature. 

It is therefore usual to evaluate the effect of temperature on fasting maintenance costs 

using the Q10 factor, as it allows to describe and quantify the influence of temperature 

on the kinetics of the maintenance process in fish. In this study, the Q10 values for 

energy and protein fasting maintenance costs were, in general, in agreement with what 

has been reported for teleost fish species (Clarke & Johnston, 1999; Lefevre, 2016; 

Requena et al., 1997). However, when we compared the values between species, we 

found that the Q10 values for the turbot were higher. Moreover, turbot seem to have 

lower maintenance costs energy and protein, when compared to other fish species. The 

difference in maintenance cost parameters for energy between turbot and the other 
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species may be related to differences in swimming mode, which consequently relates to 

the fish body form (Webb, 1984). Additionally, fish body form is often closely related to 

the specific habitats that fish inhabit (Rincon-Sandoval et al., 2020; Schluter, 1993; 

Townsed & Hildrew, 1994). Turbot is a benthic flatfish species that alternates its 

swimming form between a balistiform mode, which is used to swim slowly on the bottom, 

or anguilliform when it needs to swim faster (Gibson, 1995). Additionally, it is a  

sit-and-wait/slow forage (Gibson, 1995; Killen et al., 2010, 2016). Thus, it is a species 

with lower activity compared to pelagic (e.g., seabass and seabream) or benthopelagic 

species (e.g., salmon and rainbow trout), which are more active foragers and have 

different swimming modes. Turbot, therefore, has less metabolic expenditures compared 

to seabream, seabass, salmon and rainbow trout (Gibson, 1995; Griffiths, 2020; Killen 

et al., 2010, 2016), which may partly explain the large differences in their fasting 

maintenance costs parameters for energy compared to other species. Regarding protein 

maintenance cost parameters, rainbow trout, salmon and seabass turn out to be similar. 

Others (e.g., seabream, tilapia and turbot) showed species-specific parameters, which 

may be reflected in different amino acid requirements between species  

(Fournier et al., 2002; Tibaldi & Kaushik, 2005).  

 

4.3.3. Energy and protein retention efficiency 

Marine fish live in an environment where the concentration of salts and minerals is 

higher than in freshwater, which can lead to differences in how they process dietary 

energy and protein (de Silva & Perera, 1985; Krogdahl et al., 2004). Some studies have 

suggested that differences between fresh and marine water species, in addition to 

osmoregulation differences, may be in part due to variations in the types microorganisms 

in their digestive systems  (Sullam et al., 2012; Wang et al., 2018). In the present study, 

seabream displayed higher energy retention efficiency than the other species, especially 

compared to seabass, which contradicts the similarity that Lupatsch et al. (2003b) 

reported between these two species. Furthermore, salmon presented higher energy 

retention efficiencies than rainbow trout as reported by Azevedo et al. (2004, 2005). 

Seabass and tilapia were the species with lower energy retention efficiency, but no 

characteristic between the two species was found to justify this similarity. In terms of 

protein retention efficiency, freshwater (i.e., Nile tilapia) and anadromous species  

(i.e., Atlantic salmon and rainbow trout) are more efficient than marine species  

(i.e., seabass and seabream). This is in line with  Tibaldi & Kaushik (2005) previous 

report that seabream and seabass were less efficient at converting protein compared to 

salmonids. This may be at least partially attributed to the extensive history of breeding 

programs for salmonids (over 11 generations), while species like sea bass or sea bream 
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have undergone fewer than nine generations of breeding, as noted by Chavanne et al. 

(2016). However, as reported by de Verdal et al. (2018), enhancing feed efficiency in fish 

through selective breeding poses numerous challenges. It appears that the response to 

selection often remains inconclusive due to the limited genetic variation observed in traits 

associated with feed efficiency. While some authors reported that differences in 

digestibility may partly explain the variation in observed protein retention ability among 

species (Garzón, 1995; Hidalgo et al., 1999; López-Ângulo et al., 2014), our findings 

suggest that the discrepancy in protein retention between the studied freshwater, 

anadromous, and marine species may be primarily attributed to metabolic differences 

rather than digestibility. Furthermore, the efficient protein retention displayed by Nile 

tilapia, despite belonging to a lower trophic level (2) as an omnivorous species, could be 

attributed to its ability to utilize not only fat and protein, but also carbohydrates as an 

energy source (Boonanuntanasarn et al., 2018; Stone, 2010). By utilizing carbohydrates 

as an additional energy source, Nile tilapia can reduce the reliance on protein for energy 

production (i.e., protein sparing effect). This efficient allocation of protein helps in 

optimizing growth and overall energy utilization. Thus, it enables tilapia to allocate more 

protein towards muscle development and growth rather than using a larger proportion 

for energy production (Boonanuntanasarn et al., 2018; Cheng et al., 2017;  

Shiau & Peng, 1993; Stone, 2010). Although there is some controversy regarding the 

comparative protein retention efficiency of carnivorous and omnivorous fish species 

(Bowyer et al., 2013; NRC, 2011; Tacon et al., 2010; Teles et al., 2020), it is clear that 

protein digestibility and retention rates vary depending on fish species, metabolism, diet 

composition, trophic level and other factors. Thus, it is difficult to make broad 

generalizations about carnivorous versus omnivorous fish and the same applies to 

freshwater versus marine fish.  

 

4.3.4. Practical applications and insights from body composition and 

growth analysis in fish species 

This work has several potential practical applications beyond contributing to the 

understanding of nutritional status and growth of commercially-relevant fish species. For 

instance, based on the data obtained from body composition analysis, it is possible to 

develop a software tool that can identify anomalies (i.e., gross errors) in the results 

obtained from the chemical analysis. This would be useful to determine if the body 

composition results from the chemical analysis are in the correct range or if there are 

any samples that present some anomaly, providing quality control measures that are 

essential in ensuring the accuracy and reliability of the data generated from this analysis. 

The intent is for this type of automated quality control analysis to become more widely 
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adopted as practical, user-friendly tools for predicting body composition become 

available (Soares et al., 2023). A software tool like this can also help farmers to track the 

quality of their stock and make feed adjustments, if necessary, to assure fish health and 

growth. 

Since, in aquaculture, there is a large number of species being produced, having the 

ability to calibrate models (e.g., body composition and growth models) for new species 

with a limited number of samples can useful when new species are proposed for 

production. This means that, if a farmer wanted to start farming a new species of fish, 

this method can be used to predict the growth patterns and body composition of the new 

species, helping to plan feeding and growth strategies. Furthermore, if two species have 

similar growth patterns, they might be able to be farmed together, saving space and 

resources. One possible way to achieve this is to predict the samples using the model 

for each known species and use the prediction error to estimate a distance from each 

reference species. By using a suitable scheme (e.g., inverse distance weighting) to 

aggregate parameter or prediction estimates from the reference models, predictions for 

the new species can be obtained. This type of approach can enable the prediction of 

body composition or growth patterns for new species based on a set of reference species 

and potentially assist in the calibration of models for these new species with limited data 

availability (e.g., through the generation of synthetic data). Additionally, the information 

about the similarity between species in terms of body composition can be used to 

estimate the similarity in terms of growth between the same species or vice versa. An 

example of this type of approach is described in Appendix 5, which shows how body 

composition information could be used to predict the parametrization of growth models 

for different species. 

 

5. Conclusion 

The findings of this study indicate that, although some species may have some 

particularities in common (e.g., same family, geographical area, similar diets or body 

shapes), it does not necessarily mean that they are necessarily similar with regards to 

other aspects. In the particular case of the two salmonids studied, our analysis showed 

that they are indeed similar both in terms of body composition and growth. In turn, while 

the Mediterranean species, seabream and seabass, seem to have similarities regarding 

body composition, but display some differences in growth parameters. Furthermore, we 

observed that, while there is high similarity in terms of body composition among all 

species in their early juvenile stages, this similarity decreases as they grow. Additionally, 

the evaluation of growth parameters suggests that the metabolic body weight exponent 

is species-specific, contradicting the theory of using a universal value. Differences in 
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growth parameters among fish species can be related to their distinct retention 

efficiencies for energy and protein as well as to unique fasting maintenance costs, 

encompassing energy and protein requirements. The fasting maintenance costs are 

intricately linked to factors such as the fish's swimming behaviour, body morphology, and 

other aspects, including ecology and trophic levels, that may contribute to the diversity 

in maintenance expenses. The differences in fasting maintenance cost consequently 

manifest as distinct metabolic expenditures among species. Thus, understanding these 

multifaceted relationships helps understanding the intricate interplay between fish 

biology, behaviour, and ecological dynamics in influencing maintenance costs and 

metabolic processes. 

The methodology used in this research can have several practical applications, 

including data quality control, model calibration, synthetic data generation and 

assessment of similarity between species. These can be particularly useful not only for 

the aquaculture industry but also for the fisheries industry, where accurate knowledge of 

body composition and growth patterns is essential for effective management and optimal 

resource utilization. 
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Table 1 – Overall data used for species comparison in terms of body weight and whole-body composition. 

  

 
Atlantic 
Salmon 

Gilthead 
Seabream 

European 
Seabass 

Senegalese 
sole 

Nile tilapia Rainbow trout Turbot 

Body weight (g) 0.17 – 4950.00 0.98 – 582.10 0.51 – 700.00 
3.00 – 
354.92 

0.02 – 
316.30 

1.40 – 2080.00 2.55 – 880.60 

Mean body weight (g) 269.21 133.11 133.48 55.63 65.73 187.78 89.37 

Median body weight (g) 51.80 91.70 94.62 30.78 34.10 76.36 54.90 

Body composition (% wet weight) 

Protein  12 - 21 14 - 24 15 – 19 12 – 19 9 – 19 6 – 19 11 – 23 

Fat  1 - 18 2 - 22 2 - 22 2 – 10 1 – 13 1 – 22 1 - 9 

Water  83 - 60 56 - 80 58 - 76 67 – 83 66 – 83 59 – 91 68 – 84 

Ash  1 - 5 3 - 17 3 - 6 2 – 4 1 – 8 1 – 3 1 - 11 

Nº of observations 506 743 202 121 198 328 469 

Sources 53 79 23 22 34 28 64 
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Table 2 – Overall data used for species comparison in terms of growth parameters. 

 

 

 

 

 

 

 

 

 

 

 
 
 

ww- wet weight; 
DP/DE – digestible protein and energy ratio 

 

 
Atlantic 
Salmon 

Gilthead 
Seabream 

European 
Seabass 

Senegalese 
sole 

Nile tilapia Rainbow 
trout 

Body weight (g) 0.79 – 5787.00 0.72 – 478.00 4.65 – 482.00 
0.51 – 
457.00 

1.80 – 2080.00 
2.01 – 

1025.90 

Temperature (ºC) 4.0 – 22.0 7.6 – 28.8 3.0 – 27.9 22.8 – 28.6 4.0 – 19.4 8.0 – 23.6 

Diet Gross Energy 

(MJ/kg) 18.7 – 29.4 18.7 – 22.8 17.5 – 24.6 14.0 – 19.8 16.8 – 25.5 16.2 – 23.2 

Diet Crude Protein (% 
ww) 

29.1 – 53.6 36.5 – 57.8 36.7 – 56.1 22.9 – 45.6 26.2 – 58.2 26.5 – 60.4 

Diet Crude Lipids (% 
ww) 

9.7 – 47.0 8.6 – 23.1 7.8 – 30.9 3.5 – 15.1 6.2 – 30.9 5.7 – 25.9 

Ratio DP/DE (g/MJ) 12.0 – 25.7 20.8 – 25.7 19.0 – 29.9 13.5 – 25.6 11.3 – 27.6 16.0 – 32.7 

FCR 0.56 – 2.61 0.95 – 5.18 0.69 – 3.79 0.90 – 3.89 0.73 – 1.83 0.54 – 2.23 

Nº of observations 291 116 144 150 146 238 

Sources 52 15 25 27 23 52 
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Table 3 – Definition of growth model and calibration methods used for species comparison. 

Model acronym Model description 

EP_E_lm 
Energy-protein flux model calibrated with the assumption of 
estimated body weight parameters with least squares linear 
regression. 

EP_E_rlm 
Energy-protein flux model calibrated with the assumption of 
estimated body weight parameters with Huber loss linear 
regression. 

EP_F_lm 

Energy-protein flux model calibrated with the assumption of fixed 
universal body weight parameters (0.8 for energy and 0.7 for 
protein, consistently with Clarke & Johnston (1999), Glencross 
(2008), Lupatsch et al. (1998, 2003) 

EP_F_rlm 

Energy-protein flux model calibrated with the assumption of fixed 
universal body weight parameters (0.8 for energy and 0.7 for 
protein, consistently with Clarke & Johnston (1999), Glencross 
(2008), Lupatsch et al. (1998, 2003) with Huber loss linear 
regression. 
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Figure 1 – a. Principal component analysis (PCA) with estimates of parameter a for each component according to an isometric and an allometric model for each species, parameter b and 
with the isometry index. ai prefix correspond to parameter a estimated by isometric model; aa and b prefix corresponds to parameter a or b estimated by allometric model. Circles with 
different colour indicates the species clusters: green circle seabream and seabass species (seabream and seabass); pink circle salmonids (salmon and trout) and sole; blue circle tilapia 
and turbot. b. Principal component analysis (PCA) displaying the overall distance between species, considering the estimates or the use of fixed universal parameters to predict growth. 
Circles with different colours indicate the species clusters. The figure shows an overlapping of species clusters and some distance between species within some cluster, due to differences 
in parameters estimations. 
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Figure 2  – Line plots showing predictions of body composition components as a function of body weight. Solid lines represent the predictions 
obtained for each model (calibrated on a LOO sample). Different colour lines denote different species. Dashed grey lines indicates body 
weight = 1 g and body weight = 5000 g. 
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Figure 3 – Boxplot of the isometry index, demonstrating how each species body composition is affected by body 
weight (closer to value 1, means that the overall species body composition is not dependent/affected by body 
weight). The middle line in the box is the median. The box, divided into two parts shows the first quartile and the 
third quartile (Q1, at the bottom of the box, represents the lowest 25% of the data and the Q3, the upper part of 
the box, represents the highest 25% of the data). The whiskers show the minimum and maximum values within 
the data that are not considered outliers. Outliers are shown as individual points beyond the whiskers. 
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Figure 4 – Scatterplots showing allometric and isometric estimates for parameter a, for each body composition component. 
Points represent parameter a estimates according to each calibration method. Different colours indicate different species. 

Grey dashed line is the linear regression between allometric and isometric estimates. 
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Figure 5 – Scatterplots showing the relation between water and other body composition components, according 
to allometric and isometric models. Points represent parameter a estimates according to each calibration method. 
Different colour point denotes each species. Grey dashed line is the linear regression between components. 
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Figure 6 – Boxplot showing the estimates of metabolic body weight exponents for energy (𝑒𝑥𝑝
𝑒
 ) on the left, and for protein (𝑒𝑥𝑝

𝑝
 ) on the right, according to each species. The middle 

line in the box is the median. The box, divided into two parts shows the first quartile and the third quartile (Q1, at the bottom of the box, represents the lowest 25% of the data and the 
Q3, the upper part of the box, represents the highest 25% of the data). The whiskers show the minimum and maximum values within the data that are not considered outliers. Outliers 
are shown as individual points beyond the whiskers. The boxplot notches indicate an approximate 95% confidence interval for the median. Dashed line represents the so-called universal 
value for metabolic body weight exponent for energy (left) and protein (right). 
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Figure 7 – Box plots displaying Q10 value estimates for temperature effects on energy (left) and protein (right) fasting maintenance costs. The middle line in the box is the median. The box, 
divided into two parts shows the first quartile and the third quartile (Q1, at the bottom of the box, represents the lowest 25% of the data and the Q3, the upper part of the box, represents the 
highest 25% of the data). The whiskers show the minimum and maximum values within the data that are not considered outliers. Outliers are shown as individual points beyond the whiskers. 
The boxplot notches indicate an approximate 95% confidence interval for the median. 
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Figure 8 – Box plot showing the estimates range for energy (left) and protein (right) retention efficiency. The middle line in the box is the median. The box, divided into 
two parts shows the first quartile and the third quartile (Q1, at the bottom of the box, represents the lowest 25% of the data and the Q3, the upper part of the box, 
represents the highest 25% of the data). The whiskers show the minimum and maximum values within the data that are not considered outliers. Outliers are shown as 
individual points beyond the whiskers. The boxplot notches indicate an approximate 95% confidence interval for the median. 
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Appendix 1  

Appendix 1.A –This table provides a comprehensive list of sources referenced for data utilized within the study. 

Specie Source 

 
Nile tilapia 

 
Abdel-Tawwab, M., Abdel-Rahman, A. M., & Ismael, N. E. (2008). Evaluation of commercial live bakers’ yeast, 

Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) 
challenged in situ with Aeromonas hydrophila. Aquaculture, 280(1-4), 185-189. 

Abdel-Tawwab, M., Ahmad, M. H., Khattab, Y. A., & Shalaby, A. M. (2010). Effect of dietary protein level, initial body weight, 
and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis 
niloticus (L.). Aquaculture, 298(3-4), 267-274. 

Abdel-Tawwab, M., El-Sayed, G. O., & Shady, S. H. (2012). Effects of dietary protein levels and environmental zinc 
exposure on the growth, feed utilization, and biochemical variables of Nile tilapia, Oreochromis niloticus (L.). 
Toxicological & Environmental Chemistry, 94(7), 1368-1382. 

Abdelghany, A. E., & Ahmad, M. H. (2002). Effects of feeding rates on growth and production of Nile tilapia, common carp 
and silver carp polycultured in fertilized ponds. Aquaculture Research, 33(6), 415-423. 

Afuang, W., Siddhuraju, P., & Becker, K. (2003). Comparative nutritional evaluation of raw, methanol extracted residues 
and methanol extracts of moringa (Moringa oleifera Lam.) leaves on growth performance and feed utilization in Nile 
tilapia (Oreochromis niloticus L.). Aquaculture Research, 34(13), 1147-1159. 

Ahmad, M. H., & Abdel-Tawwab, M. (2011). The use of caraway seed meal as a feed additive in fish diets: Growth 
performance, feed utilization, and whole-body composition of Nile tilapia, Oreochromis niloticus (L.) fingerlings. 
Aquaculture, 314(1-4), 110-114. 

Ahmad, M. H., El Mesallamy, A. M., Samir, F., & Zahran, F. (2011). Effect of cinnamon (Cinnamomum zeylanicum) on 
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 Appendix 2 

Here several PCA analyses based on the different parameters of the growth models 

are given. These analyses provide insight into which parameters are similar across 

species, and whether they remain consistent when body weight exponents are either 

universal or estimated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2.A - Principal component analysis (PCA) displaying species distance in terms of maintenance costs 
parameters.  

Appendix 2.B - Principal component analysis (PCA) showing species distance in terms of retention efficiency 
parameters. 
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Appendix 2.C- Principal component analysis (PCA) showing species distance considering the metabolic body 

weight and temperature effect. 
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Appendix 3.A – Box plot displaying parameter b estimates for protein with different types of regressions for the compared species. lm = least squares linear regression; rlm = Huber loss 
linear regression; rq = quantile regression. The middle line in the box is the median. The box, divided into two parts shows the first quartile and the third quartile (Q1, at the bottom of the 
box, represents the lowest 25% of the data and the Q3, the upper part of the box, represents the highest 25% of the data). The whiskers show the minimum and maximum values within 
the data that are not considered outliers. Outliers are shown as individual points beyond the whiskers. 

Appendix 3 

This appendix includes a supplementary analysis of the b parameter estimates for each component of the body composition models, using various 

regression methods. The boxplots below provide information on whether the value of b parameter of each body composition component is closer or 

further away from 1 (isometry). Additionally, it also shows whether there is agreement between the different types of regression used in predicting 

the b parameter. 
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Appendix 3.B – Box plot displaying parameter b estimates for fat with different types of regressions for the compared species. lm = least squares linear regression; rlm = Huber loss linear 
regression; rq = quantile regression. The middle line in the box is the median. The box, divided into two parts shows the first quartile and the third quartile (Q1, at the bottom of the box, 
represents the lowest 25% of the data and the Q3, the upper part of the box, represents the highest 25% of the data). The whiskers show the minimum and maximum values within the 
data that are not considered outliers. Outliers are shown as individual points beyond the whiskers. 
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Appendix 3.C – Box plot displaying parameter b estimates for water with different types of regressions for the compared species. lm = least squares linear regression; rlm = Huber loss 
linear regression; rq = quantile regression. The middle line in the box is the median. The box, divided into two parts shows the first quartile and the third quartile (Q1, at the bottom of the 
box, represents the lowest 25% of the data and the Q3, the upper part of the box, represents the highest 25% of the data). The whiskers show the minimum and maximum values within 
the data that are not considered outliers. Outliers are shown as individual points beyond the whiskers. 
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Appendix 3.D – Box plot displaying parameter b estimates for ash with different types of regressions for the compared species. lm = least squares linear regression; rlm = Huber loss linear 
regression; rq = quantile regression. The middle line in the box is the median. The box, divided into two parts shows the first quartile and the third quartile (Q1, at the bottom of the box, 
represents the lowest 25% of the data and the Q3, the upper part of the box, represents the highest 25% of the data). The whiskers show the minimum and maximum values within the 
data that are not considered outliers. Outliers are shown as individual points beyond the whiskers. 
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Appendix 4  

This appendix contains the results of a comparison made between the estimates of 

the different parameters of the growth models, using fixed universal and estimated 

parameters, and with different calibration methods. The scatterplots below are useful to 

understand which species tend to have higher or lower parameters and how similar or 

different they are between each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4.A – Scatterplot showing estimates of the effect of temperature on fasting maintenance costs for energy 
using fixed universal or estimated parameters. Different points represent the type of linear regression used. Different 
colour points represent each species. Grey dashed line denotes y=x. Solid grey line represents the linear regression 
between estimates.  
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Appendix 4.C – Scatterplot showing estimates of temperature effect on fasting maintenance costs for protein using 
fixed universal or estimated parameters. Different points represent the type of linear regression used. Different colour 
points represent each species. Grey dashed line denotes y=x. Solid grey line represents the linear regression 
between estimates.  

Appendix 4.B – Scatterplot showing estimates of fasting maintenance costs for energy using fixed 
universal or estimated parameters in log scale. Different points represent the type of linear regression 
used. Different colour points represent each species. Grey dashed line denotes y=x. Solid grey line 

represents the linear regression between estimates. 
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Appendix 4.E - Scatterplot showing estimates of energy retention efficiency using fixed universal or estimated 
parameters. Different points represent the type of linear regression used. Different colour points represent 
each species. Grey dashed line denotes y=x. Solid grey line represents the linear regression between 

estimates. 

Appendix 4.D - Scatterplot showing estimates of fasting maintenance costs for protein using fixed universal 
or estimated parameters in log scale. Different points represent the type of linear regression used. Different 
colour points represent each species. Grey dashed line denotes y=x. Solid grey line represents the linear 
regression between estimates. 
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Appendix 4.F – Scatterplot showing estimates of protein retention efficiency using fixed universal or estimated 
parameters. Different points represent the type of linear regression used. Different colour points represent 
each species. Grey dashed line denotes y=x. Solid grey line represents the linear regression between 
estimates. 
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Appendix 5 

In this appendix, a practical example is given of how the obtained and processed 

information in this study can be used. Herein, we assumed that the distance between 

species estimates, for both body composition and growth, characterize the distance in 

similarity between species. Moreover, in growth comparison analysis, as we stated 

previously, Senegalese sole was left out due to scarcity of data. However, we suggest 

that it may be possible through the method of Partial Least Squares regression (PLS) to 

predict its growth similarity with other species, based on the data of body composition 

parameters (i.e., distance between sole and other species on body composition 

predictions).  

After using the PLS method for prediction of growth parameters based on body 

composition parameters, we performed a PCA analysis to evaluate the overall 

differences between true and the predicted general growth parameters of species 

[Appendix 5.A1(A)]. The results shown that in general, the EP parameter predictions 

obtained from the body composition parameters are close to the true values. Taking 

these estimates as accurate, Senegalese sole seems to have some similarities with 

turbot. However, regarding the metabolic body weight for energy, Senegalese sole 

displays exponents closer to Nile tilapia, while the exponents for protein are more alike 

turbot and rainbow trout [Appendix 5.A1(B)]. In terms of retention efficiency, sole seems 

to have energy retention efficiency similar to the Atlantic salmon and protein retention 

efficiency similar to that of salmonids, Nile tilapia and turbot [Appendix 5.A1(C)].  

This method allows us to get an estimate of the growth patterns of different species 

when data (e.g., growth trials) are scarce.
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Appendix 5.A1 – Results obtained by using PLS method to predict the distance/similarity of Senegalese sole in relation to other species. Scatterplot (A) shows the PCA analysis of general growth 
parameters predictions of sole and other species. Scatterplots (B) e (C) shows the true and predicted metabolic body weight exponents for protein (mbw_exp_P) and energy (mbw_exp_E), and 

protein (k_P) and energy (k_E) efficiency, respectively. Open circles are the true values and full squares represent the estimates of each species. 
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Chapter 7 

 
General discussion and conclusion 

  



 

274 
 

Given the current situation of overexploitation of fisheries and the growth of the world 

population, it is essential to explore and develop the aquaculture sector in a sustainable 

way. Sustainability has grown in importance within the social and economic context, with 

a crucial focus on ensuring the profitability of production. To enhance efficiency and 

profitability, it is necessary to closely monitor and control many aspects of fish production 

in aquaculture (e.g., temperature, feed intake, fish density, fish waste). In this regard, the 

development of tools that assist producers and enable well informed decision-making 

during critical periods is imperative. Mathematical models have been employed in this 

sector for several years, proving their applicability and effectiveness in optimizing farm 

management operations (Cacho, 1997; Cuenco et al., 1985; Dumas et al., 2010;  

Ernst et al., 2000; Føre et al., 2018; Lupatsch, 2003; Lupatsch et al., 2003a, 2010; 

Lupatsch & Kissil, 1998, 2005; McDonald et al., 1996; Mei et al., 2022;  

Nobre et al., 2019; O’Donncha et al., 2021; Santos et al., 2019; Soares et al., 2023). 

Nonetheless, there is still potential for refining these models, which can advance our 

understanding of fish metabolism. Understanding fish metabolism plays an important 

role in determining the suitable feed, feeding method, and nutrient utilization for fish 

growth and body composition. These aspects are crucial not only for improving 

production management, efficiency and sustainability, but also for ensuring the quality of 

the end product.  

In recent years, there has been a tendency to improve the efficiency of aquaculture 

through technologically advanced methodologies, e.g., the use of sensors, models and 

increased automation (Bownik & Wlodkowic, 2021; Hu et al., 2020; Kaur et al., 2023;  

Mei et al., 2022; O’Donncha et al., 2021; Wang et al., 2021). In the particular case of Nile 

tilapia, considering the prevailing socioeconomic conditions in which it is typically 

cultivated, the implementation of advanced precision farming solutions involving sensors 

and real-time control is often impractical. This underlines the importance of having 

reliable mathematical models for production control that can bridge the gap between fish 

samplings. 

This work contributes with advances in mathematic modelling for fish aquaculture, 

specifically regarding the methodology involved in process of model development and 

validation. It also provides insights regarding the body composition and growth patterns 

of Nile tilapia and other economically important fish species, contributing as well for the 

understanding of the differences in terms of metabolism in fish species. Finally, and most 

importantly from a practical point-of-view, robust models of body composition and growth 

for tilapia tested against independent data were obtained as a result of this work. 
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7.1. Model development 

As mentioned in Chapter 1, modelling is a complex process that involves creating 

simplified representations of complex systems to gain insight and predict their behaviour. 

However, achieving accuracy in modelling requires careful consideration and attention 

to detail. The selection of an appropriate modelling approach and methodology should 

consider the specific context and requirements of the model. Therefore, when developing 

models, several options and assumptions have to be taken into consideration. These 

include the choice of the model type (e.g., allometric or isometric), the nature of error 

(e.g., additive or multiplicative), and the specific calibration methods to be used (e.g., 

linear or Huber loss regression), which can exert a strong impact on the quality of the 

model. This implies that the choices regarding model construction and calibration should 

be made with a strong reliance on objective criteria. To achieve this, it is important to 

evaluate not only the calibration errors, but also consider cross-validation errors and 

diagnostic (e.g., residual) plots, to allow the selection of a model and calibration method 

combination that best generalizes the data. This is critical because complex models can 

overfit the data, resulting in overconfidence. Estimations of error scale made on the 

calibration dataset can underestimate the scale of future prediction errors. Thus, to 

ensure the development of high-quality models, it is imperative to validate the model 

construction process using a rigorous and objective process. 

In this work, a wide range of plausible models, calibrated using different sensitive 

calibration methods, were tested through k-fold cross-validation, with different values of 

k (i.e., number of folds utilized to split the explored data to estimate the error of each 

algorithm). In Chapter 2 and 5, it becomes evident that the outcomes of cross-validation 

can be influenced by the number of folds used, with more complex models being less 

penalized at higher values of k (Hastie et al., 2001). This suggests that a more robust 

analysis can be achieved by considering multiple values of k, to ensure that the chosen 

process is not overly sensitive to the amount of calibration data available. Additionally, 

the quantity and quality of the dataset used for model calibration are of paramount 

importance. The use of datasets that encompass a broad range of weights and various 

growing conditions in model calibration allowed us to develop body composition  

(Chapter 2, 3 and 4) and growth models (Chapter 5) with stronger predictive capabilities 

than some models already published in literature (Chowdhury et al., 2013;  

Chowdhury & Bureau, 2009; Shizari, 2020; Van Trung et al., 2011). Ultimately, once the 

final model has been calibrated with the complete training dataset using the optimal 

process determined by cross-validation, it is crucial to validate it with an independent 

dataset that was not part of the cross-validation and calibration processes. This step 

guarantees an unbiased estimate of the expected error when the model is applied to 
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future, unseen data, just as it was done in this work. In contrast, in many prior studies, it 

can be challenging to ascertain how the model development process was performed - 

specifically, whether cross-validation or another objective process was employed in the 

selection of the model and calibration method, and whether the final model was validated 

using independent data (Breck, 2014; Chowdhury et al., 2013; Chowdhury & Bureau, 

2009; de Castro Silva et al., 2015; Konnert et al., 2022ab; Shizari, 2020;  

Van Trung et al., 2011). This uncertainty poses a challenge when attempting to apply 

such models in practical scenarios. Therefore, in this work, an effort was made to 

maintain transparency throughout the model development process, in order to enhance 

comprehension and offer a description of best practices in modelling, contributing to the 

scientific community.  

 

 

7.2. Fish body composition 

The body components of Nile tilapia do not seem to exhibit strict proportionality to 

body weight (referred to as isometry), where a horizontal trend would be expected when 

plotting the relative abundance of components against fish body weight. Instead, these 

components appear to be better described by power relationships between the amount 

of the component and the weight of the fish (known as allometry) (Gayon, 2000;  

Karachle & Stergiou, 2012). This involves either a positive or negative trend when 

plotting the relative abundance of components as a function of the fish body weight. 

However, these relationships appear to be stronger for some components than for 

others. For example, a strong relationship was observed between Nile tilapia body weight 

and the relative content of water and lipids (Chapter 2). These findings align with the 

results reported by Chowdhury and Bureau (2009) concerning the relationship between 

body weight and lipids. However, there is a disagreement regarding the relationship 

between body weight and water. The relationship was comparatively weaker for relative 

protein and ash content. This implies that as fish weight increases, there is not a 

significant variation in the relative protein and ash content, in contrast to the variation 

observed in the content of water and lipids. In the case of protein, although the trend is 

usually slightly positive, it often does not differ significantly from zero or exhibit a 

horizontal (isometric) pattern (Chapter 6). In the case of ash, the relationship sometimes 

seems positive, while at other times it appears negative. This variability makes it 

challenging to assert whether there is a consistent horizontal pattern (isometric) (Chapter 

6), or if it deviates significantly from zero, as Chowdhury et al. (2013) and Chowdhury & 

Bureau (2009) reported for Nile tilapia. Consequently, it may be acceptable to employ 

isometric models to estimate the relative protein and ash contents, as already reported 
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by some authors (Chowdhury et al., 2013; Chowdhury & Bureau, 2009; Dumas et al., 

2007; Lupatsch et al., 2001). As demonstrated in Chapters 2, 3, and 4, using ensemble 

averaging models that combine predictions from both allometric and isometric models 

could be a practical approach, particularly when it is difficult to assert whether a trend of 

certain body component is significantly different from zero, as an alternative to employing 

different models to predict distinct body components (Chowdhury et al., 2013; 

Chowdhury & Bureau, 2009; Shizari, 2020; Van Trung et al., 2011). This not only applies 

to Nile tilapia (Chapter 2), but also to the other species analysed in this work (Chapter 3, 

4 and 6). Furthermore, in Chapter 3, a strong relationship (in absolute terms) was 

identified between water and lipids, as well as between water and protein in fish, both for 

Nile tilapia and the other species analysed in this study. Similarly, Breck (2011, 2014) 

reported a strong relation for protein and ash with water mass, showing that these 

components are constrained by each other. Such relationships between components 

show less variation when expressed on a lipid-free mass basis and thus could potentially 

be used to enhance the predictive capabilities of body composition models (Chapter 3). 

For example, the BC2 model developed in Chapter 3 uses fish body weight and water 

as inputs, harnessing these associations to improve its accuracy. Therefore, by fixing the 

water component, in addition to ensuring that the error in the most abundant component 

(water) is zero, it also helps to ensure that the other body components (e.g., fat, protein 

and ash) are not overestimated. As a result, the BC2 model demonstrated superior 

predictive capability compared to models that solely considered fish body weight as an 

input. Furthermore, the relationship between body weight and ash was weak, with 

significant variation observed in this component (Chapter 3). However, by incorporating 

the amount of ash as an input (as demonstrated in model BC3 developed in Chapter 3 

and applied in Chapter 4), the variability associated with ash was effectively mitigated, 

resulting in improved predictions of the other components. These findings allowed the 

development of a valuable tool for researchers in fish nutrition and fish farmers, enabling 

them to estimate the body composition of fish in terms of crude protein, crude lipids, 

water, ash, phosphorus, and energy, as detailed in Chapter 3. These new models exhibit 

superior predictive capabilities compared to previously published ones  

(Chowdhury et al., 2013; Chowdhury & Bureau, 2009; Shizari, 2020), as elaborated in 

Chapter 4. Consequently, their use may be advisable, especially when partial body 

composition information, such as water and/or ash, is available. 

The estimation of fish body composition can be achieved through the utilization of 

static models (Chapter 2, 3, and 4) or dynamic models (Chapter 5). Static models directly 

estimate the body composition as a function of fish body weight and/or other observables 

(e.g., partial body composition information) (Chowdhury & Bureau, 2009;  
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Dumas et al., 2007). On the other hand, dynamic models consider intrinsic (e.g., body 

weight) and extrinsic factors (e.g., environmental conditions and nutrition) over time 

(Chowdhury et al., 2013; Cuenco, 1989; Shizari, 2020; Van Trung et al., 2011). In 

addition, these models also account for the life history of the fish. This implies that the 

estimation of future body composition typically considers the current body composition, 

and other influencing factors, resulting in an accumulation of various effects over time. 

Thus, by incorporating these dynamic elements, it becomes possible to estimate both 

the growth and body composition of fish over time. In fact, the results of the combination 

of static body composition and dynamic growth models (Chapter 5) showed that updating 

water and ash retention rates in EP models as a function of protein retention rates 

improves the model accuracy. This integration of dynamic growth models with body 

composition models proves to be highly valuable for researchers and fish farmers aiming 

to gain insights into the evolving physiological traits of fish as they growth, and how these 

characteristics may be affected by factors such as environment and nutrition. 

 

 

7.3. Fish growth performance 

In many fish growth models, energy intake is often the central focus and driving 

variable (Breck, 2011; Cho & Bureau, 1998; Cuenco et al., 1985; Nisbet et al., 2012; 

Strand, 2005). However, protein intake should also be considered given that it is a vital 

nutrient for growth and fish development. It plays a central role in promoting muscle 

growth, maintaining organ function, and supporting overall metabolic activities  

(Cowey, 2013; Kaushik & Seiliez, 2010; Lupatsch, 2003; Lupatsch et al., 2010; Lupatsch 

& Kissil, 2005; Nemova et al., 2021). Protein requirements vary among fish species 

(Lupatsch et al., 2003a; Tacon & Cowey, 1985; Teles et al., 2020), life stages 

(Radhakrishnan et al., 2020) and environmental conditions (Carter et al., 2010), 

emphasizing the need for tailored models that consider these specific factors. By 

incorporating protein into fish growth models, researchers and practitioners gain a more 

comprehensive understanding of the factors influencing growth dynamics. Moreover, the 

interaction between protein and energy metabolism is crucial for growth modelling 

(Lupatsch et al., 2003a, 2003b; Nobre et al., 2019; Soares et al., 2023). Protein and 

energy are interconnected in metabolic pathways, where both protein synthesis and 

turnover require energy expenditure (Hawkins, 1991). Thus, the balance between protein 

and energy utilization affects growth efficiency and nutrient partitioning in fish. Hence, 

comprehensive growth models that incorporate both protein and energy factors provide 

a more accurate representation of growth processes, as demonstrated in Chapter 5. 

Additionally, accounting for protein in growth models enables the identification of 
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potential limitations or deficiencies in protein intake (Conceição et al., 1998; Konnert et 

al., 2022; Li et al., 2022; Lupatsch, 2003; Lupatsch et al., 1998, 2003b; Nobre et al., 

2019; Soares et al., 2023; Van Trung et al., 2011). 

In the analysis of Nile tilapia data, a linear relationship between digestible energy 

intake and energy gain, and between digestible protein intake and protein gain was 

observed (Chapter 5), consistent with the observations of Lupatsch et al. (2010). 

However, it is important to note that this linear relationship may be influenced by the 

range of diet compositions used in the trials, as pointed out by Konnert et al. (2022ab)., 

but also by the fish’s weight and its genetic growth potential (Halver & Hardy, 

2003).Typically, tilapia diets do not contain high levels of protein or fat, which means that 

a saturation point in terms of protein and fat intake, as reported by Konnert et al., 2022 

for Nile tilapia, may have not been reached in the current study due to the reliance on 

literature reported in the literature. Nevertheless, in the case of carnivorous species or 

those with high protein requirements, when data on their maximum energy and protein 

retention efficiency capacity is available, it could be advisable to utilize linear-plateau 

models or other saturating models (Konnert et al., 2022ab).  

In addition, a comparative analysis regrading growth predictions and model 

parameters between Nile tilapia and other commercially relevant species, was performed 

in Chapter 6. The results of this comparison question the applicability of universal 

metabolic body weight exponents across species, as reported by some authors (Clarke 

& Johnston, 1999; Kleiber, 1932; Ye et al., 2021). However, in Chapter 5, where various 

growth models were explored for Nile tilapia, we found that the predictive power of the 

models increased significantly when using fixed universal exponents instead of 

estimated ones. In this particular case (Chapter 5), the preference for using fixed 

universal exponents as the best approach may be attributed to the sensitivity of the 

models, since small changes in the input data can lead to large changes in the estimates 

of the exponents. Therefore, it is not entirely clear which assumption should be 

considered valid, and the most prudent approach is to thoroughly analyse the data and 

objectively explore various hypotheses for model development on a case-by-case basis. 

In fact, the results presented in Chapter 6 indicate that even though certain species share 

some characteristics, it does not necessarily imply that it is advisable to apply the same 

assumptions, such as metabolic body weight or other parameters related to body 

composition or growth modelling. 
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7.4. Work limitations and future perspectives 

Throughout the development of this thesis, some challenges and limitations were 

identified, which may be addressed in future studies. Although the models developed in 

this work for Nile tilapia showed better performance than others in literature, upon 

comparison with those for other species (Chapter 3 and 4), the models for Nile tilapia 

were relatively poorer. This discrepancy may be partially caused by the fact that the data 

collected is from different strains of tilapia. Thus, one solution would be to calibrate the 

models according to the strains of tilapia or introduce the strain as a factor. Differences 

between predictions and observations can also be attributed to the quality of available 

data in the literature, primarily because Nile tilapia is predominantly produced in 

extensive production systems characterized by limited control and monitoring, which 

leads to a higher amount of irreducible error. If the calibration and validation data exhibit 

significant noise, this will be reflected in the predictions errors, making it difficult to 

precisely evaluate the magnitude of these prediction errors. In order to minimize this 

issue, it is essential to employ data filters or develop algorithms designed to detect 

outliers and subsequently exclude them from the analysis. Another alternative would be 

to obtain higher resolution data with new technologies (e.g., individually tagged fish, to 

measure individual fish weight on a regular basis) (Mei et al., 2022; Wang et al., 2021). 

Furthermore, being an omnivorous fish species, Nile tilapia can efficiently utilize 

carbohydrates as a source of energy, a capability that sets it apart from carnivorous fish. 

Carbohydrates play a significant role in the nutritional requirements and metabolic 

processes of tilapia, impacting their growth and body composition (Maas et al., 2020; 

Schrama et al., 2012, 2018). The fact that carbohydrates were not considered in the 

models developed in this work may also contribute to explain the higher prediction errors 

for tilapia. Thus, in the case of omnivorous fish, such as tilapia, it may be worth 

considering the incorporation of carbohydrates into body composition and growth models 

to enhance their accuracy. This approach can help in the formulation of balanced diets 

that meet the specific energy requirements of Nile tilapia, thereby promoting their growth 

and overall health.  

Although the model construction process was developed and validated through a 

rigorous and objective process, there is no absolute assurance that the choices made 

during the construction process were optimal for achieving the best possible models. 

This could potentially be attributed to the selection of a modelling approach and 

methodology that may not have been ideally suited to the specific context and 

requirements of the model, thereby not resulting in the best model. The alternative would 

be to test more alternative models, such as DEB models (Breck, 2011; Nisbet et al., 

2012), EP models considering a saturating relationship (Konnert et al., 2022ab), or 
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complex nutrient-based models (Soares et al., 2023), in the case of growth models. 

Additionally, test alternative calibration methods and carry out parameter recovery tests 

(i.e., verify whether the calibration method can recover the true parameters when 

provided with data generated according to the model). Finally, one should also consider 

that the limitations of the datasets used, which do not cover all possible factor 

combinations, such as the full range of possible values for body weight, temperature and 

diet composition, and may contain inherent biases. Thus, further work in this sense 

should include an effort to obtain a more complete database. 

During the development and validation of growth models, in Chapter 5, it is 

highlighted that protein is an essential component of fish nutrition, directly influencing 

growth, development, and body composition. Nevertheless, fish also have specific 

requirements for essential amino acids, which serve as the building blocks of proteins 

and other critical biomolecules (Furuya et al., 2023). Since fish cannot synthesize these 

amino acids, they must acquire them through their diet. The metabolism of amino acids 

in fish is complex and plays a vital role in various physiological processes (e.g., protein 

synthesis, energy metabolism, and immune function). By incorporating fish amino acid 

metabolism into growth and body composition models, as previously demonstrated 

(Soares et al., 2023), it becomes possible to obtain a more comprehensive 

understanding of how dietary protein is utilized and its implications for fish growth. 

Moreover, this approach would provide valuable insights into the efficiency of protein 

utilization, enable the identification of potential limitations, and help determine the optimal 

dietary balance of amino acids to promote growth. Ultimately, the integration of fish 

amino acid metabolism into these models would enhance their predictive capabilities, 

leading to more accurate predictions and a deeper understanding of the factors 

influencing fish growth and body composition. Fatty acids play also an important role in 

fish body composition, due to their influence in fat storage/deposition, which can affect 

unequally all the compartments of the fish body (Soares et al., 2023; Weil et al., 2013). 

Some fatty acids are also essential nutrients, e.g., n-3 polyunsaturated fatty acids, with 

key roles in cell membranes and eicosanoid metabolism (Calder, 2012; Tocher, 2003). 

Other micronutrients, such as, vitamins and minerals, are also important for fish, 

especially during their development (Halver, 2003; Lall & Kaushik, 2021). Thus, 

considering dietary fatty acids, vitamins and minerals would also be an important step 

towards a complete modelling of fish metabolism and growth. Finally, it would also be 

interesting to conduct a similarity assessment in terms of body composition and growth 

model predictions and parameters between fish species using these models that account 

for these specifications (e.g., micronutrients), besides protein and energy, and to contrast 

it with other auxiliary information (e.g., phylogenetic distances between species). 
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7.5. Conclusion 

This study highlighted the importance of considering both energy and protein when 

modelling fish growth and body composition. It demonstrated and applied advances in 

mathematical modelling to achieve accurate predictions of fish body composition and 

growth. Moreover, it provides valuable reference models for precision farming of Nile 

tilapia, encompassing both a static body composition model and a dynamic growth 

model, which were rigorously validated with independent data. Both Nile tilapia body 

composition and growth models showed lower validation errors compared to some 

previously published models, demonstrating the importance of developing and 

calibrating models using objective methods and exploring different assumptions to 

ensure models that generalize effectively. 

Furthermore, this research highlighted the relevance of assessing the similarity in 

terms of body composition and growth between species to better understand their 

metabolic differences, which in turn can be relevant for modelling the metabolism of other 

economically-relevant species like meagre, perch, tuna, cod, and eels.  
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