
Citation: Pereira, A.R.; Alemi, M.;

Cerqueira-Nunes, M.; Monteiro, C.;

Galhardo, V.; Cardoso-Cruz, H.

Dynamics of Lateral

Habenula–Ventral Tegmental Area

Microcircuit on Pain-Related

Cognitive Dysfunctions. Neurol. Int.

2023, 15, 1303–1319. https://

doi.org/10.3390/neurolint15040082

Academic Editor: Marcello Moccia

Received: 19 September 2023

Revised: 20 October 2023

Accepted: 25 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Dynamics of Lateral Habenula–Ventral Tegmental Area
Microcircuit on Pain-Related Cognitive Dysfunctions
Ana Raquel Pereira 1,2,3,†, Mobina Alemi 1,2,3,† , Mariana Cerqueira-Nunes 1,2,3,4 , Clara Monteiro 1,2,3,
Vasco Galhardo 1,2,3 and Helder Cardoso-Cruz 1,2,3,*

1 Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto,
Rua Alfredo Allen 208, 4200-135 Porto, Portugal; aramaralpereira@gmail.com (A.R.P.);
mobinaalemi@yahoo.com (M.A.); mariana.nunes@i3s.up.pt (M.C.-N.); cmonteir@med.up.pt (C.M.);
galhardo@med.up.pt (V.G.)

2 Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208,
4200-135 Porto, Portugal

3 Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina,
Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal

4 Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto,
Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal

* Correspondence: hcruz@med.up.pt
† These authors contributed equally to this work.

Abstract: Chronic pain is a health problem that affects the ability to work and perform other activities,
and it generally worsens over time. Understanding the complex pain interaction with brain circuits
could help predict which patients are at risk of developing central dysfunctions. Increasing evidence
from preclinical and clinical studies suggests that aberrant activity of the lateral habenula (LHb) is
associated with depressive symptoms characterized by excessive negative focus, leading to high-level
cognitive dysfunctions. The primary output region of the LHb is the ventral tegmental area (VTA),
through a bidirectional connection. Recently, there has been growing interest in the complex inter-
actions between the LHb and VTA, particularly regarding their crucial roles in behavior regulation
and their potential involvement in the pathological impact of chronic pain on cognitive functions. In
this review, we briefly discuss the structural and functional roles of the LHb–VTA microcircuit and
their impact on cognition and mood disorders in order to support future studies addressing brain
plasticity during chronic pain conditions.
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1. Introduction

Chronic pain and depressive conditions are frequently encountered in clinical prac-
tice, making the successful treatment of pain in patients more challenging. Specifically,
depressive symptoms can prolong the duration and increase the intensity of pain [1]. This
often establishes a cyclic relationship between pain and depressive symptoms, which sig-
nificantly impacts executive and cognitive functions [2–4]. One critical contributor to the
pain experience is the lateral habenula (LHb), which is known to be activated by aversive
states, including chronic stress-related anxiety [5] and pain [2]. The LHb plays a role in the
pathogenesis of pain by participating in pain transmission [6], modulating pain intensity [7],
and contributing to the emotional component of pain [8]. Moreover, the LHb is closely as-
sociated with the processing of reward information and cognitive flexibility [9,10]. Several
LHb-dependent responses to adverse events are mediated through their effects on neurons
in the ventral tegmental area (VTA). The VTA is primarily composed of dopaminergic
(DAergic) neurons [11,12] and is involved in important processes that support motivational
and cognitive components [13,14]. Additionally, this area is associated with the encoding
of aversive stimuli, including painful stimuli [15,16]. For instance, it has been shown that

Neurol. Int. 2023, 15, 1303–1319. https://doi.org/10.3390/neurolint15040082 https://www.mdpi.com/journal/neurolint

https://doi.org/10.3390/neurolint15040082
https://doi.org/10.3390/neurolint15040082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/neurolint
https://www.mdpi.com
https://orcid.org/0000-0003-1807-3630
https://orcid.org/0000-0002-3872-1589
https://orcid.org/0000-0002-8739-9995
https://orcid.org/0000-0001-5191-3828
https://doi.org/10.3390/neurolint15040082
https://www.mdpi.com/journal/neurolint
https://www.mdpi.com/article/10.3390/neurolint15040082?type=check_update&version=1


Neurol. Int. 2023, 15 1304

VTA lesions increase pain-related behavioral responses [17] and pain sensitivity [18]. At
the structural level, the LHb and VTA brain areas share bidirectional synaptic interactions.
The LHb exerts an inhibitory effect on the VTA through its glutamatergic neurons acting
on local VTA GABAergic neurons; thus, it functions as an inhibitory tone for the VTA
dopamine (DA) pathways [19,20]. In fact, it has been shown that in chronic pain condi-
tions, there is a dysregulation in DA transmission [21]. One hypothesis to explain this
dysregulation postulates that deficient DA signaling related to pain can result from local
hyperactivity of the LHb [19,22]. As VTA DA neurons project to several areas through the
mesocortical and mesolimbic pathways and play important roles in cognition, motivation,
and reward [2,23,24], this impairment can be amplified. Consequently, the disruption or
manipulation of LHb–VTA activity can have a major impact on pain-related cognitive
functioning. This review aims to gather information about this microcircuit. Firstly, we
provide an update on the basic organization of the LHb and VTA, along with a discussion
of their roles in pain and cognitive information processing. Secondly, we describe the
various functions that have been attributed to the structural connectivity between the LHb
and VTA. In this review, we emphasize the dissection of studies highlighting the specific
functions of the upstream input and downstream output pathways of the LHb and VTA, as
well as the dependent relationship between them. Thirdly, we examine the relevance of
the LHb–VTA microcircuit in major cognitive components. We focus on the functional and
behavioral mechanisms leading to aberrant overactivation of this microcircuit in preclinical
and clinical studies. This discussion leads to an exploration of potential strategies that may
specifically target the neural properties of this microcircuit in pain-related impairments.

2. Lateral Habenula

Due to its anatomical architecture and interactions between midbrain and forebrain
areas (Figure 1), the LHb has been associated with a wide range of complex cognitive
functions and several brain disorders and dysfunctions. In the literature, the LHb has
been reported as being involved in pain processing [25–27], stress [5,28], depression, and
pain-related depression [2,29,30]. Regarding the mood component, LHb activity plays an
important role in motivation [31], emotion [32], impulsivity, and aggressive behaviors [33].
It also contributes to higher cognitive processes, such as spatial memory [34], working mem-
ory [35], and reward-related decision making [36,37]. Additionally, the LHb is considered to
be a hub for anti-reward responses due to its activation in response to expectancy, aversive
stimuli, or even the omission of expected rewards [9,36,38,39]. LHb neurons can encode
reward prediction errors by adjusting their activity in response to expected and actual
rewards, enabling more efficient adaptation of behavior and guiding future reward-related
actions [9]. The LHb has also been shown to contribute to circadian timekeeping [40], fear
behavior [41], regulation of feeding behavior [42], brain state transitions during coping
behaviors [43], and the regulation of anxiety- and panic-related defensive responses [44].

2.1. The Role of the LHb in Pain Processing

LHb involvement in pain information processing is facilitated through direct afferent
inputs originating from the dorsal horn lamina I [6], trigeminal nucleus [6], and hypothala-
mus [45]. It plays a pain modulatory role through indirect pathways involving the midbrain
central gray and serotoninergic raphe nuclei, which typically convey painful or analgesic
information [22,46]. Early studies provided the first evidence of this by showing that direct
electric stimulation of the habenular complex can induce analgesia [27,47]. In rodents,
neuroelectrophysiological recordings have demonstrated that LHb neurons respond to
noxious stimuli, but not to non-noxious stimuli [48]. Moreover, it has also been reported
that a significant number of LHb neurons change their activity during pain conditions [1,49].
These observations are supported by clinical imaging studies, which have shown LHb
activation during acute pain [26], and chronic pain conditions [50]. Furthermore, the activa-
tion of local LHb neurons through L-glutamate injection has demonstrated an important
decrease in pain thresholds [51]. In addition, increased c-fos activity has been reported
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in the LHb during acute pain experiences [52] and the recall of past painful episodes [8].
More recently, a higher LHb c-fos activity was observed in rats subjected to a model of
chronic unpredictable mild stress; this was accompanied by depressive behaviors [1]. Li
and colleagues [1] showed that when this stress model was combined with inflammatory
pain (formalin injection), the LHb activity was even higher, suggesting a synergistic ef-
fect between depression and pain. Notably, they also found that selective LHb lesions
reversed depression symptoms and hyperalgesia in a rodent model of chronic pain [1,2].
Furthermore, increased LHb activity was reported during the withdrawal phase of alcohol
consumption and was usually associated with a hyperalgesic state [7]. The chemogenetic
inhibition of LHb excitatory neurons reduced this hyperalgesia, while LHb chemogenetic
activation induced a hyperalgesic state in naive rats in response to thermal stimulation [7].
The function of the LHb is intricately connected to its densely interwoven areas [26,53]. In
addition to the VTA, the LHb also receives projections from the locus coeruleus, which is
responsible for releasing norepinephrine (NE) within the LHb, contributing to the induction
of anxiogenic behaviors. For instance, the intra-LHb injection of dexmedetomidine, an
α2 adrenoreceptor agonist, produces sedative and anxiolytic effects [54]. Given that pain
is typically associated with arousal and anxiety, the role of NE in the LHb may also be
significant in the processing of pain-related emotions.
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Figure 1. Intra-hemispheric representation of the lateral habenula and ventral tegmental area micro-
circuit inputs and outputs with their respective neurotransmitter systems. BLA, basolateral amygdala;
LHb, lateral habenula; mPFC, medial prefrontal cortex; NAc, nucleus accumbens; RMTg, rostromedial
tegmental area; and VTA, ventral tegmental area.

In line with the preclinical data, human imaging studies have shown that the habenula
complex is either activated or exhibits abnormal disturbances of its function in chronic pain
patients [55] and depressive patients [56,57]. Notably, imaging studies in humans have
demonstrated habenula activation in response to noxious heat [26]. Reduced habenula
volume has also been reported using postmortem histological analyses of human brain
tissue [58] and structural MRI recordings in patients with major depressive disorder and
bipolar disorder [59,60]. Moreover, a PET study has shown enhanced coupling between
the habenula and raphe nuclei in patients experiencing transient depressive relapse upon
tryptophan depletion [61]. An increased theta and alpha oscillatory synchrony in the
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fronto-habenular network has also been associated with negative emotional valence in
human patients [62]. These findings suggest that high-frequency, deep-brain stimulation of
the habenula may offer benefits in the treatment of resistant major depressive disorder by
disrupting the information flow from the prefrontal cortex to the habenula complex. More
recently, it has also been demonstrated that chronic low back pain is associated with ab-
normal resting-state functional connectivity and effective connectivity of the habenula [63].
However, the underlying mechanisms of these alterations remain largely unknown.

2.2. The Role of the LHb in Mood and Cognition

The LHb has also been investigated with regard to its role in important emotional
and cognitive functions. From a structural point of view, the LHb integrates data from
the limbic system and basal ganglia, relaying this information to mesolimbic areas that
contribute to the selection of appropriate behaviors and to a flexibility of choices [37,64].
Extracellular neuroelectrophysiological recordings conducted simultaneously in the LHb
and the hippocampal formation of anesthetized and freely moving rats, have shown that
LHb neurons are phase-locked with hippocampal theta oscillations during the performance
of spatial recognition tasks. Silencing LHb activity during these tasks can lead to a reduction
in behavioral accuracy [4]. In humans, it has been demonstrated that habenula high-gamma
activity increases during the receipt of loss and decreases during the receipt of reward [65].
The lesion or temporary inactivation of the LHb has been associated with learning deficits
during the forced-swim test [66–68], impaired spatial reference memory in the Morris water
maze test [69], and attentional deficits characterized by marked premature response in the
five-choice serial reaction time task [70]. Additionally, the LHb complex has been implicated
in the long-term storage of aversive memories [71]. On the other hand, it is important
to point out that the outcomes of LHb manipulation may vary depending on the specific
experimental model applied. For example, rats with lesions to the medial forebrain bundle,
which typically exhibit working memory deficits, showed increased dopamine (DA) levels
in the medial prefrontal cortex (mPFC), hippocampus, and amygdala after LHb lesions [72].
Surprisingly, this increase in DA levels improved their working memory performance in
a T-maze rewarded alternation task [72]. Similarly, the pharmacological inactivation of
the LHb has been associated with abnormal responses during the initial stages of memory
formation and during the retrieval phase in the Morris water maze test [34]. However,
the consolidation of spatial memory does not appear to be affected [34]. In fact, the
LHb complex appears to play a plausible role in working memory as it receives afferents
from the mPFC [35,73], a brain region also affected by chronic pain conditions [10,74–76].
Furthermore, disruptions in local LHb activity have been associated with deficient decision-
making performance in a repeated probabilistic reversal task [77]. This impairment appears
to be directly dependent on DA neuron activity [77]. Notably, after LHb inactivation, rats
were observed to select their choices without considering the reward magnitude or the cost
of obtaining it. This highlights the important role of the LHb in the behavioral flexibility
necessary for successful goal-directed tasks (for a review, see Baker and Mizumori [10]).
Regarding the ability to adapt and change behavioral responses to unpredictable events,
both DA and LHb have been implicated in this process. For instance, increased DA release
in the mPFC has been observed during the learning of spatial reversal learning tasks [78].
However, using the same behavioral task and after pharmacological LHb inactivation,
Baker and colleagues reported a significant impairment of the behavioral performance [79].
The LHb is involved in reward and aversion and is reciprocally connected to DAergic areas,
including the VTA [80]. It serves as the primary inhibitor of VTA activity [19,81]. The
modulation of DA receptors has been shown to offer a specific strategy for altering pain
sensation by changing neuronal excitability and synaptic transmission. Two comprehensive
reviews on the topic can be found in [82,83]. Collectively, these studies suggest the potential
involvement of the LHb–VTA microcircuit in these processes.



Neurol. Int. 2023, 15 1307

3. Ventral Tegmental Area

Given its cell-type architectural composition, the VTA is a heterogeneous brain area.
Most of the VTA neurons are DAergic and GABAergic. Glutamatergic neurons are also
present, but in lower numbers [84]. The exact distribution and percentages of these three
types of neurons is not entirely clear because some of the DAergic neurons can co-express
and release other neurotransmitters such as GABA and glutamate [85,86], depending
on their projection targets [87]. Furthermore, this complexity is heightened by the fact
that VTA DA neurons exhibit heterogeneity not only in their anatomical and molecular
characteristics but also in their electrophysiological activity patterns [88–91]. The neuroelec-
trophysiological properties of VTA neurons, which are commonly used to distinguish DA
from non-DA neurons, vary depending on their projection targets (Figure 1). For instance,
while DA neurons typically display slow firing properties, DA neurons that specifically
target mPFC and nucleus accumbens (NAc, both core and medial shell regions) show
atypical fast firing rates [89]. At the behavioral level, VTA activity contributes to several
behaviors and complex cognitive functions, including adaptive behaviors (flexibility and
reinforcement learning), working memory, motivation, aversion, and the encoding of value
and salience [92–94]. Recent research has demonstrated that VTA DA neurons are not only
involved in assessing the value and salience of stimuli but also in their identification [95].
Serving as a central hub for reward information processing, the VTA plays a key role in
reward-based learning and goal-directed behaviors [94]. Additionally, the VTA is also
known to be involved in certain pathological states, such as depression [96], addiction [97],
and schizophrenia [98]. The VTA influences these processes by establishing connections and
communication between multiple brain areas, primarily through the release of DA in limbic
and cortical areas, and thereby modulates the activity of neurons in those regions [99,100].

3.1. The Role of the VTA in Pain Processing

Several studies have explored the contribution of the VTA in nociception modulation.
The initial studies revealed that in response to aversive or painful stimuli, some VTA DA
neurons increase their firing activity, while others decrease it [101,102]. In a study by Ungless
and colleagues [103], it was found that aversive stimuli uniformly inhibit VTA DA neurons.
However, they also reported an excitatory effect in neurons lacking tyrosine hydroxylase
(TH) expression [103]. Similarly, Brischoux and colleagues [92] observed that following a
painful stimulus, most of the VTA TH-positive DA neurons located in the ventral part of the
VTA were inhibited, while some were unresponsive and others were strongly excited [92].
Another important point is the direct and/or indirect unbalanced interaction between the VTA
DAergic tone and other brain areas. For example, acute pain can activate DAergic signaling in
PFC areas [104], whereas chronic pain conditions may reduce DAergic signaling, probably
due to disruptions in local VTA networks [105]. Following the induction of peripheral
neuropathy, a significant decrease in VTA c-fos activity was reported 4 days later, supporting
the hypothesis regarding a hypo-DA activity pattern during chronic pain [106]. However, in
another study, the authors observed an increase in VTA DA bursting activity and a decrease
in the evoked inhibitory input from the rostromedial tegmental area (RMTg) 14 days after
nerve lesion [107]. Although the spontaneous activity of the RMTg remained unaffected,
the study reported an increase in extracellular DA levels and a decrease in the expression
of TH and DA D2 receptor (D2r) protein in the NAc. This increase in DA activity appears
to contradict the findings of other studies, which reported a hypo-DA tone in chronic pain
conditions (for a review, see [82,108–110]). One possible explanation for this discrepancy
could be a compensatory mechanism, whereby DA cells attempt to cope with the negative
experiences [111]. Additionally, a recent study showed that neuropathic pain can lead to
differential plasticity in specific DA neurons located in lateral and medial regions of the
VTA [112]. They observed a significant decrease in DA activity in the lateral VTA, but not in
the medial VTA [112]. All these studies emphasize the importance of subpopulation specificity
during attempts to modulate VTA DA neurons, particularly in painful conditions. Notably,
VTA DAergic signaling seems to develop a vital influence in the specific synergy between the
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VTA and other brain regions during pain states. In a rodent model of neuropathic pain, it has
been reported that reduced intrinsic excitability of VTA DA neurons contributes to decreased
NAc local firing activity [113]. This disruption can be reverted by selective optogenetic
activation of NAc-projecting VTA DA neurons, reducing the allodynia and hyperalgesia
caused by sciatic nerve lesion [113]. Adding to this, it has also been reported that VTA
stimulation can reduce thermal and mechanical responses and spinal dorsal horn excitability
induced by inflammatory pain [114]. Furthermore, DA neurons also play a critical role in
the emotional component of pain. As mentioned before, pain relief in the context of ongoing
pain can lead to an increase in VTA DA neuron activity [90,92]. This results in a conditioned
place preference as to where pain relief is applied, reflecting the rewarding effect of VTA DA
activation in the affective pain component [115]. Furthermore, opioids also play a role in VTA
signaling in pain, since opioids hyperpolarize GABA interneurons in the VTA leading to an
increase in VTA DA neuron activity [116]. This accounts for the analgesic effect observed
following opioid administration and the release of high-levels of DA from VTA terminals in
the NAc [117]. However, it is important to note that opioid administration does not appear to
contribute to the direct rewarding dimension of pain relief, as the conditioned place preference
for pain relief does not depend on the direct VTA opioid effect [115].

3.2. The Role of the VTA in Mood and Cognition

Dopamine plays a pivotal role in different cognitive functions, including working
memory [118,119], adaptive behaviors [120,121], incentive learning [122], value-based
learning [123], decision making [124,125], motivation [126], valuation [127], cognitive
control [128], and action initiation [129,130]. Consequently, the VTA with its majority of
DA neurons is either directly or indirectly involved in these cognitive functions [131].
Many of these functions rely on the role of DA neurons in encoding reward prediction
errors [132] and valence, which affect decision-making processes [133]. VTA DA neurons
are believed to contribute significantly to cognition through their connections to cortical
areas, particularly through their indirect control of mPFC neurons [134,135]. As several
cognitive functions are dependent on mPFC functioning [136], the bidirectional interplay
between the VTA and mPFC allows for adjustments in VTA DA signaling to the mPFC.
This coordination of neuronal activity is essential for meeting cognitive demands [137,138].
In this regard, the overexpression of DA D2r in the striatum has been associated with a
disruption of neuronal activity coordination between the VTA and mPFC, affecting the
learning rate in spatial working memory tasks [99]. Another important component is
intra-VTA oscillatory activity and its synchronization with the hippocampal formation
and the mPFC activity, which has also been referred to as being key to the success of
working memory-dependent processes [139]. It is important to note that VTA DA neurons
form a functional loop with the hippocampus [140]. When the hippocampus detects new
information, this loop is activated and the resulting novelty signal is conveyed to the
VTA DA neurons, leading to their firing. This, in turn, causes a release of DA within
the hippocampus, enhancing long-term potentiation (LTP) and learning [140]. On the
other hand, VTA inactivation has also been shown to suppress LTP in the hippocampal
CA1 field [141]. Finally, it is important to note that it is not only VTA DA neurons that are
involved in cognitive processes; the local VTA glutamatergic neurons also play an important
role. For example, the brief photo-stimulation of VTA VGlut2 positive neurons has been
shown to induce positive reinforcement in instrumental behavioral assays, while their
continuous stimulation demonstrated an opposite result with the inducing of avoidance
responses [87].

4. LHb-to-VTA Pathway Structural Connectivity

The VTA is one of the main efferents of the LHb (Figure 1). These projections are
mainly glutamatergic [142,143] and exert an inhibitory tone over the VTA GABAergic in-
terneurons that further suppress the local DA neuron activity [19]. In turn, the VTA also
sends projections back to the LHb. This occurs mainly through its GABAergic, GABAergic-
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glutamatergic [87,144], and GABAergic-DAergic neurons [145], which connect the VTA to
local LHb glutamatergic neurons. The LHb and VTA are also anatomically connected by
indirect pathways. The main indirect pathway from the LHb to the VTA is through the RMTg.
In this case, the LHb glutamatergic projections form synapses on the local RMTg GABAergic
neurons, and they in turn exert an inhibitory effect over the local VTA DA neurons [146].
From the VTA, there are also some indirect pathways to the LHb going through different brain
structures, such as the ventral striatum or the PFC [147,148]. Together, these microcircuits are
important for information segregation to other brain regions.

4.1. The Influence of LHb-Dependent Activity on the VTA

Several neuroelectrophysiological studies have shown that the inhibitory input from
the LHb to the DA neurons is undoubtedly robust [19,20,149]. For example, electrical
stimulation of the LHb in anaesthetized rats showed that 97% of the VTA DA neurons
developed transient inhibition [19]. However, it is important to note that the RMTg
also appears to contribute to this input. It has been shown that when combining local
stimulation of the LHb with local RMTg lesions, only 67% of the VTA DA neurons were
inhibited, suggesting that the RMTg relays a part in the inhibitory tone sent by the LHb to
the VTA [149]. Although most of the VTA DAergic population is inhibited following LHb
excitation, there are also some VTA DAergic neurons that increase their activity upon LHb
stimulation [38,39]. It has been suggested that direct contact between the LHb glutamatergic
axon terminals and local VTA DAergic neurons seems to be responsible for this particular
enhanced activity [142,150]. In turn, LHb inhibition or direct stimulation of the VTA has
been shown to increase extracellular DA concentration in the mPFC and ventral striatum
(NAc) [151].

4.2. The Influence of VTA-Dependent Activity on the LHb

The VTA also exerts a modulatory effect on local LHb activity. For example, it has
been shown that the optogenetic selective activation of VTA glutamatergic neurons can
induce a significant release of glutamate in the LHb, leading to the occurrence of aversive
behaviors [152]. Additionally, the activation of VTA glutamate-GABA neurons that contact
LHb can result in both excitatory and inhibitory postsynaptic currents in the LHb, causing
an inhibitory net effect that is thought to control the LHb glutamatergic input to the
VTA [87]. In the case of VTA DA-GABA neurons projecting to the LHb, they appear to
mainly release GABA to suppress the LHb output to the VTA and to promote reward-
associated behaviors [145]. This effect is also supported by data from another study in
which the authors showed that single-pulse stimulation of VTA DAergic neurons can result
in a transient cessation of LHb neuronal activity, but VTA tetanic stimulation leads to
an increase in LHb neuronal activity. This might reflect the differential signaling of both
reward and aversive events through the VTA-to-LHb networks [49].

4.3. The Impact of the LHb–VTA Microcircuit Dynamics on Cognitive Activity

The direct manipulation of the LHb and its principal efferent source, the VTA, can
clearly introduce strong changes in both the afferent and the efferent pathways involved in
pain and cognitive information processing, further altering the balanced control leading
to neuropsychiatric pathological disorders [3]. In Table 1, we summarize some of the
most relevant studies highlighting the impact of LHb–VTA microcircuit manipulation on
cognitive functions. As mentioned before, the LHb can encode negative reward value [9,31],
which is believed to occur through the inhibition of VTA DA firing [19,20] and by a decrease
in DA release in the NAc [151]. At the network level, both the LHb-to-VTA signaling
and the reverse circuit, VTA-to-LHb, impact reward and aversion processing [87,145,152].
For example, the control exercised by the LHb–VTA pathway has been reported to be
important for the performance of risk-based emotional tasks based on the precise phasic
DA signals necessary to prepare future choice responses [37]. To evaluate the role and
characterize the activity of the LHb and midbrain DA neurons, Matsumoto and colleagues
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(2007) [9] performed a study in primates using a saccade reward-related task. They found
that whenever a reward was presented, there was silencing of LHb neurons, and during
unrewarded trials, the LHb neurons fired phasically [9]. They also found that when
a predicted reward was omitted, these neurons rapidly increased their firing activity
in opposition to DA recorded neurons. Finally, they also reported that the short-term
activation of the midbrain DA neurons induced by reward-predicting stimuli can occur
before the transient inhibition of LHb neuronal activity, suggesting that DA neurons also
convey positive reward signals to the LHb [9].

The ability to adapt and change responses during unpredictable events or to increase
focus on a relevant stimulus while ignoring others is a key factor in the success of several
emotional, executive, and cognitive functions [10,36,153–155]. These functions are strictly
dependent on attentional levels during behavioral demands. LHb lesions have also been
associated with the development of attentional deficits, leading to premature or impulsive
responses during the performance of a five-choice serial reaction task [70]. These impair-
ments are thought to be dependent on the malfunction of LHb control over DA centers.
Using the same behavioral paradigm, a recent study also demonstrated the emergence of
attentional deficits following the chemogenetic activation of VTA DA neurons [156]. As
the LHb complex synaptic drive to local VTA neurons is mainly inhibitory, these studies
support the hypothesis that increased VTA DA activity can be achieved indirectly through
lesions of the LHb complex. This reinforces the idea that the LHb–VTA microcircuit plays
a critical role in goal-directed actions during attention-demanding conditions. The LHb
complex has also been associated with the modulation of behavioral avoidance responses.
For example, Lammel and colleagues [38] optogenetically stimulated the LHb axonal termi-
nals that terminate in the VTA, and they showed that this activation can lead to increased
avoidance behavior [38]. Additionally, they found that these responses can be reverted
if this activation is performed in combination with a local infusion of DA D1 receptor
(D1r) antagonists in the mPFC, suggesting that the VTA input to the mPFC may also be
important for avoidance responses. The stimulation of VTA has also been shown to increase
active avoidance learning and the acquisition of novel strategies, whereas LHb stimula-
tion has been shown to suppress the acquisition of novel strategies that are irrelevant to
behavioral performance [80]. Interestingly, another study showed that LHb stimulation
seems to have no significant impact on memory consolidation or retrieval but induces an
impairment in the acquisition of avoidance learning [157]. In contrast, the LHb lesions
appear to have a similar effect to that of VTA direct stimulation, as they improve avoidance
learning [158]. Moreover, it has also been reported that continuous exposure to aversive
stimuli increases LHb excitatory output onto the RMTg and that optogenetic activation of
LHb glutamatergic terminals in the RMTg can promote active/passive and conditioned
behavioral avoidance [159]. It is important to note that active avoidance behavior has
rewarding components since it enables the subject to escape a noxious stimulus. Addi-
tionally, it might play a role in the cognitive processes required to learn the instrumental
contingency. For example, learning the avoidance contingency also requires the animal to
remember where the shock is given to actively avoid it, and it relies on contextual mem-
ory [160]. Consequently, a role in the DA system would be in place, with the activation of
VTA, PFC, and NAc being reported when avoidance behavior was prompted [161]. In fact,
there is an increased release of DA in the PFC during the acquisition phase of avoidance
learning [162,163]. Overall, deficits or improvements in the acquisition phase of avoidance
behavior might correlate with a role for DA in motivation and learning processes that
are specifically related to working memory. This, in turn, can also be modulated by the
LHb descending drive. Using a classical conditioning task in which freezing responses
were evaluated, Chan and colleagues reported that impaired DA signaling in the LHb
(through D1r activation or inhibition) affects the acquisition of contextual fear memory
but not its consolidation or retrieval [164]. Additionally, LHb DA D1r pharmacological
inactivation has also been associated with memory acquisition and retrieval deficits during
the performance of a conditioned taste-aversion test, reflecting the importance of LHb DA
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signaling in aversion and memory [165]. Contextual memory is known to be hippocampal-
dependent [166,167]. As there is no anatomical direct connectivity between the LHb and
the hippocampal formation, it is assumed that this interplay between both structures is
mediated mainly by indirect pathways, such as the VTA. In fact, it has been reported that
the LHb might act as a controller, influencing the bidirectional interplay between the VTA
and the hippocampus [140,168]. In this regard, LHb electrical stimulation has been shown
to increase the release of DA in the hippocampal formation [169], developing an important
role in the regulation of spatial working memory [170] and long-term memory [141]. This
increase is strictly modulated by local DA D2r receptor activity via VTA projections [171].
The hippocampus receives sparse DAergic innervation from the VTA that regulates its local
synaptic transmission, which is associated with mnemonic functions [172] and influences
hippocampal-dependent behaviors [173]. Moreover, hippocampal DAergic system abnor-
malities in local circuits involved in working memory processing can explain pain-related
performance deficits [119,174] and different pain sensitivity responses due to the action
of D2r [175–177]. In this scope, a recent study from our laboratory has also observed that
selective inhibition of LHb glutamatergic neurons projecting into the VTA enhances spatial
working memory in inflammatory pain rats [178]. These studies suggest that LHb-to-VTA
pathway dysfunction is an important factor for impairment of memory.

Table 1. Summary of studies investigating the role of LHb–VTA pathway on cognitive component.

Cognitive
Variable

Experimental
Model Manipulation Main Findings Reference

Reward/
aversion Primate Electrical LHb

Stimulation

LHb electrical stimulation elicits an inhibition of DA neurons;
LHb input plays an important role in determining the

reward-related activity of DA neurons
Matsumoto et al., 2007 [9]

Reward/
aversion Rat

LHb electrical stimulation;
Fasciculus retroflexus (Fr)

lesion

LHb electrical stimulation elicits an inhibition of the VTA and
substantia nigra (SN) DA neurons; Fr lesion attenuates LHb

inhibition over DA neurons
Ji and Shepard, 2007 [19]

Reward/
aversion Rat Electrical/chemical

modulation of the LHb

Inhibition of LHb increases DA release in the PFC, NAc, and
dorsal striatum; LHb stimulation produces minimal

opposite effects
Lecourtier et al., 2008 [151]

Reward/
aversion

VGLUT2-Cre
mice

Activation of VTA
glutamatergic neurons

VTA VGLUT2-mesohabenular neurons play a role in aversion
by activating LHb glutamatergic neurons Root et al., 2014 [152]

Reward/
aversion TH-Cre mice Activation of VTA

TH-expressing neurons
This activation produces reward-related behavioral

phenotypes that require GABAA signaling in the LHb
Stamatakis and Stuber,

2012 [159]

Reward/
aversion

VGLUT2-Cre
mice

Activation of VTA
glutamatergic neurons

This activation induces positive reinforcement in instrumental
behavioral assays by brief stimulation and avoidance in

continuous stimulation
Yoo et al., 2016 [87]

Reward/aversion Rat Modulation of LHb, RMTg, or
VTA activity

Dissection of the role of this brain area in the precise
coordination of DA signals that regulate future

reward–risk-based responses
Stopper et al., 2014 [37]

Attention Rat Bilateral LHb lesion This lesion promotes attention deficits through premature or
impulsive responses

Lecourtier and Kelly,
2005 [70]

Attention TH-Cre rat Chemogenetic activation of
VTA or SN DA neurons

Activation of VTA/SN DA neurons promotes attention
deficits, without affecting impulsivity Boekhoudt et al., 2017 [156]

Avoidance VGLUT2-Cre
mice

Activation of LHb neurons
projecting to VTA

This activation increases aversion after LHb light stimulation;
aversion for light conditioned room blocked by D1r antagonist

in mPFC
Lammel et al., 2012 [38]

Avoidance Mice VTA stimulation VTA stimulation impairs avoidance acquisition, without
affecting memory retrieval or motivation Shumake et al., 2010 [80]

Avoidance Gerbils LHb stimulation LHb stimulation impairs acquisition of avoidance learning,
without affecting consolidation or retrieval Ilango et al., 2013 [157]

Avoidance Mice
Activation of LHb

glutamatergic terminals in the
RMTg

This activation promotes active/passive and conditioned
behavioral avoidance

Stamatakis and Stuber,
2012 [159]

Contextual
memory Rat Blockade or activation of LHb

DA D1r
This manipulation impairs DA D1r signaling in the LHb and

affects acquisition of contextual fear memory
Chan et al., 2017a

[164]

Contextual
memory Rat Blockade or activation of LHb

DA D1r

This manipulation promotes anxiety-like behavior and
decreases depressive-like behavior; impaired aversive

memory acquisition

Chan et al., 2017a
[164]

Contextual
memory Rat Transient inactivation of VTA This manipulation impairs hippocampal long-term memory Ghanbarian and Motamedi,

2013 [141]
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5. Future Directions and Concluding Remarks

The complex interactions between the LHb and VTA have attracted great interest
with respect to their important role in the regulation of behavior, pathological chronic pain
conditions, and impact on high-level cognitive functions. Here, we review the most recent
advances in the understanding of the roles of this microcircuit, particularly those related
to pain and cognition. From the survey of the current literature, it is clear that both brain
areas are structurally and functionally connected and share dynamic bidirectional neural
interactions. It is also well known that both structures participate in aversion and pain
circuits, and that intrinsic dysfunctions affect pain processing and sensation. Thus, the
LHb and VTA are important candidates and relevant targets to study in a broad range of
pain-related pathologies associated with the sensorial, emotional and cognitive dimensions.
New technologies such as optogenetics have the capability to achieve regional and cell-type
neuronal activation, providing an unprecedented opportunity to probe the complexities
of pain information processing and their impact on supraspinal circuits [179]. Somewhat
surprisingly, only a few studies have taken advantage of these tools to understand the role
of this pathway in pain-related dysfunctions. Considering the importance of this pathway,
however, additional studies will move beyond these initial studies and use optogenetic
tools to tackle unanswered questions regarding pain impact on circuitries not classically
associated with pain processing.
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