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Incident type 2 diabetes attributable to 
suboptimal diet in 184 countries

Meghan O’Hearn    1,2 , Laura Lara-Castor    1, Frederick Cudhea1, 
Victoria Miller    1,3,4, Julia Reedy1, Peilin Shi1, Jianyi Zhang1, John B. Wong    5,6, 
Christina D. Economos1, Renata Micha1,7, Dariush Mozaffarian    1,5,6  &  
Global Dietary Database*

The global burden of diet-attributable type 2 diabetes (T2D) is not well 
established. This risk assessment model estimated T2D incidence among 
adults attributable to direct and body weight-mediated effects of 11 dietary 
factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of 
these dietary factors was estimated to be attributable to 14.1 million (95% 
uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 
70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were 
attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess 
refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed 
meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional 
burdens were in central and eastern Europe and central Asia (85.6% 
(83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); 
and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). 
Proportions of diet-attributable T2D were generally larger in men than in 
women and were inversely correlated with age. Diet-attributable T2D was 
generally larger among urban versus rural residents and higher versus lower 
educated individuals, except in high-income countries, central and eastern 
Europe and central Asia, where burdens were larger in rural residents and in 
lower educated individuals. Compared with 1990, global diet-attributable 
T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 
2018, with variation in these trends by world region and dietary factor. These 
findings inform nutritional priorities and clinical and public health planning 
to improve dietary quality and reduce T2D globally.

T2D is a leading determinant of morbidity and mortality globally, with 
enormous economic and societal consequences (http://www.diabete-
satlas.org)1,2. Between 1980 and 2020–2021, the number of adults with 
diabetes (90% of which is T2D) increased from 108 million to 537 million, 

with corresponding increases in obesity from 100 million to 764 million 
adults (http://www.diabetesatlas.org)3–5. This phenomenon is global: no 
nation has experienced a decline in diabetes or obesity in the last 40 years  
(http://www.diabetesatlas.org). Diabetes creates extraordinary 
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versus optimal, 300.0 g per d), non-starchy vegetables (209.8 g per d 
(202.2, 217.4) versus 300.0 g per d), nuts and seeds (8.6 g per d (7.7, 9.7) 
versus 20.3 g per d), whole grains (50.1 g per d (44.2, 55.2) versus 90.0 g 
per d) and yogurt (21.2 g per d (18.3, 25.1) versus 87.1 g per d) and excess 
intake of potatoes (47.8 g per d (42.7, 55.2) versus 0.0 g per d), refined 
rice and wheat (302.9 g per d (265.1, 354.8) versus 0.0 g per d), pro-
cessed meats (16.8 g per d (14.7, 19.9) versus 0.0 g per d), unprocessed 
red meats (56.5 g per d (53.3, 59.9) versus 14.3 g per d), SSBs (95.6 g per 
d (89.1, 103.0) versus 0.0 g per d) and fruit juices (15.1 g per d (14.0, 16.4) 
versus 0.0 g per d) (Supplementary Tables 1 and 2). In 2018, based on 
Global Burden of Disease data, a total of 20.1 million (95% UI, 19.9–
20.3 million) new T2D cases occurred among adults globally, with the 
greatest absolute number of annual new cases occurring in southeast 
and East Asia (5.8 million (5.7, 5.9 million)) and South Asia (4.7 million 
(4.6, 4.8 million)).

Estimated T2D cases attributable to suboptimal diet
In 2018, a total of 14.1 million (95% UI: 13.8, 14.4 million) estimated new 
T2D cases, or 70.3% (95% UI: 68.8–71.8%) of the total, were estimated 
to be due to suboptimal intake of the 11 dietary factors (Supplemen-
tary Table 3 and Fig. 1). Excess intake of six harmful dietary factors 
jointly (refined rice and wheat, processed meats, unprocessed red 
meat, SSBs, potatoes, fruit juice) contributed a larger proportion of the 
total global diet-attributable burden (60.8%) than insufficient intake of 
five protective dietary factors (whole grains, yogurt, fruits, non-starchy 
vegetables, nuts and seeds) (39.2%) (Supplementary Table 4). These 
proportions were generally similar across world regions in 2018 and 
globally and across world regions in 1990.

Among individual dietary factors in 2018, insufficient whole grains 
(26.1% (25.0–27.1%)), excess refined rice and wheat (24.6% (22.3–27.2%)), 
excess processed meats (20.3% (18.3–23.5%)) and excess unprocessed 
red meats (20.1% (19.0–21.2%)) were associated with the highest esti-
mated attributable burden of T2D incidence globally (Fig. 1). Lowest 
burdens were attributable to dietary factors having only BMI-mediated 
effects, such as excess fruit juice (0.09% (0.09–0.1%)), insufficient 
non-starchy vegetables (0.9% (0.9–1.0%)) and insufficient nuts and 
seeds (1.1% (1.1–1.2%)).

Diet-attributable T2D by world region and nation
Across world regions, highest proportional diet-attributable burdens of 
T2D were in central and eastern Europe and central Asia (85.6% (95% UI: 
83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)), 
and lowest proportional diet-attributable burdens of T2D were in South 
Asia (55.4% (52.1–60.7%)) and sub-Saharan Africa (68.1% (64.3–72.7%)) 
(Fig. 2). Per 1 million population, T2D cases attributable to diet were 
highest in Latin America and the Caribbean (4,152 per million popula-
tion (4,056, 4,254)) followed by the Middle East and North Africa (3,827 
per million population (3,607, 4,042)).

We identified heterogeneity in attributable burdens of T2D for spe-
cific dietary factors at regional and national levels. About one in three 
new T2D cases were estimated to be attributable to insufficient whole 
grains in southeast and East Asia (35.8% (34.1–37.3%)) and Latin America 
and the Caribbean (35.0% (32.0–37.1%)), compared with one in ten cases 
in South Asia (10.1% (7.5–13.2%)) (Fig. 3). The estimated attributable T2D 
burden from excess refined rice was 23.1% (17.9–29.9%) in southeast and 
East Asia but <2% in central and eastern Europe and central Asia and 
high-income countries in 2018. Excess refined wheat was associated 
with the highest estimated T2D burden in the Middle East and North 
Africa (22.5% (18.5–27.1%)). Large regional differences were seen in the 
estimated T2D burden of excess unprocessed red meats, ranging from 
38.2% (35.3–40.9%) in central and eastern Europe and central Asia to 
2.6% (2.1–4.1%) in South Asia. Excess processed meats were estimated to 
be associated with more than half (55.7% (49.1–61.3%)) of new T2D cases 
in central and eastern Europe and central Asia but only 4.2% (1.1–15.1%) 
in South Asia. The burden of T2D cases attributable to excess SSBs was 

burdens on individuals, families, nations and healthcare systems, 
causing one in eight global deaths and increasing risk of cardiovas-
cular diseases, renal decline, fatty liver disease, blindness, cancers, 
coronavirus disease 2019 and other infectious diseases (http://www.
diabetesatlas.org). Left unchecked and with prevalence only projected 
to rise (http://www.diabetesatlas.org), T2D will decimate population 
health, economic productivity and health system capacity worldwide.

Several dietary factors have strong evidence for etiologic effects 
on incident T2D, either directly (for example, through changes in 
blood glucose levels, insulin resistance, hepatic steatosis, inflamma-
tion, the gut microbiome or other pathways that are independent of 
body mass index (BMI)) or mediated through weight gain (http://www. 
diabetesatlas.org)2. This includes, for example, direct and 
BMI-associated relationships associated with high intake of 
sugar-sweetened beverages (SSBs) and processed meats and low con-
sumption of whole grains and yogurt, as well as BMI-associated relation-
ships with low consumption of nuts and seeds and fruits.

Yet, while it is clear that diet plays an outsized role in the risk of 
T2D, the absolute and relative contributions of specific dietary factors 
to global incidence of T2D remain unclear. Previous analyses of disease 
burdens were focused on isolated dietary factors (such as SSBs in 2010)6 
or in specific countries7–9 or world regions10,11. An analysis assessing 
diabetes globally suggested that dietary risks were responsible for 
24.7% of diabetes deaths and 34.9% of diabetes disability-adjusted 
life years (DALYs), with heterogeneity by World Bank country income 
level1. This analysis used estimates of global diet based largely on Food 
and Agriculture Organization (FAO) food-balance sheets, rather than 
individual-level intakes, and did not incorporate updated assessments 
of dietary factors and both direct and weight-gain-mediated effects. In 
addition, the global burden of diet-related T2D according to differences 
in educational attainment or urban or rural residence within world 
regions or nations, factors known to influence both diet and T2D risk 
in region-specific ways, has yet to be determined. Such assessment 
is crucial to further elucidate dietary and health disparities by these 
factors within world regions and nations.

To address these gaps in knowledge and estimate the global 
effects of suboptimal diet on T2D, we conducted a comparative 
risk-assessment model to estimate the impact of 11 dietary factors, 
separately and jointly, on the absolute and proportional burdens of new 
T2D cases among adults globally and by age, sex, education, urbanicity, 
world region and nation, in 1990 and 2018.

Results
Datasets
We incorporated dietary data from the Global Dietary Database 
(GDD), population demographics from the United Nations, adipos-
ity and diabetes distributions from the NCD Risk Factor Collabora-
tion (NCD-RisC) and the Global Burden of Disease study, direct and 
BMI-mediated etiologic effects of dietary factors on T2D from pooled 
multivariable-adjusted analyses and optimal dietary intakes from pub-
lished sources into a comparative risk-assessment-modeling framework 
to estimate the impact of 11 dietary factors, separately and jointly, 
on the absolute and proportional burdens of new T2D cases globally 
(Extended Data Fig. 1). See Methods for further details.

Dietary and T2D distributions
Eleven dietary factors were identified to have probable or convincing 
evidence of an etiologic effect on T2D or weight gain as well as global 
availability of consumption data. The optimal intake for each factor 
was determined based on observed levels with lowest morbidity and 
mortality in the meta-analyses, feasibility based on observed national 
consumption levels and consistency with major food-based dietary 
guidelines (Methods)12. In 2018, global mean intakes of these 11 die-
tary factors estimated by the GDD were suboptimal, including insuf-
ficient intake of fruits (observed mean (s.d.): 87.9 g per d (84.9, 90.8) 
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highest in Latin America and the Caribbean (26.2% (24.0–28.7%)) and 
lowest in South Asia (3.3% (2.3–4.8%)). Excess intake of potatoes was 
associated with the highest proportional T2D burden in central and 
eastern Europe and central Asia (12.7% (10.4–15.4%)). Generally, excess 
intake of fruit juice and insufficient intake of yogurt, fruit, non-starchy 
vegetables, and nuts and seeds had lower attributable burdens and 
less heterogeneity by world region (Fig. 3 and Extended Data Fig. 2).

Considering the 30 most populous countries, the proportional 
diet-attributable burden of T2D was highest in Colombia (94.6% 
(95% UI: 92.4–96.4%)) and Poland (89.0% (87.2–91.0%)) and lowest in 
India (50.2% (46.5–56.9%)) (Fig. 4). However, per million population, 
Mexico (6,015 cases (95% UI: 5,751, 6,275)) and Germany (5,091 cases 
(4,841, 5,383)) had the highest estimated diet-attributable T2D bur-
dens, while Ethiopia (976 cases (856, 1,156)) and Nigeria (1,127 cases 
(1,013, 1,272)) had the lowest. Global national heat maps and detailed 
tables of national proportional and absolute T2D burdens attribut-
able to suboptimal diet jointly and separately in 1990 and 2018 for all 
countries are presented in Extended Data Fig. 3 and Supplementary 
Tables 3 and 5.

Trends between 1990 and 2018
Global trends in diet-attributable T2D burden between 1990 and 2018 
are described in Supplementary Note 1 and Fig. 5. Regionally, the largest 
increases in diet-attributable T2D burdens were in sub-Saharan Africa 
(+9.3 absolute percentage points (95% UI: 7.7–10.8%)) and southeast and 
East Asia (+8.6% (6.1–11.1%)), and the largest (although non-significant) 
declines were in South Asia (−1.2% (−4.1% to 1.1%)) and high-income 
countries (−1.5% (−3.9% to 1.1%)) (Extended Data Fig. 4). Certain dietary 
factors had considerable regional heterogeneity (Fig. 5 and Extended 
Data Figs. 5 and 6). The T2D burden attributable to excess unprocessed 
red meat increased by 21.3 absolute percentage points (18.1–24.1%) in 

southeast and East Asia but declined in central and eastern Europe and 
central Asia (−6.5% (−8.6% to −4.4%)), high-income countries (−3.8% 
(−6.4% to −0.7%) and the Middle East and North Africa (−2.8% (−4.2% to 
−1.4%)) (Fig. 5). T2D cases attributable to excess refined rice declined, 
but increased for excess refined wheat, in South Asia and central and 
eastern Europe and central Asia (Fig. 5 and Extended Data Fig. 5), while 
increasing T2D burdens for refined wheat and rice were observed in the 
Middle East and North Africa (+4.1% (2.9–5.5%) and +3.3% (2.4–4.4%), 
respectively) and sub-Saharan Africa (+1.3% (0.8–1.9%) and +1.8% 
(1.2–2.4%)). The T2D burden attributable to SSBs increased most in 
sub-Saharan Africa (+9.4% (7.1–11.8%)), with more modest changes 
in other world regions. The proportional T2D burden attributable to 
processed meat increased in all regions except South Asia. Trends in 
the 30 most populous countries are discussed in Supplementary Note 
1 and shown in Extended Data Fig. 7.

Findings by age, sex, education level and urbanicity
All findings were evaluated subnationally, jointly stratified by age, 
sex, educational attainment and urban or rural residence. Globally, 
the diet-attributable T2D burden was generally greater in males (pro-
portional, 71.7% (95% UI: 70.2–73.4%); per million, 2,987 cases (95% 
UI: 2,918, 3,058)) versus females (68.6% (67.0–70.3%); 2,626 cases 
(2,564, 2,694)) (Fig. 2). Proportional burdens were higher in younger 
adults (aged 20–25 years, 83.5% (81.4–85.5%)) versus older adults (aged 
95+ years, 27.7% (26.1–30.6%)), but middle-aged adults had the high-
est burden per million (for example, aged 55–59 years, 4,777 cases 
(4,613, 4,964)). These sex- and age-specific differences were generally 
similar in 1990 (Extended Data Fig. 8).

By education globally, estimated diet-attributable T2D burden 
was highest among individuals with high education (proportional, 
73.6% (72.2–75.4%); per million, 2,952 cases (2,886, 3,030)) versus those 

Suboptimal diet

Insu�icient intake of whole grains

Excess intake of refined grains

Excess intake of processed meats

Excess intake of unprocessed red meat

Insu�icient intake of yogurt

Excess intake of SSBs

Excess intake of potatoes

Insu�icient intake of fruit

Insu�icient intake of nuts and seeds

Insu�icient intake of non-starchy vegetables

Excess intake of fruit juice

0 20 40

Diabetes burden attributable to suboptimal diet in 2018 (%)

60 80

Fig. 1 | The proportional burden of T2D attributable to suboptimal diet 
jointly and by each individual dietary factor globally in 2018. Bars represent 
the estimated percentage of T2D incidence due to suboptimal intake of 11 
dietary factors jointly (suboptimal diet) and separately at the global level in 
2018. The burden due to suboptimal diet was estimated using proportional 
multiplication, assuming that half the benefit of whole-grain intake is mediated 
through replacement of refined rice and wheat intake. Refined rice and wheat 
were modeled separately but combined for this aggregate analysis using 

proportional multiplication. The attributable burden of T2D for four dietary 
factors (insufficient intake of fruit, nuts and seeds, non-starchy vegetables 
and excess intake of fruit juice) were estimated only based on effects mediated 
through weight gain (for example, no direct effects on T2D risk were identified 
in the literature). See Supplementary Table 5 for more details on the inputs for 
each dietary factor. Data are presented as the central estimate (median) and the 
corresponding 95% UI, derived from the 2.5th and 97.5th percentiles of 1,000 
multiway probabilistic Monte Carlo model simulations.
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with medium (70.7% (69.1–72.5%); 2,873 cases (2,807, 2,951)) or low  
(67.7% (65.8–69.8%); 2,670 cases (2,592, 2,759)) education (Fig. 2). This 
pattern was seen in all world regions except for in high-income coun-
tries and central and eastern Europe and central Asia, where popula-
tions with medium education and low education, respectively, had the 
largest diet-attributable proportional T2D burden in 2018 (Extended 
Data Fig. 9).

By residence globally, the estimated T2D burden attribut-
able to suboptimal diet was higher among populations residing 
in urban (proportional, 72.5% (71.1–73.8%); per 1 million, 3,213 
cases (3,150, 3,279)) versus rural (66.5% (64.5–69.1%); 2,293 cases 
(2,225, 2,381)) areas, with the largest regional differences by resi-
dence identified in the Middle East and North Africa and sub-Saharan 
Africa (Extended Data Fig. 9).

Findings by national sociodemographic index
We also assessed national findings by sociodemographic index (SDI), a 
composite measure of a country’s development based on income per 
capita, educational attainment and fertility rates (Methods). In 2018, 
national diet-attributable T2D burdens were only modestly correlated 
with SDI (r = 0.29) (Fig. 6). This varied by world region, with a positive 
association among nations in sub-Saharan Africa, South Asia, the Middle 
East and North Africa, and high-income countries, but an inverse asso-
ciation among nations in central and eastern Europe and central Asia, 
Latin America and the Caribbean, and southeast and East Asia. In 1990, 
the association between national diet-attributable T2D burdens and SDI 
was stronger (r = 0.53) than in 2018, with similar trends by world region  
(Fig. 6). No bivariate outliers in the association between joint attributable 
T2D burden and SDI were detected based on statistical analysis.

Sex
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Fig. 2 | The burden of T2D attributable to suboptimal diet by key 
sociodemographic factors at the global level in 2018. Bars represent the 
estimated percentage burden (a) and absolute burden per 1 million population 
(b) of T2D incidence due to suboptimal intake of 11 dietary factors jointly: 
insufficient intake of whole grains, yogurt, fruit, nuts and seeds, and non-
starchy vegetables and excess intake of refined rice and wheat, processed 
meats, unprocessed red meat, SSBs, potatoes and fruit juice. The burden due to 

suboptimal diet was estimated using proportional multiplication, assuming that 
half the benefit of whole-grain intake is mediated through replacement of refined 
rice and wheat intake. See Supplementary Table 5 for more details on the inputs 
for each dietary factor. Data are presented as the central estimate (median) and 
the corresponding 95% UI, derived from the 2.5th and 97.5th percentiles of 1,000 
multiway probabilistic Monte Carlo model simulations.
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Discussion
Based on globally representative and stratified estimates of dietary 
intake and T2D incidence, our modeling investigation estimates that, 
in 2018, seven in ten (70.3% (95% UI: 68.8–71.8%)) or 14.1 million (95% UI: 
13.8–14.4 million) new T2D cases globally are attributable to suboptimal 
intake of 11 dietary factors. Excess intake of harmful dietary factors 
contributed a greater percentage of this burden globally (60.8%) than 
did insufficient intake of protective dietary factors (39.2%). Among 
individual dietary factors, the largest number of estimated T2D cases 
globally were attributable to insufficient whole grains (26.1%), excess 
refined rice and wheat (24.6%), excess processed meat (20.3%) and 
excess unprocessed red meat (20.1%). Substantial heterogeneity in 
diet-attributable T2D burdens overall and for each dietary factor was 
found by world region and nation. The proportional diet-attributable 
T2D burden was inversely correlated with age and was generally greater 
in men versus women, urban versus rural residents and for individuals 
with higher versus lower education, except in high-income countries 
and central and eastern Europe and central Asia, where the reverse was 
true for urbanicity and education level. National diet-attributable T2D 
burdens were only modestly correlated with socio-economic develop-
ment, with a weakening of this association since 1990.

Highest diet-attributable T2D burdens were observed in central 
and eastern Europe and central Asia, particularly in populous countries 
such as Poland and Russia, driven by larger burdens from excess intake 
of unprocessed red meat, processed meat and potatoes. These findings 
are consistent with the region’s culinary ‘meat and potatoes’ practices 
and associated cardiometabolic health risk for this dietary pattern in 
the eastern European context13. Latin America and the Caribbean had 
the second highest estimated diet-attributable T2D burden of all world 
regions, especially in Colombia and Mexico, related to excess SSBs, 
excess processed meats and insufficient whole grains. These results are 

consistent with the transition toward more highly processed diets in 
this region14, including increasing processed meat intake in Colombia, 
Argentina and Brazil15 and consistently low whole-grain intake across 
eight Latin American countries16. These results also build upon previous 
findings of excess SSB consumption and associated cardiometabolic 
disease burden in Latin America and the Caribbean, as well as evidence 
for the adverse effects of excess SSB and processed meat intake and 
insufficient whole-grain intake on T2D risk (Methods).

Disparities in diet, health and disease are a critical area of public 
health research and practice. We found differences in diet-attributable 
T2D burden by education level subnationally, as well as diverging 
effects in these differences by world region, providing evidence to 
inform nutrition-related disparities globally. In high-income coun-
tries and central and eastern Europe and central Asia, populations 
with lower education had higher diet-attributable T2D burdens than 
populations with high education, indicating that educational interven-
tions and social safety net programs in these regions should include 
focus on nutrition and T2D to reduce health disparities. By contrast, 
in Latin America and the Caribbean, South Asia and sub-Saharan 
Africa, diet-attributable T2D burdens were highest among adults with 
high educational attainment. Improving education may therefore 
not reduce T2D in these regions, and alternative strategies such as 
front-of-package labeling, marketing standards, taxation and other 
financial incentive schemes may be more effective17–19. Financial mar-
kets can also drive health and equity in the food sector, based on the 
business case for investing in the production, sale and marketing of 
products aligned with these societal goals20.

Our finding of similar or higher diet-attributable T2D burden in 
urban areas compared to rural areas in most world regions (except 
high-income countries and central and eastern Europe and central 
Asia) is consistent with estimated urban–rural differences in animal 
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Fig. 3 | The proportional burden of T2D attributable to suboptimal intake 
of eight individual risk factors by world region in 2018. Bars represent the 
estimated percentage of T2D incidence due to suboptimal intake of eight 
individual dietary factors separately. The attributable burden of T2D for four 
dietary factors (insufficient intake of fruit, nuts and seeds, and non-starchy 
vegetables and excess intake of fruit juice) was estimated only based on effects 

mediated through weight gain (that is, no direct effects on T2D risk were 
identified in the literature) and is reported in Extended Data Fig. 1. Countries 
were delineated into world regions by the GDD. Data are presented as the 
central estimate (median) and the corresponding 95% UI, derived from the 
2.5th and 97.5th percentiles of 1,000 multiway probabilistic Monte Carlo model 
simulations.
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source food intake21 and in age-standardized adiposity, particularly 
in the global south22. However, evidence from 1985 to 2017 suggests 
that BMI is rising at the same or faster rates in rural areas in low- and 
middle-income countries (LMICs)22, consistent with increased supply 
of highly processed foods in rural areas14, and indicating a growing 
need to focus on rural nutrition and lifestyle in low- and middle-income 
nations. Addressing these nutrition and health disparities will require 
clinical, policy and public health interventions and policies tailored to 
local circumstances.

The global T2D proportional burden attributable to suboptimal 
diet was inversely correlated with age, but, per million population, 
absolute burden was highest at middle age (45–60 years), indicating 

the interplay between differences in nutritional habits versus absolute 
risk for T2D at different ages23. Given these findings, multisectoral 
approaches to improving diet quality across the life course may be 
most effective, including among children and adolescents24–26, when 
lifelong dietary habits are often formed.

We did not find a strong relationship between SDI, an inte-
grated measure of national sociodemographic development, and 
diet-attributable T2D risk. This is due to various reasons for suboptimal 
diet quality in different nations at different levels of SDI, such as often 
lower intake of protective foods in lower-SDI countries and higher 
intakes of protective foods but also harmful foods in higher-SDI coun-
tries. Our subnational findings by education and urbanicity provide 
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Fig. 4 | The burden attributable to suboptimal diet at the national level in 
the top 30 most populous countries in 2018. Bars represent the estimated 
percentage burden (a) and absolute burden per 1 million population (b) of T2D 
incidence due to suboptimal intake of 11 dietary factors jointly: insufficient intake 
of whole grains, yogurt, fruit, nuts and seeds, and non-starchy vegetables and 
excess intake of refined rice and wheat, processed meats, unprocessed red meat, 
SSBs, potatoes and fruit juice. The burden due to suboptimal diet was estimated 

using proportional multiplication, assuming that half the benefit of whole-
grain intake is mediated through replacement of refined rice and wheat intake. 
Countries are ordered based on population size in 2018, from highest to lowest. 
See Supplementary Table 5 for more details on the inputs for each dietary factor. 
Data are presented as the central estimate (median) and the corresponding 95% 
UI, derived from the 2.5th and 97.5th percentiles of 1,000 multiway probabilistic 
Monte Carlo model simulations.
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additional insights in this regard, as we identified differing directions of 
association in high- versus low-income countries by subnational educa-
tion and urbanicity, which are each associated with sociodemographic 
development, dietary habits and diet-attributable risk of T2D. Notably, 
the relationship between SDI and diet-attributable T2D risk weakened 
between 1990 and 2018, largely owing to increasing diet-attributable 
burdens in middle-SDI and especially lower-SDI nations. Our findings 
suggest that diet quality is worsening in lower-SDI nations but without 
relative improvements in sociodemographic development, related 
to growing industrialization and Westernization of food in the Global 
South over this time period.

Changes over time were also observed in specific diet-attributable 
T2D burdens between 1990 and 2018 at global, regional and national 
levels. The proportional burden increased by 2.6 percentage points, 
while the absolute burden increased by about 8.6 million new cases 
per year, with the latter also related to increases in population growth, 
aging and obesity27–29. Excess unprocessed red meat was estimated to 
contribute the largest global increase in proportional diet-related T2D 
of all dietary factors assessed. This was driven primarily by increases 
in southeast and East Asia (+21.3%), largely related to pork consump-
tion30, which offset declines in unprocessed red meat-attributable 
T2D burdens in central and eastern Europe and central Asia (−6.5%), 
high-income countries (−3.8%) and the Middle East and North Africa 
(−2.8%). The findings in southeast and East Asia mirror economic 
development, population growth and increased urbanization in this 
region over the last 28 years31,32, although many of these same demo-
graphic changes occurred in other regions that did not experience 
increased unprocessed red meat-associated T2D burden, suggesting 
a region-specific increased demand for red meat. By contrast, grow-
ing awareness of the adverse human health impacts (for example, 
cardiovascular disease, T2D, colorectal cancer) and planetary health 
strains (for example, greenhouse gas emissions, water and land usage, 
eutrophication potential) of unprocessed red meats33 may be con-
tributing to the decreasing unprocessed red meat-attributable T2D 
burden in several world regions, including central and eastern Europe 
and central Asia, high-income countries and the Middle East and North 
Africa. The T2D burden attributable to processed meat increased 
in all world regions except South Asia (−0.7%), indicating generally 
independent shifts in, and therefore need for potentially distinct inter-
ventions to address, the consumption of unprocessed red meat versus  
processed meat.

Our findings implicate poor carbohydrate quality (excess 
refined rice and wheat, insufficient whole grains) as a leading driver 
of diet-attributable T2D globally, although with varying trends over 
time and by world region. We found estimated burdens attributable 
to insufficient whole grains to decrease globally since 1990, except 
in sub-Saharan Africa, where it increased (+2.0%). The latter result, 
along with our finding of increasing T2D burdens in sub-Saharan 
Africa attributable to refined rice and wheat, quantifies some of 
the health harms occurring from the shift away from traditional 
whole grains toward more processed, refined staples34. T2D burdens 

attributable to excess refined wheat and rice increased even more 
in the Middle East and North Africa (+6.7%, jointly), consistent with 
commodity reports of increased availability and consumption of 
refined grains in this region35. In South Asia, we identified declin-
ing (but still high) T2D burdens attributable to refined rice but 
increasing burdens attributable to refined wheat, consistent with 
the growing popularity of processed, refined wheat breads, cakes 
and pastries in South Asia as part of globalization and convergence 
toward Western diets36. Our findings suggest that excess refined rice 
and wheat and insufficient whole grains may be the top two dietary 
drivers of T2D globally, highlighting carbohydrate quality as an area 
for urgent attention.

In prior work, we estimated T2D mortality attributable to SSBs 
globally in 2010 (ref. 6). This investigation expands and updates 
this work by evaluating T2D incidence, assessing 11 dietary factors 
and extending follow-up to 2018. We found the percentage of T2D 
attributable to SSBs to be highest in Latin American and the Carib-
bean (26.2%), with modest decline (−1.4%) over the last 28 years. 
These findings suggest that new public health interventions in 
the region, including national SSB taxes, restricted availability in 
schools, limits on marketing and front-of-package warning labels37–39, 
may be contributing to some reduction in SSB-related T2D. By con-
trast, SSB-attributable T2D has skyrocketed in sub-Saharan Africa 
(+9.4%) since 1990, suggesting success of multinational corporate 
strategies to make SSBs more available, affordable and attractive in 
sub-Saharan Africa34. South Africa recently introduced a national tax 
on SSBs, with observed reductions in SSB intakes40, but otherwise 
strategies for addressing this growing SSB-associated T2D burden 
in Africa are sparse.

Our assessment of BMI-mediated effects for dietary factors asso-
ciated with weight gain acknowledges the role that caloric imbalance 
and excess weight gain play in the etiology of T2D. This risk assessment 
model incorporates energy imbalance via weight change, which can-
not be achieved by considering total calorie intake, as the latter does 
not reflect energy imbalance but rather varies with age, sex, physical 
activity, metabolic efficiency, body size, muscle mass and gut microbial 
metabolism.

Incidence of T2D attributable to direct etiologic effects of die-
tary factors was generally higher than their separate BMI-mediated 
effects. Prospective observational studies and some controlled trials 
support BMI-independent dose–response associations with T2D of 
whole grains and yogurt (protective factors) as well as glycemic load, 
SSBs, unprocessed red meats and processed meats (harmful factors)  
(Methods). Several plausible mechanisms may underlie these associa-
tions. For example, fiber and phenolics in whole grains may benefit the 
gut microbiome, resting metabolic expenditure, fat mass, insulin sensi-
tivity, blood lipids and systemic inflammation41–44. By contrast, refined 
grains, starches and sugars induce rapid blood glucose and insulin 
spikes, hepatic de novo lipogenesis, uric acid production and increased 
visceral adiposity and also can displace other healthier foods in peo-
ple’s diets44. In controlled trials, active probiotics in yogurt improve 

Fig. 5 | The absolute change in the proportional burden of T2D attributable 
to suboptimal diet and each individual risk factor between 1990 and 2018 
globally and by world region for four select dietary factors. Bars represent 
the estimated absolute change in proportional burden of T2D incidence (a) 
globally due to suboptimal intake of 12 dietary factors jointly and individually: 
insufficient intake of whole grains, yogurt, fruit, nuts and seeds, and non-
starchy vegetables and excess intake of refined rice, refined wheat, processed 
meats, unprocessed red meat, SSBs, potatoes and fruit juice. The burden due 
to suboptimal diet was estimated using proportional multiplication, assuming 
that half the benefit of whole-grain intake is mediated through replacement of 
refined rice and wheat intake. In addition, excess intake of four dietary factors 
(unprocessed red meat (b), refined rice (c), SSBs (d) and processed meat (e)) is 
included as illustrative examples of the estimated absolute change in percentage 

burden of T2D, with the remaining dietary factors included in Extended Data 
Figs. 5 and 6. A different x-axis range was used for b to account for the magnitude 
of absolute change in T2D burden attributable to excess intake of unprocessed 
red meat in southeast and East Asia. A negative absolute change in proportional 
burden indicates a reduction in the diet-attributable burden of T2D between 
1990 and 2018 (for example, reduced intake of harmful dietary factors, increased 
intake of protective dietary factors), while a positive absolute change in 
percentage burden indicates an increase in the diet-attributable burden of T2D 
during that time frame (for example, increased intake of harmful dietary factors, 
decreased intake of harmful dietary factors). Countries were delineated into 
world regions by the GDD. Data are presented as the central estimate (median) 
and the corresponding 95% UI, derived from the 2.5th and 97.5th percentiles of 
1,000 multiway probabilistic Monte Carlo model simulations.
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glucose–insulin homeostasis45,46. Mechanisms for metabolic harms of 
unprocessed red and processed meats require further study and may 
include effects of heme iron and preservatives on insulin resistance, 
oxidative stress, visceral adiposity, intracellular lipid accumulation and 

chronic inflammation47–52. In sum, our findings of direct (rather than 
only BMI-mediated) diet-attributable T2D burdens suggest that public 
health, clinical and policy interventions should prioritize diet quality, 
rather than total calories or weight alone, in global efforts to address 
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T2D. More research is needed to better understand the interplay of diet 
quality, energy balance, metabolism, obesity and T2D.

Previous studies estimated that between 35% and 41% of global 
burdens of diabetes and ~28% in the Americas were attributable to 

poor diet1,53,54. Compared with these prior studies, our investigation 
evaluated 11 dietary factors (versus only six) and separately assessed 
both direct and BMI-mediated dietary effects (versus direct only). In 
a prior study that aimed to catalog dietary and non-dietary risks for 
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Fig. 6 | Correlation of national-level diet-attributable T2D burden and 
national SDI in 2018 and 1990. Points represent the 184 countries included in 
this analysis (labeled with their ISO3 code and colored based on world region) 
in 2018 (a) and 1990 (b). The gray line represents overall correlation, with 
Pearson correlation coefficient and associated P value (two-tailed) provided. 
No adjustments were made for multiple comparisons. The y axis is based on 
estimated proportional burden of T2D incidence due to suboptimal intake of 11 
dietary factors jointly: insufficient intake of whole grains, yogurt, fruit, nuts and 

seeds, and non-starchy vegetables and excess intake of refined rice and wheat, 
processed meats, unprocessed red meat, SSBs, potatoes and fruit juice. The 
burden due to suboptimal diet was estimated using proportional multiplication, 
assuming that half the benefit of whole-grain intake is mediated through 
replacement of refined rice and wheat intake. SDI is a measure of a nation’s 
development expressed on a scale of 0 to 1 sourced from the Global Burden of 
Disease study, based on a compositive average of the rankings of income per 
capita, average educational attainment and fertility rates.
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T2D, global attributable burdens were estimated to be 34.9% for poor 
diet, 45.8% for high BMI (including diet-mediated weight gain) and 6% 
for low physical activity1. Thus, the joint T2D burden attributable to 
the direct effects of six dietary factors plus high BMI in that analysis 
would be estimated to be ~64.7%. The joint T2D burden in that analysis 
attributable to all risk factors beyond diet and BMI (low physical activ-
ity, air pollution, smoking, second-hand smoke, alcohol) would be 
estimated at ~45.1%. Thus, our findings, which incorporate 11 dietary 
factors (including factors with major attributable estimates such as 
refined grains not evaluated in prior analyses) and include both direct 
and BMI-mediated effects, are broadly consistent and plausible in 
comparison to these prior estimates, particularly when accounting 
for differences in etiologic effects and optimal levels, uncertainty in 
each model and model assumptions.

These prior studies also relied on dietary estimates derived 
primarily from national per-capita food availability, rather than 
individual-level dietary surveys. Similar to our analysis, the two global 
studies identified low intake of whole grains as the leading dietary risk 
factor1,53. These studies did not have data on refined rice and wheat 
(the second leading risk factor in our analysis), yogurt, potatoes, 
non-starchy vegetables or fruit juice. Our findings suggest that, based 
on updated data on dietary habits, etiologic effects, weight-mediated 
effects and optimal intakes, a high proportion of T2D is attributable 
to poor diet. Our investigation also assesses burdens stratified by 
subnational educational status and urban–rural residence, potential 
determinants of disparities.

Our investigation has several strengths. This study extended 
prior global and national analyses of diet-related cardiometabolic 
disease with updated dietary, BMI and T2D data. We assessed global 
diabetes impacts of refined grains, potatoes, non-starchy vegeta-
bles and fruit juice, which had not previously been analyzed. We 
incorporated both direct and BMI-mediated etiologic effects for 
multiple protective and harmful dietary factors, stratified associated 
risk by education level and urbanicity and evaluated T2D incidence 
rather than only mortality of DALYs. The modeling design incor-
porated the available estimates of finely stratified global dietary 
habits, T2D incidence, underweight and overweight prevalence, 
and diet–T2D, diet–BMI and BMI–T2D relationships. This approach 
estimates attributable burdens from independent lines of evidence, 
rather than from an ecologic analysis of national diet–disease associa-
tions. Dietary etiologic effects were derived from meta-analysis of 
multivariable-adjusted prospective cohorts and controlled trials and 
pooled analyses of long-term changes in diet and weight gain, with 
additional age-adjusted associations of BMI and T2D risk (Methods). 
The modeling framework incorporated stratum-specific data by year, 
country, sex, age, educational attainment and urbanicity, increasing 
ability to assess disparities. Uncertainties were incorporated and 
quantified using probabilistic sensitivity analyses, allowing estima-
tion of the bounds of plausible effects.

The limitations should also be considered. While results are based 
on the available evidence for etiologic effects of diet and adiposity, 
our modeling approach does not prove causation, and our findings 
should be considered as estimates of risk. Direct etiologic effects of 
refined grains were based on their glycemic potential. While refined 
grains represent a major contribution to dietary glycemic load, this 
approach may not be as robust as for the direct estimates obtained 
for other dietary exposures. By contrast, evidence for BMI-mediated 
effects of refined grains was based on the long-term relationship of 
refined grain intake with weight gain. The multivariable-adjusted rela-
tive risks used in the analysis may overestimate effects if confounded 
by other unmeasured factors and may underestimate effects due to 
random errors in the measurement of diet. Our estimated effects of 
dietary factors on BMI change were derived from prospective cohorts 
in high-income nations, potentially limiting generalizability to other 
populations, although these relationships were multivariable adjusted 

for major sociodemographic and lifestyle factors and represent the 
best available estimates of how dietary changes relate to long-term 
weight gain. BMI-mediated effects incorporated differences by normal 
weight versus overweight or greater but not potentially stronger effects 
in adults with obesity, which may underestimate BMI-mediated effects 
among individuals with obesity. Dietary relationships were based 
on models estimating a linear relationship between dietary intake 
and BMI and a log linear relationship between dietary intake and T2D 
risk (except for whole grains, for which we used a stepwise, log linear 
relationship). Future research should address whether more complex 
diet–T2D dose–response relationships exist. Certainty of evidence 
was formally graded in duplicate for diet–disease relationships but 
not for BMI-mediated effects beyond SSBs. We also did not account 
for other dietary influences on T2D or adiposity, which could lead to 
larger diet-attributable burdens. While we incorporated uncertainty 
in all the modeling parameters, we did not include uncertainty in the 
stratification of T2D cases by education and urbanicity, given lack of 
rigorous data to do so. We stratified estimates by sex, age, education 
and urban versus rural residence, but reliable global data on other 
social determinants of health are not yet available and could provide 
further insights into global disparities in diet-attributable T2D. We 
did not account for non-dietary risks for T2D in our analytical models, 
which could result in overestimates for the joint effects of suboptimal 
diet on incident T2D. On the other hand, we made several efforts to 
minimize overestimation of our joint effects, including use of propor-
tional multiplication; modeling half of the health benefits of whole 
grains as mediated by replacement of refined grains, accounting for 
substitution effects; and incorporating only direct and BMI-mediated 
dietary pathways with strong evidence for an etiologic association 
with T2D risk. We have shown in prior validation analyses that, using 
these approaches, the magnitude of estimated joint etiologic effects 
across multiple individual dietary factors is similar to that seen in clini-
cal trials, prospective cohorts and risk factor feeding trials of dietary 
patterns12, suggesting that this approach reasonably accounts for 
intercorrelations and substitution effects and does not meaningfully 
overestimate joint effects.

In conclusion, our model estimates that about seven in ten new 
T2D cases globally are attributable to suboptimal intake of 11 die-
tary factors in 2018, with heterogeneity by world region, nation and 
within-country demographics. These findings inform dietary priorities 
and clinical and public health planning to improve dietary quality and 
reduce T2D globally.
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Methods
Ethics and inclusion statement
Data informing the GDD modeling estimates for this study, includ-
ing from LMICs, were collected between 1980 and 2020 in the form 
of dietary intake surveys. If nationally representative surveys were 
not available for a country, we also considered national surveys 
without representative sampling, followed by regional, urban or rural 
surveys, and finally large local cohorts, provided that selection and 
measurement biases were not apparent limitations. For countries 
with no surveys identified, other sources of potential data were 
considered, including the WHO Infobase, the STEP database and 
household budget survey data. As of July 2021, we have identified 
and retrieved 1,634 eligible survey years of data from public and 
private sources. Of these, 1,220 have been checked, standardized and 
approved for GDD 2018 model inclusion. Most identified data were 
either privately held or not in a format appropriate for our modeling. 
We thus relied almost entirely on direct author contacts in each  
country to provide us with exposure data directly. Roles and respon-
sibilities of GDD Consortium members were determined and agreed 
upon before data sharing as part of a standardized data-sharing 
agreement.

The draft manuscript was shared with all GDD consortium mem-
bers before submission for peer review, and all members have been 
included as authors of this work. We endorse the Nature Portfolio 
journals’ guidance on LMIC authorship and inclusion and are com-
mitted to the inclusion of researchers from LMICs in publications 
from the GDD. We share the GDD data with the entire consortium, 
encourage authors from LMICs to take the lead on analyses and papers 
and can provide technical and writing support to LMIC authors. For 
more details on the collaborative GDD data-collection process, please 
visit our website at https://www.globaldietarydatabase.org/methods/
summary-methods-and-data-collection.

This research is locally relevant to all countries included, given 
that it disaggregates findings nationally and subnationally by key 
demographic factors such as age, sex, education level and urbanicity 
and thus provides local decision makers with data on a range of dietary 
factors and corresponding T2D risk.

This modeling investigation was exempt from ethical review board 
approval because it was based on published data and nationally repre-
sentative, de-identified datasets without personally identifiable infor-
mation. Individual surveys underwent ethical review board approval 
required for the applicable local context.

Study design
A comparative risk assessment model55 estimated the numbers, 
proportions and uncertainty of global T2D cases attributable to 
suboptimal intake of key dietary factors (Extended Data Fig. 1). 
Comparative risk assessment does not use ecologic correlations 
to estimate risk but incorporates independently derived inputs 
and parameters on demographics, risk factors, their etiologic 
effects and disease incidence to model attributable burdens55. 
For this investigation, we leveraged input data and correspond-
ing uncertainty in 184 countries on (1) population dietary intake 
distributions based on individual-level survey data from the GDD 
(http://www.globaldietarydatabase.org/)56; (2) population overweight 
(BMI ≥ 25 kg m−2) and underweight (BMI < 18.5 kg m−2) distributions 
from the NCD-RisC57; (3) total T2D-incidence distributions from the 
Global Burden of Disease study58,59; (4) linear, BMI-stratified effects 
of dietary factors on weight gain or loss60; age-adjusted direct etio-
logic effects of these factors on T2D, adjusted for BMI, and of weight 
gain on T2D from previous meta-analyses and pooled analyses of 
prospective cohorts23,61,62; (5) optimal dietary intake levels from 
previous analyses12; and (6) population demographic data from 
the United Nations Population Division63,64 and the Baro and Lee 
2013 dataset on educational attainment65 (Supplementary Table 6).

Identification of relevant dietary factors
Dietary factors were selected based on the following principles:  
(1) probable or convincing evidence of an etiologic effect on T2D or weight 
gain based on meta-analyses or pooled cohort studies; (2) preference 
for foods over nutrients, when possible, to minimize double counting 
of similar nutrients and/or foods; and (3) global dietary data availability 
from the GDD. The methods and results for review, identification and 
assessment of evidence for direct etiologic diet–disease relationships 
have been described12,66. Briefly, evidence for each diet–disease rela-
tionship was first evaluated by grading the quality of evidence accord-
ing to nine different Bradford Hill criteria for causation: strength, 
consistency, temporality, coherence, specificity, analogy, plausibility, 
biological gradient and experiment67. This evidence grading was com-
pleted independently and in duplicate by two expert investigators. 
Based on these assessments, probable or convincing evidence was 
determined independently and in duplicate, in accordance with the 
criteria of the FAO–World Health Organization68 and with consideration 
of consistency with the similar criteria of the World Cancer Research 
Fund–American Institute for Cancer Research69. See Miller et al.61 and 
Supplementary Table 7 for further details on the evidence grading 
criteria and results of this evaluation. In total, 11 dietary factors were 
identified with at least probable evidence for etiologic effects on weight 
gain, seven of which also had evidence for direct (BMI-independent) 
effects on T2D risk (Supplementary Table 1).

Global distributions of diet
The GDD systematically searched for and compiled representative data 
on individual-level dietary intakes from national surveys and subna-
tional surveys as previously described70. The GDD included 1,220 unique 
dietary surveys, covering 188 countries corresponding to 99.0% of the 
global population (Supplementary Table 8)70. For each dietary factor, a 
Bayesian hierarchical model estimated the mean intake levels for national 
subgroups within each of 264 strata within a country–year, jointly 
stratified by age (22 age categories from 0–6 months through 95+ years),  
sex (female, male), education (low, medium, high) and urbanicity (urban 
or rural residence) from 1990 through 2018 (ref. 70). Three countries 
of the 188 countries with survey data were dropped from the GDD 
prediction model due to unavailability of FAO food-availability data, a 
crucial covariate in the prediction model. A Markov chain Monte Carlo 
algorithm generated 4,000 samples of the posterior distributions of 
the model parameters, which were then used to generate predictive 
distributions of mean dietary intake for each stratum71. Stratum-specific 
values were combined and weighted to the stratum’s proportion of the 
population for global, regional, national or other subgroup analyses. 
Children and adolescents (aged <20 years) were excluded from the 
present analysis given the relatively low rates of T2D globally in this 
subgroup. Given serving size differences in refined rice versus refined 
wheat, GDD refined grain intake estimates were disaggregated into 
refined rice and wheat intake and further converted into glycemic load 
estimates to match available etiologic effects for T2D risk, detailed in the 
section of Conversion of GDD refined grain intake estimates to glycemic 
load estimates. For the present analysis, regression-based methods 
were used to estimate the standard deviation corresponding to each 
estimated, stratum-specific mean from the dietary survey input data. 
These mean–s.d. pairs were then used to generate gamma-distribution 
parameters for usual dietary intake, detailed in the section of Estimation 
of gamma parameters for the distribution of usual intake.

Conversion of GDD refined grain intake estimates to glycemic 
load estimates
Refined grain serving sizes vary significantly by commodity, primarily 
due to water weight. We restricted our definition of refined grain intake 
to wheat and rice, based on GDD standardized dietary factor definitions 
(http://www.globaldietarydatabase.org/). To account for differences 
in the serving sizes of rice versus wheat, we first used FAO Food Balance 
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Sheet data for the energy availability of ‘wheat and products’ and ‘rice 
and products’ (kcal per capita per d) from 1990 and 2018 to calculate 
the available wheat and rice servings for each country–year stratum72.

We estimated standardized serving sizes and caloric contents as 
follows: wheat, 160.2 kcal per 50-g standard serving; rice, 170.9 kcal 
per 150-g standard serving (Supplementary Table 9). Standard serv-
ing sizes reflect the average of serving sizes reported in international 
laboratory analyses, selected to represent the range of commonly 
consumed wheat and rice products globally73. Caloric content per 100 g 
was obtained from the USDA’s FNDDS 2017–2018 dataset for each food 
product and then converted to calories per standard serving sizes74. For 
each country–year stratum, we calculated the available wheat and rice 
servings for each country–year stratum as follows:

 Standardized rice availability (in servings per capita per d) = (FAO 
‘rice and products’ in kcal per capita per d) ÷ (170.9 kcal per 150 g)
 Standardized wheat availability (in servings per capita per 
d) = (FAO ‘wheat and products’ in kcal per capita per d) ÷ (160.2 kcal 
per 50 g).
 Standardized rice and wheat availability were then used to cal-
culate the proportion of rice and wheat grams available for each 
country–year stratum.
 Wheat intake (g per d) = (refined grain intake) × (servings 
wheat) ÷ (servings rice + wheat)
 Rice intake (g per d) = (refined grain intake) × (serving rice) ÷ (serv-
ings rice + wheat)

For the purposes of the BMI-mediated CRA of refined grain intake, 
we modeled rice- and wheat-intake estimates separately. The mono-
tonic effect of diet on BMI change for one serving per day of refined 
grains thus accounted for the differences in serving sizes (50 g for 
wheat, 150 g for rice) and relative consumption of rice versus wheat 
in each stratum.

In addition, given estimates for the direct association between 
glycemic load, but not refined grain intake, and T2D risk were available, 
we then further converted estimated rice- and wheat-intake estimates 
to refined grain-specific glycemic load (g per d in a diet of 2,000 kcal) 
to match available effect sizes. Because refined grains represent the 
largest contribution, by far, to total dietary glycemic load, which has 
been related to T2D risk with at least probable evidence, it is a reason-
able extension to derive estimates of the attributable burden of refined 
grains from their glycemic load. Glycemic load was calculated per 
standard serving size for each product and averaged for wheat and rice 
separately. The average glycemic load for wheat was calculated as 13.1 g 
per 50-g serving and, for rice, 30.3 g per 150-g serving.

To convert rice- and wheat-intake estimates (g per d) into glycemic 
load (g per d), we summed the product of the estimated rice and wheat 
intake by its respective average glycemic load, as follows, repeating this 
calculation for the upper and lower UI estimates:

Glycemic load = ((wheat intake) × (13.1 g per 50 g)) + ((rice 
intake) × (30.3 g per 150 g)).

Estimation of gamma parameters for the distribution of usual 
intake
Dietary intakes cannot be negative, and usual intake distributions tend 
to be skewed to the right75,76. Gamma distributions were shown to be 
more appropriate than normal distributions for each of the dietary fac-
tors based on the analysis of GDD input data (for example, NHANES data) 
in a previous study9 and other research on assessment of population 
dietary intake77,78, as they do not allow for negative intakes and include 
a wide range of shapes with varying degrees of skewness79. The standard 
deviation needed to be obtained to construct the gamma distribution of 
intakes for our dietary factors of interest, as the GDD prediction model 
only generates estimates of mean intake from which the standard devia-
tion cannot be readily derived. Parameters for gamma distribution were 

generated using the mean estimate from the GDD prediction model and 
estimated s.d. for the mean estimate from 1,000 simulations.

Standard deviation estimate for the distribution of usual dietary 
intake. Stratum-level GDD input survey data were used to fit a linear 
regression of the standard deviation of intake on mean intake (both 
adjusted for energy). To determine the appropriate transformation of 
the input data used for fitting the linear regression, various scatterplots 
of energy-adjusted means versus energy-adjusted s.d. were created. 
Using this approach, we concluded that a natural log transformation 
for both mean and s.d. was most appropriate.

We also explored excluding Demographic and Health Sur-
veys, household surveys and outlier data, due to potential unreli-
ability for estimating s.d. Ultimately, it was determined that no one 
dietary-assessment method contributed unevenly to the observed 
linear trend, and thus all data were included. Doing so also allowed for 
the largest possible sample size.

Additional work was carried out to assess the usefulness of an 
interaction term by world region, which was ultimately excluded. The 
regression model below was used for each individual diet factor, where 
i refers to each survey stratum:

Yi = β0 + β1xi + εi,

in which Yi is the natural log of the s.d. of stratum-specific intake, 
xi is the natural log of the mean of stratum-specific intake, and εI is 
random error, follows N(0, σ2).

Monte Carlo simulations for generating standard deviation distri-
butions. For each dietary factor, estimates for β0 and β1 were used to 
predict 1,000 ln (s.d.) values corresponding to 1,000 iterations (k) of 
the predicted mean intake for each population stratum (j) using Monte 
Carlo simulations:

Ŷjk = β̂0 + β̂1X̂jk,

in which X̂jk  is the kth sample draw of the predictive distribution for 
mean intake for population stratum j.

We added error, propagating uncertainty from the model esti-
mates as well as variation within the sampling data itself by randomly 
drawing from a t-distribution with n − 1 degrees of freedom using the 
following equation:

ln (ŝ.d.jk) = Ŷjk + σ̂
√

1 + ( 1n )×t
n−1
k ,

in which σ̂  is the estimate for σ, n is the number of survey strata, tn−1k  is 
the kth sample drawn from a t-distribution with n − 1 degrees of free-
dom, and ŝ.d.jk  is the kth sample draw of the predicted s.d. distribution 
for population stratum j.

Estimation of gamma parameters for the distribution of usual 
intake. The predictive distributions for each stratum-specific s.d. 
were then used to generate 1,000 corresponding shape and rate gamma 
parameters for the distribution of usual intake, a primary input in the 
CRA model using the following equations:

ˆShapejk = (X̂jk/ŝ.d.jk)
2
,

R̂atejk =
X̂jk

ŝ.d.2jk
.
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Global distributions of adiposity
Prevalence of overweight (BMI ≥ 25 kg m−2) and underweight 
(BMI < 18.5 kg m−2) in each country–year–age–sex–urbanicity stra-
tum and their uncertainty was obtained from the NCD-RisC, based 
on 2,416 population-based studies of national, regional or global 
trends in mean BMI, with measurements of height and weight for 
128.9 million people57. NCD-RisC further segregated the data by 
place of urban or rural residence from 1985 to 2017 and excluded 
surveys if based solely on self-report, on subsets of the population 
or on children or pregnancy. NCD-RisC used a Bayesian hierarchical 
model to estimate mean BMI by country, year, sex, age and urbanicity. 
A Markov chain Monte Carlo algorithm generated 4,000 samples 
of the posterior distributions of the model parameters, which were 
then used to generate predictive distributions of mean BMI for each 
stratum57. NCD-RisC then generated multivariable regression mod-
els to convert each stratum-specific mean BMI estimate to over-
weight and underweight prevalence and uncertainty by country, 
year, age and sex27,80. To further stratify the NCD-RisC estimates by 
education level and urbanicity, we assumed that overweight- and 
underweight-prevalence estimates did not vary across education 
levels and urban versus rural residence; did not change across GDD 
age groups of 85–89, 90–94 and 95+ years (as NCD-RisC reports 
estimates for 85+ years only); and did not change between 2017 and 
2018 (as NCD-RisC only reports through 2017, but this CRA analysis 
assesses estimates for 2018).

Estimated diet–disease relationships
The evidence for direct (BMI-adjusted) associations (relative risks) 
between dietary risk factors and T2D was obtained from published 
systematic reviews and evidence grading, based on meta-analyses 
of prospective cohort studies and randomized controlled trials 
including multivariable adjustment for age, sex, BMI and other 
risk factors to reduce bias from confounding (Supplementary 
Table 1)61. Because these studies generally adjusted for BMI, we 
separately assessed BMI-mediated effects of diet (BMI change in 
kg m−2) based on pooled analyses of changes in diet and changes in 
BMI in long-term prospective cohort studies (Supplementary Table 
1)60. Specifically, we used the associations for diet and weight gain 
pooled from three separate prospective cohort studies, including 
50,422 women in the Nurses’ Health Study (1986–2006), 47,898 
women in the Nurses’ Health Study II (1991–2003) and 22,557 men 
in the Health Professionals Follow-up Study (1986–2006) who were 
free of obesity (BMI ≥ 30 kg m−2) or chronic diseases and with com-
plete data on weight and lifestyle habits at baseline. Women who 
became pregnant during follow-up were excluded from the analy-
sis. Independent relations of changes in dietary habits with BMI 
change were assessed in 4-year periods over 20 years in the Nurses’ 
Health Study, 12 years in the Nurses’ Health Study II and 20 years in 
the Health Professionals Follow-up Study, using linear regression 
with robust variance and accounting for within-person repeated 
measures.

Based on previous analyses demonstrating decreasing pro-
portional effects of metabolic risk factors on T2D incidence at 
older ages, age-specific relative risks were calculated for each 
diet–T2D etiologic relationship12,23, based on the mean age at 
event and follow-up duration (see details below on incorporating 
Heterogeneity in diet–disease relationships using age-specific 
relative risks). Associations of dietary factors with BMI change 
were estimated separately for overweight (BMI ≥ 25 kg m−2) versus 
non-overweight adults (BMI < 25 kg m−2), given observed effect 
modification by baseline BMI status (Supplementary Table 10)60. 
Relationships of BMI with incident T2D were obtained from a 
pooled analysis of multiple cohort studies on the quantitative 
effects of metabolic risk factors on CVD and diabetes23, with 
age-specific relative risks (RRs) modified as described in Text S3.

Heterogeneity in diet–disease relationships using age-specific 
relative risks
Consistent with previous investigations, we incorporated propor-
tional effects of major risk factors on T2D varying by age, with a log 
linear age association12. Given limited evidence of significant effect 
modification by sex, we incorporated similar proportional effects of 
risk factors by sex12.

In previous work, the proportional differences in RRs for major 
diet-related cardiometabolic risk factors, including systolic blood pres-
sure, BMI, fasting plasma glucose (FPG) and total cholesterol, across 
six 10-year age groups from 25–34 years to 75+ years were evaluated. 
Given similarities across these four risk factors, the mean proportional 
differences in RR across all risk factors were applied to the dietary rela-
tive risks. For the present analysis, these mean proportional differences 
were disaggregated into 16 5-year age groups from 20–24 years to 95+ 
years by linearly scaling between each 10-year mean proportional dif-
ference in log (RR).

To calculate de novo the average age at event for each diet–disease 
pair, we extracted the following data from each original study included 
in the respective diet–disease meta-analysis: average age at baseline 
(years), follow-up time (years), type of follow-up time reported (maxi-
mum, median or mean) and study weight for each meta-analysis. When 
baseline age range rather than average baseline age was reported, we 
calculated the average. Weights were corrected when specific studies 
were excluded from the meta-analysis due to study quality limitations 
to sum to 1. When study weights were not reported, log (incident cases) 
for each study were used as a proxy indication of each study’s weight 
within the meta-analysis.

The average age at event was estimated as the weighted average of 
the sum of the average baseline age and half the maximum follow-up 
time reported (or two-thirds of the mean or median follow-up time 
reported) for each original study included in the respective diet– 
disease meta-analysis. See Supplementary Table 2 for estimated aver-
age age at event for each risk factor.

To quantify and incorporate the previously observed effect 
modification by age, we calculated age-specific relative risk for each 
diet–disease pair by applying the mean proportional differences in 
RR by age across all diet–disease pairs; we anchored at the calculated 
mean age at event for each diet–disease pair (Supplementary Table 11). 
We used Monto Carlo simulations to estimate the uncertainty in the 
age-distributed log (RR), sampling from the distribution of log (RR) 
at the age at event. Based on 1,000 simulations, we used the 2.5th and 
97.5th percentiles to derive the 95% UI. An example is presented for 
the average age-at-event calculation (Supplementary Table 12) and 
resulting age-adjusted risks for potato intake and T2D risk (Supple-
mentary Fig. 1).

Incorporating nonlinearity in the whole-grain–T2D risk 
association
Due to identified inconsistencies in the units of intake, portion size 
definitions, data extractions and inclusion criteria for whole-grain 
exposure in prior identified meta-analyses of whole grains and 
T2D81,82, we identified and used Reynolds et al.62 as the highest-quality 
meta-analysis for the association between whole grains and T2D risk. 
Reynold et al. suggest a potential nonlinear relationship between 
whole-grain intake and log (relative risk), with stronger protective 
effects for the first 40 g per d of intake and smaller protective effects 
thereafter. We approximated this nonlinear association by using two 
linear functions, visually estimated at between 0 and 40 g per d and 
between 41 and 90 g per d on the log (RR) scale. Specifically, we graphi-
cally determined the log (RR) corresponding to the first 40 g per d of 
whole-grain intake (and corresponding confidence intervals based on 
the spline curve confidence interval) and the log (RR) and confidence 
interval corresponding to the following intake of 50 g per d (for exam-
ple, from 40 g per d to 90 g per d), standardizing these values to units 
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of 30 g per d. Intake of 90 g per d was set as the optimal intake level, 
as it represents a conservative estimate of the intake level with lowest 
relative risk based on the estimated spline curve from the cohort study 
data points.

To estimate the burden of T2D attributable to suboptimal intake 
of whole grains, we modified the RR(x) input function for the standard 
population-attributable fraction (PAF), detailed below. In review, RR(x) 
is typically modeled as follows for protective dietary factors (that is, 
when there is no added benefit above the optimal intake level):

1 ∶ x − y (x) > 0

exp (β (x − y (x))) ∶ x − y (x)) ≤ 0,

where β is the stratum-specific change in log relative risk per unit of 
exposure, x is the current exposure level, and y(x) is the optimal exposure 
level. y(x) is defined to be Foptimal (F−1x (x)), where Foptimal is the cumulative 
distribution function of the optimal intake, and F−1x  is the inverse cumula-
tive distribution function of the current exposure distribution. Implicit 
in how we characterize the relative risk function are some of the funda-
mental assumptions that we make about relative risk. Namely, that relative 
risk increases exponentially as distance from the optimal intake exposure 
level (y) increases, that there is no risk associated with exposure beyond 
the optimal intake exposure level and that both x and the optimal intake 
exposure level for an individual at exposure level x are the qth quantile of 
their respective distributions (the observed exposure distribution and 
the optimal intake distribution, respectively).

To account for the stepwise, nonlinear nature of the log relative 
risk for whole grains, we modified the RR(x) function so that intake 
between 40 and 90 g per d was evaluated based on the more conserva-
tive RR90 (0.92 (0.87, 0.94)) only. Intake between 0 and 40 g per d was 
evaluated based on RR90 (0.92 (0.87, 0.94)) for the intake difference 
of 50 g per d from the optimal intake level (90 g per d) and the further 
deviation beyond that using the stronger RR (0.81 (0.72, 0.90)), by 
summing the transformed RR40 and RR90 values. As previously, there 
is no risk associated with exposure beyond the optimal intake level 
of 90 g per d. The revised RR(x) for whole grains and T2D was instead 
modeled as:

exp (β40 (x − 40) + β90 (40 − y (x))) ∶ x ≤ 40

exp (β90 (x − y (x))) ∶ 90 ≥ x > 40

1 ∶ x̂ > 90

Characterization of optimal intakes
Optimal intake levels serve as the counterfactual in our comparative 
risk assessment modeling analysis, allowing for comparable quantifi-
cation of impacts of dietary factors on disease risk at the population 
level. Optimal intake levels were determined primarily based on disease 
risk (observed consumption levels associated with lowest disease risk 
in meta-analyses) with further considerations of feasibility (observed 
national mean consumption levels in nationally representative surveys 
worldwide) and consistency with existing major food-based dietary 
guidelines. Because populations inevitably have a range of consump-
tion levels, we used a normal distribution around each optimal intake 
level with s.d. equaling 10% of the mean, consistent with optimal distri-
bution ranges of metabolic risk factors83–85. For each dietary factor, the 
comparative risk model assumed no additional health benefits beyond 
the optimal intake distribution within each stratum. For BMI-mediated 
effects, no further benefits of BMI reduction were estimated at or below 
a BMI of 18.5 kg m−2 (ref. 86).

The optimal intake levels used in this analysis are analogous to 
what has been termed a theoretical minimum risk exposure level in 
other analyses1,53, but we prefer the term ‘optimal intake’ as more rel-
evant to dietary risk factors than ‘theoretical minimum risk exposure 

level’. These optimal intakes can be considered a benchmarking to 
quantifying disease risk and informing policy priorities in different 
nations. We determined optimal intake levels for dietary factors based 
on probable or convincing evidence for effects on cardiometabolic out-
comes, and these levels were not developed as part of characterizing an 
overall ideal dietary pattern, which might also consider other factors.

Optimal intakes for whole grains, yogurt, processed meats, unpro-
cessed red meats, SSBs, fruits, non-starchy vegetables, and nuts and 
seeds were previously calculated66; and optimal intakes for potatoes, 
refined rice and wheat, and fruit juices were estimated de novo using 
similar methods, detailed in Supplementary Tables 1 and 212.

For potatoes, optimal intake was set at 0 g per d based on observed 
intake levels associated with lowest risk in studies included in meta-analyses 
(as low as 13 g per d87,88), national mean intakes in 2018 as low as 0 g per d 
(Laos) and less than 10 g per d for eight other countries (for example, Ghana, 
Philippines, etc. (http://www.globaldietarydatabase.org/)) and absence of 
specific recommendations for potatoes and/or grouping of potatoes with 
starchy staples rather than vegetables in food-based dietary guidelines89. 
For example, the US Dietary Guidelines for Americans, 2020, the Chinese 
Food Pagoda and the German Nutrition Circle all have general recommen-
dations for total starchy vegetables or tubers for one serving per d or less 
(https://www.dietaryguidelines.gov)90,91. The optimal intake for refined 
rice and wheat was set at 0 g per d based on observed intake of <1 serving 
per d among individual of lowest risk in cohorts included in meta-analyses92 
and national mean intakes of refined grains in 2018 <25 g per d in eight 
countries; and major dietary guidelines recommend limiting refined grain 
intake and choosing whole grains and tubers over refined grains (https://
www.dietaryguidelines.gov)89. For fruit juice, the optimal intake was set at 
0 g per d based on observed intake of ‘never’ or ‘rarely’ among individuals 
of lowest risk for T2D in cohorts included in meta-analyses, national mean 
intake of fruit juices in 2018 of less than one serving for more than ten 
countries and national food-based dietary guidelines that either include 
100% fruit juice within the fruit category but state that it should not count 
for more than one serving per day for fruit or explicitly include negative 
messages about fruit juice and/or group fruit juice with SSBs89.

Global distributions of T2D incidence
Global, regional and national data for T2D were derived from the Global 
Burden of Disease Study 2019, stratified by nation, age and sex in 1990 
and 2018 (ref. 58). Overall diabetes was defined as FPG levels greater 
than 1.25 mg ml−1 (7 mML1) or being on diabetes medication93. T2D was 
defined as cases of overall diabetes not specified as type 1 (ref. 94). Data 
inputs included estimates of diabetes and mean FPG in a representative 
population, individual-level data on FPG measures from surveys and 
US MarketScan insurance claim data94. Data on T2D incidence were 
not available for South Sudan; thus, the entire country was excluded 
from the present analysis.

Disaggregation of T2D incidence by education level and 
urbanicity
We further stratified these estimates of T2D incidence by education 
level (low, medium, high) and urbanicity (urban, rural) to align these 
with the demographic and GDD dietary data and enable assessment 
of heterogeneity in risk within education and urbanicity-based sub-
populations (Supplementary Table 13), given evidence that these fac-
tors are known to influence both diet and T2D risk in region-specific 
ways95–99. We used the following additional data inputs to reconcile 
these stratification differences: (1) global population proportions, (2) 
effect estimates of educational attainment on T2D risk and (3) effect 
estimates of urban versus rural residence on T2D risk.

Global population proportions for each year were derived from 
the United Nations Population Division63, supplemented with data on 
education attainment from Barro and Lee65. We also further scanned 
the scientific literature for the latest meta-analysis, pooled analyses and 
large surveys evaluating the association between sociodemographic 
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factors such as educational attainment and urbanicity with T2D risk. We 
hypothesized that country income level was a potential effect modifier 
for both educational attainment and urbanicity on T2D risk, and thus 
we collated risk estimates stratified by or specific to country income 
level. We limited our analysis to high-quality risk assessments adjusted 
for at least age and sex95–97,100–102.

For both educational attainment and urbanicity, we conducted 
fixed-effect meta-analysis of collated effect sizes, stratified by country 
income level. See Supplementary Table 14 for a full list of study charac-
teristics and effect sizes used in each meta-analysis. Given inconsistent 
definitions across studies and limited data availability, medium education 
attainment was assumed to be neutral (that is, RR = 1). We distributed 
the central estimate of our meta-analyzed risk estimate equally for high 
versus low education (and urban versus rural residence) by taking the 
square root and inverse square root of the central estimate of the relative 
risk. See Supplementary Table 13 for final effect estimates for education 
level and urbanicity used in disaggregating the T2D-incidence estimates.

The total year–country–age–sex stratum-specific T2D-incidence 
estimates (mean and 95% UI) were then multiplied by their respective 
population proportion, education effect and urban effect for each 
of the six de novo strata to obtain raw, fully proportioned burden 
estimates and their uncertainty. These values were then scaled to the 
total stratum burden estimate to prevent underestimation or overesti-
mation of the absolute number of T2D cases globally103,104. A fictitious, 
illustrative example is provided to illustrate how 1,000 T2D cases in a 
single age–sex population stratum (low-income country) in a given 
year were disaggregated into the six finer education–urbanicity strata 
using the central estimate of the meta-analyzed education and urban 
effects (Supplementary Table 15). The population-proportioned-only 
burden estimates are also provided as a comparison in the final column.

Comparative risk assessment analysis, overview
The comparative risk assessment framework incorporated the data 
inputs and their uncertainty to estimate the absolute number, rate (per 
million adult population) and proportion of T2D cases attributable 
to suboptimal intake of each dietary factor in 1990 and 2018 (Supple-
mentary Fig. 1). For each stratum, the model calculated the percent-
age (PAF) of T2D incidence associated with each dietary factor RR by 
comparing the present distribution of consumption with the optimal 
intake distribution. BMI-mediated effects were calculated based on the 
stratum-specific association of current dietary habits with BMI change, 
weighted by the prevalence of overweight, normal weight and under-
weight (no effect) in each stratum, combined with the RR for this BMI 
change associated with T2D using the same continuous PAF formula. A 
modified relative risk function, incorporating stepwise, nonlinear log 
relative risks, was used for the whole-grain direct-effect model given 
evidence of a nonlinear relationship between whole-grain intake and 
T2D risk62. See sections below for further details on each PAF calculation.

For dietary factors with both direct and BMI-mediated associations 
with T2D risk, the two stratum-level PAFs were combined into a single 
joint PAF for that dietary factor using proportional multiplication. 
The joint association of all 11 dietary factors was similarly estimated 
using proportional multiplication of each stratum-specific PAF. To 
consider plausible substitution effects and minimize the overestima-
tion of attributable burdens, the model assumed that half the benefit 
of whole-grain intake was mediated by replacement of refined grains 
(rice and wheat). Stratum-level dietary factor and overall joint PAFs 
were then multiplied by the number of T2D cases in that stratum of the 
global population to estimate the attributable number of T2D cases in 
that stratum. Findings were evaluated globally, regionally and by nation 
and also in subgroups by age, sex, education and urbanicity and were 
reported as proportional attributable burden (percentage of cases) 
and attributable rate (cases per 1 million adults).

We also assessed national findings by SDI in 1990 and 2018, a meas-
ure of a nation’s development based on a composite average of the 

rankings of income per capita, average educational attainment and 
fertility rates105.

Uncertainty was quantified using 1,000 multiway probabilistic 
Monte Carlo simulations, jointly incorporating stratum-specific uncer-
tainties in dietary exposures, underweight and overweight prevalence, 
and diet–T2D, diet–BMI and BMI–T2D etiologic effect estimates. Cor-
responding 95% UIs were derived from the 2.5th and 97.5th percentiles 
of 1,000 estimated models. For comparing trends between 1990 and 
2018, we calculated differences for PAFs by subtracting the 1990 value 
from the corresponding 2018 value for each simulation, reporting the 
median and 95% UI for each difference. We did not formally standardize 
comparisons for age or sex over time, so that findings would reflect the 
actual population differences in attributable burdens that are relevant 
to policy decisions, but also performed analyses stratified by age and 
sex that account for changes in these demographics over time. All 
analyses were performed using R statistical software, R version 4.0.0 
(ref. 106), and the Tufts High Performance Cluster.

Direct-effect population attributable fraction
The population attributable fraction (PAF) formula is used to quan-
tify the burden of disease attributable to the difference between a 
population’s observed exposure and a counterfactual, optimal intake 
distribution, given an etiologic exposure–disease risk relationship.

We aimed to estimate the burden of T2D incidence attributable 
to suboptimal intake of protective and harmful dietary factors (for 
example, lower intake of protective dietary factors and higher intake 
of harmful dietary factors than their respective optimal intake levels) 
with direct effects on T2D risk.

The standard PAF formula used is as follows:

∫m
x=0RR (x)P (x)dx − 1
∫m
x=0RR (x)P (x)dx

,

where P(x) is the usual dietary intake distribution in a specific popula-
tion stratum, assumed to follow a gamma distribution for all dietary fac-
tors of interest, as used in previous analyses9; RR(x) is the age-specific 
relative risk function for T2D incidence; and m is the maximum expo-
sure level.

RR(x) is defined as:

{
exp (β (x − y (x))) ∶ x − y (x) ≥ 0

1 ∶ x − y (x) < 0
,

where β is the stratum-specific change in log relative risk per unit of 
exposure, x is the current exposure level, and y(x) is the optimal expo-
sure level. y(x) is defined to be Foptimal (F−1x (x)), where Foptimal is the cumula-
tive distribution function of the optimal intake, and F−1x  is the inverse 
cumulative distribution function of the current exposure distribution. 
Implicit in how we characterize the relative risk function are some of 
the fundamental assumptions that we make about relative risk. Namely, 
that relative risk increases exponentially as distance from optimal intake 
exposure level (y) increases, that there is no risk associated with expo-
sure beyond the optimal intake exposure level and that both x and the 
optimal intake exposure level for an individual at exposure level x are 
the qth quantile of their respective distributions (the observed exposure 
distribution and the optimal intake distribution, respectively).

In practice, simple numerical integration using Riemann sums 
can be used to compute the integrals in the PAF formula, as described 
in detail in previous work9.

PAF =

n
∑
i=1

Pi (RRi − 1)

n
∑
i=1

Pi (RRi − 1) + 1
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n categories are determined by dividing up the exposure range (chosen 
here to be 0, F−1x (Φ (−6))) into 121 intervals, each of length 0.1 when 
converted to the standard normal scale (except for the first one). Φ is 
defined as the cumulative distribution function of the standard normal 
distribution (N(0,1)). More precisely, the range of exposure groups I 
can be described as:

(0, F−1X (Φ (−6))) ∶ i = 1

(F−1X (Φ (−6 + 0.1 (i − 2))) , F−1X (Φ (−6 + 0.1 (i − 1)))) ∶ i > 1
.

BMI-mediated effect population attributable fraction
The association of change in BMI with change in dietary intake was 
assessed using multivariate linear regression for within-person 
repeated measures, as described in an earlier work60. Separate lin-
ear relationships were then estimated for BMI < 18.5 kg m−2, 18.5–
24.9 kg m−2 and ≥25 kg m−2, given observed effect modification by 
baseline BMI status, as described and reported in that same prior 
analysis60.

To assess the BMI-mediated effects of suboptimal dietary intake of 
11 dietary factors on T2D incidence, we first calculated the monotonic 
effect of dietary intake on BMI change for each population stratum by 
weighting the baseline BMI-specific effect by the respective prevalence 
of underweight, normal weight and overweight within each stratum. We 
assumed that underweight individuals (BMI < 18.5 kg m−2) experienced 
no change (increase or decrease) in T2D risk with consumption of either 
risk or protective dietary factors. As such, the monotonic effect for this 
population segment was set at 0.

Df-to-BMI effect = βBMI≥25 × (overweight prevalence) + βBMI18.5–25 ×  
(normal weight prevalence) + 0 × (underweight prevalence)

We then estimated log (RR) per unit-associated increase 
in exposure for each dietary factor by taking the log (RR) per 
unit-associated increase in exposure for BMI and multiplying it by 
the dietary Factor-to-BMI effect (associated increase in BMI per 
one-unit-associated increase in that dietary factor).

Joint population-attributable fraction of suboptimal diet
Because summing would overestimate joint relationships, for each 
stratum, the joint PAF of suboptimal diet (overall, by direct effects and 
by BMI-mediated effects) was estimated by proportional multiplica-
tion as follows:

PAFjoint = 1 −
R
∏
r=1

(1 − PAFr) ,

where r denotes each individual dietary factor, and R is the number of 
dietary factors. The analyses supported independent etiologic rela-
tionships of each dietary factor, and joint distributions were further 
determined within each stratum, maximizing validity of our joint PAFs. 
Joint distributions of exposure may be partly correlated among indi-
viduals, leading to overestimation of joint attributable fractions. Yet, 
separate prior validity analyses of dietary patterns, including interven-
tional studies, suggested that the estimated etiologic relationships of 
individual components and their joint associations were reasonable9.

Quantification of uncertainty using Monte Carlo simulations
Monte Carlo simulations were used to quantify uncertainty in the 
PAFs, incorporating stratum-specific uncertainty in usual dietary 
intake-distribution parameters, etiologic RR estimates and prevalence 
of overweight and normal weight. Specifically, for each diet–T2D pair 
and stratum, we drew randomly 1,000 times from the normal distri-
bution of the estimate of T2D-specific changes in the log (RR) corre-
sponding to a one-unit increase in intake, the predictive distributions 
for shape and rate parameters for usual dietary intake, and the normal 
distribution of the estimate of normal weight and overweight. Draws 
of proportions that were less than 0 or greater than 1 were changed to 

0 or 1, respectively. Likewise, draws of mean intake that were zero or 
less were changed to 0.00001. Each set of random draws are used to 
calculate the PAFs and associated, absolute attributable T2D burden.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this analysis are publicly available from the follow-
ing sources: (1) individual dietary intake estimate distribution data 
(GDD, Download 2018 Final Estimates: https://www.globaldietaryda-
tabase.org/data-download); (2) stratum-specific global mean BMI, 
converted to overweight- and underweight-prevalence distribution 
data (NCD-RisC, Data Downloads: https://ncdrisc.org/data-downloads.
html); (3) T2D burden-incidence-estimate distribution data (Global 
Health Data Exchange, Global Burden of Disease Study 2019 Results 
Tool: https://vizhub.healthdata.org/gbd-results/); (4) linear, 
BMI-stratified effects of dietary factors on weight gain or weight loss: 
ref. 60; (5) direct, proportional, age-adjusted effects of BMI on T2D: 
ref. 23; (6) direct, proportional, age-adjusted effects of diet on T2D: 
whole grains, ref. 62; all remaining dietary factors, ref. 61; (7) optimal 
intake levels for dietary factors: ref. 12; (8) population demographic 
data: UN Population Division (age, sex, urbanicity), ref. 65; (9) SDI data 
from Global Health Data Exchange: Global Burden of Disease Study 
2019 SDI 1950–2019: https://ghdx.healthdata.org/record/ihme-data/
gbd-2019-socio-demographic-index-sdi-1950-2019; (10) FAO Food Bal-
ance Sheet data for the energy availability of ‘wheat and products’ and 
‘rice and products’ (kcal per capita per d): United Nations FAO: Food 
Availability Data: http://www.fao.org/faostat/en/#home; (11) global 
glycemic load estimates for wheat and rice products: ref. 73; (12) caloric 
content per 100 g for wheat and rice products: US Department of Agri-
culture Agricultural Research Service Food and Nutrient Database for 
Dietary Studies 2017–2018: https://www.ars.usda.gov/nea/bnrc/fsrg.

Code availability
Custom code was developed using R (version 4.0.0) with two-tailed 
α = 0.05, for cleaning, merging and formatting of all data inputs; 
calculation of age-adjusted relative risks; comparative risk assess-
ment modeling, including PAF calculations for each dietary factor 
separately and joint PAF calculations for all dietary factors; summary 
aggregation of stratum-level PAF estimates at the global, regional 
and national levels; and data visualization. Given their computational 
size and complexity, all comparative risk assessment modeling codes 
were run on the Tufts University High Performance Computing Cluster 
(https://it.tufts.edu/high-performance-computing), supported by 
the National Science Foundation (grant 2018149, https://www.nsf.
gov/awardsearch/showAward?AWD_ID=2018149&HistoricalAwards
=false) under active development by Research Technology (https://
it.tufts.edu/researchtechnology.tufts.edu), Tufts Technology Services. 
The statistical code used for this analysis is not publicly available. 
The GDD can make the statistical code available to researchers upon 
request. Eligibility criteria for such requests include: utilization for 
nonprofit purposes only, for appropriate scientific use based on a 
robust research plan and by investigators from an academic institution. 
GDD will nominate co-authors to be included on any papers generated 
using GDD-generated statistical code. If you are interested in request-
ing access to the statistical code, please submit the following docu-
ments: (1) proposed research plan (please download and complete the 
proposed research plan form https://www.globaldietarydatabase.org/
sites/default/files/manual_upload/research-proposal-template.pdf),  
(2) data-sharing agreement (please download this form https://
www.globaldietarydatabase.org/sites/default/files/manual_upload/
tufts-gdd-data-sharing-agreement.docx, complete the highlighted 
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fields and have someone who is authorized to enter your institution 
into a binding legal agreement with outside institutions sign the docu-
ment. Note that this agreement does not apply when protected health 
information or personally identifiable information are shared), (3) 
email items (1) and (2) to info@globaldietarydatabase.org. Please use 
the subject line ‘GDD Code Access Request’. Once all documents have 
been received, the GDD team will be in contact with you regarding 
subsequent steps.
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Extended Data Fig. 1 | Logic pathway for estimating the direct and BMI-
mediated diet-attributable T2D burden due to suboptimal diet globally. 
Modeling inputs and outputs provided in boxes. Blue text and arrows suggest the 

logical pathway through which dietary intake impacts T2D incidence. BMI, body 
mass index; PAF, population attributable fraction; RR, relative risk; T2D, type II 
diabetes.
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Extended Data Fig. 2 | The proportional burden of T2D attributable to 
suboptimal intake of four individual risk factors by world region in 2018, %. 
Bars represent the estimated percentage of T2D incidence due to suboptimal 
intake of 4 individual dietary factors – insufficient intake of (a) fruit, (b) 
non-starchy vegetables, (c) nuts and seeds; and excess intake of (d) fruit juice 
– that were estimated only based on effects mediated through weight gain 

(for example, no direct effects on T2D risk were identified in the literature). 
Remaining dietary factors reported in Fig. 3 in the main text. Countries were 
delineated into world regions by the Global Dietary Database. Data are presented 
as the central estimate (median) and corresponding 95% uncertainty interval, 
derived from the 2.5th and 97.5th percentiles of 1000 multiway probabilistic 
Monte Carlo model simulations.
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Extended Data Fig. 3 | The absolute burden of T2D attributable to 
suboptimal diet at the national level per 1 M population in (A) 1990 and 
(B) 2018. Heatmap reflects the estimated absolute burden of T2D incidence 
due to suboptimal intake of 11 dietary factors jointly: insufficient intake of 
whole grains, yogurt, fruit, nuts and seeds, and non-starchy vegetables; and 
excess intake of refined rice and wheat, processed meats, unprocessed red 
meat, sugar-sweetened beverages, potatoes, and fruit juice. The burden due 

to suboptimal diet was estimated using proportional multiplication, assuming 
that half the benefit of whole grains intake is mediated through replacement 
of refined rice and wheat intake. The absolute burden per 1 million population 
was calculated by dividing the absolute number of diet-attributable cases by the 
country population in that year and multiplying by 1 million. Different scales (0 
to 4000 cases vs. 0 to 8000 cases) were used to better reflect the absolute case 
distribution globally in 1990 and 2018, respectively.
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Extended Data Fig. 4 | The absolute change in the proportional burden of T2D 
attributable to suboptimal diet by world region between 1990–2018. Bars 
represent the estimated absolute change between 1990 and 2018 by world region 
in proportional burden of T2D incidence attributable to suboptimal intake of 
11 dietary factors jointly: insufficient intake of whole grains, yogurt, fruit, nuts 
and seeds, and non-starchy vegetables; and excess intake of refined rice and 
wheat, processed meats, unprocessed red meat, sugar-sweetened beverages, 
potatoes, and fruit juice. The burden due to suboptimal diet was estimated using 
proportional multiplication, assuming that half the benefit of whole grains 

intake is mediated through replacement of refined rice and wheat intake. A 
negative absolute change in proportional burden indicates a reduction in the 
diet-attributable burden of T2D between 1990 and 2018, while a positive absolute 
change in percentage burden indicates an increase in the diet-attributable 
burden of T2D during that time frame. Countries were delineated into world 
regions by the Global Dietary Database. Data are presented as the central 
estimate (median) and corresponding 95% uncertainty interval, derived from the 
2.5th and 97.5th percentiles of 1000 multiway probabilistic Monte Carlo model 
simulations.
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Extended Data Fig. 5 | The absolute change in the proportional burden of T2D 
attributable to (A) excess potatoes, (B) excess refined wheat, (C) insufficient 
whole grains, and (D) insufficient yogurt by world region between 1990–
2018. Bars represent the estimated absolute change in proportional burden 
of T2D incidence between 1990 and 2018 attributable to four dietary factors, 
globally and by world region – (a) excess intake of potatoes, (b) excess intake 
of refined wheat, (c) insufficient intake of whole grains, and (d) insufficient 
intake of yogurt. Note varying x-axis ranges across dietary factors. A negative 
absolute change in proportional burden indicates a reduction in the diet-

attributable burden of T2D between 1990 and 2018 (for example, reduced intake 
of harmful dietary factors, increased intake of protective dietary factors), while 
a positive absolute change in percentage burden indicates an increase in the 
diet-attributable burden of T2D during that time frame (for example, increased 
intake of harmful dietary factors, decreased intake of harmful dietary factors). 
Countries were delineated into world regions by the Global Dietary Database. 
Data are presented as the central estimate (median) and corresponding 95% 
uncertainty interval, derived from the 2.5th and 97.5th percentiles of 1000 
multiway probabilistic Monte Carlo model simulations.
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Extended Data Fig. 6 | The absolute change in the proportional burden 
of T2D attributable to (E) insufficient fruit, (F) insufficient non-starchy 
vegetables, (G) insufficient nuts & seeds, and (H) excess fruit juice by world 
region between 1990–2018. Bars represent the estimated absolute change 
in proportional burden of T2D incidence between 1990 and 2018 attributable 
to eight dietary factors, globally and by world region – (e) insufficient intake 
of fruit, (f) insufficient intake of non-starchy vegetables, (g) insufficient intake 
of nuts & seeds, and (h) excess intake of fruit juice. Note varying x-axis ranges 
across dietary factors. A negative absolute change in proportional burden 
indicates a reduction in the diet-attributable burden of T2D between 1990 and 

2018 (for example, reduced intake of harmful dietary factors, increased intake 
of protective dietary factors), while a positive absolute change in percentage 
burden indicates an increase in the diet-attributable burden of T2D during that 
time frame (for example, increased intake of harmful dietary factors, decreased 
intake of harmful dietary factors). Countries were delineated into world regions 
by the Global Dietary Database. Data are presented as the central estimate 
(median) and corresponding 95% uncertainty interval, derived from the 2.5th 
and 97.5th percentiles of 1000 multiway probabilistic Monte Carlo model 
simulations.
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Extended Data Fig. 7 | Difference in the absolute burden of T2D attributable 
to suboptimal diet between 1990–2018 in the top 30 most populous 
countries in 2018. Bars represent the estimated absolute change in the absolute 
burden per 1 M population of T2D incidence due to suboptimal intake of 11 
dietary factors jointly: insufficient intake of whole grains, yogurt, fruit, nuts 
and seeds, and non-starchy vegetables; and excess intake of refined rice and 
wheat, processed meats, unprocessed red meat, sugar-sweetened beverages, 
potatoes, and fruit juice. The burden due to suboptimal diet was estimated 

using proportional multiplication, assuming that half the benefit of whole 
grains intake is mediated through replacement of refined rice and wheat intake. 
Countries are ordered based on population size in 2018, from highest to lowest. 
See Supplementary Table 1 for more details on the inputs for each dietary 
factor. Data are presented as the central estimate (median) and corresponding 
95% uncertainty interval, derived from the 2.5th and 97.5th percentiles of 1000 
multiway probabilistic Monte Carlo model simulations.
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Extended Data Fig. 8 | The burden of T2D attributable to suboptimal diet by 
key sociodemographic factors at the global level in 1990. Bars represent the 
estimated (a) percentage burden and (b) absolute burden per 1 M population of 
T2D incidence due to suboptimal intake of 11 dietary factors jointly: insufficient 
intake of whole grains, yogurt, fruit, nuts and seeds, and non-starchy vegetables; 
and excess intake of refined rice and wheat, processed meats, unprocessed red 
meat, sugar-sweetened beverages, potatoes, and fruit juice. The burden due 

to suboptimal diet was estimated using proportional multiplication, assuming 
that half the benefit of whole grains intake is mediated through replacement of 
refined rice and wheat intake. See Supplementary Table 1 for more details on 
the inputs for each dietary factor. Data are presented as the central estimate 
(median) and corresponding 95% uncertainty interval, derived from the 2.5th 
and 97.5th percentiles of 1000 multiway probabilistic Monte Carlo model 
simulations.
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Extended Data Fig. 9 | Proportional burden of T2D attributable to 
suboptimal diet by urbanicity and education level at the world region level 
in 2018. Bars represent the estimated proportional burden of T2D incidence 
due to suboptimal intake of 11 dietary factors jointly: insufficient intake of 
whole grains, yogurt, fruit, nuts and seeds, and non-starchy vegetables; and 
excess intake of refined rice and wheat, processed meats, unprocessed red 
meat, sugar-sweetened beverages, potatoes, and fruit juice. The burden due 
to suboptimal diet was estimated using proportional multiplication, assuming 

that half the benefit of whole grains intake is mediated through replacement of 
refined rice and wheat intake. Education level and urban/rural residence were 
defined previously by the Global Dietary Database Project. Uncertainty in the 
T2D incidence estimates by education level and urban/rural residence were 
not incorporated into the population attributable fraction calculation. See 
Methods for further details. Data are presented as the central estimate (median) 
and corresponding 95% uncertainty interval, derived from the 2.5th and 97.5th 
percentiles of 1000 multiway probabilistic Monte Carlo model simulations.
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