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% Check for updates

The global burden of diet-attributable type 2 diabetes (T2D) is not well
established. This risk assessment model estimated T2D incidence among
adults attributable to direct and body weight-mediated effects of 11 dietary
factorsin184 countriesin 1990 and 2018. In 2018, suboptimal intake of
these dietary factors was estimated to be attributable to 14.1 million (95%
uncertainty interval (Ul), 13.8-14.4 million) incident T2D cases, representing
70.3% (68.8-71.8%) of new cases globally. Largest T2D burdens were
attributable to insufficient whole-grain intake (26.1% (25.0-27.1%)), excess
refined rice and wheat intake (24.6% (22.3-27.2%)) and excess processed
meat intake (20.3% (18.3-23.5%)). Across regions, highest proportional
burdens were in central and eastern Europe and central Asia (85.6%
(83.4-87.7%)) and Latin America and the Caribbean (81.8% (80.1-83.4%));
and lowest proportional burdens were in South Asia (55.4% (52.1-60.7%)).
Proportions of diet-attributable T2D were generally larger in men thanin
women and were inversely correlated with age. Diet-attributable T2D was
generally larger among urban versus rural residents and higher versus lower
educated individuals, except in high-income countries, central and eastern
Europe and central Asia, where burdens were larger in rural residents and in
lower educated individuals. Compared with 1990, global diet-attributable
T2Dincreased by 2.6 absolute percentage points (8.6 million more cases) in
2018, with variation in these trends by world region and dietary factor. These
findings inform nutritional priorities and clinical and public health planning
toimprove dietary quality and reduce T2D globally.

T2Disaleading determinant of morbidity and mortality globally, with  with correspondingincreases in obesity from 100 million to 764 million
enormous economic and societal consequences (http://www.diabete-  adults (http://www.diabetesatlas.org)**. This phenomenonis global: no
satlas.org)"?. Between 1980 and 2020-2021, the number of adultswith  nationhasexperiencedadeclineindiabetesorobesityinthelast40years
diabetes (90% of whichis T2D) increased from 108 millionto 537 million,  (http://www.diabetesatlas.org). Diabetes creates extraordinary
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burdens on individuals, families, nations and healthcare systems,
causing one in eight global deaths and increasing risk of cardiovas-
cular diseases, renal decline, fatty liver disease, blindness, cancers,
coronavirus disease 2019 and other infectious diseases (http:/www.
diabetesatlas.org). Left unchecked and with prevalence only projected
torise (http://www.diabetesatlas.org), T2D will decimate population
health, economic productivity and health system capacity worldwide.

Several dietary factors have strong evidence for etiologic effects
onincident T2D, either directly (for example, through changes in
blood glucose levels, insulin resistance, hepatic steatosis, inflamma-
tion, the gut microbiome or other pathways that are independent of
body massindex (BMI)) or mediated through weight gain (http://www.
diabetesatlas.org)® This includes, for example, direct and
BMI-associated relationships associated with high intake of
sugar-sweetened beverages (SSBs) and processed meats and low con-
sumption of whole grains and yogurt, as well as BMI-associated relation-
ships with low consumption of nuts and seeds and fruits.

Yet, while it is clear that diet plays an outsized role in the risk of
T2D, the absolute and relative contributions of specific dietary factors
toglobalincidence of T2D remain unclear. Previous analyses of disease
burdens were focused onisolated dietary factors (such as SSBs in 2010)°
or in specific countries’’ or world regions'®". An analysis assessing
diabetes globally suggested that dietary risks were responsible for
24.7% of diabetes deaths and 34.9% of diabetes disability-adjusted
life years (DALYs), with heterogeneity by World Bank country income
level'. This analysis used estimates of global diet based largely on Food
and Agriculture Organization (FAO) food-balance sheets, rather than
individual-level intakes, and did notincorporate updated assessments
of dietary factorsand both direct and weight-gain-mediated effects. In
addition, theglobal burden of diet-related T2D according to differences
in educational attainment or urban or rural residence within world
regions or nations, factors known to influence both diet and T2D risk
in region-specific ways, has yet to be determined. Such assessment
is crucial to further elucidate dietary and health disparities by these
factors within world regions and nations.

To address these gaps in knowledge and estimate the global
effects of suboptimal diet on T2D, we conducted a comparative
risk-assessment model to estimate the impact of 11 dietary factors,
separately andjointly, on the absolute and proportional burdens of new
T2D cases among adults globally and by age, sex, education, urbanicity,
world region and nation, in1990 and 2018.

Results

Datasets

We incorporated dietary data from the Global Dietary Database
(GDD), population demographics from the United Nations, adipos-
ity and diabetes distributions from the NCD Risk Factor Collabora-
tion (NCD-RisC) and the Global Burden of Disease study, direct and
BMI-mediated etiologic effects of dietary factors on T2D from pooled
multivariable-adjusted analyses and optimal dietary intakes from pub-
lished sourcesinto acomparative risk-assessment-modeling framework
to estimate the impact of 11 dietary factors, separately and jointly,
on the absolute and proportional burdens of new T2D cases globally
(Extended Data Fig. 1). See Methods for further details.

Dietary and T2D distributions

Eleven dietary factors were identified to have probable or convincing
evidence of an etiologic effect on T2D or weight gain as well as global
availability of consumption data. The optimal intake for each factor
was determined based on observed levels with lowest morbidity and
mortality in the meta-analyses, feasibility based on observed national
consumption levels and consistency with major food-based dietary
guidelines (Methods)™. In 2018, global mean intakes of these 11 die-
tary factors estimated by the GDD were suboptimal, including insuf-
ficient intake of fruits (observed mean (s.d.): 87.9 g per d (84.9, 90.8)

versus optimal, 300.0 g per d), non-starchy vegetables (209.8 g per d
(202.2,217.4) versus 300.0 g per d), nuts and seeds (8.6 gperd (7.7, 9.7)
versus 20.3 gperd), whole grains (50.1gperd (44.2, 55.2) versus90.0 g
perd)andyogurt (21.2 gperd (18.3, 25.1) versus 87.1 g per d) and excess
intake of potatoes (47.8 g per d (42.7, 55.2) versus 0.0 g per d), refined
rice and wheat (302.9 g per d (265.1, 354.8) versus 0.0 g per d), pro-
cessed meats (16.8 gperd (14.7,19.9) versus 0.0 g per d), unprocessed
red meats (56.5 gper d(53.3, 59.9) versus 14.3 g per d), SSBs (95.6 g per
d(89.1,103.0) versus 0.0 g per d) and fruit juices (15.1 g per d (14.0, 16.4)
versus 0.0 g per d) (Supplementary Tables1and 2). In 2018, based on
Global Burden of Disease data, a total of 20.1 million (95% UI, 19.9~
20.3 million) new T2D cases occurred among adults globally, with the
greatest absolute number of annual new cases occurring insoutheast
and East Asia (5.8 million (5.7, 5.9 million)) and South Asia (4.7 million
(4.6, 4.8 million)).

Estimated T2D cases attributable to suboptimal diet

In2018, atotal of 14.1 million (95% UI:13.8, 14.4 million) estimated new
T2D cases, or 70.3% (95% Ul: 68.8-71.8%) of the total, were estimated
to be due to suboptimal intake of the 11 dietary factors (Supplemen-
tary Table 3 and Fig. 1). Excess intake of six harmful dietary factors
jointly (refined rice and wheat, processed meats, unprocessed red
meat, SSBs, potatoes, fruit juice) contributed alarger proportion of the
total global diet-attributable burden (60.8%) than insufficientintake of
five protective dietary factors (whole grains, yogurt, fruits, non-starchy
vegetables, nuts and seeds) (39.2%) (Supplementary Table 4). These
proportions were generally similar across world regions in 2018 and
globally and across world regions in1990.

Amongindividual dietary factorsin 2018, insufficient whole grains
(26.1%(25.0-27.1%)), excess refined rice and wheat (24.6% (22.3-27.2%)),
excess processed meats (20.3% (18.3-23.5%)) and excess unprocessed
red meats (20.1% (19.0-21.2%)) were associated with the highest esti-
mated attributable burden of T2D incidence globally (Fig. 1). Lowest
burdenswere attributable to dietary factors having only BMI-mediated
effects, such as excess fruit juice (0.09% (0.09-0.1%)), insufficient
non-starchy vegetables (0.9% (0.9-1.0%)) and insufficient nuts and
seeds (1.1% (1.1-1.2%)).

Diet-attributable T2D by world region and nation

Across world regions, highest proportional diet-attributable burdens of
T2D werein central and eastern Europe and central Asia (85.6% (95% Ul:
83.4-87.7%)) and Latin America and the Caribbean (81.8% (80.1-83.4%)),
and lowest proportional diet-attributable burdens of T2D were in South
Asia(55.4% (52.1-60.7%)) and sub-Saharan Africa (68.1% (64.3-72.7%))
(Fig. 2). Per 1 million population, T2D cases attributable to diet were
highestin Latin America and the Caribbean (4,152 per million popula-
tion (4,056, 4,254)) followed by the Middle East and North Africa (3,827
per million population (3,607, 4,042)).

Weidentified heterogeneity in attributable burdens of T2D for spe-
cific dietary factors at regional and national levels. About onein three
new T2D cases were estimated to be attributable to insufficient whole
grainsinsoutheast and East Asia (35.8% (34.1-37.3%)) and Latin America
andthe Caribbean (35.0% (32.0-37.1%)), compared with onein ten cases
inSouth Asia (10.1% (7.5-13.2%)) (Fig. 3). The estimated attributable T2D
burden from excess refined rice was 23.1% (17.9-29.9%) in southeast and
East Asia but <2% in central and eastern Europe and central Asia and
high-income countries in 2018. Excess refined wheat was associated
with the highest estimated T2D burden in the Middle East and North
Africa(22.5%(18.5-27.1%)). Large regional differences were seenin the
estimated T2D burden of excess unprocessed red meats, ranging from
38.2% (35.3-40.9%) in central and eastern Europe and central Asia to
2.6% (2.1-4.1%) in South Asia. Excess processed meats were estimated to
be associated withmore than half (55.7% (49.1-61.3%)) of new T2D cases
in central and eastern Europe and central Asia but only 4.2% (1.1-15.1%)
inSouth Asia. The burden of T2D cases attributable to excess SSBs was
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Fig.1| The proportional burden of T2D attributable to suboptimal diet
jointly and by each individual dietary factor globally in 2018. Bars represent
the estimated percentage of T2D incidence due to suboptimal intake of 11
dietary factorsjointly (suboptimal diet) and separately at the global level in
2018. The burden due to suboptimal diet was estimated using proportional
multiplication, assuming that half the benefit of whole-grain intake is mediated
through replacement of refined rice and wheat intake. Refined rice and wheat
were modeled separately but combined for this aggregate analysis using

proportional multiplication. The attributable burden of T2D for four dietary
factors (insufficient intake of fruit, nuts and seeds, non-starchy vegetables

and excess intake of fruit juice) were estimated only based on effects mediated
through weight gain (for example, no direct effects on T2D risk were identified
intheliterature). See Supplementary Table 5 for more details on the inputs for
each dietary factor. Data are presented as the central estimate (median) and the
corresponding 95% Ul, derived from the 2.5th and 97.5th percentiles 0of 1,000
multiway probabilistic Monte Carlo model simulations.

highest in Latin America and the Caribbean (26.2% (24.0-28.7%)) and
lowest in South Asia (3.3% (2.3-4.8%)). Excess intake of potatoes was
associated with the highest proportional T2D burden in central and
eastern Europe and central Asia (12.7% (10.4-15.4%)). Generally, excess
intake of fruit juice and insufficientintake of yogurt, fruit, non-starchy
vegetables, and nuts and seeds had lower attributable burdens and
less heterogeneity by world region (Fig. 3 and Extended Data Fig. 2).

Considering the 30 most populous countries, the proportional
diet-attributable burden of T2D was highest in Colombia (94.6%
(95% Ul: 92.4-96.4%)) and Poland (89.0% (87.2-91.0%)) and lowest in
India (50.2% (46.5-56.9%)) (Fig. 4). However, per million population,
Mexico (6,015 cases (95% Ul: 5,751, 6,275)) and Germany (5,091 cases
(4,841, 5,383)) had the highest estimated diet-attributable T2D bur-
dens, while Ethiopia (976 cases (856, 1,156)) and Nigeria (1,127 cases
(1,013,1,272)) had the lowest. Global national heat maps and detailed
tables of national proportional and absolute T2D burdens attribut-
able to suboptimal diet jointly and separately in 1990 and 2018 for all
countries are presented in Extended Data Fig. 3 and Supplementary
Tables3and 5.

Trends between1990 and 2018

Global trends indiet-attributable T2D burden between 1990 and 2018
aredescribedin Supplementary Note1andFig. 5. Regionally, the largest
increasesindiet-attributable T2D burdens were in sub-Saharan Africa
(+9.3 absolute percentage points (95% Ul: 7.7-10.8%)) and southeast and
East Asia (+8.6% (6.1-11.1%)), and the largest (although non-significant)
declines were in South Asia (-1.2% (-4.1% to 1.1%)) and high-income
countries (-1.5% (-3.9%t01.1%)) (Extended Data Fig. 4). Certaindietary
factors had considerable regional heterogeneity (Fig. 5 and Extended
DataFigs.5and 6). The T2D burden attributable to excess unprocessed
red meat increased by 21.3 absolute percentage points (18.1-24.1%) in

southeast and East Asiabut declined in central and eastern Europe and
central Asia (-6.5% (-8.6% to —4.4%)), high-income countries (-3.8%
(-6.4%t0—-0.7%) and the Middle East and North Africa (-2.8% (-4.2% to
-1.4%)) (Fig.5). T2D cases attributable to excess refined rice declined,
butincreased for excess refined wheat, in South Asia and central and
eastern Europe and central Asia (Fig. 5and Extended Data Fig. 5), while
increasing T2D burdens for refined wheat and rice were observedin the
Middle East and North Africa (+4.1% (2.9-5.5%) and +3.3% (2.4-4.4%),
respectively) and sub-Saharan Africa (+1.3% (0.8-1.9%) and +1.8%
(1.2-2.4%)). The T2D burden attributable to SSBs increased most in
sub-Saharan Africa (+9.4% (7.1-11.8%)), with more modest changes
in other world regions. The proportional T2D burden attributable to
processed meat increased in all regions except South Asia. Trends in
the 30 most populous countries are discussed in Supplementary Note
landshownin Extended Data Fig. 7.

Findings by age, sex, education level and urbanicity
All findings were evaluated subnationally, jointly stratified by age,
sex, educational attainment and urban or rural residence. Globally,
the diet-attributable T2D burden was generally greater in males (pro-
portional, 71.7% (95% Ul: 70.2-73.4%); per million, 2,987 cases (95%
Ul: 2,918, 3,058)) versus females (68.6% (67.0-70.3%); 2,626 cases
(2,564, 2,694)) (Fig. 2). Proportional burdens were higher in younger
adults (aged 20-25years, 83.5% (81.4-85.5%)) versus older adults (aged
95+ years, 27.7% (26.1-30.6%)), but middle-aged adults had the high-
est burden per million (for example, aged 55-59 years, 4,777 cases
(4,613, 4,964)). These sex- and age-specific differences were generally
similarin1990 (Extended Data Fig. 8).

By education globally, estimated diet-attributable T2D burden
was highest among individuals with high education (proportional,
73.6% (72.2-75.4%); per million, 2,952 cases (2,886, 3,030)) versus those
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Fig.2|The burden of T2D attributable to suboptimal diet by key
sociodemographicfactors at the global level in2018. Bars represent the
estimated percentage burden (a) and absolute burden per 1 million population
(b) of T2D incidence due to suboptimal intake of 11 dietary factors jointly:
insufficient intake of whole grains, yogurt, fruit, nuts and seeds, and non-
starchy vegetables and excess intake of refined rice and wheat, processed
meats, unprocessed red meat, SSBs, potatoes and fruit juice. The burden due to

suboptimal diet was estimated using proportional multiplication, assuming that
halfthe benefit of whole-grain intake is mediated through replacement of refined
rice and wheat intake. See Supplementary Table 5 for more details on the inputs
for each dietary factor. Data are presented as the central estimate (median) and
the corresponding 95% Ul, derived from the 2.5th and 97.5th percentiles of 1,000
multiway probabilistic Monte Carlo model simulations.

with medium (70.7% (69.1-72.5%); 2,873 cases (2,807, 2,951)) or low
(67.7% (65.8-69.8%); 2,670 cases (2,592, 2,759)) education (Fig. 2). This
pattern was seen in all world regions except for in high-income coun-
tries and central and eastern Europe and central Asia, where popula-
tions with medium educationand low education, respectively, had the
largest diet-attributable proportional T2D burden in 2018 (Extended
DataFig.9).

By residence globally, the estimated T2D burden attribut-
able to suboptimal diet was higher among populations residing
in urban (proportional, 72.5% (71.1-73.8%); per 1 million, 3,213
cases (3,150, 3,279)) versus rural (66.5% (64.5-69.1%); 2,293 cases
(2,225, 2,381)) areas, with the largest regional differences by resi-
denceidentified in the Middle East and North Africaand sub-Saharan
Africa (Extended Data Fig. 9).

Findings by national sociodemographicindex

We also assessed national findings by sociodemographic index (SDI), a
composite measure of a country’s development based on income per
capita, educational attainment and fertility rates (Methods). In 2018,
national diet-attributable T2D burdens were only modestly correlated
with SDI (r=0.29) (Fig. 6). This varied by world region, with a positive
associationamong nations in sub-Saharan Africa, South Asia, the Middle
East and North Africa, and high-income countries, but an inverse asso-
ciation among nations in central and eastern Europe and central Asia,
Latin America and the Caribbean, and southeast and East Asia. In1990,
theassociation between national diet-attributable T2D burdens and SDI
was stronger (r=0.53) than in 2018, with similar trends by world region
(Fig. 6).Nobivariate outliersin the association betweenjoint attributable
T2D burden and SDIwere detected based on statistical analysis.
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mediated through weight gain (that is, no direct effects on T2D risk were
identified in the literature) and is reported in Extended Data Fig. 1. Countries
were delineated into world regions by the GDD. Data are presented as the
central estimate (median) and the corresponding 95% Ul, derived from the
2.5th and 97.5th percentiles of 1,000 multiway probabilistic Monte Carlo model
simulations.

Discussion

Based on globally representative and stratified estimates of dietary
intake and T2D incidence, our modeling investigation estimates that,
in2018, seveninten (70.3% (95% Ul: 68.8-71.8%)) or 14.1 million (95% UI:
13.8-14.4 million) new T2D cases globally are attributable to suboptimal
intake of 11 dietary factors. Excess intake of harmful dietary factors
contributed agreater percentage of thisburden globally (60.8%) than
did insufficient intake of protective dietary factors (39.2%). Among
individual dietary factors, the largest number of estimated T2D cases
globally were attributable to insufficient whole grains (26.1%), excess
refined rice and wheat (24.6%), excess processed meat (20.3%) and
excess unprocessed red meat (20.1%). Substantial heterogeneity in
diet-attributable T2D burdens overall and for each dietary factor was
found by world region and nation. The proportional diet-attributable
T2Dburdenwas inversely correlated with age and was generally greater
inmenversus women, urban versus rural residents and for individuals
with higher versus lower education, except in high-income countries
and central and eastern Europe and central Asia, where the reverse was
true for urbanicity and education level. National diet-attributable T2D
burdens were only modestly correlated with socio-economic develop-
ment, with a weakening of this association since 1990.

Highest diet-attributable T2D burdens were observed in central
and eastern Europe and central Asia, particularly in populous countries
suchasPoland and Russia, driven by larger burdens from excess intake
of unprocessed red meat, processed meat and potatoes. These findings
are consistent with theregion’s culinary ‘meat and potatoes’ practices
and associated cardiometabolic health risk for this dietary patternin
the eastern European context”. Latin America and the Caribbean had
the second highest estimated diet-attributable T2D burden of all world
regions, especially in Colombia and Mexico, related to excess SSBs,
excess processed meats and insufficient whole grains. These results are

consistent with the transition toward more highly processed diets in
thisregion', includingincreasing processed meat intake in Colombia,
Argentina and Brazil" and consistently low whole-grain intake across
eightLatin American countries'. These results also build upon previous
findings of excess SSB consumption and associated cardiometabolic
diseaseburdenin Latin America and the Caribbean, aswell asevidence
for the adverse effects of excess SSB and processed meat intake and
insufficient whole-grainintake on T2D risk (Methods).

Disparities in diet, health and disease are a critical area of public
health research and practice. We found differences in diet-attributable
T2D burden by education level subnationally, as well as diverging
effects in these differences by world region, providing evidence to
inform nutrition-related disparities globally. In high-income coun-
tries and central and eastern Europe and central Asia, populations
with lower education had higher diet-attributable T2D burdens than
populations with high education, indicating that educational interven-
tions and social safety net programs in these regions should include
focus on nutrition and T2D to reduce health disparities. By contrast,
in Latin America and the Caribbean, South Asia and sub-Saharan
Africa, diet-attributable T2D burdens were highestamong adults with
high educational attainment. Improving education may therefore
not reduce T2D in these regions, and alternative strategies such as
front-of-package labeling, marketing standards, taxation and other
financial incentive schemes may be more effective” ", Financial mar-
kets can also drive health and equity in the food sector, based on the
business case for investing in the production, sale and marketing of
products aligned with these societal goals®.

Our finding of similar or higher diet-attributable T2D burden in
urban areas compared to rural areas in most world regions (except
high-income countries and central and eastern Europe and central
Asia) is consistent with estimated urban-rural differences in animal
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Fig.4|The burden attributable to suboptimal diet at the national level in

the top 30 most populous countries in2018. Bars represent the estimated
percentage burden (a) and absolute burden per 1 million population (b) of T2D
incidence due to suboptimal intake of 11 dietary factors jointly: insufficient intake
of whole grains, yogurt, fruit, nuts and seeds, and non-starchy vegetables and
excess intake of refined rice and wheat, processed meats, unprocessed red meat,
SSBs, potatoes and fruit juice. The burden due to suboptimal diet was estimated

using proportional multiplication, assuming that half the benefit of whole-
grain intake is mediated through replacement of refined rice and wheat intake.
Countries are ordered based on population size in 2018, from highest to lowest.
See Supplementary Table 5 for more details on the inputs for each dietary factor.
Data are presented as the central estimate (median) and the corresponding 95%
Ul, derived from the 2.5th and 97.5th percentiles of 1,000 multiway probabilistic
Monte Carlo model simulations.

source food intake” and in age-standardized adiposity, particularly
in the global south?. However, evidence from 1985 to 2017 suggests
that BMl is rising at the same or faster rates in rural areas in low- and
middle-income countries (LMICs)*, consistent withincreased supply
of highly processed foods in rural areas™, and indicating a growing
need to focus on rural nutritionand lifestyle in low- and middle-income
nations. Addressing these nutrition and health disparities will require
clinical, policy and public health interventions and policies tailored to
local circumstances.

The global T2D proportional burden attributable to suboptimal
diet was inversely correlated with age, but, per million population,
absolute burden was highest at middle age (45-60 years), indicating

theinterplay between differencesin nutritional habits versus absolute
risk for T2D at different ages®. Given these findings, multisectoral
approaches to improving diet quality across the life course may be
most effective, including among children and adolescents* 2, when
lifelong dietary habits are often formed.

We did not find a strong relationship between SDI, an inte-
grated measure of national sociodemographic development, and
diet-attributable T2D risk. Thisis due to various reasons for suboptimal
diet quality in different nations at different levels of SDI, such as often
lower intake of protective foods in lower-SDI countries and higher
intakes of protective foods but also harmful foodsin higher-SDI coun-
tries. Our subnational findings by education and urbanicity provide
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additionalinsightsin thisregard, as we identified differing directions of
associationin high- versus low-income countries by subnational educa-
tionand urbanicity, which are each associated with sociodemographic
development, dietary habits and diet-attributable risk of T2D. Notably,
therelationship between SDIland diet-attributable T2D risk weakened
between 1990 and 2018, largely owing to increasing diet-attributable
burdensin middle-SDIand especially lower-SDI nations. Our findings
suggest that diet quality is worsening in lower-SDInations but without
relative improvements in sociodemographic development, related
to growingindustrialization and Westernization of food in the Global
South over this time period.

Changes over time were also observed in specific diet-attributable
T2D burdens between 1990 and 2018 at global, regional and national
levels. The proportional burden increased by 2.6 percentage points,
while the absolute burden increased by about 8.6 million new cases
peryear, withthelatter alsorelated toincreases in population growth,
aging and obesity” . Excess unprocessed red meat was estimated to
contribute the largest globalincrease in proportional diet-related T2D
of all dietary factors assessed. This was driven primarily by increases
in southeast and East Asia (+21.3%), largely related to pork consump-
tion®’, which offset declines in unprocessed red meat-attributable
T2D burdens in central and eastern Europe and central Asia (-6.5%),
high-income countries (-3.8%) and the Middle East and North Africa
(-2.8%). The findings in southeast and East Asia mirror economic
development, population growth and increased urbanization in this
region over the last 28 years®*, although many of these same demo-
graphic changes occurred in other regions that did not experience
increased unprocessed red meat-associated T2D burden, suggesting
aregion-specific increased demand for red meat. By contrast, grow-
ing awareness of the adverse human health impacts (for example,
cardiovascular disease, T2D, colorectal cancer) and planetary health
strains (for example, greenhouse gas emissions, water and land usage,
eutrophication potential) of unprocessed red meats® may be con-
tributing to the decreasing unprocessed red meat-attributable T2D
burdeninseveral world regions, including central and eastern Europe
and central Asia, high-income countries and the Middle East and North
Africa. The T2D burden attributable to processed meat increased
in all world regions except South Asia (-0.7%), indicating generally
independent shiftsin, and therefore need for potentially distinctinter-
ventions to address, the consumption of unprocessed red meat versus
processed meat.

Our findings implicate poor carbohydrate quality (excess
refined rice and wheat, insufficient whole grains) as aleading driver
of diet-attributable T2D globally, although with varying trends over
time and by world region. We found estimated burdens attributable
toinsufficient whole grains to decrease globally since 1990, except
insub-Saharan Africa, whereitincreased (+2.0%). The latter result,
along with our finding of increasing T2D burdens in sub-Saharan
Africa attributable to refined rice and wheat, quantifies some of
the health harms occurring from the shift away from traditional
whole grains toward more processed, refined staples®. T2D burdens

attributable to excess refined wheat and rice increased even more
inthe Middle East and North Africa (+6.7%, jointly), consistent with
commodity reports of increased availability and consumption of
refined grains in this region®. In South Asia, we identified declin-
ing (but still high) T2D burdens attributable to refined rice but
increasing burdens attributable to refined wheat, consistent with
the growing popularity of processed, refined wheat breads, cakes
and pastriesin South Asia as part of globalization and convergence
toward Western diets*. Our findings suggest that excess refined rice
and wheat and insufficient whole grains may be the top two dietary
drivers of T2D globally, highlighting carbohydrate quality asan area
for urgent attention.

In prior work, we estimated T2D mortality attributable to SSBs
globally in 2010 (ref. 6). This investigation expands and updates
this work by evaluating T2D incidence, assessing 11 dietary factors
and extending follow-up to 2018. We found the percentage of T2D
attributable to SSBs to be highest in Latin American and the Carib-
bean (26.2%), with modest decline (-1.4%) over the last 28 years.
These findings suggest that new public health interventions in
the region, including national SSB taxes, restricted availability in
schools, limits on marketing and front-of-package warning labels**’,
may be contributing to some reduction in SSB-related T2D. By con-
trast, SSB-attributable T2D has skyrocketed in sub-Saharan Africa
(+9.4%) since 1990, suggesting success of multinational corporate
strategies to make SSBs more available, affordable and attractive in
sub-Saharan Africa®. South Africarecently introduced anational tax
on SSBs, with observed reductions in SSB intakes*’, but otherwise
strategies for addressing this growing SSB-associated T2D burden
in Africaare sparse.

Our assessment of BMI-mediated effects for dietary factors asso-
ciated with weight gain acknowledges the role that caloricimbalance
and excess weight gainplay in the etiology of T2D. This risk assessment
model incorporates energy imbalance via weight change, which can-
not be achieved by considering total calorie intake, as the latter does
not reflect energy imbalance but rather varies with age, sex, physical
activity, metabolic efficiency, body size, muscle mass and gut microbial
metabolism.

Incidence of T2D attributable to direct etiologic effects of die-
tary factors was generally higher than their separate BMI-mediated
effects. Prospective observational studies and some controlled trials
support BMI-independent dose-response associations with T2D of
whole grains and yogurt (protective factors) as well as glycemic load,
SSBs, unprocessed red meats and processed meats (harmful factors)
(Methods). Several plausible mechanisms may underlie these associa-
tions. For example, fiber and phenolics in whole grains may benefit the
gut microbiome, resting metabolic expenditure, fat mass, insulin sensi-
tivity, blood lipids and systemicinflammation***. By contrast, refined
grains, starches and sugars induce rapid blood glucose and insulin
spikes, hepatic de novo lipogenesis, uricacid productionandincreased
visceral adiposity and also can displace other healthier foods in peo-
ple’s diets**. In controlled trials, active probiotics in yogurt improve

Fig.5|The absolute change in the proportional burden of T2D attributable
tosuboptimal diet and each individual risk factor between1990 and 2018
globally and by world region for four select dietary factors. Bars represent
the estimated absolute change in proportional burden of T2D incidence (a)
globally due to suboptimal intake of 12 dietary factors jointly and individually:
insufficient intake of whole grains, yogurt, fruit, nuts and seeds, and non-
starchy vegetables and excess intake of refined rice, refined wheat, processed
meats, unprocessed red meat, SSBs, potatoes and fruit juice. The burden due
to suboptimal diet was estimated using proportional multiplication, assuming
that half the benefit of whole-grain intake is mediated through replacement of
refined rice and wheat intake. In addition, excess intake of four dietary factors
(unprocessed red meat (b), refined rice (c), SSBs (d) and processed meat (e)) is
included asillustrative examples of the estimated absolute change in percentage

burden of T2D, with the remaining dietary factors included in Extended Data
Figs.5and 6. A different x-axis range was used for b to account for the magnitude
of absolute change in T2D burden attributable to excess intake of unprocessed
red meat in southeast and East Asia. A negative absolute change in proportional
burdenindicates areduction in the diet-attributable burden of T2D between
1990 and 2018 (for example, reduced intake of harmful dietary factors, increased
intake of protective dietary factors), while a positive absolute change in
percentage burdenindicates anincrease in the diet-attributable burden of T2D
during that time frame (for example, increased intake of harmful dietary factors,
decreased intake of harmful dietary factors). Countries were delineated into
world regions by the GDD. Data are presented as the central estimate (median)
and the corresponding 95% Ul, derived from the 2.5th and 97.5th percentiles of
1,000 multiway probabilistic Monte Carlo model simulations.
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glucose-insulin homeostasis**¢. Mechanisms for metabolic harms of
unprocessed red and processed meats require further study and may
include effects of heme iron and preservatives on insulin resistance,
oxidative stress, visceral adiposity, intracellular lipid accumulation and
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chronic inflammation*~*2, In sum, our findings of direct (rather than
only BMI-mediated) diet-attributable T2D burdens suggest that public
health, clinicaland policy interventions should prioritize diet quality,
rather than total calories or weight alone, in global efforts to address
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Fig. 6| Correlation of national-level diet-attributable T2D burden and
national SDIin 2018 and 1990. Points represent the 184 countries included in
this analysis (labeled with their ISO3 code and colored based on world region)
in2018 (a) and 1990 (b). The gray line represents overall correlation, with
Pearson correlation coefficient and associated P value (two-tailed) provided.
No adjustments were made for multiple comparisons. The y axis is based on
estimated proportional burden of T2D incidence due to suboptimal intake of 11
dietary factors jointly: insufficient intake of whole grains, yogurt, fruit, nuts and

seeds, and non-starchy vegetables and excess intake of refined rice and wheat,
processed meats, unprocessed red meat, SSBs, potatoes and fruit juice. The
burden due to suboptimal diet was estimated using proportional multiplication,
assuming that half the benefit of whole-grain intake is mediated through
replacement of refined rice and wheat intake. SDI is a measure of a nation’s
development expressed on ascale of 0 to 1sourced from the Global Burden of
Disease study, based on a compositive average of the rankings of income per
capita, average educational attainment and fertility rates.

T2D.Moreresearchis needed tobetter understand theinterplay of diet
quality, energy balance, metabolism, obesity and T2D.

Previous studies estimated that between 35% and 41% of global
burdens of diabetes and ~28% in the Americas were attributable to

poor diet"****, Compared with these prior studies, our investigation
evaluated 11 dietary factors (versus only six) and separately assessed
both direct and BMI-mediated dietary effects (versus direct only). In
a prior study that aimed to catalog dietary and non-dietary risks for
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T2D, global attributable burdens were estimated to be 34.9% for poor
diet, 45.8% for high BMI (including diet-mediated weight gain) and 6%
for low physical activity’. Thus, the joint T2D burden attributable to
the direct effects of six dietary factors plus high BMI in that analysis
would be estimated tobe ~64.7%. The joint T2D burdenin that analysis
attributable toall risk factors beyond diet and BMI (low physical activ-
ity, air pollution, smoking, second-hand smoke, alcohol) would be
estimated at ~45.1%. Thus, our findings, which incorporate 11 dietary
factors (including factors with major attributable estimates such as
refined grains not evaluated in prior analyses) and include both direct
and BMI-mediated effects, are broadly consistent and plausible in
comparison to these prior estimates, particularly when accounting
for differences in etiologic effects and optimal levels, uncertainty in
each model and model assumptions.

These prior studies also relied on dietary estimates derived
primarily from national per-capita food availability, rather than
individual-level dietary surveys. Similar to our analysis, the two global
studiesidentified low intake of whole grains as the leading dietary risk
factor**. These studies did not have data on refined rice and wheat
(the second leading risk factor in our analysis), yogurt, potatoes,
non-starchy vegetables or fruit juice. Our findings suggest that, based
onupdated dataondietary habits, etiologic effects, weight-mediated
effects and optimal intakes, a high proportion of T2D is attributable
to poor diet. Our investigation also assesses burdens stratified by
subnational educational status and urban-rural residence, potential
determinants of disparities.

Our investigation has several strengths. This study extended
prior global and national analyses of diet-related cardiometabolic
disease with updated dietary, BMI and T2D data. We assessed global
diabetes impacts of refined grains, potatoes, non-starchy vegeta-
bles and fruit juice, which had not previously been analyzed. We
incorporated both direct and BMI-mediated etiologic effects for
multiple protective and harmful dietary factors, stratified associated
risk by education level and urbanicity and evaluated T2D incidence
rather than only mortality of DALYs. The modeling design incor-
porated the available estimates of finely stratified global dietary
habits, T2D incidence, underweight and overweight prevalence,
and diet-T2D, diet-BMI and BMI-T2D relationships. This approach
estimates attributable burdens fromindependentlines of evidence,
rather than froman ecologic analysis of national diet-disease associa-
tions. Dietary etiologic effects were derived from meta-analysis of
multivariable-adjusted prospective cohorts and controlled trials and
pooled analyses of long-term changes in diet and weight gain, with
additional age-adjusted associations of BMland T2D risk (Methods).
The modeling framework incorporated stratum-specific data by year,
country, sex, age, educational attainment and urbanicity, increasing
ability to assess disparities. Uncertainties were incorporated and
quantified using probabilistic sensitivity analyses, allowing estima-
tion of the bounds of plausible effects.

The limitations should also be considered. While results are based
on the available evidence for etiologic effects of diet and adiposity,
our modeling approach does not prove causation, and our findings
should be considered as estimates of risk. Direct etiologic effects of
refined grains were based on their glycemic potential. While refined
grains represent a major contribution to dietary glycemic load, this
approach may not be as robust as for the direct estimates obtained
for other dietary exposures. By contrast, evidence for BMI-mediated
effects of refined grains was based on the long-term relationship of
refined grainintake with weight gain. The multivariable-adjusted rela-
tive risks used in the analysis may overestimate effects if confounded
by other unmeasured factors and may underestimate effects due to
random errors in the measurement of diet. Our estimated effects of
dietary factors on BMIchange were derived from prospective cohorts
in high-income nations, potentially limiting generalizability to other
populations, although these relationships were multivariable adjusted

for major sociodemographic and lifestyle factors and represent the
best available estimates of how dietary changes relate to long-term
weight gain. BMI-mediated effectsincorporated differences by normal
weight versus overweight or greater but not potentially stronger effects
inadults with obesity, which may underestimate BMI-mediated effects
among individuals with obesity. Dietary relationships were based
on models estimating a linear relationship between dietary intake
and BMIand alog linear relationship between dietary intake and T2D
risk (except for whole grains, for which we used a stepwise, log linear
relationship). Future research should address whether more complex
diet-T2D dose-response relationships exist. Certainty of evidence
was formally graded in duplicate for diet-disease relationships but
not for BMI-mediated effects beyond SSBs. We also did not account
for other dietary influences on T2D or adiposity, which could lead to
larger diet-attributable burdens. While we incorporated uncertainty
in all the modeling parameters, we did not include uncertainty in the
stratification of T2D cases by education and urbanicity, given lack of
rigorous data to do so. We stratified estimates by sex, age, education
and urban versus rural residence, but reliable global data on other
social determinants of health are not yet available and could provide
further insights into global disparities in diet-attributable T2D. We
didnotaccount for non-dietary risks for T2D in our analytical models,
which could resultin overestimates for the joint effects of suboptimal
diet onincident T2D. On the other hand, we made several efforts to
minimize overestimation of our joint effects, including use of propor-
tional multiplication; modeling half of the health benefits of whole
grains as mediated by replacement of refined grains, accounting for
substitution effects; and incorporating only direct and BMI-mediated
dietary pathways with strong evidence for an etiologic association
with T2D risk. We have shown in prior validation analyses that, using
these approaches, the magnitude of estimated joint etiologic effects
across multipleindividual dietary factorsis similar to that seeninclini-
cal trials, prospective cohorts and risk factor feeding trials of dietary
patterns’, suggesting that this approach reasonably accounts for
intercorrelations and substitution effects and does not meaningfully
overestimate joint effects.

In conclusion, our model estimates that about seven in ten new
T2D cases globally are attributable to suboptimal intake of 11 die-
tary factors in 2018, with heterogeneity by world region, nation and
within-country demographics. These findings inform dietary priorities
and clinical and public health planning to improve dietary quality and
reduce T2D globally.
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Methods

Ethics and inclusion statement

Data informing the GDD modeling estimates for this study, includ-
ing from LMICs, were collected between 1980 and 2020 in the form
of dietary intake surveys. If nationally representative surveys were
not available for a country, we also considered national surveys
without representative sampling, followed by regional, urban or rural
surveys, and finally large local cohorts, provided that selection and
measurement biases were not apparent limitations. For countries
with no surveys identified, other sources of potential data were
considered, including the WHO Infobase, the STEP database and
household budget survey data. As of July 2021, we have identified
and retrieved 1,634 eligible survey years of data from public and
private sources. Of these, 1,220 have been checked, standardized and
approved for GDD 2018 model inclusion. Most identified data were
either privately held or notin aformat appropriate for our modeling.
We thus relied almost entirely on direct author contacts in each
country to provide us with exposure data directly. Roles and respon-
sibilities of GDD Consortium members were determined and agreed
upon before data sharing as part of a standardized data-sharing
agreement.

The draft manuscript was shared with all GDD consortium mem-
bers before submission for peer review, and all members have been
included as authors of this work. We endorse the Nature Portfolio
journals’ guidance on LMIC authorship and inclusion and are com-
mitted to the inclusion of researchers from LMICs in publications
from the GDD. We share the GDD data with the entire consortium,
encourage authors from LMICs to take thelead on analyses and papers
and can provide technical and writing support to LMIC authors. For
more details on the collaborative GDD data-collection process, please
visit our website at https://www.globaldietarydatabase.org/methods/
summary-methods-and-data-collection.

This research is locally relevant to all countries included, given
that it disaggregates findings nationally and subnationally by key
demographic factors such as age, sex, education level and urbanicity
and thus provides local decision makers with dataon arange of dietary
factors and corresponding T2D risk.

Thismodeling investigation was exempt from ethical review board
approval because it was based on published dataand nationally repre-
sentative, de-identified datasets without personally identifiable infor-
mation. Individual surveys underwent ethical review board approval
required for the applicable local context.

Study design

A comparative risk assessment model® estimated the numbers,
proportions and uncertainty of global T2D cases attributable to
suboptimal intake of key dietary factors (Extended Data Fig. 1).
Comparative risk assessment does not use ecologic correlations
to estimate risk but incorporates independently derived inputs
and parameters on demographics, risk factors, their etiologic
effects and disease incidence to model attributable burdens®.
For this investigation, we leveraged input data and correspond-
ing uncertainty in 184 countries on (1) population dietary intake
distributions based on individual-level survey data from the GDD
(http://www.globaldietarydatabase.org/)*®; (2) population overweight
(BMI > 25 kg m™) and underweight (BMI < 18.5 kg m™) distributions
from the NCD-RisC*’; (3) total T2D-incidence distributions from the
Global Burden of Disease study®®*’; (4) linear, BMI-stratified effects
of dietary factors on weight gain or loss®’; age-adjusted direct etio-
logic effects of these factors on T2D, adjusted for BMI, and of weight
gain on T2D from previous meta-analyses and pooled analyses of
prospective cohorts?**"%; (5) optimal dietary intake levels from
previous analyses'?; and (6) population demographic data from
the United Nations Population Division®** and the Baro and Lee
2013 dataset on educational attainment® (Supplementary Table 6).

Identification of relevant dietary factors

Dietary factors were selected based on the following principles:
(1) probable or convincing evidence of an etiologic effect on T2D or weight
gain based on meta-analyses or pooled cohort studies; (2) preference
for foods over nutrients, when possible, to minimize double counting
of similar nutrients and/or foods; and (3) global dietary data availability
from the GDD. The methods and results for review, identification and
assessment of evidence for direct etiologic diet-disease relationships
have been described'>“°. Briefly, evidence for each diet-disease rela-
tionship was first evaluated by grading the quality of evidence accord-
ing to nine different Bradford Hill criteria for causation: strength,
consistency, temporality, coherence, specificity, analogy, plausibility,
biological gradient and experiment®. This evidence grading was com-
pleted independently and in duplicate by two expert investigators.
Based on these assessments, probable or convincing evidence was
determined independently and in duplicate, in accordance with the
criteria of the FAO-World Health Organization® and with consideration
of consistency with the similar criteria of the World Cancer Research
Fund-American Institute for Cancer Research®. See Miller et al.* and
Supplementary Table 7 for further details on the evidence grading
criteria and results of this evaluation. In total, 11 dietary factors were
identified with at least probable evidence for etiologic effects on weight
gain, seven of which also had evidence for direct (BMI-independent)
effects on T2D risk (Supplementary Table1).

Global distributions of diet

The GDD systematically searched for and compiled representative data
onindividual-level dietary intakes from national surveys and subna-
tional surveys as previously described”. The GDD included 1,220 unique
dietary surveys, covering 188 countries corresponding to 99.0% of the
global population (Supplementary Table 8)”°. For each dietary factor, a
Bayesianhierarchical modelestimated the meanintake levelsfor national
subgroups within each of 264 strata within a country-year, jointly
stratified by age (22 age categories from 0-6 months through 95+years),
sex (female, male), education (low, medium, high) and urbanicity (urban
or rural residence) from 1990 through 2018 (ref. 70). Three countries
of the 188 countries with survey data were dropped from the GDD
prediction model due to unavailability of FAO food-availability data, a
crucial covariatein the prediction model. AMarkov chain Monte Carlo
algorithm generated 4,000 samples of the posterior distributions of
the model parameters, which were then used to generate predictive
distributions of mean dietary intake for each stratum’’. Stratum-specific
values were combined and weighted to the stratum’s proportion of the
population for global, regional, national or other subgroup analyses.
Children and adolescents (aged <20 years) were excluded from the
present analysis given the relatively low rates of T2D globally in this
subgroup. Given serving size differences in refined rice versus refined
wheat, GDD refined grain intake estimates were disaggregated into
refined rice and wheat intake and further converted into glycemicload
estimates to match available etiologic effects for T2D risk, detailedin the
section of Conversion of GDD refined grain intake estimates to glycemic
load estimates. For the present analysis, regression-based methods
were used to estimate the standard deviation corresponding to each
estimated, stratum-specific mean from the dietary survey input data.
These mean-s.d. pairs were then used to generate gamma-distribution
parameters for usual dietary intake, detailed in the section of Estimation
of gamma parameters for the distribution of usual intake.

Conversion of GDD refined grain intake estimates to glycemic
load estimates

Refined grain servingsizes vary significantly by commodity, primarily
duetowater weight. Werestricted our definition of refined grainintake
towheatandrice, based on GDD standardized dietary factor definitions
(http://www.globaldietarydatabase.org/). To account for differences
inthe servingsizes of rice versus wheat, we first used FAO Food Balance
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Sheet datafor the energy availability of ‘wheat and products’ and ‘rice
and products’ (kcal per capita per d) from 1990 and 2018 to calculate
theavailable wheat and rice servings for each country-year stratum’.

We estimated standardized serving sizes and caloric contents as
follows: wheat, 160.2 kcal per 50-g standard serving; rice, 170.9 kcal
per 150-g standard serving (Supplementary Table 9). Standard serv-
ing sizes reflect the average of serving sizes reported in international
laboratory analyses, selected to represent the range of commonly
consumed wheat and rice products globally”. Caloric content per100 g
was obtained from the USDA’s FNDDS 2017-2018 dataset for each food
productand then converted to calories per standard serving sizes™. For
each country-year stratum, we calculated the available wheat and rice
servings for each country-year stratum as follows:

Standardized rice availability (in servings per capita per d) = (FAO
‘rice and products’in kcal per capita per d) + (170.9 kcal per 150 g)
Standardized wheat availability (in servings per capita per
d) = (FAO‘wheatand products’inkcal per capitaperd) + (160.2 kcal
per50g).

Standardized rice and wheat availability were then used to cal-
culate the proportion of rice and wheat grams available for each
country-year stratum.

Wheat intake (g per d) = (refined grain intake) x (servings
wheat) + (servingsrice + wheat)

Riceintake (g per d) = (refined grainintake) x (servingrice) + (serv-
ings rice + wheat)

For the purposes of the BMI-mediated CRA of refined grainintake,
we modeled rice- and wheat-intake estimates separately. The mono-
tonic effect of diet on BMI change for one serving per day of refined
grains thus accounted for the differences in serving sizes (50 g for
wheat, 150 g for rice) and relative consumption of rice versus wheat
ineach stratum.

In addition, given estimates for the direct association between
glycemicload, but notrefined grainintake, and T2D risk were available,
we then further converted estimated rice- and wheat-intake estimates
torefined grain-specific glycemicload (g per din a diet of 2,000 kcal)
to match available effect sizes. Because refined grains represent the
largest contribution, by far, to total dietary glycemic load, which has
beenrelated to T2D risk with at least probable evidence, it is areason-
ableextension to derive estimates of the attributable burden of refined
grains from their glycemic load. Glycemic load was calculated per
standard serving size for each product and averaged for wheat andrice
separately. The average glycemic load for wheat was calculatedas13.1g
per 50-g serving and, forrice, 30.3 g per 150-g serving.

To convertrice-and wheat-intake estimates (g per d) into glycemic
load (g per d), we summed the product of the estimated rice and wheat
intakebyitsrespective average glycemicload, as follows, repeating this
calculation for the upper and lower Ul estimates:

Glycemic load = ((wheat intake) x (13.1g per 50 g)) + ((rice
intake) x (30.3 g per150 g)).

Estimation of gamma parameters for the distribution of usual
intake

Dietary intakes cannot be negative, and usual intake distributions tend
to be skewed to the right”>’°. Gamma distributions were shown to be
more appropriate than normal distributions for each of the dietary fac-
torsbased on the analysis of GDD input data (for example, NHANES data)
in a previous study’ and other research on assessment of population
dietary intake’”’®, as they do not allow for negative intakes and include
awiderange of shapes with varying degrees of skewness’’. The standard
deviation needed to be obtained to construct the gammadistribution of
intakes for our dietary factors of interest, as the GDD prediction model
only generates estimates of mean intake from which the standard devia-
tion cannot be readily derived. Parameters for gammadistribution were

generated using the mean estimate from the GDD prediction modeland
estimated s.d. for the mean estimate from 1,000 simulations.

Standard deviation estimate for the distribution of usual dietary
intake. Stratum-level GDD input survey data were used to fit a linear
regression of the standard deviation of intake on mean intake (both
adjusted for energy). To determine the appropriate transformation of
theinput dataused for fitting the linear regression, various scatterplots
of energy-adjusted means versus energy-adjusted s.d. were created.
Using this approach, we concluded that a natural log transformation
for both mean and s.d. was most appropriate.

We also explored excluding Demographic and Health Sur-
veys, household surveys and outlier data, due to potential unreli-
ability for estimating s.d. Ultimately, it was determined that no one
dietary-assessment method contributed unevenly to the observed
linear trend, and thus all datawere included. Doing so also allowed for
the largest possible sample size.

Additional work was carried out to assess the usefulness of an
interaction term by world region, which was ultimately excluded. The
regression model below was used for each individual diet factor, where
irefersto eachsurvey stratum:

Yi = Bo +Bxi + &,

inwhich Y;is the natural log of the s.d. of stratum-specific intake,
X;is the natural log of the mean of stratum-specific intake, and g, is
random error, follows N(0, 6%).

Monte Carlo simulations for generating standard deviation distri-
butions. For each dietary factor, estimates for 8, and 3, were used to
predict1,000 In (s.d.) values corresponding to 1,000 iterations (k) of
the predicted meanintake for each population stratum (j) using Monte
Carlo simulations:

Y = Bo + BiXi.

in which X is the kth sample draw of the predictive distribution for
mean intake for population stratumy.

We added error, propagating uncertainty from the model esti-
mates as well as variation within the sampling data itself by randomly
drawing from a t-distribution with n — 1 degrees of freedom using the
following equation:

inwhich o is the estimate for g, nis the number of survey strata, ' is
the kth sample drawn from a t-distribution with n — 1 degrees of free-
dom, and s/d?( isthe kthsample draw of the predicted s.d. distribution
for population stratumj.

Estimation of gamma parameters for the distribution of usual
intake. The predictive distributions for each stratum-specific s.d.
were thenused togenerate1,000 corresponding shape and rate gamma
parameters for the distribution of usual intake, a primary inputin the
CRA model using the following equations:

Shape = (Gu/s )

—

i Xik
Ratej = —=
S-d'jk
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Global distributions of adiposity

Prevalence of overweight (BMI > 25 kg m™) and underweight
(BMI <18.5 kg m™) in each country-year-age-sex-urbanicity stra-
tum and their uncertainty was obtained from the NCD-RisC, based
on 2,416 population-based studies of national, regional or global
trends in mean BMI, with measurements of height and weight for
128.9 million people®. NCD-RisC further segregated the data by
place of urban or rural residence from 1985 to 2017 and excluded
surveys if based solely on self-report, on subsets of the population
oron children or pregnancy. NCD-RisC used a Bayesian hierarchical
model to estimate mean BMI by country, year, sex, age and urbanicity.
A Markov chain Monte Carlo algorithm generated 4,000 samples
of the posterior distributions of the model parameters, which were
thenused to generate predictive distributions of mean BMIfor each
stratum®. NCD-RisC then generated multivariable regression mod-
els to convert each stratum-specific mean BMI estimate to over-
weight and underweight prevalence and uncertainty by country,
year, age and sex”*. To further stratify the NCD-RisC estimates by
education level and urbanicity, we assumed that overweight- and
underweight-prevalence estimates did not vary across education
levels and urban versus rural residence; did not change across GDD
age groups of 85-89, 90-94 and 95+ years (as NCD-RisC reports
estimates for 85+ years only); and did not change between 2017 and
2018 (as NCD-RisC only reports through 2017, but this CRA analysis
assesses estimates for 2018).

Estimated diet-disease relationships

The evidence for direct (BMI-adjusted) associations (relative risks)
between dietary risk factors and T2D was obtained from published
systematic reviews and evidence grading, based on meta-analyses
of prospective cohort studies and randomized controlled trials
including multivariable adjustment for age, sex, BMI and other
risk factors to reduce bias from confounding (Supplementary
Table 1)°. Because these studies generally adjusted for BMI, we
separately assessed BMI-mediated effects of diet (BMI change in
kg m™) based on pooled analyses of changes in diet and changes in
BMlinlong-term prospective cohort studies (Supplementary Table
1)°°. Specifically, we used the associations for diet and weight gain
pooled from three separate prospective cohort studies, including
50,422 women in the Nurses’ Health Study (1986-2006), 47,898
women in the Nurses’ Health Study 11 (1991-2003) and 22,557 men
inthe Health Professionals Follow-up Study (1986-2006) who were
free of obesity (BMI = 30 kg m™) or chronic diseases and with com-
plete data on weight and lifestyle habits at baseline. Women who
became pregnant during follow-up were excluded from the analy-
sis. Independent relations of changes in dietary habits with BMI
change were assessed in 4-year periods over 20 yearsin the Nurses’
Health Study, 12 yearsin the Nurses’ Health Study Iland 20 years in
the Health Professionals Follow-up Study, using linear regression
with robust variance and accounting for within-person repeated
measures.

Based on previous analyses demonstrating decreasing pro-
portional effects of metabolic risk factors on T2D incidence at
older ages, age-specific relative risks were calculated for each
diet-T2D etiologic relationship'>??, based on the mean age at
event and follow-up duration (see details below onincorporating
Heterogeneity in diet-disease relationships using age-specific
relative risks). Associations of dietary factors with BMI change
were estimated separately for overweight (BMI > 25 kg m™) versus
non-overweight adults (BMI < 25 kg m™), given observed effect
modification by baseline BMI status (Supplementary Table 10).
Relationships of BMI with incident T2D were obtained from a
pooled analysis of multiple cohort studies on the quantitative
effects of metabolic risk factors on CVD and diabetes?, with
age-specific relative risks (RRs) modified as described in Text S3.

Heterogeneity in diet-disease relationships using age-specific
relative risks

Consistent with previous investigations, we incorporated propor-
tional effects of major risk factors on T2D varying by age, with alog
linear age association™. Given limited evidence of significant effect
modification by sex, we incorporated similar proportional effects of
risk factors by sex™.

In previous work, the proportional differences in RRs for major
diet-related cardiometabolicrisk factors, including systolicblood pres-
sure, BMI, fasting plasma glucose (FPG) and total cholesterol, across
six 10-year age groups from 25-34 years to 75+ years were evaluated.
Givensimilarities acrossthese four risk factors, the mean proportional
differencesin RRacrossallrisk factors were applied to the dietary rela-
tiverisks. For the present analysis, these mean proportional differences
were disaggregated into 16 5-year age groups from 20-24 years to 95+
years by linearly scaling between each 10-year mean proportional dif-
ferenceinlog (RR).

To calculate de novo the average age at event for each diet-disease
pair, we extracted the following data from each original study included
in the respective diet-disease meta-analysis: average age at baseline
(years), follow-up time (years), type of follow-up time reported (maxi-
mum, median or mean) and study weight for each meta-analysis. When
baseline age range rather than average baseline age was reported, we
calculated the average. Weights were corrected when specific studies
were excluded from the meta-analysis due to study quality limitations
tosumto 1. Whenstudy weights were not reported, log (incident cases)
for each study were used as a proxy indication of each study’s weight
within the meta-analysis.

The average age at event was estimated as the weighted average of
the sum of the average baseline age and half the maximum follow-up
time reported (or two-thirds of the mean or median follow-up time
reported) for each original study included in the respective diet-
disease meta-analysis. See Supplementary Table 2 for estimated aver-
age age atevent for eachrisk factor.

To quantify and incorporate the previously observed effect
modification by age, we calculated age-specific relative risk for each
diet-disease pair by applying the mean proportional differences in
RR by age across all diet-disease pairs; we anchored at the calculated
mean age atevent for each diet-disease pair (Supplementary Table11).
We used Monto Carlo simulations to estimate the uncertainty in the
age-distributed log (RR), sampling from the distribution of log (RR)
atthe age at event. Based on 1,000 simulations, we used the 2.5th and
97.5th percentiles to derive the 95% Ul. An example is presented for
the average age-at-event calculation (Supplementary Table 12) and
resulting age-adjusted risks for potato intake and T2D risk (Supple-
mentary Fig.1).

Incorporating nonlinearity in the whole-grain-T2D risk
association

Due to identified inconsistencies in the units of intake, portion size
definitions, data extractions and inclusion criteria for whole-grain
exposure in prior identified meta-analyses of whole grains and
T2D®%, we identified and used Reynolds et al.** as the highest-quality
meta-analysis for the association between whole grains and T2D risk.
Reynold et al. suggest a potential nonlinear relationship between
whole-grain intake and log (relative risk), with stronger protective
effects for the first 40 g per d of intake and smaller protective effects
thereafter. We approximated this nonlinear association by using two
linear functions, visually estimated at between 0 and 40 g per d and
between41and 90 g per d onthelog (RR) scale. Specifically, we graphi-
cally determined the log (RR) corresponding to the first 40 g per d of
whole-grainintake (and corresponding confidence intervals based on
the spline curve confidenceinterval) and the log (RR) and confidence
interval correspondingto the following intake of 50 g per d (for exam-
ple, from40 g perdto 90 gper d), standardizing these values to units
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of 30 g per d. Intake of 90 g per d was set as the optimal intake level,
asitrepresents a conservative estimate of the intake level with lowest
relativerisk based on the estimated spline curve from the cohort study
data points.

To estimate the burden of T2D attributable to suboptimal intake
of whole grains, we modified the RR(x) input function for the standard
population-attributable fraction (PAF), detailed below. In review, RR(x)
is typically modeled as follows for protective dietary factors (that is,
when there is no added benefit above the optimal intake level):

l:x-yx)>0

exp(Br—y(x)) : x=y(x)) <0,

where S is the stratum-specific change in log relative risk per unit of
exposure, xisthe currentexposurelevel, and y(x) is the optimal exposure
level. y(x) is defined to be Fypimar (Fz* (), where Fom, is the cumulative
distribution function of the optimalintake, and F;!is theinverse cumula-
tive distribution function of the current exposure distribution. Implicit
in how we characterize the relative risk function are some of the funda-
mental assumptions that we make about relativerisk. Namely, that relative
riskincreases exponentially as distance from the optimalintake exposure
level (y) increases, that thereis norisk associated with exposure beyond
the optimalintake exposure level and thatbothxand the optimal intake
exposurelevel for anindividual at exposure level x are the gth quantile of
their respective distributions (the observed exposure distribution and
the optimalintake distribution, respectively).

To account for the stepwise, nonlinear nature of the log relative
risk for whole grains, we modified the RR(x) function so that intake
between 40 and 90 g per d was evaluated based on the more conserva-
tive RRy,(0.92 (0.87, 0.94)) only. Intake between 0 and 40 g per d was
evaluated based on RRy, (0.92 (0.87, 0.94)) for the intake difference
of 50 g per d from the optimal intake level (90 g per d) and the further
deviation beyond that using the stronger RR (0.81(0.72, 0.90)), by
summing the transformed RR,, and RR,, values. As previously, there
is no risk associated with exposure beyond the optimal intake level
of 90 g per d. The revised RR(x) for whole grains and T2D was instead
modeled as:

exp (Bso (x — 40) + Bog (40 —y (X)) : x < 40
exp (Boo (X — y (X)) 190 > x> 40
1 1 X>90

Characterization of optimal intakes

Optimal intake levels serve as the counterfactual in our comparative
risk assessment modeling analysis, allowing for comparable quantifi-
cation of impacts of dietary factors on disease risk at the population
level. Optimalintake levels were determined primarily based on disease
risk (observed consumption levels associated with lowest disease risk
inmeta-analyses) with further considerations of feasibility (observed
national mean consumption levels in nationally representative surveys
worldwide) and consistency with existing major food-based dietary
guidelines. Because populations inevitably have a range of consump-
tion levels, we used a normal distribution around each optimal intake
level withs.d.equaling10% of the mean, consistent with optimal distri-
bution ranges of metabolicrisk factors® . For each dietary factor, the
comparative risk model assumed no additional health benefits beyond
the optimal intake distribution within each stratum. For BMI-mediated
effects, no further benefits of BMIreduction were estimated at or below
aBMIof18.5 kg m™(ref. 86).

The optimal intake levels used in this analysis are analogous to
what has been termed a theoretical minimum risk exposure level in
other analyses™?, but we prefer the term ‘optimal intake” as more rel-
evant to dietaryrisk factors than ‘theoretical minimum risk exposure

level’. These optimal intakes can be considered a benchmarking to
quantifying disease risk and informing policy priorities in different
nations. We determined optimal intake levels for dietary factors based
on probable or convincing evidence for effects on cardiometabolic out-
comes, and these levels were not developed as part of characterizing an
overallideal dietary pattern, which might also consider other factors.

Optimalintakes for whole grains, yogurt, processed meats, unpro-
cessed red meats, SSBs, fruits, non-starchy vegetables, and nuts and
seeds were previously calculated®®; and optimal intakes for potatoes,
refined rice and wheat, and fruit juices were estimated de novo using
similar methods, detailed in Supplementary Tables 1and 2".

For potatoes, optimal intake was set at O g per d based on observed
intakelevels associated with lowest riskinstudiesincludedin meta-analyses
(as low as 13 g per d***%), national mean intakes in 2018 as low as 0 g per d
(Laos)andlessthan10 g per dfor eight other countries (for example, Ghana,
Philippines, etc. (http://www.globaldietarydatabase.org/)) and absence of
specificrecommendations for potatoes and/or grouping of potatoes with
starchy staples rather than vegetables in food-based dietary guidelines®.
Forexample, the US Dietary Guidelines for Americans, 2020, the Chinese
Food Pagodaand the German Nutrition Circleallhave general recommen-
dations for total starchy vegetables or tubers for one serving per d or less
(https://www.dietaryguidelines.gov)’**". The optimal intake for refined
rice and wheat was set at 0 g per d based on observed intake of <1 serving
perdamongindividual of lowest riskin cohortsincluded inmeta-analyses”
and national mean intakes of refined grains in 2018 <25 g per d in eight
countries;and major dietary guidelines recommend limiting refined grain
intake and choosing whole grains and tubers over refined grains (https://
www.dietaryguidelines.gov)®.Forfruitjuice, the optimalintake was set at
0 gperdbased onobservedintake of ‘never’ or ‘rarely’ amongindividuals
of lowestrisk for T2Din cohortsincludedin meta-analyses, national mean
intake of fruit juices in 2018 of less than one serving for more than ten
countries and national food-based dietary guidelines that either include
100% fruitjuice within the fruit category but state that it should not count
for more than one serving per day for fruit or explicitly include negative
messages about fruit juice and/or group fruitjuice with SSBs*.

Global distributions of T2D incidence

Global, regional and national data for T2D were derived from the Global
Burden of Disease Study 2019, stratified by nation, age and sexin1990
and 2018 (ref. 58). Overall diabetes was defined as FPG levels greater
than1.25 mg ml™ (7 mML?) or being on diabetes medication®. T2D was
defined as cases of overall diabetes not specified astype1 (ref. 94). Data
inputsincluded estimates of diabetes and mean FPGinarepresentative
population, individual-level data on FPG measures from surveys and
US MarketScan insurance claim data®. Data on T2D incidence were
not available for South Sudan; thus, the entire country was excluded
fromthe present analysis.

Disaggregation of T2D incidence by education level and
urbanicity

We further stratified these estimates of T2D incidence by education
level (low, medium, high) and urbanicity (urban, rural) to align these
with the demographic and GDD dietary data and enable assessment
of heterogeneity in risk within education and urbanicity-based sub-
populations (Supplementary Table13), given evidence that these fac-
tors are known to influence both diet and T2D risk in region-specific
ways”’, We used the following additional data inputs to reconcile
these stratification differences: (1) global population proportions, (2)
effect estimates of educational attainment on T2D risk and (3) effect
estimates of urban versus rural residence on T2D risk.

Global population proportions for each year were derived from
the United Nations Population Division®?, supplemented with dataon
education attainment from Barro and Lee®. We also further scanned
thescientific literature for the latest meta-analysis, pooled analyses and
large surveys evaluating the association between sociodemographic
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factorssuchaseducational attainment and urbanicity with T2D risk. We
hypothesized that countryincome level was a potential effect modifier
for both educational attainment and urbanicity on T2D risk, and thus
we collated risk estimates stratified by or specific to country income
level. We limited our analysis to high-quality risk assessments adjusted
for atleast age and sex” 771007102,

For both educational attainment and urbanicity, we conducted
fixed-effect meta-analysis of collated effect sizes, stratified by country
income level. See Supplementary Table 14 for a full list of study charac-
teristics and effect sizes used in each meta-analysis. Given inconsistent
definitions across studies and limited dataavailability, mediumeducation
attainment was assumed to be neutral (that is, RR =1). We distributed
the central estimate of our meta-analyzed risk estimate equally for high
versus low education (and urban versus rural residence) by taking the
squarerootand inverse squareroot of the central estimate of the relative
risk. See Supplementary Table 13 for final effect estimates for education
level and urbanicity used in disaggregating the T2D-incidence estimates.

Thetotal year-country-age-sex stratum-specific T2D-incidence
estimates (mean and 95% Ul) were then multiplied by their respective
population proportion, education effect and urban effect for each
of the six de novo strata to obtain raw, fully proportioned burden
estimates and their uncertainty. These values were then scaled to the
total stratum burden estimate to prevent underestimation or overesti-
mation of the absolute number of T2D cases globally'*'°*, A fictitious,
illustrative example is provided to illustrate how 1,000 T2D casesina
single age-sex population stratum (low-income country) in a given
year were disaggregated into the six finer education-urbanicity strata
using the central estimate of the meta-analyzed education and urban
effects (Supplementary Table15). The population-proportioned-only
burden estimates are also provided as acomparisonin the final column.

Comparative risk assessment analysis, overview
The comparative risk assessment framework incorporated the data
inputs and their uncertainty to estimate the absolute number, rate (per
million adult population) and proportion of T2D cases attributable
to suboptimal intake of each dietary factor in 1990 and 2018 (Supple-
mentary Fig. 1). For each stratum, the model calculated the percent-
age (PAF) of T2D incidence associated with each dietary factor RR by
comparing the present distribution of consumption with the optimal
intake distribution. BMI-mediated effects were calculated based on the
stratum-specific association of current dietary habits with BMI change,
weighted by the prevalence of overweight, normal weight and under-
weight (no effect) in each stratum, combined with the RR for this BMI
change associated with T2D using the same continuous PAF formula. A
modified relative risk function, incorporating stepwise, nonlinear log
relative risks, was used for the whole-grain direct-effect model given
evidence of a nonlinear relationship between whole-grain intake and
T2Drisk®. See sections below for further details on each PAF calculation.

Fordietary factors withboth direct and BMI-mediated associations
with T2Drisk, the two stratum-level PAFs were combined into asingle
joint PAF for that dietary factor using proportional multiplication.
The joint association of all 11 dietary factors was similarly estimated
using proportional multiplication of each stratum-specific PAF. To
consider plausible substitution effects and minimize the overestima-
tion of attributable burdens, the model assumed that half the benefit
of whole-grain intake was mediated by replacement of refined grains
(rice and wheat). Stratum-level dietary factor and overall joint PAFs
were then multiplied by the number of T2D cases in that stratumofthe
global population to estimate the attributable number of T2D casesin
thatstratum. Findings were evaluated globally, regionally and by nation
and also in subgroups by age, sex, education and urbanicity and were
reported as proportional attributable burden (percentage of cases)
and attributable rate (cases per 1 million adults).

Wealso assessed national findings by SDIin1990 and 2018, ameas-
ure of a nation’s development based on a composite average of the

rankings of income per capita, average educational attainment and
fertility rates'®.

Uncertainty was quantified using 1,000 multiway probabilistic
Monte Carlo simulations, jointly incorporating stratum-specific uncer-
taintiesin dietary exposures, underweight and overweight prevalence,
and diet-T2D, diet-BMI and BMI-T2D etiologic effect estimates. Cor-
responding 95% Uls were derived from the 2.5thand 97.5th percentiles
0f'1,000 estimated models. For comparing trends between 1990 and
2018, we calculated differences for PAFs by subtracting the 1990 value
fromthe corresponding 2018 value for each simulation, reporting the
medianand 95% Ul for each difference. We did not formally standardize
comparisons for age or sex over time, so that findings would reflect the
actual population differencesin attributable burdensthat are relevant
to policy decisions, but also performed analyses stratified by age and
sex that account for changes in these demographics over time. All
analyses were performed using R statistical software, R version 4.0.0
(ref.106), and the Tufts High Performance Cluster.

Direct-effect population attributable fraction
The population attributable fraction (PAF) formula is used to quan-
tify the burden of disease attributable to the difference between a
population’s observed exposure and a counterfactual, optimal intake
distribution, given an etiologic exposure-disease risk relationship.
We aimed to estimate the burden of T2D incidence attributable
to suboptimal intake of protective and harmful dietary factors (for
example, lower intake of protective dietary factors and higher intake
of harmful dietary factors than their respective optimal intake levels)
with direct effects on T2D risk.
The standard PAF formula used is as follows:

S oRR(X) P () dx —1
Je=oRR(x) P (x) dx

where P(x) is the usual dietary intake distribution in a specific popula-
tionstratum, assumed to follow agammadistributionfor all dietary fac-
torsofinterest, as used in previous analyses’; RR(x) is the age-specific
relative risk function for T2D incidence; and mis the maximum expo-
sure level.

RR(x) is defined as:

exp(Bx-y(x)) : x-y(x) >0
1 x—yx)<0 '

where S is the stratum-specific change in log relative risk per unit of
exposure, x is the current exposure level, and y(x) is the optimal expo-
surelevel. y(x) is defined to be Fopgimal (F5* (X)), WhereF i is the cumula-
tive distribution function of the optimal intake, and F;!is the inverse
cumulative distribution function of the current exposure distribution.
Implicit in how we characterize the relative risk function are some of
the fundamental assumptions that we make about relative risk. Namely,
thatrelative riskincreases exponentially as distance from optimaliintake
exposure level (y) increases, that there is no risk associated with expo-
sure beyond the optimal intake exposure level and that both x and the
optimal intake exposure level for an individual at exposure level x are
the gthquantile of their respective distributions (the observed exposure
distribution and the optimal intake distribution, respectively).

In practice, simple numerical integration using Riemann sums
canbeused to compute the integrals in the PAF formula, as described
in detail in previous work®.

n
2 Pi(RR; - 1)
=1

PAF = —
> P (RR; 1) +1
i=1
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ncategories are determined by dividing up the exposure range (chosen
here to be 0, /! (®(-6))) into 121 intervals, each of length 0.1 when
converted to the standard normal scale (except for the first one). ® is
defined as the cumulative distribution function of the standard normal
distribution (N(0,1)). More precisely, the range of exposure groups /
canbedescribed as:

(0.F (@ (-6))) ti=1

(F(®(=6+01(-2)), F,,H(®(—6+013G-1)) :i> 1

BMI-mediated effect population attributable fraction

The association of change in BMI with change in dietary intake was
assessed using multivariate linear regression for within-person
repeated measures, as described in an earlier work®®. Separate lin-
ear relationships were then estimated for BMI <18.5 kg m2, 18.5-
24.9 kg m~2and >25 kg m™, given observed effect modification by
baseline BMI status, as described and reported in that same prior
analysis®.

To assess the BMI-mediated effects of suboptimal dietary intake of
11dietary factors on T2D incidence, we first calculated the monotonic
effect of dietary intake on BMI change for each population stratum by
weighting the baseline BMI-specific effect by the respective prevalence
ofunderweight, normal weight and overweight within each stratum. We
assumed that underweight individuals (BMI < 18.5 kg m?) experienced
no change (increase or decrease) in T2D risk with consumption of either
risk or protective dietary factors. As such, the monotonic effect for this
population segment was set at 0.

Df-to-BMl effect = Byuisos X (Overweight prevalence) + Bayins.s—2s X
(normal weight prevalence) + 0 x (underweight prevalence)

We then estimated log (RR) per unit-associated increase
in exposure for each dietary factor by taking the log (RR) per
unit-associated increase in exposure for BMI and multiplying it by
the dietary Factor-to-BMI effect (associated increase in BMI per
one-unit-associated increase in that dietary factor).

Joint population-attributable fraction of suboptimal diet
Because summing would overestimate joint relationships, for each
stratum, the joint PAF of suboptimal diet (overall, by direct effects and
by BMI-mediated effects) was estimated by proportional multiplica-
tion as follows:

R
PAFjoine =1— ][ (1 - PAF,),

r=1

where rdenotes eachindividual dietary factor, and Ris the number of
dietary factors. The analyses supported independent etiologic rela-
tionships of each dietary factor, and joint distributions were further
determined within each stratum, maximizing validity of our joint PAFs.
Joint distributions of exposure may be partly correlated among indi-
viduals, leading to overestimation of joint attributable fractions. Yet,
separate prior validity analyses of dietary patterns, including interven-
tional studies, suggested that the estimated etiologic relationships of
individual components and their joint associations were reasonable’.

Quantification of uncertainty using Monte Carlo simulations

Monte Carlo simulations were used to quantify uncertainty in the
PAFs, incorporating stratum-specific uncertainty in usual dietary
intake-distribution parameters, etiologic RR estimates and prevalence
of overweight and normal weight. Specifically, for each diet-T2D pair
and stratum, we drew randomly 1,000 times from the normal distri-
bution of the estimate of T2D-specific changes in the log (RR) corre-
spondingto aone-unitincreaseinintake, the predictive distributions
for shape and rate parameters for usual dietary intake, and the normal
distribution of the estimate of normal weight and overweight. Draws
of proportions that were less than O or greater than1were changed to

0 or 1, respectively. Likewise, draws of mean intake that were zero or
less were changed to 0.00001. Each set of random draws are used to
calculate the PAFs and associated, absolute attributable T2D burden.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data used in this analysis are publicly available from the follow-
ing sources: (1) individual dietary intake estimate distribution data
(GDD, Download 2018 Final Estimates: https://www.globaldietaryda-
tabase.org/data-download); (2) stratum-specific global mean BMI,
converted to overweight- and underweight-prevalence distribution
data (NCD-RisC, DataDownloads: https://ncdrisc.org/data-downloads.
html); (3) T2D burden-incidence-estimate distribution data (Global
Health Data Exchange, Global Burden of Disease Study 2019 Results
Tool: https://vizhub.healthdata.org/gbd-results/); (4) linear,
BMI-stratified effects of dietary factors on weight gain or weightloss:
ref. 60; (5) direct, proportional, age-adjusted effects of BMI on T2D:
ref. 23; (6) direct, proportional, age-adjusted effects of diet on T2D:
whole grains, ref. 62; all remaining dietary factors, ref. 61; (7) optimal
intake levels for dietary factors: ref. 12; (8) population demographic
data: UN Population Division (age, sex, urbanicity), ref. 65; (9) SDI data
from Global Health Data Exchange: Global Burden of Disease Study
2019 SDI11950-2019: https://ghdx.healthdata.org/record/ihme-data/
gbd-2019-socio-demographic-index-sdi-1950-2019; (10) FAO Food Bal-
ance Sheet data for the energy availability of ‘wheat and products’ and
‘rice and products’ (kcal per capita per d): United Nations FAO: Food
Availability Data: http://www.fao.org/faostat/en/#home; (11) global
glycemicload estimates for wheat and rice products: ref. 73; (12) caloric
content per100 gforwheat andrice products: US Department of Agri-
culture Agricultural Research Service Food and Nutrient Database for
Dietary Studies 2017-2018: https://www.ars.usda.gov/nea/bnrc/fsrg.

Code availability

Custom code was developed using R (version 4.0.0) with two-tailed
a=0.05, for cleaning, merging and formatting of all data inputs;
calculation of age-adjusted relative risks; comparative risk assess-
ment modeling, including PAF calculations for each dietary factor
separately and joint PAF calculations for all dietary factors; summary
aggregation of stratum-level PAF estimates at the global, regional
and national levels; and datavisualization. Given their computational
size and complexity, all comparative risk assessment modeling codes
were run on the Tufts University High Performance Computing Cluster
(https://it.tufts.edu/high-performance-computing), supported by
the National Science Foundation (grant 2018149, https://www.nsf.
gov/awardsearch/showAward?AWD _ID=2018149&HistoricalAwards
=false) under active development by Research Technology (https://
it.tufts.edu/researchtechnology.tufts.edu), Tufts Technology Services.
The statistical code used for this analysis is not publicly available.
The GDD can make the statistical code available to researchers upon
request. Eligibility criteria for such requests include: utilization for
nonprofit purposes only, for appropriate scientific use based on a
robust research plan and by investigators from an academic institution.
GDD willnominate co-authorstobeincluded onany papers generated
using GDD-generated statistical code. Ifyou areinterested in request-
ing access to the statistical code, please submit the following docu-
ments: (1) proposed research plan (please download and complete the
proposed research planform https://www.globaldietarydatabase.org/
sites/default/files/manual_upload/research-proposal-template.pdf),
(2) data-sharing agreement (please download this form https://
www.globaldietarydatabase.org/sites/default/files/manual_upload/
tufts-gdd-data-sharing-agreement.docx, complete the highlighted
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fields and have someone who is authorized to enter your institution
intoabindinglegal agreement with outside institutions sign the docu-
ment. Note that this agreement does not apply when protected health
information or personally identifiable information are shared), (3)
emailitems (1) and (2) toinfo@globaldietarydatabase.org. Please use
the subject line ‘GDD Code Access Request’. Once all documents have
been received, the GDD team will be in contact with you regarding
subsequent steps.
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Extended DataFig. 2| The proportional burden of T2D attributable to
suboptimal intake of four individual risk factors by world region in 2018, %.
Barsrepresent the estimated percentage of T2D incidence due to suboptimal
intake of 4 individual dietary factors - insufficient intake of (a) fruit, (b)
non-starchy vegetables, (c) nuts and seeds; and excess intake of (d) fruit juice
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Extended DataFig. 3 | The absolute burden of T2D attributable to to suboptimal diet was estimated using proportional multiplication, assuming
suboptimal diet at the national level per1 M populationin (A) 1990 and that half the benefit of whole grains intake is mediated through replacement
(B) 2018. Heatmap reflects the estimated absolute burden of T2D incidence of refined rice and wheat intake. The absolute burden per 1 million population
due to suboptimal intake of 11 dietary factors jointly: insufficient intake of was calculated by dividing the absolute number of diet-attributable cases by the
whole grains, yogurt, fruit, nuts and seeds, and non-starchy vegetables; and country population in that year and multiplying by 1 million. Different scales (O
excess intake of refined rice and wheat, processed meats, unprocessed red 104000 cases vs. 0 to 8000 cases) were used to better reflect the absolute case
meat, sugar-sweetened beverages, potatoes, and fruit juice. The burden due distribution globally in1990 and 2018, respectively.
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Extended Data Fig. 4| The absolute change in the proportional burden of T2D
attributable to suboptimal diet by world region between 1990-2018. Bars
represent the estimated absolute change between 1990 and 2018 by world region
in proportional burden of T2D incidence attributable to suboptimal intake of
11dietary factors jointly: insufficient intake of whole grains, yogurt, fruit, nuts
and seeds, and non-starchy vegetables; and excess intake of refined rice and
wheat, processed meats, unprocessed red meat, sugar-sweetened beverages,
potatoes, and fruit juice. The burden due to suboptimal diet was estimated using
proportional multiplication, assuming that half the benefit of whole grains

intake is mediated through replacement of refined rice and wheat intake. A
negative absolute change in proportional burden indicates areductionin the
diet-attributable burden of T2D between 1990 and 2018, while a positive absolute
change in percentage burden indicates anincrease in the diet-attributable
burden of T2D during that time frame. Countries were delineated into world
regions by the Global Dietary Database. Data are presented as the central
estimate (median) and corresponding 95% uncertainty interval, derived from the
2.5th and 97.5th percentiles of 1000 multiway probabilistic Monte Carlo model
simulations.
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whole grains, and (D) insufficient yogurt by world region between1990-
2018. Bars represent the estimated absolute change in proportional burden

of T2D incidence between 1990 and 2018 attributable to four dietary factors,
globally and by world region - (a) excess intake of potatoes, (b) excess intake

of refined wheat, (c) insufficient intake of whole grains, and (d) insufficient
intake of yogurt. Note varying x-axis ranges across dietary factors. A negative
absolute change in proportional burdenindicates areduction in the diet-
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attributable burden of T2D between 1990 and 2018 (for example, reduced intake
of harmful dietary factors, increased intake of protective dietary factors), while
apositive absolute change in percentage burden indicates anincrease in the
diet-attributable burden of T2D during that time frame (for example, increased
intake of harmful dietary factors, decreased intake of harmful dietary factors).
Countries were delineated into world regions by the Global Dietary Database.
Data are presented as the central estimate (median) and corresponding 95%
uncertainty interval, derived from the 2.5th and 97.5th percentiles of 1000
multiway probabilistic Monte Carlo model simulations.
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Extended DataFig. 6 | The absolute change in the proportional burden

of T2D attributable to (E) insufficient fruit, (F) insufficient non-starchy
vegetables, (G) insufficient nuts & seeds, and (H) excess fruit juice by world
region between1990-2018. Bars represent the estimated absolute change

in proportional burden of T2D incidence between1990 and 2018 attributable
to eight dietary factors, globally and by world region - (e) insufficient intake
of fruit, (f) insufficient intake of non-starchy vegetables, (g) insufficient intake
of nuts & seeds, and (h) excess intake of fruit juice. Note varying x-axis ranges
across dietary factors. A negative absolute change in proportional burden
indicatesareduction in the diet-attributable burden of T2D between 1990 and
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2018 (for example, reduced intake of harmful dietary factors, increased intake
of protective dietary factors), while a positive absolute change in percentage
burdenindicates anincreasein the diet-attributable burden of T2D during that
time frame (for example, increased intake of harmful dietary factors, decreased
intake of harmful dietary factors). Countries were delineated into world regions
by the Global Dietary Database. Data are presented as the central estimate
(median) and corresponding 95% uncertainty interval, derived from the 2.5th
and 97.5th percentiles of 1000 multiway probabilistic Monte Carlo model
simulations.
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Extended DataFig. 7 | Difference in the absolute burden of T2D attributable using proportional multiplication, assuming that half the benefit of whole
tosuboptimal diet between1990-2018 in the top 30 most populous grains intake is mediated through replacement of refined rice and wheat intake.
countriesin2018. Bars represent the estimated absolute change in the absolute Countries are ordered based on population size in 2018, from highest to lowest.
burden per 1M population of T2D incidence due to suboptimal intake of 11 See Supplementary Table 1for more details on the inputs for each dietary
dietary factorsjointly: insufficient intake of whole grains, yogurt, fruit, nuts factor. Dataare presented as the central estimate (median) and corresponding
and seeds, and non-starchy vegetables; and excess intake of refined rice and 95% uncertainty interval, derived from the 2.5th and 97.5th percentiles of 1000
wheat, processed meats, unprocessed red meat, sugar-sweetened beverages, multiway probabilistic Monte Carlo model simulations.
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estimated (a) percentage burden and (b) absolute burden per 1M population of refined rice and wheat intake. See Supplementary Table 1for more details on
T2Dincidence due to suboptimal intake of 11 dietary factors jointly: insufficient theinputs for each dietary factor. Data are presented as the central estimate
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and excess intake of refined rice and wheat, processed meats, unprocessed red and 97.5th percentiles of 1000 multiway probabilistic Monte Carlo model
meat, sugar-sweetened beverages, potatoes, and fruit juice. The burden due simulations.
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Extended DataFig. 9 | Proportional burden of T2D attributable to
suboptimal diet by urbanicity and education level at the world region level
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whole grains, yogurt, fruit, nuts and seeds, and non-starchy vegetables; and
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meat, sugar-sweetened beverages, potatoes, and fruit juice. The burden due
to suboptimal diet was estimated using proportional multiplication, assuming
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that half the benefit of whole grains intake is mediated through replacement of
refined rice and wheat intake. Education level and urban/rural residence were
defined previously by the Global Dietary Database Project. Uncertainty in the
T2Dincidence estimates by education level and urban/rural residence were
notincorporated into the population attributable fraction calculation. See
Methods for further details. Data are presented as the central estimate (median)
and corresponding 95% uncertainty interval, derived from the 2.5th and 97.5th
percentiles of 1000 multiway probabilistic Monte Carlo model simulations.
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glycemic load values: 2008. Diabetes Care. 2008; 31(12): 2281-2283. d0i:10.2337/dc08-1239

(12) Caloric content per 100 g for wheat and rice products: U.S. Department of Agriculture Agricultural Research Service Food and Nutrient Database for Dietary
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender This study involved secondary data analysis from publicly available databases. No human research participants were involved
in this original analysis.

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Quantitative, comparative risk assessment (CRA) modeling analysis incorporating independently derived inputs and parameters on
demographics, dietary risk factors, their etiologic effects, and type Il diabetes incidence to model attributable burdens at the global,
regional, and national levels, and by key sociodemographic factors.

Research sample Global adult population (20+ years): 35,328 population strata across 184 countries in each year (1990 and 2018)

Sampling strategy We incorporated dietary data from the Global Dietary Database (GDD), population demographics from the United Nations, adiposity
and diabetes distributions from the NCD Risk Factor Collaboration and Global Burden of Disease (GBD) study, direct and BMI-
mediated etiologic effects of dietary factors on T2D from pooled multivariable-adjusted analyses, and optimal dietary intakes from
published sources into a comparative risk assessment modeling framework to estimate the impact of 11 dietary factors, separately
and jointly, on the absolute and proportional burdens of new T2D cases globally.
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Data collection The data sources are all published and publicly available. In brief, estimates of dietary intake, T2D incidence, and overweight/obesity
prevalence were sourced from Bayesian hierarchical prediction models, incorporating nationally representative, stratified survey data
on the respective outcome (i.e., dietary intake, T2D incidence, etc.). Etiologic effects were extracted from meta-analyses of
randomized control trials and prospective cohort studies as well as pooled prospective cohort studies.

Timing 1990 and 2018

Data exclusions 3 countries excluded from GDD prediction models due to lack of FAO food availability covariate data; and 1 additional country was
excluded due to lack of T2D incidence data in the Global Burden of Disease study.

Non-participation NA, only applicable for RCTs and cohort studies

Randomization NA, only applicable for RCTs

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
X Antibodies [] chip-seq
X Eukaryotic cell lines |:| Flow cytometry
X Palaeontology and archaeology |:| MRI-based neuroimaging
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