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A B S T R A C T

Remote sensing has been widely used in Geological Sciences for different applications, such as to
identify geological and mineralogical objects and surface alteration changes. This study aimed to
analyze the Sentinel-2 potential to detect pegmatite bodies and associated alteration zones in
Muiane and Naipa in Mozambique. Different remote sensing techniques were applied to a Sen-
tinel-2 image: RGB combinations, band ratios, principal component analysis (PCA), and super-
vised image classification algorithms such as the Maximum Likelihood Classifier (MLC) and Sup-
port Vector Machine (SVM). MLC was used as a benchmark classifier to evaluate the performance
of SVM because MLC is the predominant algorithm employed in remote sensing classification
studies. For that, several statistical metrics based on the confusion matrices were computed,
namely accuracy, Kappa index, precision, recall, and f-score, among others. This study allows
identifying the location of pegmatites by direct identification and segregating between hy-
drothermally altered zones and non-altered areas through remote sensing data/techniques, sup-
ported by field data. The field campaigns allowed for validating the results obtained and verify-
ing the pegmatites identified using Sentinel-2 data that were not previously mapped. Moreover,
reflectance spectroscopy studies in the laboratory were conducted on the samples collected in the
field campaigns allow to validate the adequacy of the methodology proposed in this study. The
results show that the precise identification of pegmatite targets requires a high spatial resolution
such as Sentinel-2 images. Thus, with the integration of high spatial and spectral resolution data,
a potential level of precision and accuracy can be achieved in the study areas.
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FCC False Color Composite
FN False Negatives
FNR False negative rate
FP False Positives
FPR False positive rate
LCT Lithium, Cesium, Tantalum
Li Lithium
MLC Maximum Likelihood Classifier
MNF Minimum noise fraction
NDVI Normalized Difference Vegetation Index
NYF Niobium, Yttrium, Fluorine
PA Producer's accuracy
PC Principal Component
PCA Principal component analysis
RBF Radial basis function
RGB Red, Green, Blue
SAM Spectral Angle Mapper
SCP Semi-Automatic Classification Plugin
SVM Support Vector Machine
SWIR Shortwave infrared
TN True Negatives
TOA Top of the atmosphere reflectance
TP True Positives
TPR True positive rate
UA User's accuracy
VNIR Visible and near-infrared

1. Introduction
There are numerous studies concerning remote sensing applied to geosciences (Sabins 1999; Delacourt et al., 2005; Govil et al.,

2018; Saibi et al., 2018; Jolie et al., 2019; Cardoso-Fernandes et al., 2020a, 2020b; Didero et al., 2020; Gopinathan et al., 2020). The
potential of satellite data for mineral exploration has been evaluated for decades for geological and mineralogical identification in
distinct deposit types (Sabins 1999; Ghulam et al., 2010; Yousefi et al., 2018; Adiri et al., 2020; Salehi & Tangestani, 2020). In remote
sensing image processing, target identification depends on the way that different materials interact in various manners in each band
of the electromagnetic spectrum (Sivakumar et al., 2004; Xie et al., 2008; Jensen 2009; Aqeel et al., 2011).

More recently, the use of remote sensing data for Lithium (Li) detection was reviewed, with studies concerning either pegmatite or
brine identification (Cardoso-Fernandes et al., 2020a). Cardoso-Fernandes et al. (2019) used classical image processing techniques
such as RGB (red, green, blue) combinations, band ratios, and principal component analysis (PCA) to directly discriminate the Li-
pegmatites from the metasedimentary host rocks in the Iberian Peninsula (Fregeneda-Almendra), although the results showed that
the use of thermal bands can be crucial for this discrimination. The same authors also tried to identify hydrothermal alteration associ-
ated with the pegmatites, but the results did not show evidence of a large extent of alteration. Taking advantage of the Sentinel-2 spa-
tial resolution, essential when the pegmatite bodies of the Fregeneda-Almendra area only reach up to 30 m of lateral extension,
Cardoso-Fernandes et al. (2020b) tried to use more powerful techniques, namely machine learning algorithms, to overcome the short-
ness of Sentinel-2 lacking thermal bands and discriminate the pegmatites from their host rocks. Morsli et al. (2021) utilized spectrora-
diometric measurements of the pegmatite and other field lithologies to compare their spectral signature and propose new RGB combi-
nations and band ratios, that alongside PCA and minimum noise fraction (MNF) allowed mapping pegmatite veins in the Central Anti-
Atlas (Morocco) using ASTER data. Mashkoor et al. (2022) also proposed new band ratios for ASTER to identify Li-minerals and com-
pared the results of False Color Composite (FCC), band ratio, and supervised classification with Spectral Angle Mapper (SAM) algo-
rithm for ASTER, Landsat-8 OLI/TIRS and Sentinel 2 MSI data. In general, the best results were obtained with ASTER data and the
most suitable approaches to identify pegmatites in the Konar Province (Eastern Afghanistan) were band ratios and SAM techniques.

The work of Booysen et al. (2022) proved that new technologies such as hyperspectral imaging and machine learning methods can
accurately identify the distribution of Li-minerals either in outcrops or drill-cores in pegmatites at Uis (Namibia). In fact, spectrora-
diometric studies of Li-minerals and a careful interpretation of the obtained spectra provided important insights for exploration,
namely that using the wavelength region covered by most satellite sensors (350–2500 nm), spodumene and petalite can only be indi-
rectly identified since their spectra are dominated by features of alteration minerals such as clays, and that effect of alteration parage-
nesis is crucial in the spectral behavior of both minerals with the clay-related absorption depths decreasing with higher Li content
(Cardoso-Fernandes et al., 2021b). Thus, the authors leave an open question: if such minerals could be indirectly detected in areas
where clay alteration from other lithologies is prevalent (for example in tropical conditions).
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All previously mentioned works concern the detection of LCT (lithium, cesium, tantalum) pegmatites, but there is another family,
the NYF (niobium yttrium, fluorine) that is also enriched in raw materials critical for the energy transition (Černý & Ercit, 2005). That
is why the current H2020 GREENPEG project (https://www.greenpeg.eu/) aims to develop an exploration toolset, that includes satel-
lite- and drone-based remote sensing, for the identification of both NYF and LCT pegmatites (Müller et al., 2022). Preliminary results
show that machine learning algorithms can identify NYF pegmatites in the Tysfjord region (Norway), outperforming classical image
processing techniques (Teodoro et al., 2021; Müller et al., 2022; Santos et al., 2022).

The region under study, Alto Ligonha (Mozambique), provides hydrothermal alteration (Neiva & Gomes, 2012) and has unique
physical geographical features, such as a tropical climate causing pegmatite alteration, making the Alto Ligonha pegmatites more al-
tered than the bodies in other pegmatite fields in Mozambique. Thus, converging with the idea that primary minerals are intensely
weathered (Neiva & Gomes, 2012; Dolui et al., 2016; Chen et al., 2020). Spectral identification of potential areas of hydrothermal al-
teration minerals is a common application of remote sensing to mineral exploration (Rajesh 2004; Blokoi and Poormirzaee 2009;
Sadek et al., 2013; Mahboob et al., 2019; Salehi & Tangestani, 2020; Frutuoso et al., 2021). This is particularly important since previ-
ous research works concern areas with distinct characteristics, namely Mediterranean, Polar, Semi-arid, and Temperate climates, for
example.

For this work, a Sentinel-2 image was analyzed. The application of Sentinel-2A for geological remote sensing can be found in sev-
eral studies (van der Meer et al., 2014; van der Werff and van der Meer 2016; Fal et al., 2019; Adiri et al., 2020). Sentinel-2 images
have already been proven to be efficient in pegmatite prospecting (Cardoso-Fernandes et al., 2020b; Santos et al., 2019). In general,
each type of rock with its characteristic rock-forming minerals has its own reflectance signature, and thus, by using remote sensing
techniques, the different rock types in a particular area can be discriminated based on their reflectance characteristics (Riley and
Hecker 2013; Corumluoglu et al., 2015; Hassan and Ramadan 2015). That is why reflectance spectroscopy studies were used as a
complement to satellite image processing.

Taking this into account, this study aims to evaluate the potential of Sentinel-2 images to detect pegmatites and related alteration
zones in the Muiane and Naipa regions, characterized by differentiated conditions (climate, mineralogy of pegmatite, overall geologi-
cal context), through RGB band combinations and rationing, PCA and supervised classification considering Support Vector Machine
(SVM) and Maximum Likelihood (MLC). The choice of supervised classification algorithms was based on theoretical background: (i)
machine learning algorithms have demonstrated a great capability of dealing to model complex class signatures in distinct remote
sensing studies; (ii) machine learning algorithms usually outperform traditional parametric classifiers in identical classification tasks;
(iii) among the available machine learning algorithms, SVM is more robust to deal with smaller and imbalanced datasets; and (iv)
MLC was employed as a baseline classifier to compare the performance of SVM since MLC is the most commonly used algorithm for
remote-sensing classification approaches (Mountrakis et al., 2011; Yu et al. 2012, 2014; Rodriguez-Galiano et al., 2015; Noi and
Kappas 2017; Maxwell et al., 2018; Cardoso-Fernandes et al., 2020b; De Luca et al., 2022; Valdivieso-Ros et al., 2023).

Two methodological approaches were employed for this purpose: (i) application of literature-available methods and algorithms
designed exclusively for Li-pegmatite detection or hydrothermal alteration mapping, and (ii) self-propose and improve the same tech-
niques for general pegmatite (sensu lato) detection. Therefore, with this study, we do not aim to differentiate between LCT and NYF
pegmatites. Several minerals are common to both pegmatite families, namely albite, quartz, and tourmaline. The results of the self-
proposed methods were then confronted with the ones obtained with pre-existing methods. The validation was conducted using
ground truth samples, and the geological map at a 1/250,000 scale, which was compared with the final classification maps at a scale
of 1/100,000. The samples collected during the field validation were analyzed through reflectance spectroscopy for laboratory verifi-
cation of the methods employed. Ultimately, this research tries to answer if remote sensing techniques can be used to detect peg-
matites even in regions where intense alteration occurs in tropical conditions. The refined algorithms developed in this study for peg-
matite exploration and their respective performance were extensively compared against existing approaches. The results highlight the
success of the new and self-proposed algorithms in pegmatite identification, with the delineation of new exploration targets. Thus,
this research is of high relevance in the context of pegmatite exploration and the new findings will aid the development of future prac-
tical applications. Moreover, the results represent a great contribution to the geological knowledge of Mozambique and to pegmatite
exploration in Africa.

2. Study area
In the Alto Ligonha zone, minerals from the LCT and NYF pegmatite families occur, although the NYF pegmatites predominate in

the Rio Licungo pegmatite field than in the study areas of Muaine and Naipa (Černý & Ercit, 2005; Bradley and McCauley 2016;
Gomes et al., 2008). Economically, the pegmatites of this region are important because they are the source of colored gemstones such
as polychrome tourmalines; topaz; colored varieties of beryl such as aquamarine, emerald, and morganite; amazonite (a green variety
of microcline); columbite–tantalite; colored spodumene (a Li-bearing mineral) crystals such as kunzite and hiddenite (a rare green
gem variety of spodumene); and an impressive number of collectable mineral species among oxides, phosphates, and silicate minerals
(Cronwright 2005; Council for Geoscience, 2007; Gemusse et al., 2018).

Muiane and Naipa are located in the Gile district in the Zambezia province (Central Mozambique) (Fig. 1). The Gile district is bor-
dered to the north by the Murrupula district (Nampula Province), across the river Ligonha, to the south by the Pebane district (Zam-
bezia Province), to the east by the Moma district (Nampula Province), to the west by the Molocué district (Zambezia Province), and to
the Southwest by the Ile district (Zambezia Province). Access to this area is extremely precarious (Gemusse et al., 2018).

https://www.greenpeg.eu/
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Fig. 1. Location of the Naipa and Muiane pegmatites in the Gilé district (c) of the Zambezia and Nampula Province (b), Mozambique (a). The border between the Zam-
bezia and Nampula Provinces is defined by the course of the Ligonha River.

A considerable number of principal streets in the zone are currently being restored with financing from foreign aid organizations
and in the framework of governmental rehabilitation projects that aim at improving the economy (MAE 2005; Gemusse et al., 2019).
Taking this into account, remote sensing approaches are extremely helpful to map and detect pegmatites in this area.

This territory is dominated by Mesoproterozoic gneiss of a medium to high metamorphic degree intruded by Pan-African granites
(450–530 Ma) and pegmatites (∼430–470 Ma) (Abdelsalam et al., 2002; Bingen et al., 2009; Neiva & Gomes, 2010; Neiva & Gomes,
2012). These rocks belong to the Nampula complex, a tectonostratigraphic division of the Mozambique belt, which is located in the
south of the Lurio granulitic belt (CL; Fig. 2) (Macey et al., 2006; Boyd et al., 2010; Jacobs et al., 2012).

The Naipa granitic pegmatite is located in Alto Ligonha (Mozambique) and belongs to the LCT pegmatite family (Cronwright
2005; Neiva & Gomes, 2012). Similar lithological characteristics are observed in the Muiane region, where distinct LCT pegmatites
suffered from metasomatism, prompting the development of various clay minerals. Regardless, the original pegmatite paragenesis is
often difficult to identify due to the intense kaolinization (as a result of supergene alteration and weathering) as well as due to the
overprint of hydrothermal–metasomatic alteration (Silva et al., 2009; Bradley et al., 2010). Often, pegmatites from the lepidolite, spo-

Fig. 2. Regional (a) and local (b) geological map showing the Nampula complex, delimited to NE by the Lurio granulitic belt (CL.
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dumene, and elbaite (tourmaline) subtypes can coexist (Quemeneur and Laganche 1999; Černý & Ercit, 2005; Neiva & Gomes, 2012;
Gemusse et al., 2019).

In terms of dispersion, the pegmatites occur as dispersed dykes. In the case of the Muiane region, the largest exposed pegmatite is a
lenticular body trending NE-SW, dipping 25° to SE, with a lateral extension that can vary between 50 and 110 m (Barros and Vicente
1963). Drilling studies have discovered other parallel bodies with a maximum of 1 km of extension and 400 m of width (Naude and
Sperinck 2009). In the Naipa region, the pegmatites form a zoned granitic group, with tourmaline crystals reaching up to 70 cm
(Neiva & Gomes, 2012). These pegmatites are structurally complex with evidence of fractionation, with smaller apical extensions em-
anating from pegmatitic masses of large dimensions, with a lateral extension of up to 30 m (Gomes, 2003). The first field campaign
that took place before the remote sensing studies, in the year 2017, allowed the collection of reference samples from the mapped peg-
matites of Muiane and Naipa (Fig. 3). The reference samples collected were used for laboratory reflectance studies, specifically to ob-
tain the spectral signature of several pegmatite minerals (see section 4.5). The recognizance campaign also allowed the identification
of important heaps of lepidolite and quartz concentrates (Fig. 3) near the premises of the existing pegmatite exploitations, since, at
the time, the pegmatites were only exploited for columbite–tantalite minerals and gemstones.

In the proximity of the Muiane and Naipa regions, there are other mapped pegmatites called Namobene, Namacotche, and Nas-
supe that were not used for algorithm training but instead for validation.

3. Data and image pre-processing
The Level 1-C cloud-free Sentinel-2 imagery covering the study area was acquired on October 10, 2019. The projection is Univer-

sal Transverse Mercator zone 37 S, WGS84 datum.
Fig. 4 shows the detailed workflow followed in this study. The Semi-Automatic Classification Plugin (SCP) (Congedo, 2016) for

QGIS software was employed for image download and pre-processing, namely: (i) conversion of digital numbers to top of the atmos-
phere reflectance (TOA) and (ii) atmospheric correction through the Dark Object Subtraction (DOS-1) algorithm (Chavez, 1996). All
Sentinel-2 bands were resampled to the same spatial resolution (10 m). SCP under QGIS was also used for the definition of the classi-
fication inputs (training areas). To aid in the selection of the training areas, the Normalized Difference Vegetation Index (NDVI) was
computed. After the pre-processing stage, the supervised classification was achieved using ENVI software (see Section 4).

4. Methodology
Classical remote sensing methods applied in geological exploration include RGB combinations, band ratios, and PCA, among oth-

ers (Loughlin 1991; Pour and Hashim 2015; Yousefi et al., 2018; El-leil et al., 2019; Rawashdeh and Hamzah 2020). For all these
methods, routine histogram tools (such as stretching) were employed in QGIS as a routine process to improve visualization.

This section aims at describing the image processing methods employed in this work to achieve pegmatite detection. As previously
mentioned, two methodological approaches were employed. First, the RGB combinations and selective PCA subsets available in the
literature for Li-pegmatite detection were applied to the Alto Ligonha region for targeting pegmatites. Also, known techniques for hy-
drothermal alteration mapping were employed to identify alteration zones related to existing pegmatites (Hu et al., 2018). Secondly,
new RGB, ratios, and PCA combinations were proposed, and supervised image classification algorithms, namely SVM and MLC, were
employed to identify target areas for pegmatite exploration (sensu lato). Therefore, both barren and Li-mineralized pegmatites should
be detected. Both band combinations, band ratios, and PCA were employed using SCP.

Fig. 3. Lepidolite heap containing minor albite with few high grades of microlite from the Naipa pegmatite (2017). Lepidolite was concentrated at the time in tailings
since only gemstones and columbite-tantalite were economically exploited. The purple color in the boulders is indicative of the presence of lepidolite. Reference sam-
ples were collected at this site. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. Workflow illustrating the data acquisition and processing steps followed in the study.

4.1. RGB combinations
To distinguish potential regions of interest for pegmatite exploration, distinctive RGB combinations were tested in this study

(Manuel et al., 2017; Santos et al., 2019; Cardoso-Fernandes et al., 2020a), including the Sentinel-2A (3-2-12) combination suggested
for the detection of Li-bearing pegmatites in Iberia. Additionally, the combination (3-11-12) was self-proposed in this work through
an iterative process for pegmatite prospecting, since some of the combinations, available in the literature for other areas and others
that were also self-proposed, did not work in these case studies, namely combinations (2-11-12), (3-2-12), (2-4-11) and (2-7-12).

4.2. Principal component analysis (PCA)
PCA is considered one of the most valuable techniques in digital image processing and a method of statistical analysis that can im-

prove the interpretation of multispectral data (Çorumluoğlu and Vural 2013). It is a multivariate ranking technique that allows for de-
creasing the dimensionality of the data (Loughlin 1991; Cŕosta et al., 2003; Lu et al., 2004).

Selective PCA was employed in the selected band subsets to identify hydrothermal alteration minerals as suggested by Hu et al.
(2018), as well as to map Li-bearing pegmatites (Cardoso-Fernandes et al., 2019) (see Table 1). A new PCA combination was self-
proposed for pegmatite detection based on available reference spectra of common pegmatite minerals in the spectral databases pro-
vided by the ENVI software (Table 1). The goal was to compare with literature results to assess the most adequate combination for
these particular case studies.

4.3. Band ratios
This technique is an excellent option for geological prospecting due to its simplicity to delineate targets with a research interest,

by enhancing the spectral behavior of different targets where one spectral band is inversely proportional to another band (Sabins,
1999). For this purpose, the band with the highest reflectance should be divided by the band with the lowest reflectance (usually ab-
sorption zones). For this work, band ratios 2/11 and 7/11 were proposed.

4.4. Supervised classification
Distinct methodologies, such as machine learning classifiers like SVM or parametric algorithms like MLC, can be employed to

achieve supervised image classification (Huang et al., 2002; Mondal et al., 2012; Chaudhari et al., 2015; Gemusse et al., 2019).
The SVM corresponds to a nonparametric computational learning technique (Vapnik and Lerner 1963; Vapnik 2000; Mountrakis

et al., 2011; Gonzalez-Abril et al., 2014; Lewes 2015). To solve nonlinear problems with SVM, different kernel functions can be em-
ployed, such as (i) linear, (ii) quadratic, (iii) polynomial, and (iv) radial basis function (RBF). The RBF has shown efficacy in the opti-
mal separation of classes (Gaspar et al., 2012; Martins et al., 2016; Khan et al., 2017) and was therefore chosen in this study. The
penalty value (C) and kernel parameter width (γ) are the two parameters of the RBF kernel. In this work, they were set to 100 and
0.167, respectively (ENVI User’s Guide, 2009; Petropoulos et al., 2012).

Table 1
Band subsets for selective PCA and respective target processed minerals.

Satellite PCA Target Source

Sentinel 2 2, 8 A, 11, 12 Hydrothermally altered rocks (Hu et al., 2018)
Sentinel 2 2,3,8,11 Li-bearing pegmatites (Cardoso-Fernandes et al., 2019; Santos et al., 2019)
Sentinel 2 3,8 Li-bearing pegmatites (Cardoso-Fernandes et al., 2019; Santos et al., 2019)
Sentinel 2 4,6 Pegmatites Self-proposed
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On the other hand, MLC assumes a Gaussian distribution of the data, and for each unknown pixel, the probability of membership
to each class is calculated and the pixel is assigned to the class corresponding to the maximum probability (Richards and Jia 1986; Jia
et al., 2014; Lillesand et al., 2015; Long et al., 2016).

A training sample file was created with only four classes: (i) pegmatite class, which is the fusion of many pegmatites in each of the
pilot zones of research; (ii) water bodies, which correspond to swamps and accumulation wells, (iii) a mixture of exposed soil (bare or
unprotected soil) and housing zones (which correspond to the areas of buildings and housing); and finally, (iv) vegetation, including
both arboreal and herbaceous species. These classes were defined with the help of available high-resolution imagery (Google Earth)
and field surveys (first field campaign, described in Section 2). Other lithologies were not included as classes in the supervised classifi-
cation because the land cover does not always correspond with lithological outcrops, mostly because some outcrops are covered by
vegetation as evidenced by the NDVI. The impact of vegetation coverage on lithological mapping has been assessed in the literature
(Grebby et al., 2014). The definition of the training classes and regions of interest was an iterative process that included class separa-
bility analysis through the computation of spectral distances in SCP. To evaluate the classification accuracy, the confusion matrices
are presented for each algorithm, and the associated statistics were computed (Table 2), namely the Kappa index, the producer's accu-
racy (PA); user's accuracy (UA); precision; recall, also known as sensitivity or true positive rate (TPR); F-score; false positive rate
(FPR); specificity; and false negative rate (FNR) (Congalton 1991; Congalton and Green 2009; ENVI User’s Guide, 2009; Sokolova and
Lapalme 2009). Moreover, the quality of the classification can be assessed in two ways: (i) by averaging the same measures calculated
for each class (macro-averaging), where all classes are treated equally; or (ii) by counting the sums of the True Positives (TP), True
Negatives (TN), False Negatives (FN), and False Positives (FP) and calculating the respective performance measure (micro-
averaging), where equal weight is given to each sample, favoring bigger classes (Sokolova and Lapalme 2009).

4.5. Field validation and reflectance spectroscopy
After the application of the aforementioned image processing methods, second field validation was conducted in the year of 2019

in the selected regions of interest. Whenever possible, the validation was conducted by members of the research team. However, in
some cases, validation was performed by an external team as part of the mining and sales report ordered by the Tantalum Mineração e
Prospecção Limitada exploration company (Gemusse et al., 2021). Hand samples were collected at the validation sites for further re-
flectance spectroscopy studies, at the Faculty of Sciences of the University of Porto, together with the samples collected in the first
fieldwork (recognizance campaign). The spectral measurements were performed in a dark environment with an ASD FieldSpec 4 spec-
trometer with standard resolution covering the 350–2500 nm region, employing a contact probe with an internal halogen lamp and a
spot size of 10 nm. Several spots were analyzed for every sample. In each spot, five measurements (consisting of 40 scans) were aver-
aged into a final spectrum to increase the signal-to-noise ratio. White reference calibration was made using a Spectralon (Labsphere)
plate. The equipment characteristics and measurement protocol are described in detail in previous works (Cardoso-Fernandes et al.,
2021a, 2021b).

5. Results and discussion
The results for selective PCA, RGB band combinations, and supervised classification are presented in this section.

Table 2
Employed formulas for statistical measures used to evaluate the classification results (following the work of Sokolova and Lapalme 2009 and ENVI User’s Guide,
2009).

Measure Formula Measure Formula

Accuracy (micro) ∑l

i=1
TPi

∑l

i=1
Gi

Average Accuracy (macro) ∑l

i=1

TPi+TNi

TPi+FNi+FPi+TN
i

l

PAi
mi,i

Gi

UAi
mi,i

Ci

Precision micro
∑l

i=1
TPi

∑l

i=1
TPi+FPi

Precision macro ∑l

i=1

TPi

TPi+FPi

l

Recall micro
∑l

i=1
TPi

∑l

i=1
TPi+FNi

Recall macro ∑l

i=1

TPi

TPi+FNi

l

F-score micro 2 ×
Precisionmicro×Recallmicro

Precisionmicro+Recallmicro

F-score macro 2 ×
Precisionmacro×Recallmacro

Precisionmacro+Recallmacro

FPR micro
∑l

i=1
FPi

∑l

i=1
FPi+TN

i

FPR macro ∑l

i=1

FPi

FPi+TNi

l

FNR micro
∑l

i=1
FNi

∑l

i=1
FNi+TP

i

FNR macro ∑l

i=1

FNi

FNi+TPi

l

Specificity micro
∑l

i=1
TNi

∑l

i=1
TNi+FP

i

Specificity macro ∑l

i=1

TNi

TNi+FPi

l

Kappa index N
∑l

i=1
mi,i−

∑l

i=1(GiCi)

N2−
∑l

i=1(GiCi)

*PA – producer's accuracy; UA – user's accuracy; TPR – true positive rate; FPR – false positive rate; FNR – false negative rate; TP – true positives; TN – true negatives; FN
– false negatives; FP – False Positives; i – class number; l – total number of classes; N – total number of classified values compared to truth values; mi,i – number of values
belonging to the truth class i that have also been classified as class i (i.e., values found along the diagonal of the confusion matrix); Ci – total number of predicted values
belonging to class i; Gi – total number of truth values belonging to class i.
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5.1. PCA
From the subsets applied for selective PCA (Table 1), only those that achieved the best results are presented. The best outcome was

achieved using the two-band subset for Sentinel-2 bands 3 and 8, with the second principal component (-PC2) highlighting in bright
pixels both the Muiane and Naipa mines, as well as other pegmatite occurrences.

For the Muiane and Naipa target areas, PCA was the most proficient strategy for pegmatite detection. These results are in line with
the work of Santos et al. (2019), where PCA showed a better performance compared to other classical image processing techniques.
Moreover, the same subset for selective PCA allowed identifying new territories where different pegmatites occur.

Fig. 5 represents the selected PC after applying PCA to bands 4 and 6, displaying greenfield target areas for pegmatite explo-
ration in white pixels. Nonetheless, it is noticeable some misclassifications with dirt roads also displayed in white pixels as seen in
Fig. 5b. This spectral similarity can be due to similar mineral assemblages, namely clay minerals, that are present in both pegmatites
and soils/dirt roads. Fig. 5b corresponds to the training areas of Muiane and Naipa, while (a1) and (a2) to the Namacotche and Nas-
supe pegmatites, respectively (in a close-up view of Fig. 5a), where Li minerals and LCT pegmatites are known to occur (Council for
Geoscience, 2007; Gomes et al., 2008). Fig. 5 (b1) corresponds to a new exploration field named by the authors as Muiane II, where
pegmatites were detected through remote sensing. During the field validation of the Muiane II site, the pegmatites detected through
remote sensing were identified as unexploited Li-bearing pegmatite dikes intruding mainly granites and gneisses, with visible Kun-
zite (spodumene) gemstones, and lepidolite. At the time of field validation in 2019, it was possible to find some artisanal and unli-
censed exploration works for gold, tantalite, and tourmaline gems (locality known as “garimpo”). None of these works were related
to lithium exploration. Due to difficulties in getting access to the property, field validation was conducted by a third party (Gemusse
et al., 2021). Nonetheless, these pegmatite occurrences were unmapped until field validation and indicate that Muiane II is a possi-
ble new Li-pegmatite prospect area. Thus, the self-proposed PCA with bands 4 and 6 represents a major contribution to future peg-
matite exploration approaches (with four out of five known pegmatites identified with confidence).

The results of selective PCA on Sentinel-2 bands 3 and 8, with negated PC2 displaying target areas for exploration in white pixels
(not shown in this work). The results are similar to the ones of the self-proposed band subset (4 and 6 bands), although the perfor-
mance in the Namobene and Nassupe areas is higher. Nonetheless, the mentioned subset for PCA allowed identifying (i) the training
areas of Muiane and Naipa, (ii) the validation sites of Namobene and Nassupe, and (iii) the new prospect area, previously identified,
the Muiane II site.

Finally, the four-band subset (Fig. 6) available in the literature to identify areas of hydrothermal alteration (i.e., where hydroxyl-
bearing minerals occur) allowed to identify the Muiane, Muiane II, and Naipa areas (b; b1), while the occurrence of alteration miner-
als is more dispersed in the validation sites of Namobene (a), Namacotche (a1) and Nassupe (a2). Thus, Fig. 6 represents the resultant
PC after applying PCA to bands 2, 8 A, 11, and 12.

Fig. 5. Mosaic result of the self-proposed selective PCA on Sentinel-2 bands 4 and 6 (resultant PC), allowing the identification of the training areas of Muiane and Naipa
(b), the validation site of Namacotche (a1), and the new prospect area of Muiane II (b1).
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Fig. 6. Mosaic result of selective PCA on Sentinel-2 bands 2, 8 A, 11, and 12, highlighting areas where hydrothermal alteration minerals, such as clays, may occur. The
presence of these minerals is evident in Muiane and Naipa (b) and Muiane II (b1).

The results obtained confirm the potential of remote sensing data and techniques not only for the detection of pegmatites, but also
that the methodology proposed by Cardoso-Fernandes et al. (2019) for Li-pegmatite detection in Iberia, considering the available ref-
erence spectra of Li-bearing minerals (such as spodumene and lepidolite), also works to delimit new Li-pegmatite prospect areas in re-
gions with characteristics (namely climate, mineralogy of pegmatite, and overall geological context). Nonetheless, the self-proposed
methods are also successful in pegmatite identification.

5.2. RGB band combinations
Different false-color band combinations highlight many features ranging from mineralogical changes to moisture changes, etc.

(Ghulam et al., 2010). In this study, the self-proposed RGB combination (3-11-12) was able to highlight the target areas of Muiane
and Naipa in yellowish colors (Fig. 7). A similar color is observed near the greenfield area of Nassupe.

Moreover, the RGB combination (3-2-12) to better identify Li-bearing pegmatites was used for comparison (Fig. 8). Overall, the re-
sults were satisfactory since this combination not only allows identifying the known target areas (brownfields) of Muiane and Naipa
(a1) but also highlights greenfield pegmatite areas in the Alto Ligonha region, such as Namobene (a3) and Muiane II (b1). Comparing
the three combinations, similar results are obtained for the target areas, but the one that allowed the identification of more greenfield
pegmatites was the RGB combination (3-2-12).

5.3. Band ratios
Among the self-proposed ratios, only two presented satisfactory results in both training and validation areas. Fig. 9 respects to ra-

tio 2/11 which highlights in bright pixels the areas of Muiane (b), Muiane II (b1), Namacotche (a1), and Nassupe (a2). Nonetheless,
there is a large area West of Muiane II with bright pixels indicating some spectral confusion, while the signal from Muiane II is faint
when compared with other methods (Fig. 9).

Although band ratio 7/11 can identify pegmatite occurrences (Fig. 10), it shows the worst performance when compared with ratio
2/11, highlighting the areas of Muiane (b), and Muiane II (b1) as well as Namacotche (a1) in slightly less bright pixels. In this case,
there is a spectral similarity between the pegmatites and water lines/bodies.

Compared with other ratios proposed in the literature such as 3/8 (Cardoso-Fernandes et al., 2019), there is a similar performance
in the Muiane and Muiane II sites: a worst performance in the Nassupe validation area, and better performance in the Namacotche
site. This could be due to distinct spectral signatures and mineral assemblages of the pegmatites, with certain ratios highlighting dis-
tinct areas. Therefore, a combination of several approaches should be considered to obtain the maximum of possible interest areas for
further exploration.
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Fig. 7. Self-proposed RGB combination 3-11-12 of the Sentinel-2 image highlighting the target areas of Muiane and Naipa in yellowish colors, as well as the greenfield
area of Nassupe. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

5.4. Supervised classification
The SVM classification algorithm was applied to obtain the land cover classification map from the Sentinel-2A satellite image (Fig.

11-a). In this study, from a total of 5283 training pixels, 933 out of 946 pixels were classified as pegmatites, 414 out of 414 pixels as
water bodies, 1034 out of 1047 pixels as bare soils and built-up, and 2873 out of 2873 pixels were classed as forest.

Additionally, different metrics can be used to compare different classifiers from different matrices and to determine whether one
result is significantly better than another (Congalton and Green 2009; Sokolova and Lapalme 2009). The classification accuracy statis-
tics are summarized in Tables 3 and 4 as well as in Tables A1-A2 (Appendix A). The overall accuracy (OA) of the SVM classification
was (5254/5283) 99.45%, and the Kappa value (statistics) was 0.99. For the MLC technique (Fig. 11-b), the Kappa value and OA
achieved were, respectively, 0.98 and 98.7% (Tables 3 and 4).

Nonetheless, recent studies point out the weakness of Kappa statistics for remote sensing classification, leading to misleading re-
sults (Foody 2020). Thus, other metrics should also be evaluated. The PA and UA of the pegmatite, waterbody, bare and built-up soils,
and forest classes of the two algorithms are shown in Tables 3 and 4 Comparing Fig. 11 a and b, it is clear that: (i) SVM outperformed
MLC in the classification of “bare soils and built-up” which is in accordance with the UA (Tables 3 and 4); (ii) although both algo-
rithms correctly identify the “water bodies” of the region, SVM overestimates this class which may indicate overfitting of the algo-
rithm in this class (corroborated by Table 3); (iii) on the contrary, MLC overestimates the occurrence of “pegmatites” when compared
with SVM, despite the higher UA (Table 4), with both showing spectral confusion with “bare soils and built-up”. However, Table 4
shows that MLC presents a lower UA (higher commission error) for the “bare soils and built-up” when compared with SVM (Table 3).
In general, both algorithms show similar precision, but SVM presents a better sensitivity/recall and a lower FPR, while MLC has a
lower FNP. This means that SVM minimizes missing possible target pegmatite areas, while MLC prioritizes avoiding misclassification.
In mineral exploration, the first scenario is usually preferred so that any potential areas are not missed in field campaigns. Despite
this, both algorithms were able to identify the target areas of Muiane and Naipa and to define possible prospect areas.

Numerous studies compare the results of the SVM and MLC algorithms, for example, (Mondal et al., 2012; Deilmai et al., 2014).
Overall, these studies show that the SVM classification method provides better results than the MLC technique. Similarly, in this
work, SVM had a better performance in pegmatite classification. Moreover, SVM was recently employed to identify Li-bearing peg-
matites in the Iberian Peninsula (Cardoso-Fernandes et al., 2020b). The results showed that it is crucial to account for class imbalance,
i.e., a smaller number of training pixels for the pegmatite class in comparison with other classes. This is due to the small size of the ex-
position of pegmatites compared to the spatial resolution of free sensors (Cardoso-Fernandes et al., 2020a, 2020b). Unfortunately,
transfer learning for remote sensing image classification is not a reality yet (Li et al., 2018). That is why, is it important to fine-tune
the SVM of the hyperparameters for each area, due to its particular specifications and characteristics.

In this study, it was possible to establish that the precise characterization of pegmatite targets requires a good spatial resolution,
such as the one attained in the Sentinel-2 image or higher. The addition of a high spectral resolution combined with the existing ade-
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Fig. 8. RGB combination 3-2-12 of the Sentinel-2 image highlighting the greenfield pegmatite areas of Muiane II (b1) and Namobene (a3), as well as the target areas of
Muiane and Naipa (a1) in yellowish pixels. Similar colors are observed near the validation area of Nassupe. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

quate spatial resolution can lead to a more detailed and accurate detection of pegmatites in the work area, especially in greenfield
zones. For example, the higher spectral resolution of ASTER, specially designed for geological applications, can be combined with the
Sentinel-2 spatial resolution through various image fusion techniques (Mezned et al., 2010; Abrams and Yamaguchi 2019).

5.5. Validation of the results
As mentioned before, field validation not only allowed to corroborate the discovery of new pegmatite bodies, but the analysis of

spectra of the samples collected in the field also allowed for validation of the adequacy of the methods self-proposed. For example,
Fig. 12-a shows the spectra of kunzite (spodumene gem) from the Naipa training site. Most absorption features are within the VNIR
region and should be due to impurities in the mineral structure of iron or manganese (Clark et al., 1993). When comparing with the
positions of the Sentinel-2 bands, and considering highly reflective areas and low reflective areas, all self-proposed ratios (2/11, 7/11,
8/11) could be used to detect kunzite. Nonetheless, the signals around the Naipa pegmatite are not the most pronounced in Figs. 9
and 11. This could be due to the relation between the size of the minerals and the spectral resolution of the sensor and also the own
spatial resolution of the satellite sensor that can produce spectral mixing at the pixel level. It is also noteworthy, that the reflectance
magnitude is low with the bands of the RGB composition 3-11-12.

Fig. 12-b represents the muscovite from Muiane. Typical white mica features are observed, namely a sharp OH band at
1405 nm, absence of pronounced water feature, sharp and symmetric main AlOH feature at 2201 nm, and associated AlOH secon-
daries at 2351 nm and 2448 nm (Hunt and Ashley 1979; Pontual et al., 2008). Although the OH and water bands are at the edge
or outside the atmospheric windows, they are crucial for the identification of spectrally active minerals such as white mica. More-
over, iron absorptions in VNIR at 862 nm and 1196 nm are visible. The first iron absorption associated with a reflectance peak
around 733 nm indicates the presence of hematite (Hunt and Ashley 1979; Pontual et al., 2008). In such cases, the band ratio 7/11
could be useful. PCA on bands 4,6. Could also be sensitive to the presence of goethite.

In the case of Fig. 12-c, the spectrum of potassium feldspar from Muiane is represented. The main absorption features indicate al-
teration to a kandite group mineral, possibly halloysite due to the inflections in the OH and AlOH features as well as the pronounced
water feature at 1910 nm (Pontual et al., 2008). A small inflection is also present within the width of band 4. The reflectance magni-
tude is high and stable between bands 6 and 8, high in band 11, and low within band 12. This indicates that both ratios 8/12, PCA on
bands 4,6, and RGB 3-11-12 could be sensitive to this spectral signature.

Finally, Fig. 12-d represents a spectrum from a lepidolite sample from Muiane. The same diagnostic features of white mica in Fig.
12-b are visible, but the two are discriminated by the peak in the red region (band 4) of lepidolite. In this case, lepidolite is highly re-
flective in band 4, with reflectance dropping in band 6, validating the usefulness of PCA in bands 4 and 6. Moreover, lepidolite has
low reflectance in band 3, high reflectance in band 11, and the lowest reflectance magnitude in band 12.



Remote Sensing Applications: Society and Environment 32 (2023) 101022

12

U. Gemusse et al.

Fig. 9. Self-proposed 2/11 ratio for the Sentinel-2 image showing in bright pixels the target area of Muiane (b) and the greenfield areas of Muiane II (b1), Namacotche
(a1), and Nassupe (a2).

Fig. 10. Self-proposed 7/11 ratio for the Sentinel-2 image highlighting in bright pixels the area of Muiane (b), and in intense grey pixels the sites of Muiane II (b1) and
Namacotche (a1).
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Fig. 11. Land cover classification maps of the study area in 2019 using Sentinel-2A imagery, generated with SVM (a) and MLC algorithms (b).

Table 3
Evaluation metrics for multi-class classification using SVM, according to Sokolova and Lapalme (2009). PA – producer's accuracy; UA – user's accuracy; TPR – true
positive rate; FPR – false positive rate; FNR – false negative rate.

Accuracy PA UA Precision Recall/Sensitivity/TPR F-score FPR Specificity FNR

Pegmatites 0.9955 0.9863 0.9915 0.9915 0.9831 0.9873 0.0018 0.9982 0.6667
Water bodies 1 1 1 1 1 1 0 1 0
Bare soils and built up 0.9945 0.9876 0.9848 0.9848 0.9876 0.9862 0.0038 0.9962 0.4483
Forest 0.9990 1 0.9983 0.9983 1 0.9991 0.0021 0.9979 0
Micro average 0.9945 0.9945 0.9945 0.9945 0.0018 0.9982 0.5000
Macro average 0.9973 0.9936 0.9927 0.9932 0.0019 0.9981 0.2787

Table 4
Evaluation metrics for multi-class classification using MLC, according to Sokolova and Lapalme (2009). PA – producer's accuracy; UA – user's accuracy; TPR – true
positive rate; FPR – false positive rate; FNR – false negative rate.

Accuracy PA UA Precision Recall/Sensitivity/TPR F-score FPR Specificity FNR

Pegmatites 0.9955 1 0.9934 0.9934 1 0.9967 0.0025 0.9975 0.0000
Water bodies 1 0.8834 0.9855 1 0.8834 1 0.0011 0.9989 0
Bare soils and built up 0.9945 0.9891 0.9554 0.9554 0.9891 0.9720 0.0130 0.9870 0.1905
Forest 0.9990 0.9963 1 1 0.9963 0.9982 0 1 1
Micro average 0.9871 0.9871 0.9871 0.9871 0.0043 0.9957 0.5000
Macro average 0.9935 0.9836 0.9672 0.9932 0.0041 0.9959 0.2976
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Fig. 12. Laboratory reflectance spectra of representative samples collected during field validation: (a) kunzite from Naipa; (b) muscovite from Muiane; (c) potash
feldspar from Muiane; (d) lepidolite from Muiane. Selected Sentinel-2 bands are overlaid over the spectra. Red edge, aerosol, water vapor, and cirrus bands were
omitted for readability purposes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Overall, by superposing the Sentinel-2 bands over the reference spectra, it is possible to see that a higher spectral resolution, espe-
cially in the SWIR region, would increase the capability to identify pegmatites. This spectral limitation is in line with the interpreta-
tion of the results obtained through Sentinel-2 image processing.

6. Conclusions
• This study explored remote sensing techniques, such as RGB combinations, band ratios, selective PCA, and image classification

algorithms, specifically SVM and MLC algorithms, for pegmatite exploration in the Alto Ligonha region in Mozambique, where the
brownfield areas of Muiane and Naipa can be found.

• Regarding the PCA technique, the correct selection of bands for selective PCA resulted in high efficiency not only in the
identification of brownfield regions such as Muiane and Naipa, but also of the greenfield areas of Namobene, Nassupe, and
Muiane II (a new pegmatite target was identified through remote sensing where an unexploited and previously unmapped
pegmatite containing lepidolite and spodumene gems was observed in the field validation campaigns).

• The RGB combination technique allowed identifying target areas for the occurrence of pegmatites through the comparison of
the results obtained with the ones described in the literature. These prospects correspond to the known target areas of Muiane
and Naipa, and new greenfield areas were also identified with PCA. The self-proposed band ratios slightly outperformed the self-
proposed RGB combination.

• Considering the supervised classification, the level of accuracy is comparatively better in the SVM compared to that with the
MLC method. The regional differences obtained between these two methods are comparatively smaller, with one algorithm
performing better for a given class and vice-versa. Nonetheless, these two methodologies allowed the detection of the known
pegmatites of Muiane and Naipa and identify possible prospective areas of interest.

• The visible and near-infrared (VNIR) and shortwave infrared (SWIR) bands of Sentinel-2 images can detect spectral features of
distinct pegmatite minerals, and with their high spatial resolution, can provide a great advantage in geological exploration studies
in areas with difficult access, as is the case of the Alto the Ligonha region.

• Overall, the main advantages of the methods proposed for Sentinel-2 data rely on the low cost, coverage of large areas (some
with low or inexistent access), and relatively quick results that can identify outcropping pegmatites and pinpoint areas of
interest for future exploration. Nonetheless, there are some limitations regarding the spatial resolution, since some smaller
pegmatite dykes may only be detected using very high-resolution data such as Worldview 3 data. By comparing with the
laboratory spectra, the number of available bands is another constraint, because pegmatite identification can benefit from a
higher number of bands in the SWIR region. These smaller pegmatite dykes can be detected in the future, considering higher
spatial and spectral satellite resolution data.
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• The obtained results and the self-proposed algorithms are of great importance since they can help to better elucidate the
economic interest of the Alto de Ligonha region and may lead to further development in these areas.

• Future research may include the application of other machine learning algorithms such as random forest or neural networks as
well as the integration of Sentinel-2 with radar (Sentinel-1) and/or LiDAR data.

Ethical statement for Remote Sensing Applications: Society and Environment
I testify on behalf of all co-authors that our article submitted to Remote Sensing Applications: Society and Environment.
All authors: Ubaldo Gemusse. Joana Cardoso-Fernandes, Alexandre Lima, Ana Teodoro.

1) this material has not been published in whole or in part elsewhere;
2) the manuscript is not currently being considered for publication in another journal;
3) all authors have been personally and actively involved in substantive work leading to the manuscript, and will hold themselves

jointly and individually responsible for its content.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Data availability
Data will be made available on request.

Acknowledgments
The authors would like to thank the European Space Agency (ESA) and the American Geological Survey (USGS) for free access to

the multispectral images used. The work was supported by National Funds through the FCT – Fundação para a Ciência e a Tecnologia,
I.P., projects UIDB/04683/2020 and UIDP/04683/2020 - ICT (Institute of Earth Sciences). Ubaldo Gemusse is financially supported
by a Ph.D. Thesis, ref. D101/2016–2018, finnaced by the Instituto de Bolsas de Moçambique (IBE). Joana Cardoso-Fernandes was fi-
nancially supported within the compass of a Ph.D. Thesis, ref. SFRH/BD/136108/2018, by national funds from MCTES through FCT,
and co-financed by the European Social Fund (ESF) through POCH – Programa Operacional Capital Humano – and NORTE 2020 re-
gional program. The authors thank Douglas Santos for the help with the spectroradiometric measurements.

Appendix A

Table A1
Error matrix for SVM classification result in the study area (Ground Truth, Percent).

Class Ground Truth (Percent)

Pegmatites Waterbody Bare soils and built up Forest Total

Unclassified 0.00 0.00 0.00 0.00 0.00
Pegmatites 98.31 0.00 0.76 0.00 17.81
Waterbody 0.00 100.00 0.00 0.00 7.84
Bare soils and built up 1.69 0.00 98.76 0.00 19.88
Forest 0 0 0.48 100.00 54.48
Total 100.00 100.00 100.00 100.00 100.00

Table A2
Error matrix for Maximum Likelihood classification result in the study area (Ground Truth (Percent).

Class Ground Truth (Percent)

Pegmatites Waterbody Bare soils and built up Forest Total

Unclassified 0.00 0.00 0.00 0.00 0.00
Pegmatites 100.00 0.26 0.63 0.05 27.33
Waterbody 0.00 88.34 0.45 0.00 6.88
Bare soils and built up 0.00 11.40 98.91 0.32 22.75
Forest 0.00 0.00 0.00 99.63 43.04
Total 100.00 100.00 100.00 100.00 100.00
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