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Abstract. It is well known that a rigid motion of the Euclidean
plane can be written as the composition of at most three reflec-
tions. It is perhaps not so widely known that a rigid motion of
n-dimensional Euclidean space can be written as the composition
of at most n+ 1 reflections.

The purpose of the present article is, firstly, to present a nat-
ural proof of this result in dimension 3 by explicitly constructing
a suitable sequence of reflections, and, secondly, to show how a
careful analysis of this construction provides a quick and pleasant
geometric path to Euler’s rotation theorem, and to the complete
classification of rigid motions of space, whether orientation pre-
serving or not. We believe that our presentation will highlight the
elementary nature of the results and hope that readers, perhaps
especially those more familiar with the usual linear algebra ap-
proach, will appreciate the simplicity and geometric flavour of the
arguments.

1. On Euler’s rotation theorem

1.1. Decomposition of 3-isometries. It is well known that a rigid
motion of the Euclidean plane can be written as the composition of
at most three reflections. It is perhaps not so widely known that a
rigid motion of n-dimensional Euclidean space can be written as the
composition of at most n+ 1 reflections.

The purpose of the present article is, firstly, to present a natural
proof of this result in dimension 3 by explicitly constructing a suitable
sequence of reflections 1 and, secondly, to show how a careful analysis
of this construction provides a quick and pleasant geometric path to
Euler’s rotation theorem, and to the complete classification of rigid
motions of space, whether orientation preserving or not.

We believe that our presentation will highlight the elementary nature
of the results and hope that readers, perhaps especially those more
familiar with the usual linear algebra approach, will appreciate the
simplicity and geometric flavour of the arguments.

In view of the topic of the article any list of references is bound to be
inadequate, so we provide just two: our article [1] which deals with the
case of the plane, and the article [2] which gives a thorough discussion
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1We opted to state and prove this theorem in three dimensions, but note that

this proof can be easily adapted to fit any number of dimensions.
1
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of Euler’s theorem and, among several proofs, includes Euler’s original
one and a modern one using linear algebra.

Let π = planeABC be the plane through three noncollinear points,
A, B and C. We write σABC or σπ for the reflection in π. If A 6= B we
write bisAB for the plane through the midpoint of AB perpendicular
to this line, which is formed by the points at equal distance to A and
B. In particular, if A 6= B, then σbisAB(A) = B and vice-versa.

Theorem 1. Given points A, A′, B, B′, C and C ′ in space such that
A, B and C are noncollinear and |AB| = |A′B′|, |AC| = |A′C ′| and
|BC| = |B′C ′|, there exist exactly two rigid motions sending A to A′, B
to B′ and C to C ′. The first of these can be written as the composition
of three reflections. The second one is obtained composing the first one
with the reflection in the plane A′B′C ′.

Proof. We start by noting that the location of any point P is deter-
mined by its distances to any four given non-coplanar points: indeed
if Q 6= P had the same distances to the four given points, then these
would belong to bisPQ and thus be coplanar. It follows that a mo-
tion is determined by its action on any four non-coplanar points and,
therefore, there exists no third motion with the stated properties.

Our proof now proceeds by first constructing a rigid motion i, written
as the composition of three reflections and satisfying i(A) = A′, i(B) =
B′ and i(C) = C ′. The second motion will then be j := σA

′B′C′ ◦ i 6= i.
In the generic situation, when A 6= A′, we define α = bisAA′, so

that A′ = σα(A).
Next, supposing that B∗ := σα(B) is distinct from B′, we define

β = bisB∗B′, so that B′ = σβ ◦ σα(B). The key point is now to note
that σβ(A′) = A′, because

|A′B∗| = |σα(A) σα(B)| = |AB| = |A′B′| .

Hence σβ ◦ σα sends A to A′ and B to B′.
The final step is completely analogous. We define C∗ = σβ ◦ σα(C),

γ = bisC∗C ′ (here supposing C∗ 6= C ′). Again, σγ(A′) = A′ and
σγ(B′) = B′, because

|A′C∗| = |σβ◦σα(A) σβ◦σα(C)| = |AC| = |A′C ′|

and similarly

|B′C∗| = |σβ◦σα(B) σβ◦σα(C)| = |BC| = |B′C ′| .

Hence, setting i = σγ ◦ σβ ◦ σα, we have i(A) = A′, i(B) = B′ and
i(C) = C ′.

Now, if A = A′ then we may instead define α = planeA′BC, if
B∗ = B′ then we define β = σα(planeABC) = planeA′B′σα(C), and
if C∗ = C ′ then we define γ = σβ ◦ σα(planeABC) = planeA′B′C ′.
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In all these cases 2, one still has i(A) = A′, i(B) = B′ and i(C) = C ′.
Note that if A = A′, B = B′ and C = C ′ then i = σABC . �

1.2. Euler’s rotation theorem. Recall that a rotation about a line
` is a composition ρ = σπ2 ◦ σπ1 of reflections, where the planes π1 and
π2 intersect along the line `, forming an angle which is half that of the
rotation.

Theorem 2. Let m be a rigid motion in space with a fixed point, C,
and suppose m is not the identity.

• (Euler) If m is an orientation preserving isometry then m is a
rotation about a line through C.
• If m does not preserve orientations then m is either an inversion

in C, a reflection in a plane through C, or a rotary reflection 3,
a reflection in a plane π through C followed (or preceded) by a
rotation about a line through C perpendicular to π.

Proof. Let A be such that B = m(A) 6= A. Since |AC| = |BC|, if for
every point A the points A, B and C are collinear then for every point
A, C is the midpoint of AB. Hence, m is the inversion in C. Thus we
may assume that A, B and C are non-collinear.

Let us construct i and j as defined in
the proof of Theorem 1, using the points
A, B and C, and their images A′ = B, B′

and C ′ = C under m. Since C is fixed
by m, we have |AC| = |BC| = |B′C|.
Since α = bisAB we have σα(C) = C and,
moreover, B∗ = σα(B) = A. We can now
see that C ∈ β: in the case A 6= B′ because
β = bisAB′ and |AC| = |B′C|, and in the
case B′ = A because β = planeA′B′C. It
follows that C∗ = σβ ◦ σα(C) = C.

C
A

B

B′

Thus γ = planeA′B′C ′, and we conclude that j = σA
′B′C′ ◦σγ ◦σβ ◦

σα = σβ ◦ σα, which is a rotation around the line α ∩ β.

2In each of the cases of coincidence, if we were to instead simply omit the
respective reflection from our sequence, we would still obtain a motion with the
desired properties. The reason why we do not do so, is that having the specific
sequence of reflections will be essential in our proof of Theorem 2.

3Note that an inversion is the special case of a rotary reflection corresponding
to the composition of reflections in 3 perpendicular planes.
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It remains to identify i. If B′ = A, then
β = γ and i = σbisAB is a reflection, so let
us assume B′ 6= A. Let D be the midpoint
of AB, let D′ = m(D) be the midpoint of
BB′ and let δ = planeCDD′. To see that
i is a rotary reflection, we shall show that
m′ := σδ ◦ i is a rotation around the line `
through C perpendicular to δ.

Let B̃ = σδ(B) = m′(A). If B̃ = B,
we have δ = γ and we have the desired
conclusion, noting that i = σγ ◦ j.

C
A

B

B′
B̃

DD′

Assume from now on that B̃ 6= B. Arguing as in the first part of the
proof for m′ (using that m′(A) = B̃, m′(B̃) = B′ and m′(C) = C) we
see that there are two possibilities. The first one is that

m′ = σbisAB′ ◦ σbisAB̃.

Now observe that the planes bisAB′ and bisAB̃ are perpendicular to
planeAB̃B′, and therefore also perpendicular to the parallel plane δ.

Thus ρ := σbisAB′ ◦ σbisAB̃ is a rotation around `, and again we have
the desired conclusion. The second possibility is that

m′ = σCB̃B
′ ◦ ρ,

which would imply that m′(D) = σCB̃B
′
(D′). But, from m′(D) = σδ ◦

σCB̃B
′◦σbisAB′◦σbisAB̃(D), it is easy to check that m′(D) = D′. Thus we

would have D′ ∈ planeCB̃B′ ⇐⇒ B̃ ∈ planeCD′B′ = planeCBB′,
implying B = B̃, contrary to hypothesis. �

1.3. Classification of 3-isometries. In the next corollary we com-
plete the classification of rigid motions in space and for this we remind
the reader that, given two points A and B, the translation τAB which
sends A to B can be constructed as follows: let σ′ be reflection in the
plane through B parallel to bisAB. Then τAB = σ′ ◦ σbisAB. Recall
that for points A, B and C, one has τBC ◦ τAB = τAC .

Lemma. Let ρ be a non-trivial rotation about a line ` and let τ be a
translation in a direction perpendicular to `. Then the composition τ ◦ρ
is a rotation about a line parallel to `.

Proof. Write τ = σ1 ◦ σ2 as the composition of reflections in parallel
planes π1 and π2, and ρ = σ3 ◦ σ4 as the composition of reflections in
planes π3 and π4 which intersect along `. Note that we can take for π3
any plane through `, by changing π4 accordingly. By hypothesis ` is
parallel to π1 and π2 and thus we may take π3 to be parallel to those
two planes as well. It follows that σ3 ◦ σ2 ◦ σ1 is a reflection σ′ in plane
π′ parallel to σ3 and hence τ ◦ ρ = σ4 ◦ σ′ is a rotation. �
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Corollary 3. Let m be a rigid motion in space different from the iden-
tity.

• (Mozzi-Chasles) If m is an orientation preserving isometry then
m is a screw displacement, that is, a rotation about a line `
followed (or preceded) by a (possibly trivial) translation in the
direction of `.
• If m is not orientation preserving then m is either an inversion,

or a reflection in a plane, or a rotary reflection, or a glide
plane operation, that is, a reflection in a plane π followed (or
preceded) by a translation in π.

Proof. In view of Theorem 2, we may assume that m has no fixed point.
Let us take any point A and define a motion l by l(X) = τA

′A ◦m(X).
Note that m = τAA

′ ◦ l. Then l(A) = A and, by Theorem 2, l fixes a
plane 4 π which contains A. Let A′′ ∈ π be the foot of the perpendicular
to π through A′. We now consider each of the possibilities for l given
in Theorem 2.

(1)
If l is a rotation about a line
through A, we may take π to be
the perpendicular through A to this
line, and then, by the Lemma,
τAA

′′ ◦ l is a rotation about a paral-
lel line. Hence, m = τA

′′A′ ◦ τAA′′ ◦ l
is a screw displacement.

A

A′

A′′

(2)
If l is a reflection σπ in a plane
π through A, followed by a rota-
tion ρ` about a line ` through A
perpendicular to π, then the plane
π′ = bisA′A′′ is fixed by m. Hence,
replacing A by a point in π′, we may
assume A′′ = A′.

A

A′ B

Now, If ρ` is not the identity, then τAA
′ ◦ ρ` has a fixed point B ∈ π

by the Lemma, and so m = (τAA
′ ◦ ρ`) ◦ σπ also fixes B, contrary to

hypothesis. We conclude that m = τAA
′ ◦ σπ, which is a glide plane

operation.
Note that in Case (1) m is orientation preserving, while in Case (2)

it is orientation reversing. �
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4The plane π is not unique, in general.
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