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A B S T R A C T

Speech recognition aims to convert human speech into text and has applications in security, healthcare,
commerce, automobiles, and technology, just to name a few. Inserting residual neural networks before
recurrent neural network cells improves accuracy and cuts training time by a good margin. Furthermore,
layer normalization instead of batch normalization is more effective in model training and performance
enhancement. Also, the size of the datasets presents tremendous influences in achieving the best performance.
Leveraging these tricks, this article proposes an automatic speech recognition model with a stacked five layers
of customized Residual Convolution Neural Network and seven layers of Bi-Directional Gated Recurrent Units,
including a logarithmic 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 for the model output. Each of them incorporates a learnable per-element affine
parameter-based layer normalization technique. The training and testing of the new model were conducted
on the LibriSpeech corpus and LJ Speech dataset. The experimental results demonstrate a character error
rate (CER) of 4.7 and 3.61% on the two datasets, respectively, with only 33 million parameters without the
requirement of any external language model.
1. Introduction

Voice technology is currently employed in many industries, allow-
ing businesses and consumers to facilitate digitization and automation.
For example, speech recognition improves the safety and efficiency
of vehicles by enabling voice-activated navigation systems and en-
hancing search capabilities. Besides, voice commands to access virtual
agents, particularly on mobile devices, help the call centres transcribe
a colossal number of phone calls and identify call patterns, queries and
issues. Additionally, voice-based authentication generally provides an
additional security level (Junqua & Haton, 2012).

However, speech recognition is one of the most challenging com-
puter science topics due to the difficulties of separating similar pho-
netically sentences and smearing problems. Various algorithms and
computational approaches have been proposed to convert speech to
text and increase transcription accuracy (Yu & Deng, 2016). Neural
networks, particularly Deep Learning (DL) algorithms, are best suited
for these purposes. They can efficiently process vast amounts of data,
identify hidden patterns between features, learn the mapping function,
and then adjust it based on the loss function using the gradient descent
technique. While neural networks are more accurate and can handle
more inputs, they achieve lower performance efficiency than classic
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language models since they require longer training time and more
computational resources (Benzeghiba et al., 2007).

Nowadays, transformer-based models are state-of-the-art as they
have demonstrated superior performances compared to other base-
lines. However, these models are computationally expensive. Therefore,
multiple (8 − 16) graphical processing units (GPUs) in parallel with
synchronous stochastic gradient (SGD) are generally applied to train
this kind of model (Likhomanenko et al., 2021; Park et al., 2019).
Residual Convolution Neural Networks (ResNets) reduce training time
while improving the model’s performance. Moreover, batch normaliza-
tion is simply an additional network layer between two hidden layers.
Its function is to normalize the outputs of the first hidden layer before
passing them onto the next hidden layer as input, helping keep the
network stable throughout training. Unlike batch normalization, layer
normalization calculates the normalization statistics directly from the
summed inputs to the neurons within a hidden layer, ensuring that
no additional dependencies between training examples are introduced
(Santurkar, Tsipras, Ilyas, & Madry, 2018).

Karita et al. (2019), Moritz, Hori, and Le Roux (2019) and Wang,
Guan, and Li (2018) proposed different architectures for solving auto-
matic speech recognition (ASR) problems on LibriSpeech datasets. Wang
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Fig. 1. Illustration of the overall concept of the proposed model.
-

et al. (2018) integrated two-dimensional invariant convolution layers
and groups of residual convolution blocks and Bi-GRUs alongside
the Connectionist Temporal Classification (CTC) loss. The authors
used a subset of the LibriSpeech datasets for conducting the exper-
iments. Karita et al. (2019) introduced a speech auto-encoder loss
function and proposed an encoder–decoder architecture for speech
recognition tasks, performing the model training and validation on a
subset of the LibriSpeech datasets. Moritz et al. (2019) proposed a
triggered attention mechanism with a CTC-based classifier to control
the attention mechanism’s activation. The proposed algorithm differs
from the previously mentioned models in terms of architecture. Fig. 1
illustrates the overall concept of the proposed model. It relied on
customized ResNets without any invariant convolution layers; partic-
ularly, it contains five layers of customized ResNets with seven layers
of Bi-GRUs. For training and testing the new model, the LibriSpeech
ASR corpus, which contains 1000 hours of audio speech, and the LJ
Speech dataset, which includes approximately 24 hours of audio clips
of a single speaker, were used. The experimental results demonstrated
improvements in reducing the computational cost while providing
a minimum CER of only 4.7 and 3.61%, respectively, on the used
datasets without the need for any external language model. A CER
of 4.7% means that 95.3% characters, which include not only letters
but also punctuation and spaces, were correctly recognized. The main
contributions of this research are as follows:

• It proposes a stacked five layers of customized ResNets and seven
layers of Bi-GRUs, each including a layer normalization based on
a learnable element-wise affine parameters approach without the
requirement of external language models.

• The inclusion of the Gaussian error linear unit (GELU) layer and
the dense and dropout layers for the classification tasks showed
its worthiness in performance enhancement.

• It demonstrates that the volume of the training data significantly
affects the model’s output.

• It also demonstrates that the proposed architecture of ResNets
helps the model to achieve performance improvement with five
or more layers of Bi-GRUs, which is the opposite of the findings
presented in Wang et al. (2018).

The remaining sections of this article are the following: Section 2
presents selected state-of-the-art works along with their performances
and limitations; Section 3 introduces the proposed ResNets and the Bi-
GRUs based model; the experimental setups and results are presented in
Section 4; Section 6 is devoted to discuss the overall performance and
feasibility of proposed model in automatic speech recognition tasks;
and finally, Section 7 outlines the conclusions.

2. Related works

Three types of ASR models are common in the literature: (i) CTC-
based, (ii) transformer-based, and (ii) recurrent neural networks (RNNs)
based models. Lee and Watanabe (2021) presented a conformer model
2

with an intermediate CTC loss connected to an encoder network’s in-
termediate layer showing that training regularization and performance
improvements reached a Word error rate (WER) and CER of 9.9 and
5.2% on the WSJ and AISHELL-1 corpus, respectively. The comparisons
showed that state-of-the-art performance is achievable with only 12
layers of conformer (118 million parameters) compared with 48 lay-
ers of a transformer-based model. Although the authors reduced the
computational expenses to a good margin, more improvements are still
required.

Li, Xu, and Zhang (2021) proposed a linear attention-based con-
former that reduced the number of parameters of the conformer-based
model by 50%, guaranteeing faster training, but still achieving a CER of
4.88% on the same datasets. Two factors were responsible for reducing
the number of parameters: the application of (i) multi-head linear
self-attention and (ii) low-rank matrix factorization techniques. Ma-
jumdar et al. (2021) proposed the Citrinet model, which consists of a
deep residual neural model using one-dimensional time-channel sep-
arable convolutions. The authors combined it with sub-word encod-
ing, squeeze-and-excitation and convolutional CTC. The results demon-
strated very high accuracy with only 37.2 million parameters on Lib-
riSpeech, MLS, TED-LIUM 2, and AISHELL datasets without any re-
quirement of external language models.

Zhao et al. (2021) proposed a semantic correction model using pre-
trained BERT (Liu et al., 2019) with six encoder and decoder layers. It
effectively reduced the CER by 21.7% compared with 3gram, 4gram,
and RNN-based models. Fan, Chu, Chang, Xiao, and Alwan (2021),
for both the encoder and decoder architectures, proposed convolution-
augmented self-attention blocks. Expanding the acoustic boundary for
each token demonstrated an increase in CTC alignment’s robustness,
and using an iterative loss function enhanced the gradient update for
low-layer parameters. These concepts led to a 7 to 21% improvement
compared to the other baselines by achieving WER of 3.1 and 7.2%
on Librispeech 𝑇 𝑒𝑠𝑡_𝐶𝑙𝑒𝑎𝑛 and 𝑇 𝑒𝑠𝑡_𝑂𝑡ℎ𝑒𝑟 datasets, respectively, and a
CER of 5.4% on the AISHELL-1 test dataset.

Karita et al. (2019) introduced semi-supervised speech and text
autoencoders to improve the performance further. The work presented
a loss function called maximum mean discrepancy, which achieved a
CER and a WER of 10.4 to 8.4% and 20.6 to 18.0% on the LibriSpeech
𝑇 𝑒𝑠𝑡_𝐶𝑙𝑒𝑎𝑛 dataset, respectively. Baidu’s Deep Speech (Hannun et al.,
2014) and Google’s Listen Attend Spell (Chan, Jaitly, Le, & Vinyals,
2016) are two of the most famous pioneering speech recognition mod-
els on RNNs. However, the authors employed distinct techniques to
model speech recognition problems. The first one predicted speech
transcriptions using the CTC loss function, which achieved a WER
of 13.25% on the Librispeech datasets. The second model for pre-
diction employed a sequence-to-sequence network architecture, which
demonstrated a WER of only 6.5% on the same datasets.

Han et al., 2020 and Kriman et al., 2020 incorporated depthwise
separable convolution layers to further reduce the computational costs
while maintaining adequate accuracy on the Librispeech datasets. The
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Fig. 2. Process of converting audio data to the Mel Spectrogram.
standard convolution requires around 9 times more multiplications
than the depthwise separable convolution. Hence, the authors achieved
tremendous accuracy with much fewer parameters; for example, a
WER of 7% on Librispeech 𝑇 𝑒𝑠𝑡_𝑂𝑡ℎ𝑒𝑟 with only 10.8𝑀 parameters.
However, for small networks, these models might end up with too few
parameters and fail to learn appropriately during training. Also, the
depthwise separable convolution technique solely relies on cross-kernel
correlations and a more efficient separation of regular convolutions is
required to address the demands (Haase & Amthor, 2020). Besides,
these two models need much longer training steps; for example, the
model proposed by Kriman et al. (2020) took 1200 epochs with a batch
size of 32 per GPU to achieve state-of-the-art accuracy. The model
proposed in this article intends to address these drawbacks in more a
manageable way.

Inspired by the transformer architecture and the Deep Speech
model, the current study employs the concepts of customized ResNets
and Bi-GRUs with layer normalization to reduce the computational
costs further while maintaining a very interesting performance without
any need for external language models.

3. Methodology

This section presents the formulation of the proposed automatic
speech recognition model architecture based on customized ResNets
with Bi-GRUs.

3.1. Mel spectrogram

Humans cannot recognize frequencies on a linear scale. Lower fre-
quency differences are easier to notice than higher frequency variances;
for example, humans can readily distinguish between 1000 and 1500 Hz,
but would struggle to distinguish between 10,000 and 10, 500 Hz,
although the difference is the same (Qasim, Fried, & Jacobs, 2021). The
Mel scale was proposed in 1937 to solve this problem. It demonstrates
that a logarithmic transformation (natural log or 10 base log) can
serve the purpose of making sounds of equal distance to be of equal
distance to humans (Thys, Treviño, & Nadkarni, 2021). Accordingly,
the transformation from the Hertz scale to the Mel Scale is defined as:

𝑀 = 2595 log(1 + 𝑓∕700). (1)

In the Mel spectrogram, the frequency components of the audio
signal are converted to the Mel scale. First, the raw audio data are
represented as a time-domain signal. Then, a pre-emphasis filter is used
to bring the frequency spectrum into equilibrium; generally, the higher
frequencies possess smaller magnitudes than the lower frequencies and
make the Fourier transform operation numerically efficient. After pre-
emphasis, the signal is split into multiple short-time frames, followed
by the application of a window function, i.e., the Hamming window,
to each frame with the following form:

𝑊𝑓 [𝑥] = 0.54 − 0.46 cos(2𝜋𝑥∕𝑁 − 1), (2)
3

where 0 ≤ 𝑥 ≤ (𝑁 − 1) and 𝑁 is the window length.
The frequency and power spectrum are then obtained using an n-
point Fast Fourier Transform (FFT) on each frame. The final step is to
apply the triangular filters to the power spectrum on a Mel-scale to
extract frequency bands (Hwang et al., 2020), as can be perceived from
the block diagram shown in Fig. 2.

3.2. Residual neural network

ResNets employs skip connections to leap over some layers, usually
implemented by skipping double or triple layers with non-linearities,
e.g., ReLU, and batch normalization between the skipped layers. This
technique avoids vanishing gradients and accuracy saturation prob-
lems, which occur when more layers are added to a sufficiently deep
model that ends up with an increased training error (Szegedy, Ioffe,
Vanhoucke, & Alemi, 2017).

Let 𝑧 be the input. Then, 𝑧 will travel through different layers,
i.e., Convolution, Dropout and normalization layers, of each block of
the ResNets cell. To get the output, 𝑦, the loss function is calculated on
the basis of input, 𝑧, using 𝑦 = 𝑓 (𝑧), where 𝑓 (𝑧) is the loss function.
The input, 𝑧, is added to the output using 𝑦 = 𝑓 (𝑧) + 𝑧 following the
skip connection. The goal is to make 𝑓 (𝑧) = 0 so that the network can
learn from the difference between the input and the output.

After several trial-error tests, within each ResNets block (identity
blocks), the convolution kernel of 3 × 3 shape and 32 filters provided
the best overall performance. It also included two Dropout layers, with
each having a 10% probability (𝑝 = 0.1) of randomly making some com-
ponents of the input tensor equal to zero, and two-layer normalization
within each ResNets block. The used ResNets architecture is illustrated
in Fig. 3.

3.3. Bi-directional Gated Recurrent Units

Gated recurrent units (GRUs) are an updated version of the long
short-term memory (LSTM) network that recognize sequential or tem-
poral information uniquely and more straightforwardly (Chung, Gul-
cehre, Cho, & Bengio, 2014). GRUs combine two gates, the update and
the reset gates, with a different working mechanism than LSTM. For
instance, the GRU’s update gate combines the LSTM’s forget and input
gates, but the reset gate is the same. Like the LSTM network, a GRU
model modifies the information inside the units, but it does not require
different memory cells (see Fig. 4).

Let 𝑥𝑡, 𝑧𝑡, 𝑟𝑡, ℎ̂𝑡, ℎ𝑡−1, and ℎ𝑡 be the current input, update gate,
reset gate, candidate hidden state of the currently hidden node, hidden
state at the previous moment, and current hidden state, respectively.
The update gate, 𝑧𝑡, determines how much information in ℎ𝑡−1 will be
passed along the future, and is formulated as:

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑥𝑡 + 𝑈𝑧ℎℎ𝑡−1). (3)

Here, both 𝑥𝑡 and ℎ𝑡−1 are multiplied by their 𝑊𝑧𝑥 and 𝑈𝑧ℎ weights,
respectively, which are learned during the algorithm training. Both
results are added together and passed through a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function to

determine their values between 0 and 1. A value of 0 means that the
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Fig. 3. ResNets architecture of the proposed model based on the concept of skip
connections.

information will be forgotten, otherwise is retained in the current hid-
den state. The reset gate, 𝑟𝑡, decides how much of the past information
to forget, and is formulated as:

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑥𝑡 + 𝑈𝑟ℎℎ𝑡−1). (4)

Eq. (4) is identical to Eq. (3) for the update gate with the exception
of the weights and the use of gates. The candidate hidden state of
the currently hidden node, ℎ̂𝑡, uses the reset gate to store relevant
information from the past using:

ℎ̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑥𝑥𝑡 + 𝑟𝑡 ⊙ 𝑈ℎℎℎ𝑡−1). (5)

Here, firstly, 𝑥𝑡 and ℎ𝑡−1 are multiplied by their 𝑊ℎ𝑥 and 𝑈ℎℎ weights
and secondly, the Hadamard product (⊙), i.e., the element-wise mul-
tiplication, between 𝑟𝑡 and 𝑈ℎℎℎ𝑡−1 is computed. The results of these
two steps are summed up and passed through a non-linear activation
function, for example, 𝑡𝑎𝑛ℎ function, to get ℎ̂𝑡. The final step involves
the calculation of the current hidden state, ℎ𝑡, using:

ℎ𝑡 = (1 − 𝑧𝑡)⊙ ℎ̂𝑡 + 𝑧𝑡 ⊙ ℎ𝑡−1. (6)

Eq. (6) calculates the Hadamard products (element-wise multiplica-
tions) between (1−𝑧𝑡) and ℎ̂𝑡, and 𝑧𝑡 and ℎ𝑡−1, respectively. The inability
of unidirectional GRUs to simultaneously consider past and future data
is detrimental to the improvement of accuracy (Li et al., 2020). Hence,
this research adopted a Bi-GRU structure to meet the objectives. Fig. 5
presents a Bi-GRU schematic diagram.

The input data sequence is first concurrently fed into a forward
GRU, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐺𝑅𝑈 and a backward GRU, ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝐺𝑅𝑈 . Then, the concatenation of
the hidden states ⃖⃖⃗ℎ and ⃖⃖ ⃖ℎ , which are produced by the forward and
4

𝑡 𝑡
the backward GRU at time 𝑡, respectively, will yield the hidden state at
that instant using:

ℎ𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒( ⃖⃖⃗ℎ𝑡, ⃖⃖ ⃖ℎ𝑡), (7)

where ⃖⃖⃗ℎ𝑡 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐺𝑅𝑈 (ℎ𝑡−1, 𝑥𝑡) and ⃖⃖ ⃖ℎ𝑡 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝐺𝑅𝑈 (ℎ𝑡+1, 𝑥𝑡).

3.4. Speech recognition model

The first step of the proposed speech recognition model is to trans-
form the raw audio into Mel Spectrograms. Then, the model maps the
character labels for each audio sample into integer labels. The heart of
the model consists of two deep neural network modules: 𝑁 = 5 layers
of ResNets architecture according to the description of Section 3.2,
and a stack of 7 Bi-GRUs blocks using both a layer normalization
and a dropout layer with 𝑝 = 0.1 within each block. The ResNets
extracted and learned relevant audio features, and the Bi-GRUs block
used those learnt audio features for the speech recognition task. A
sequential model containing two linear layers, a GELU layer and a
dropout layer, provided the best results after a few trial-error tests for
classifying characters per time step. Fig. 6 illustrates the architecture
of the proposed model. The logarithmic 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 was integrated into
the output layer to get the probability matrix of characters. The final
step to predict the most likely character is to use a decoder. Developing
a greedy decoder allowed the extraction of the most likely characters
spoken from the audio for this study.

4. Experiments

The training of the proposed model was accomplished using an
NVIDIA DGX Station with 4 NVIDIA Tesla V100 tensor core GPUs
having 128GB of memory, the CUDA library in its 10.1 version, and
the open-source PyTorch machine learning library for Python cod-
ing. The code implementation comprised five steps. First, the datasets
were collected using the ’torchaudio.datasets’ module. The PyTorch
‘DataLoader’ function facilitated the building of the train and test
datasets. The second step included mapping the characters to inte-
gers and vice-versa by defining a ’Text_Transformation’ class. It also
performed data processing tasks. The ’torchaudio.transforms’ module
transformed the data samples’ waveform into Mel Spectrograms and a
pre-defined function using ’torch.nn.utils.rnn.pad_sequence’ helped to
pad the Spectrograms and labels (from the transcriptions) into equal-
length sequences. This step was concluded by defining a greedy decoder
that returned the decoded and target transcriptions. The third step
comprised defining the model’s architecture. This study built a class
named ’Layer_Norm’ using the ’torch.nn’ module for the CNNs input.
Then, a customized ResNets class was built using the ’torch.nn’ module.
A pre-defined forward function within the class returned the batch,
channel, feature, and time utilizing Layer_Norm, GELU, 2-dimensional
CNN and dropout layers based on residual connection. For determining
the Bi-GRU cells, this study built a class named ’Bi_Directional_GRU’
using the ’torch.nn’ module. Within it, a pre-defined forward function
returned the Bi-GRU cell based on Layer_Norm, GELU, Bi-GRU and
dropout layers. The last part of the third phase combined all the
previously defined classes into a speech recognition class, including
a classifier comprised of Linear, GELU and dropout layers using the
’torch.nn.Sequential’ module. A pre-defined forward function returned
the batch, time, and features for classification tasks. The fourth stage
covered the model training procedures. A pre-defined function named
’model_train’ was used for model training purposes, and the Spectro-
grams and labels were fed into the model. Initially, the ’torch.optim’
module aimed to set the gradients to zero. The logarithmic 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
from the ’torch.nn.functional’ module worked as the output layer to
determine the probabilities of each character of the output transcrip-
tions. The CTC loss function from the ’torch.nn’ module calculated
the probability of the correct labels. The fifth phase included the
testing procedures of the model. The python ‘jiwer’ package facilitated
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Fig. 4. A simplified architecture of a GRU cell (𝜎, ⊕ and ⊙ represent the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function, summation and Hadamard product, respectively).
Fig. 5. Schematic diagram of a Bi-GRU architecture.

calculating the WER and CER metrics. The previously defined greedy
decoder picked up the character with the highest probability from
the output of the logarithmic 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 layer using ’torch.nn.functional’
class.

4.1. Connectionist temporal classification loss

The CTC Loss function calculates a differentiable loss value for each
input node by adding all potential input alignments to the target. It
employs a bidirectional LSTM design with peepholes and forgets gates
having logistic 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ranging from 0 (zero) to 1 (one). The hyper-
bolic tangent function is necessary for activation. The main difference
between the CTC and other temporal classifiers is that CTC segments
the input sequences indirectly, which has several advantages, including
avoiding the need to locate label borders that are inherently ambiguous
and allowing grouping of the label predictions (Zeyer, Irie, Schlüter, &
Ney, 2018).

If 𝐼 and 𝑂 are the input and output, respectively, then the CTC
objective for (𝐼, 𝑂) is defined as:

𝑝(𝑂|𝐼) =
∑

𝑋𝜖𝑋𝐼,𝑂

𝑇
∏

𝑡=1
𝑝𝑡(𝑥𝑡|𝐼), (8)

where 𝑝(𝑂|𝐼) and 𝑝𝑡(𝑥𝑡|𝐼) represent CTC conditional probability and
per time-step probability for a single alignment, respectively (Graves,
Fernández, Gomez, & Schmidhuber, 2006).
5

4.2. Dataset

Due to good baselines for character-based ASR, the LibriSpeech
corpus (Panayotov, Chen, Povey, & Khudanpur, 2015) was used to
assess the proposed model. This study utilizes all the three training
datasets: 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_100, 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_360, and 𝑇 𝑟𝑎𝑖𝑛_𝑂𝑡ℎ𝑒𝑟_500 for the
model training, and the test dataset was 𝑇 𝑒𝑠𝑡_𝐶𝑙𝑒𝑎𝑛. The number suffix
in the dataset name denotes the dataset’s time in hours.

Also, to investigate the natural generalization of the proposed
model, i.e., to verify that it can perform well on other datasets, the
current study used the LJ Speech dataset (Ito & Johnson, 2017), which
contains around 13𝐾 short audio clips from a single speaker spanning
over approximately 24 hours.

4.3. Model training

The following hyper-parameters provided the best results after sev-
eral trial-error tests: 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 10, 𝑝 = 0.1, 𝑒𝑝𝑜𝑐ℎ𝑠 = 100, 𝛼 =
5.0𝐸 − 4, 𝑁 = 29∕31, 𝑁_𝑐𝑛𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 = 5, 𝐹 _𝑁 = 128, 𝑁_𝑟𝑛𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 =
7, 𝐷_𝑟𝑛𝑛 = 512, and 𝑠𝑡𝑟𝑖𝑑𝑒 = 2. Here, 𝑝, 𝛼, 𝑁 , 𝑁_𝑐𝑛𝑛_𝑙𝑎𝑦𝑒𝑟𝑠, 𝐹 _𝑁 ,
𝑁_𝑟𝑛𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 and 𝐷_𝑟𝑛𝑛 denote the likelihood of a component being
zeroed within the dropout layers, the learning rate, number of classes
(29 and 31 for the LibriSpeech and LJ Speech datasets, respectively),
number of ResNets layers, number of features, number of Bi-GRU
layers, and GRU dimension, respectively.

Spectrograms and labels were fed into the model to train it. AdamW
was used as the optimizer because traditional Adam contains a wrong
implementation of weight decay Loshchilov & Hutter, 2017. Further-
more, the CTC loss function was applied to calculate the loss. For the
LibriSpeech corpus, it was trained on three different train datasets:
𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_100, 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_360, and 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_500. Each contains
100, 360 and 500 hours long audio clips. On the other hand, for the
LJ Speech dataset, the number of audio samples of the train and test
datasets were 11,790 and 1310, respectively. The algorithm was trained
up to 100 epochs, and training time was proportional to the volume of
datasets. For example, 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_500 dataset took around 1.5 h on
average for each epoch. Fig. 7 illustrates the training loss comparison
of the proposed model for the different used datasets. Clearly, the
model gradually learned without undergoing over-fitting or under-
fitting problems. The minimum-maximum values of the training loss for
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Fig. 6. Architecture of the proposed model for speech recognition.
Fig. 7. Obtained Training loss along time for each used dataset.

𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_100, 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_360, and 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_500 datasets were
equal to (0.078−6.945), (0.097−6.351), and (0.141−8.078), respectively.

In the case of the LibriSpeech dataset, the model testing used a sep-
arate dataset from the same corpus: 𝑇 𝑒𝑠𝑡_𝐶𝑙𝑒𝑎𝑛. The Greedy Decoder,
which selects the word/character with the highest probability, i.e., acts
6

Fig. 8. Obtained test loss along time for each used dataset.

greedily, was implemented for decoding purposes. Fig. 8 illustrates
the test loss of the model in terms of the different used datasets.
The Minimum-Maximum test loss values were equal to 0.39 − 2.862,
0.266 − 1.758, and 0.182 − 1.393, for 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_100, 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_360,
and 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_500 datasets, respectively.
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Fig. 9. Obtained word error rate for each used dataset.

5. Results

The model evaluation used state-of-the-art metrics for speech recog-
nition tasks: Word Error Rate and Character Error Rate. It is to be noted
that, in the literature, almost all the researchers use these two metrics
for ASR model evaluation.

5.1. Word and character error rates

These two error functions measure how much a model misreads text
in a transcription. WER computes the Levenshtein distance (Yujian &
Bo, 2007) between the reference sequence and hypothesis sequence
in word level, while CER computes it in character level. If 𝑆𝑤 is the
number of words substituted, 𝐷𝑤 the number of words deleted, 𝐼𝑤
the number of words inserted, and 𝑁𝑤 the number of words in the
reference, then WER is:

𝑊𝐸𝑅 = (𝑆𝑤 +𝐷𝑤 + 𝐼𝑤)∕𝑁𝑤. (9)

Similarly, if 𝑆𝑐 is the number of characters substituted, 𝐷𝑐 the
number of characters deleted, 𝐼𝑐 the number of the character inserted,
and 𝑁𝑤 the number of characters in the reference, then CER can be
expressed as:

𝐶𝐸𝑅 = (𝑆𝑐 +𝐷𝑐 + 𝐼𝑐 )∕𝑁𝑐 . (10)

The lower these error metric values, the better the model’s perfor-
mance, with a CER or WER of 0 (zero) being a perfect score. Because
words, unlike characters, are of varying lengths and do not offer a
clear comparison, the WER value might have little importance for the
model’s quality, i.e., a word is already incorrectly recognized if just one
letter in it is not correct. As a result, the WER should rarely describe a
model’s worthiness.

This study performed the model evaluation based on the aforemen-
tioned experimental setups and parameters. Figs. 9 and 10 present
the WER and CER values obtained by the proposed model for the
different used datasets. After a few trial-error tests, the obtained hyper-
parameters described in Section 4.3 provided the following model
outcomes. For the LibriSpeech dataset, the minimum value of WER
of the model were equal to 25.9, 19.4, and 15.6%, and for CER,
they were 8.3, 6.0, and 4.7% on 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_100, 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_360,
and 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_500 datasets, respectively. The tested dataset was the
𝑇 𝑒𝑠𝑡_𝐶𝑙𝑒𝑎𝑛, which contains 5.4 h of clean audio speech in all those
cases. On the other hand, based on the test dataset obtained from data
splitting as described in Section 4.3, the model exhibited minimums
CER and WER of 3.61 and 13.86% on the LJ Speech dataset, respec-
tively, as can be verified in Table 1. The model was trained up to 100
7

Fig. 10. Obtained Character error rate for each used dataset.

Table 1
Performance comparison in terms of different metrics on different datasets.

Train datasets CER (MIN%) WER (MIN%) Duration

𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_100 8.3 25.9 40 ∶ 26 ∶ 24
𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_360 6.0 19.4 71 ∶ 35 ∶ 22
𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_500 4.7 15.6 158 ∶ 51 ∶ 15
LJ Speech 3.61 13.86 21 ∶ 15 ∶ 27

Number of model parameters = 33196445, duration is represented in hour : minute :
second).

Table 2
Prediction performance of the model on the LJ Speech dataset.

Attributes Transcription

Target 1 that he compared the four empty cartridge cases found near the
scene of the shooting with a test cartridge fired from the weapon in
Oswald’s possession when he was arrested

Predicted 1 that he compared the four empty cartridge cases found near the
scene of the shooting with a test cartridge fired from the weapon in
Oswald’s possession when he was arrested

Target 2 in an instant our faces were covered we cocked our pistols and with
drawn swords stood waiting to receive the enemy

Predicted 2 in an instant are faces were covered we cockedar pistols and with
drawn sords stood waiting to receive the enemy

The bold words represents wrongly predicted words.

epochs for each of the aforementioned cases, and it might even exhibit
better performance gains for training over 100 epochs.

The proposed model demonstrated its effectiveness in predicting
the target transcriptions accurately. Table 2 depicts the model’s perfor-
mance in predicting the speech transcriptions on the LJ Speech dataset.
Two arbitrary target and predicted transcriptions were taken from the
test dataset when the CER and WER values were 3.7 and 14.39%,
respectively. The second row presents the correctly predicted tran-
scriptions, and the last contains three wrongly predicted words within
the target. The model failed to correctly predict characters within the
words ‘our’, ’cocked our’, and ‘swords’. Nevertheless, the proposed
model acquired a minimum CER of only 3.61% on the LJ Speech
dataset, meaning that 96.39% characters, including letters, punctu-
ation, special symbols and spaces of the target transcriptions, were
correctly predicted. Hence, the results of Table 2 justify its effectiveness
in the current study context.

6. Discussion

This study aimed to build a deep neural network-based model that
is computationally efficient and produces good outcomes. As a solution,
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Fig. 11. Model comparison as to the used residual neural network architecture.
this research suggests five layers of customized ResNets with seven
layers of a Bi-GRUs-based ASR model. The LibriSpeech ASR corpus,
which has 1000 hours of audio speech, and the LJ Speech datasets, were
used for training and testing the proposed model.

During the development of the proposed model, different architec-
tures of the ResNets layers were examined. The layer normalization
instead of bath normalization within the ResNets block produced better
results. The batch normalization in the network reduced both the train
and test losses; nonetheless, there was a significant reduction in terms
of WER and CER. Applying ResNets without batch normalization layers
improved the CER and WER by 73.3 and 53.93%, respectively, reducing
the train and test losses by 12.46 and 36.95%, respectively. Fig. 11
presents two different examined architectures of the ResNets layers.
The left residual block consists of two-layer normalization, dropout,
convolution layers using the GELU activation function, and a skip
connection according to the provided arrangement. Furthermore, the
residual block on the right employs two 2-dimensional (2D) batch nor-
malization convolution layers using the ReLU activation function and a
skip connection according to the illustrated arrangement. Interestingly,
the residual block on the left provided much better results; hence, the
proposed model implements the ResNets architecture according to it.

This study suggests replacing batch normalization layer with layer
normalization to achieve better ASR accuracy. As the batch size highly
influences batch normalization, the proposed model was trained with
different batch sizes to examine whether the obtained good perfor-
mances are sustained with an increase in the used batch size. A batch
normalization layer must compute the mean and variance to normalize
the previous outputs across the batch. Hence, for small batch sizes, its
estimation will be less accurate. Here, layer normalization is proposed
to address the shortcoming. This study examined three different batch
sizes: 10, 16 and 32. The variations of different batch sizes exhibited
some small effects on the model performance, as can be seen in Fig. 12.
For 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_100 and 𝑇 𝑒𝑠𝑡_𝐶𝑙𝑒𝑎𝑛 as the train and test datasets, the
proposed model achieved a slight improvement in terms of CER by 4.4
and 7.56% with a batch size of 10 compared to its value of 16 and
32, respectively. Overall, the model is capable of maintaining its good
performances regardless of the batch size.

The training data significantly influences the model’s accuracy and
increases the computational demands. The training on the
𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_500 dataset containing 500 hours of English audio speech
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Fig. 12. Obtained CER for different values of batch size.

led to the best performance. For 500 hours of audio data, the CER had
an increase of 43.37 and 26.67% relatively to the 100 and 500 hours of
audio data, respectively.

The number of ResNets and Bi-GRUs layers also demonstrated per-
formance variation. Using 3 and 5 layers of ResNets and Bi-GRUs
resulted in a 79.12% performance degradation in terms of CER com-
pared to the current 5 and 7 layers of the parameters previously
mentioned. However, in Wang et al. (2018), it was demonstrated that
the increase of the GRUs layers beyond 5 or more fails to enhance the
performance of a model based on Deep Speech 2 (Amodei et al., 2016).
The opposite findings of the current study are due to the insertion of
the proposed ResNets layers.

Replacing Adam for AdamW as the optimizer, and GELU instead of
ReLU as the activation function, demonstrated their usefulness in the
problem under study. AdamW overcame the limitation of Adam of its
wrong implementation of the weight decay, and hence, it showed better
performance. GELU combines approximated numbers and various func-
tions, e.g., hyperbolic tangent (𝑡𝑎𝑛ℎ), and has a negative coefficient that
changes to a positive coefficient as time goes on; for example, when 𝑥
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Fig. 13. Obtained CER for different values of 𝑝.

is more significant than zero, the output will be 𝑥, except for the range
0 (zero) to 1 (one), which tends toward a smaller 𝑦 value. Because of
its formulation, GELU showed better results than ReLU.

This study also examined the model performance in terms of dif-
ferent values of 𝑝, which is defined as a measure of the likelihood of
a component being zeroed within the dropout layers, as can be seen
in Fig. 13. The model performance seems to decrease gradually with
the increase in 𝑝 values. In terms of statistics, for 𝑇 𝑟𝑎𝑖𝑛_𝐶𝑙𝑒𝑎𝑛_100 and
𝑇 𝑒𝑠𝑡_𝐶𝑙𝑒𝑎𝑛 as the train and test datasets, the model achieved 7.98 and
12.2% of improvements in terms of CER with a 𝑝 of 0.1 compared to
its value of 0.15 and 0.20, respectively.

The current study also trained the proposed model on the LibriTTS
dataset (Zen et al., 2019), and the performance was less impressive
compared to the LibriSpeech and LJ Speech datasets, which can be
seen as a drawback of the proposed model. The LibriTTS contains 49
different characters instead of 29 and 31 of the used datasets. Text
mapping is one of the crucial steps for effective speech recognition.
With the increase in the number of characters in datasets, the proposed
model tends to become less effective in terms of accuracy. For example,
the special characters ’’, [, ;, ?, } and / were difficult to correctly
predict. So, the exhibited poor performance of the model, in this case,
was due to the increased number of characters in the data samples.

Compared with some already published state-of-the-art models, the
proposed model requires fewer parameters while maintaining excellent
CER values on the LibriSpeech and LJ Speech datasets. However, the
application of depthwise separable convolution layers could also reduce
the computational costs by a more significant margin (Han et al., 2020
and Kriman et al., 2020). The authors argue that this approach is likely
to fail to learn properly during training if the network size is small.
Also, a tremendous amount of training steps (around 1200 epochs) are
required to acquire state-of-the-art accuracy. The currently proposed
model achieved good accuracy with only 100 epochs of training and
is suitable for any network regardless of its size. Table 3 depicts a
comprehensive comparison of the proposed model with some already
published research based on the LibriSpeech corpus. The comparisons
were made regarding the number of parameters, CER and WER values.
It exhibited the best CER value among the mentioned works. However,
the obtained WER values are less competitive than other baselines
under consideration, which is the future scope of this research.

7. Conclusion

This study aimed to develop an effective ASR model without the
requirement of any external language model to provide good results
while relying on fewer computational resources. ResNets’s suitability
9

Table 3
Performance comparison of different published models on LibriSpeech 𝑇 𝑒𝑠𝑡_𝐶𝑙𝑒𝑎𝑛
dataset.

Models Parameters (M) WER (%) CER (%)

Likhomanenkoet al. (2021) 270 2.8∗ 𝑁∕𝐴
Park et al. (2019) 360 2.8∗ 𝑁∕𝐴
Synnaeve et al. (2019) 270 2.89 𝑁∕𝐴
Karita et al. (2019) 130 18.0 8.4
Moritz et al. (2019) 70 5.4 6.6
Wang et al. (2018) 35 24.55 7.06
Proposed model 33∗ 15.6 4.7∗

The values with∗ represent the best performance and N/A means not available, i.e.,
the authors did not use CER for model evaluation.

for smoothing model training and giving excellent performances was
validated. In addition, layer normalization instead of batch normal-
ization was shown to be more effective in ASR tasks in improving
the model’s performance. For optimizer, AdamW, instead of traditional
Adam, demonstrated better results. Also, the number of ResNets and
Bi-GRU layers used in the model played a crucial role in acquiring
competitive performance. The number of training datasets greatly influ-
enced the achievement of the best performance. For example, the model
achieved an improvement of CER by 43.37 and 26.67% while using 500
hours of audio data relative to the other used datasets. The proposed
model demonstrated superior performance using less computational
costs in CER by surpassing previous state-of-the-art models on the
LibriSpeech datasets. However, the proposed model was less effective
than other baselines regarding WER. A word is already incorrectly rec-
ognized if just one letter in it is not correct. Hence, with the tremendous
results on CER (4.7% means 95.3% characters, i.e., letters, punctuation
and spaces, were correctly recognized), it should be enough to justify
the efficiency of the model. Henceforth, the future emphasis would
be given to employing the model effectively on other datasets, for
example, on the MLS dataset suggested in Pratap, Xu, Sriram, Synnaeve,
and Collobert (2020), and the introduction of a 1D CNN network to
further reduce the computational costs.
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