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Abstract: Many relevant sound events occur in urban scenarios, and robust classification models
are required to identify abnormal and relevant events correctly. These models need to identify such
events within valuable time, being effective and prompt. It is also essential to determine for how
much time these events prevail. This article presents an extensive analysis developed to identify
the best-performing model to successfully classify a broad set of sound events occurring in urban
scenarios. Analysis and modelling of Transformer models were performed using available public
datasets with different sets of sound classes. The Transformer models’ performance was compared
to the one achieved by the baseline model and end-to-end convolutional models. Furthermore, the
benefits of using pre-training from image and sound domains and data augmentation techniques
were identified. Additionally, complementary methods that have been used to improve the models’
performance and good practices to obtain robust sound classification models were investigated. After
an extensive evaluation, it was found that the most promising results were obtained by employing a
Transformer model using a novel Adam optimizer with weight decay and transfer learning from the
audio domain by reusing the weights from AudioSet, which led to an accuracy score of 89.8% for the
UrbanSound8K dataset, 95.8% for the ESC-50 dataset, and 99% for the ESC-10 dataset, respectively.

Keywords: urban sounds’ classification; deep learning; convolutional neural network; data augmen-
tation; Adam optimizer

1. Introduction

Cities are consolidating their position as the central structure in human organizations
worldwide, and it is expected that, by 2050, 80% of the world’s population will live in urban
environments. This rapid trend of urbanization creates huge development opportunities to
improve citizens’ lives. Smart Cities take advantage of these opportunities by providing
new and disruptive city-wide services using sensing architectures deployed in the cities to
increase the quality of their dwellers [1].

Sound is an important source of information that can serve as an alternative or com-
plement to various forms of environmental sensing, such as imaging and video cameras.
Therefore, Smart Cities can take advantage of urban sound characterization due to the
possibility of being applied in diverse tasks such as noise pollution mitigation, security,
monitoring, context-aware computing, autonomous vehicle guidance, and surveillance,
just to name a few [1,2]. However, urban environments contain unlimited and co-occurring
sound events, which poses a difficulty due to the need to recognize complex acoustic scenes
from daily life. Therefore, rapid events that require immediate action often go unnoticed
by city authorities. Thus, the scientific community has been developing different computa-
tional algorithms to acquire, analyse, and classify urban sounds automatically. Nonetheless,
the combination of multiple classes, abnormal noise conditions, and the multiplicity of
sound sources are still limitations for efficiently completing the task [1,3–5].
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Initially, researchers focused on using handcrafted features to find which would pro-
vide more discriminating characteristics to classify different sound events [6–9]. Later,
with the growth of Deep-Learning (DL)-based approaches, deep features have shown a
higher capacity to give more relevant information than handcrafted features. Thus, Con-
volutional Neural Network (CNN)s have been proposed due to their ability to learn local
and high-level features on the image space [6,8]. Furthermore, most current approaches
explore the use of pre-trained CNNs, by redefining the last layers to address the sound
classification problem [5,10]. The downside is the inability to adequately capture the long
time dependencies in an audio clip [11]. Other works proposed solutions based on CNNs
supported by Recurrent Neural Network (RNN)s [11,12] to be able to save historical in-
formation, allowing taking into account long temporal information [11], and by exploring
Long Short-Term Memory (LSTM) models [4,12] to prevent the vanishing gradient problem.
However, these models are not able to perform calculations in parallel. More recently,
attention mechanisms have been incorporated to focus on semantically important parts
of the sound under study [13–17]. Lately, solutions based on attention models [11,18],
particularly on Transformers [18–22], are being explored.

Transformers have a network architecture based exclusively on attention mechanisms.
This architecture, because it can make predictions based entirely on attention mechanisms,
performs parallel computations and incorporates the global feature context, allowing the
achievement of reliable results. These characteristics have made it a very appealing architec-
ture to be explored in various areas such as Natural Language Processing (NLP), computer
vision, and more recently, sound-related areas. Nonetheless, to achieve high-accuracy
results, Transformers require vast amounts of data. In addition, some new augmentation
techniques have been proposed to avoid overfitting, diversify the training process, and
solve the scarcity of data [5,23]. However, the optimal architecture for each application
has not yet been established, and many problems remain, namely identifying the models
performing better in a wide set of audio datasets, the most useful augmentation techniques,
and the most challenging sound classes to classify. According to the “no free lunch” theorem
(Wolpert and Macready [24]), no optimization algorithm is capable of achieving the best
performance for all possible applications, suggesting that, if all optimization techniques
were averaged over all potential objective functions, their performance would be equally
effective. This optimization possibility also means that the most suitable optimization
technique for a particular application allows for obtaining a good model.

Moreover, there is an open question regarding the use of these techniques. This
study addressed this question quantitative and qualitatively by evaluating several model
architectures on different datasets and determining the most general-purpose architecture.
Complementary parameters and data augmentation methods were also analysed to assess
the performance in all evaluated sound datasets. Finally, a group of practices was setup
to determine the best model for sound classification tasks. With this in mind, this article
is organized as follows: Section 2 presents a literature review of recent related works.
Section 3 presents the methodology followed in the current study. Section 4 describes
the experimental validation and discusses the results of the performed experiments for
the sound classification models under study and the corresponding augmentation and
transfer learning techniques by establishing comparisons among attention, convolution,
and feature-based models. Section 5 discusses the results as an aggregated summary of the
findings and presents the conclusions and sketches of future work.

2. Related Works

This section identifies major works proposed to tackle the problem of sound classification.

2.1. CNN for Audio Classification

Like the image classification problem, a CNN is a natural architecture for audio
classification. Therefore, researchers explored the use of this architecture, namely: Salamon
and Bello [23], by employing a Deep Convolutional Neural Network (DCNN); Das et al. [3]
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explored the use of a CNN model with a specific Additive Angular Margin Loss (AAML)
and also explored a CNN combined with stacked features such as Mel Frequency Cepstral
Coefficients (MFCC) and Chromagram; Mu et al. [6] introduced the Temporal-Frequency
Attention-Based Convolutional Neural Network (TFCNN) model, a CNN-based model
associated with attention mechanisms, among others.

In data augmentation, noise injection, shifting time, changing pitch, and speed are
the most common techniques used to solve the scarcity of labelled data for training. Ad-
ditionally, Salamon and Bello [23] proposed four different augmenting deformations to
apply to the training set: time stretching to slow down or speed up the audio sample, with
the pitch remaining unchanged; pitch shifting, where the audio sample’s pitch is raised or
lowered while keeping the duration unchanged; dynamic range compression, to compress
the dynamic range of the audio using parameterizations from the Dolby E standard and the
Icecast online radio streaming server; background noise addition, which is similar to noise
injection, but where recordings of background sounds from different scenes are mixed with
the audio sample to make models more robust to intermixed sounds.

2.2. RNN for Audio Classification

CNNs combined with RNNs are commonly explored to model audio in sound classifi-
cation problems. Das et al. [4] used an LSTM in combination with spectral features obtained
from audio training segments. In the research presented by Das et al. [4], a comparative
study between a CNN and an LSTM model using different combinations of spectral features
was described.

Other studies were focused on incorporating attention mechanisms to improve the
Convolutional Recurrent Neural Network (CRNN) models’ performance, such as the works
of Zhang et al. [13,14], Qiao et al. [15]. The study presented by Zhang et al. [13] incorporates
temporal attention for reducing the impact of background noise and channel attention
mechanisms, aiming to achieve more attention on the filters and allowing for the detection
of the essential characteristics of the sounds under study.

Later, Zhang et al. [14] used a frame-level attention mechanism to focus on critical
temporal events while reducing the impact of background noise. Moreover, applying the
attention mechanism to lower layers helped to preserve lower-level features. Furthermore,
employing attention for RNN layers led to the highest accuracy results. On the other hand,
the sigmoid function used as a scaling function led to better attention weights than the
Softmax function when applying attention at the CNN layers.

To demonstrate the advantages of an attention mechanism, Qiao et al. [15] developed
a CRNN model with a temporal-frequency attention mechanism and a CRNN model using
sub-spectrogram segmentation-based feature extraction and score level fusion.

Most models employ some degree of data augmentation in the training data, such as
pitch shift, time stretch, and pitch shift with time stretch, to improve their performance.

2.3. Transformers for Audio Classification

Motivated by the limitations of capturing long-range dependencies, several authors
have recently adopted the use of attention mechanisms to address the sound classification
problem. For example, Mu et al. [6] proposed a TFCNN that reduces the influence of
background noise and irrelevant frequency bands due to the frequency and temporal
attention mechanisms. Several hybrid architectures combining Transformers with CNNs
are commonly used, for example in the work of Kong et al. [11], being a common standard
to exploit the potentialities of both architectures.

Regarding Pure Transformers, Elliott et al. [19], Wyatt et al. [20], and Devlin et al. [25]
explored the advantages of Bidirectional-Encoder-Representations-from-Transformers (BERT)-
based models, based on the work of Vaswani et al. [26], having as the input a given token
summed with the position embeddings, in order to address the sound classification problem
at the edge.
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Similarly, Gong et al. [9] presented an Audio Spectrogram Transformer (AST) purely
based on the attention-based model. Park et al. [21] also explored AST by using a Many-
to-Many Audio Spectrogram Transformer (M2M-AST), allowing output sequences with
different resolutions for multi-channel audio inputs. To reduce the training complexity, Ak-
bari et al. [18] presented a regularization technique called DropToken in combination with
a Video–Audio–Text Transformer (VATT) model, which achieved competitive performance.
Koutini et al. [22] also presented a regularization technique named Patchout that randomly
erases patch chunks from the input sequence.

Both on Hybrid and Pure Transformers, the model’s performance can be improved
while effectively avoiding overfitting through transfer learning, erasing a certain number
of frequency bins or time frames, gain change, and random patch spectrograms erasing, to
train audio classification Transformer-based models.

3. Proposed Approach

To evaluate the impact of several model architectures and complementary methods
that have been proposed, extensive experiments were conducted using feature-based
models, mainly CNN architectures. Transformers with attention mechanisms were also
extensively evaluated to determine the most competitive model for urban sound classifica-
tion and obtain a set of good practices that perform well in most of the current architectures
and datasets.

3.1. Feature-Based Models for Audio

The base model architecture consists of three fully connected layers with 256 units
with ReLU as the activation function and one dense layer of 10 units using the Softmax
function. Furthermore, there is a dropout layer between the fully connected layers. The
scheme of this base model’s architecture is shown in Figure 1.

Figure 1. Baseline model’s architecture, where n is the number of classes.

The fully connected layer has the neurons connected to every neuron of the preceding
layer, making it deeply connected with its previous layer. The dropout layer randomly
sets a percentage of the activations to 0 (zero) with a frequency rate at each step during
training time. It scales up the other input values by 1/(1-rate) to the total sum remaining
unchanged and prevent overfitting.

Different experiences were conducted to study the influence of the change rate on the
dropout layer by employing different rate values, mainly [0, 0.2, 0.4, 0.6, and 0.8]. Besides
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improving the models’ performance, we also explored the increase of models’ depth by
adding two extra layers: one fully connected layer and one dropout layer.

3.2. CNN for Audio

Residual Neural Network (ResNet) was introduced by He et al. [27] and uses a feedfor-
ward neural network with shortcut connections to solve the vanishing gradient problematic
and mitigate the degradation of Deep Neural Network (DNN)s with several layers. There-
fore, ResNet consists of a stack of residual blocks, an ensemble of convolutional layers
followed by a batch normalization layer and a ReLU activation function with shortcut
connections that skips a stack of layers and adds the input directly before the last ReLU
activation function of the stack. Figure 2 represents a residual block. ResNet-50 was the
model’s architecture used in this study.

Figure 2. Residual block used in ResNet (adapted from He et al. [27]).

Dense Convolutional Network (DenseNet) was introduced by Huang et al. [28] and
used a dense connectivity pattern that directly connects all layers with matching feature
map sizes to solve the vanishing gradient problem. Therefore, each layer obtains additional
input from all preceding layers and passes on its feature maps to all subsequent layers. The
final classifier can make decisions based on all feature maps in the network. The advantages
of DenseNets are the flow of information and gradients throughout the network, the direct
access that each layer has to the gradients from the loss function, and the original input
signal facilitating the training of DCNN. DenseNet-201 was the network architecture used in
this study, which has 6, 12, 48, and 32 convolutional layers in each dense block, respectively;
see Figure 3.

Figure 3. DenseNet model’s architecture.

Inception was developed by Szegedy et al. [29] to create a network that uses extra
sparsity and exploits the current hardware by utilizing dense matrices to increase the DNNs’
depth and width, i.e., the number of units per level of depth, and consequently, improve
the models’ performance. Therefore, the base ideas behind the Inception architecture were
the need to find how an optimal local sparse structure in a convolutional network can
be approximated and covered by readily available dense components. Furthermore, to
judiciously apply dimension reduction and projection whenever, the computational require-
ments would otherwise increase too much. Thus, the network consists of several Inception
layers, which are a combination of a 1 × 1 convolutional layer, a 3 × 3 convolutional layer,
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and a 5 × 5 convolutional layer with their output filter banks concatenated into a single
output vector that serves as the input of the next layer, stacked upon each other with
occasional max-pooling layers with a stride of 2. Besides, these layers should be used only
at higher layers to make the model memory efficient during training, keeping the other
convolutional layers. The main benefit of this architecture is that it makes it possible to
increase the width of the network without uncontrollably increasing the computational
complexity. However, if the architecture is scaled up, most computational gains can be
immediately lost.

Inception-v3, which was also developed by Szegedy et al. [30], was the architecture
used in this work; see Figure 4.

Figure 4. Inception-v3 model’s architecture.

3.3. Transformers for Audio

The Transformer model was proposed by Vaswani et al. [26] and consists of a trans-
duction model that relies entirely on an attention mechanism to compute representations
of its input and output. The model’s architecture consists of an encoder and a decoder. The
encoder maps an input sequence of symbol representations to a sequence of continuous
representations, and the decoder generates an output sequence of symbols one at a time.
Furthermore, the model is auto-regressive at each step, because it uses the previously
generated symbols as additional input when generating the next one.

The architecture employed here is based on the AST model (Gong et al. [9]), which
consists of a patch embedding layer that converts the input spectrogram into a sequence of
patches and flattens it into a one-dimensional patch. Then, a trainable positional embedding
is added to each patch embedding in order to capture the input order information and the
temporal order of the patch sequence. In addition, a classification token is appended at
the beginning of the sequence. The resulting sequence serves as the input for the standard
Transformer’s encoder part. The encoder’s output of the classification token serves as
the audio spectrogram representation, where a linear layer will map the labels using the
sigmoid activation function for classification. Figure 5 illustrates the architecture of the
model used in this study.

Figure 5. AST model’s architecture proposed by Gong et al. [9].
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4. Experimental Validation

In the experimental validation, a set of defined hyperparameters were extensively
evaluated among the considered models and the corresponding model’s architecture
changed to obtain the best-performing model. Several datasets and metrics were used to
assess the performance of the studied models.

4.1. Datasets

In this study, three significant datasets were used to conduct the experiments and
evaluate the performance of the models under study according to the official splits by
performing k-fold cross-validation. The UrbanSound8K, ESC-10, and ESC-50 datasets
were selected due to being the most popular datasets used in Environmental Sound Clas-
sification (ESC). The given possibility is to examine the models’ behaviour when the
number of classes is maintained, but the composition and name of the classes changes, and
when there is an increase in the number of classes. The UrbanSound8K dataset contains
8732 audio samples from 10 urban sound classes not uniformly distributed with a max-
imum of 4 s; the ESC-10 dataset is formed by 2000 uniformly distributed samples from
10 classes, with 40 samples per class. The ESC-50 dataset is composed of 400 balanced
samples from 50 audio classes, with 40 samples per class. The audio of both ESC-10 and
ESC-50 datasets have 5 s of duration.

4.2. Experimental Setup and Baselines

To establish a working baseline to compare end-to-end CNN and Transformer model
variations, the first step was to determine by extensive evaluation of the hyperparame-
ters and architecture variation, a feature-based audio classification model that explores
handcrafted audio features to discriminate the sound classes under study.

Baseline model: The baseline determination was achieved by several experiences that
evaluated several potential variations of the baseline model (Figure 1), mainly the network
depth, features to be used, dropout and learning rates, optimizers, and only attaining the
top performing for each dataset. Thus, the final model was obtained after 100 epochs of
training using Nadam optimizer, a dropout of 0.2 for the ESC datasets and of 0.6 for the
UrbanSound8K dataset, a learning rate of 0.001, and two fully connected hidden layers
with a size of 256.

CNN models: To determine the most advantageous end-to-end convolutional model,
the ResNet, DenseNet, and Inception models had their performance evaluated with no
pre-training, pre-training from ImageNet, and data augmentation using the combination of
time stretch and pitch shift.

Transformer models: The best Transformer-based model was obtained by evaluating
the effect of pre-training, in particular the difference between just distilling knowledge
from an image domain model, ImageNet, or two models: one from the image domain,
ImageNet, and the other from the audio domain, AudioSet. Furthermore, the influence
of changing the batch size was explored, and finally, the differences that the various data
augmentation techniques could give rise to were accessed.

4.3. Metrics

The performance of all models was evaluated using six different metrics: Accuracy,
Area Under the Receiver Operating Characteristic (ROC) Curve (AUC), Precision, Recall,
and the micro and macro F1-score, which was essential to compare them and select the
best-performing model. All metric were implemented using the scikit-learn library.

Accuracy measures how often an algorithm classifies a data point correctly, so it is the
number of correctly classified data points out of all data points. Mathematically, it can be
defined as:

Accuracy =
nº of correct predictions
Total nº of predictions

. (1)
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AUC measures the ability of a classifier to distinguish between classes. It integrates
the ROC curve graph that evaluates the model’s performance in all classification thresh-
olds. Therefore, it measures how well predictions are ranked invariant to classification
thresholds, measuring the quality of the model’s prediction independent of the chosen
classification threshold.

Precision gives the number of correctly classified data points out of all points identified
as being of a certain class. In binary classification, the problem can be defined as:

Precision =
TP

TP + FP
, (2)

where TP is the number of true positives and FP is the number of false positives.
Recall gives the number of correctly classified data points out of all points belonging

to the class on the dataset. In binary classification, the problem can be defined as:

Recall =
TP

TP + FN
, (3)

where FN is the number of false negatives.
F1-score corresponds to the harmonic mean of Precision and Recall, which allows

assessing model performance based on the values of two metrics:

F1-score =
2(Precision ∗ Recall)

Precision + Recall
=

TP
TP + 1

2 (FP + FN)
. (4)

In multiclass problems, it is possible to define different averaging types to calculate the
n F1-score metric. One is the micro average F1-score, which computes the global average
score by summing all values across all classes for True Positive (TP)s, False Negative (FN)s,
and False Positive (FP)s and then plugs it in the F1-score Equation (4). Furthermore, there
is an F1-score calculated using an average macro scheme corresponding to the computation
of the arithmetic mean of all instances per class F1-score.

4.4. Results and Discussion

With the conducted experiments on the different datasets used and variations of the
models’ architecture, following an exhaustive hyperparameter tuning and refinement to
fine-tune the models to obtain the best results, it was possible to observe that Transformers
led to an excellent result in all datasets, surpassing the baseline by almost 36.9 percentage
points (pp) in terms of accuracy, beating the end-to-end convolution models by a margin
of 5.4 pp, on average. The aggregated results are presented in Table 1, and in Table 2 is
indicated the required Graphics Processing Unit (GPU) memory capacity and computa-
tional time, which encompasses the training and inference time, aggregated by each dataset
under study.
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Table 1. Summary and discussion of the studied models.

Model DA PT-I PT-A Metrics Discussion

Dataset: ESC-10

Baseline model + mms60
+ Nadam + dr: 0.2 - - - acc: 74.8%, AUC: 94.8%, mf1: 74.8%,

Mf1: 74.3%, prec: 77.7%, rec: 73.3%.
The combination of features gives more discriminating information to
the baseline model.

DenseNet + AdamW - - - acc: 89.8%, AUC: 98.9%, mf1: 89.8%,
Mf1: 89.3%, prec: 91.5%, rec: 89.8%. Improves the baseline performance by 13.23 pp. on average.

ResNet + AdamW - X - acc: 94.0%, AUC: 99.8%, mf1: 94.0%,
Mf1: 93.8%, prec: 94.8%, rec: 94.0%.

The use of pre-training from ImageNet improves, on average, the end-
to-end model performance by 3.55 pp.

DenseNet + Adam X X - acc: 95.0%, AUC: 99.8%, mf1: 95.0%,
Mf1: 94.9%, prec: 95.8%, rec: 95.0%.

The addition of data augmentation techniques provides a slight improve-
ment of 0.85 pp, on average.

Transformer + AdamW X - - acc: 52.8%, AUC: 91.8%, mf1: 52.8%,
Mf1: 50.7%, prec: 61.7%, rec: 52.8%.

The use of a Transformer model without pre-training cannot give com-
petitive results.

Transformer + AdamW X X - acc: 93.8%, AUC: 99.8%, mf1: 93.8%,
Mf1: 93.5%, prec: 98.2%, rec: 93.8%.

The use of pre-training from ImageNet gives the Transformer model an
average boost of 35.05 pp, showing the need for large datasets to train.

Transformer + AdamW - X X acc: 98.8%, AUC: 100%, mf1: 98.8%,
Mf1: 98.7%, prec: 99.7%, rec: 98.8%.

Using pre-training from ImageNet and AudioSet gives a better perfor-
mance than just an ImageNet pre-trained Transformer with an average
increase of 3.65 pp.

Transformer + Adam X X X acc: 99.0%, AUC: 100%, mf1: 99.0%,
Mf1: 99.0%, prec: 99.9%, rec: 99.0%.

The addition of data augmentation to the pre-trained network from both
domains gives, on average, a slight improvement of 0.18 pp. The aver-
age boost for the baseline model is 21.03 pp and for the best end-to-end
model is 3.40 pp.

Dataset: ESC-50

Baseline model + mfcc-
stft80 + Nadam + dr: 0.2 - - - acc: 38.1%, AUC: 82.4%, mf1: 38.1%,

Mf1: 36.2%, prec: 43.9%, rec: 33.9%.
The combination of features gives more discriminating information to
the baseline model.

DenseNet + Adam - - - acc: 76.1%, AUC: 98.7%, mf1: 76.1%,
Mf1: 75.4%, prec: 78.0%, rec: 76.1%. Improves the baseline performance by 34.63 pp, on average.

ResNet + Adam - X - acc: 88.2%, AUC: 99.6%, mf1: 88.2%,
Mf1: 87.7%, prec: 89.6%, rec: 88.2%.

The use of pre-training from ImageNet improves, on average, the end-
to-end model performance by 10.18 pp.

ResNet + Adam X X - acc: 90.1%, AUC: 99.6%, mf1: 90.1%,
Mf1: 89.9%, prec: 91.2%, rec: 90.1%.

The addition of data augmentation techniques gives a small increase of
1.58 pp, on average.

Transformer + AdamW X - - acc: 43.9%, AUC: 93.6%, mf1: 43.9%,
Mf1: 42.4%, prec: 46.8%, rec: 43.9%.

The use of a Transformer model without pre-training is not capable of
giving good results; however, they are better than the baseline model.

Transformer + AdamW X X - acc: 88.6%, AUC: 99.6%, mf1: 88.6%,
Mf1: 88.4%, prec: 92.7%, rec: 88.6%.

The use of pre-training from ImageNet gives a huge performance boost
of 38.67 pp, on average, compared to the Transformer model without
pre-training.

Transformer + AdamW - X X acc: 95.4%, AUC: 99.9%, mf1: 95.4%,
Mf1: 95.3%, prec: 97.6%, rec: 95.4%.

Using pre-training from ImageNet and AudioSet gives an average im-
provement of 5.42 pp compared to the ImageNet pre-trained Trans-
former.

Transformer + AdamW X X X acc: 95.8%, AUC: 99.9%, mf1: 95.8%,
Mf1: 95.6%, prec: 97.8%, rec: 95.8%.

The addition of data augmentation gives a small improvement of 0.28
pp, on average. The average boost is for the baseline model of 51.35 pp
and of 4.95 pp for the best end-to-end model.

Dataset: UrbanSound8K

Baseline model + mmsqc
+ Nadam + dr: 0.6 - - - acc: 61.1%, AUC: 88.9%, mf1: 61.1%,

Mf1: 63.2%, prec: 73.1%, rec: 49.2%.
The combination of features gives more discriminating information to
the baseline model.

DenseNet + AdamW - - - acc: 74.2%, AUC: 95.4%, mf1: 74.2%,
Mf1: 75.6%, prec: 75.2%, rec: 74.2%. Improves the baseline performance by 12.03 pp, on average.

DenseNet + Adam - X - acc: 83.3%, AUC: 97.7%, mf1: 83.3%,
Mf1: 84.4%, prec: 84.1%, rec: 83.3%.

The use of pre-training from ImageNet improves the end-to-end model
performance by 7.88 pp, on average.

ResNet + Adamax X X - acc: 82.2%, AUC: 97.4%, mf1: 82.2%,
Mf1: 83.0%, prec: 82.5%, rec: 82.2%. The use of data augmentation techniques was detrimental.

Transformer + Adamax X X X acc: 89.8%, AUC: 98.6%, mf1: 89.8%,
Mf1: 90.4%, prec: 93.8%, rec: 89.8%.

The Transformer model pre-trained with datasets from both domains
and using data augmentation gives an average boost of 25.93 pp regard-
ing the baseline model and of 6.02 pp compared to the best end-to-end
model.

DA: Data Augmentation; PT-I: Pre-Trained ImageNet; PT-A: Pre-Trained AudioSet; dr: dropout rate; acc: accuracy;
AUC: Area Under the receiver operating characteristic Curve; mf1: micro F1-score; Mf1: macro F1-score; prec:
precision; rec: recall; pp: percentage points; mmsqc: MFCC + Mel spectrogram + Chroma STFT + Chroma CQT +
Chroma CENS with 40 bins; mms60: MFCC + Mel spectrogram + Chroma STFT with 60 bins; mfccstft80: MFCC +
Chroma STFT with 80 bins.
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Table 2. GPU capacity and computational time required by the studied models.

Model DA PT-I PT-A GPU Capacity (MiB) Computational Time (min)

Dataset: ESC-10

Baseline model + mms60 +
Nadam + dr: 0.2 - - - - 8

DenseNet + AdamW - - - 5913 29

ResNet + AdamW - X - 3591 18

DenseNet + Adam X X - 5913 907

Transformer + AdamW X - - 39,444 32

Transformer + AdamW X X - 39,444 37

Transformer + AdamW - X X 39,444 34

Transformer + Adam X X X 39,444 32

Dataset: ESC-50

Baseline model + mfccstft80
+ Nadam + dr: 0.2 - - - - 25

DenseNet + Adam - - - 5904 130

ResNet + Adam - X - 3566 66

ResNet + Adam X X - 3566 886

Transformer + AdamW X - - 39,712 74

Transformer + AdamW X X - 39,712 64

Transformer + AdamW - X X 39,712 68

Transformer + AdamW X X X 39,712 65

Dataset: UrbanSound8K

Baseline model + mmsqc +
Nadam + dr: 0.6 - - - - 46

DenseNet + AdamW - - - 5902 762

DenseNet + Adam - X - 5902 733

ResNet + Adamax X X - 3564 2541

Transformer + Adamax X X X 39,716 370

DA: Data Augmentation; PT-I: Pre-Trained ImageNet; PT-A: Pre-Trained AudioSet; dr: dropout rate; mmsqc:
MFCC + Mel spectrogram + Chroma STFT + Chroma CQT + Chroma CENS with 40 bins; mms60: MFCC + Mel
spectrogram + Chroma STFT with 60 bins; mfccstft80: MFCC + Chroma STFT with 80 bins.

After a detailed results’ analysis, the following statements can be concluded for each
of the model’s categories:

Baseline models: Out of the conducted experiments (Figure 6), the Nadam optimizer
yielded the best results in most metrics for a single or a group of features extracted from
the UrbanSound8K dataset, as well as for the ESC datasets, when features were used
in combination. Concerning the input features, the single feature that provided better
results in most metrics was MFCC, standing out especially: MFCC with 80 MFCCs for the
UrbanSound8K dataset and with 60 MFCCs to the ESC datasets. Nonetheless, the results
given by the models with a single feature input were surpassed when a group of features
was used. The combination of MFCC, Mel spectrogram, Chroma Short-Term Fourier
Transformation (STFT), Chroma Constant Q-Transform (CQT), and Chroma Chroma Energy
Normalized Statistics (CENS) with 40 bins was the one that gave the best results in most
metrics for the UrbanSound8K dataset and the second-best result out of all experiences for
the ESC-10 dataset.
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Figure 6. Graphs of the evolution of AUC (on the left) and loss function (on the right) along the
epochs for the best baseline model for each used dataset with a single and a combination of features
as the input (dr: dropout rate, mmsqc: MFCC + Mel spectrogram + Chroma STFT + Chroma CQT
+ Chroma CENS with 40 bins, mms60: MFCC + Mel spectrogram + Chroma STFT with 60 bins,
mfccstft80: MFCC + Chroma STFT with 80 bins).

CNN models: Analysing the results for the CNN pre-trained models with the Ur-
banSound8K dataset (Figure 7), it can be concluded that for the DenseNet and Inception
models, Adam was the most beneficial optimization function; however, for ResNet, the best
results were achieved when Adamax was chosen as the optimization function. Evaluating
the performance of the best randomly initialized models, it was possible to conclude that,
for all metrics, the pre-trained models provided better results with a difference of around
10 pp in most metrics. In addition, it was noticeable that the optimizer providing the
best results for each architecture varied, and particularly for ResNet, Adam was the more
suitable optimization function. On the other hand, for the DenseNet and Inception models,
the AdamW optimization function gave the best results. Nonetheless, DenseNet gave
the best results in most metrics for the randomly initialized models and in all metrics for
the models with pre-trained model weights. For the ESC-50 dataset (Figure 8), for the
ResNet and Inception models, the optimizer that provided the best results was Adam and
for DenseNet was AdamW, which does not correspond to what was previously observed
for the UrbanSound8K dataset. Regarding the ESC-10 dataset (Figure 9), Adam was the
preferable optimization function for the DenseNet and Inception models; however, for
ResNet, AdamW was the most beneficial one.

Out of all models for both ESC datasets, ResNet gave the best results in most metrics
for the pre-trained models, but when no pre-training was used, once again, DenseNet was
the more suitable model. It was also evident that the non-pre-trained models showed worse
behaviour than the corresponding pre-trained models, with a difference of around 17 pp
for the ESC-50 dataset and around 8 pp for the ESC-10 dataset, respectively.

The best pre-trained model for each dataset was used to test the influence of including
data augmentation techniques in the training process, which was not beneficial in all cases.
Nonetheless, for the ESC datasets, the best results were obtained when these techniques
were employed, providing benefits ranging between 1 and 4 pp.
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Figure 7. Evolution of the accuracy (on the left) and of the loss function (on the right) along the
epochs for the studied models with the optimizer that led to the best results for each model for the
UrbanSound8K dataset (no PT: not Pre-Trained).

Figure 8. Evolution of the accuracy (on the left) and of the loss function (on the right) along the
epochs for the studied models with the optimizer that led to the best results for each model for the
ESC-50 dataset (no PT: not Pre-Trained).

Figure 9. Evolution of the accuracy (on the left) and of the loss function (on the right) along the
epochs for the studied models with the optimizer that led to the best results for each model for the
ESC-10 dataset (no PT: not Pre-Trained).

Transformers: Analysing the achieved results for the ESC datasets, it can be concluded
that pre-training significantly impacted the results, leading to an improvement of around
43 pp in most used metrics between the no pre-trained and the pre-trained using ImageNet.
However, these results were further improved by using both ImageNet and AudioSet
pre-training with a difference of 7.2 pp for the ESC-50 dataset and of approximately 5.3 pp
for the ESC-10 dataset in 4 out of the 6 metrics used, showing the importance of having
models pre-trained in the same domain of the datasets under study.

Out of all the conducted experiments, the best results were obtained with a Trans-
former pre-trained using ImageNet and AudioSet, a batch size of 48, and SpecAugment
as the data augmentation. However, there was no consensus concerning the optimization
function: AdamW for the ESC-50 dataset and Adam for the ESC-10 dataset were the most
suitable ones. The corresponding confusion matrices revealed that, for the ESC-50 dataset
(Figure 10), there were 17 classes with an accuracy of 100%, 29 with an accuracy equal
to or superior to 90%, and only 4 classes with an accuracy inferior to 90%, which were
washing machine, footsteps, wind, and helicopter sounds, with the lowest result being for
the helicopter class with an accuracy of 75%. Concerning the ESC-10 dataset (Figure 11),



Sensors 2022, 22, 8874 13 of 17

rain and crackling fire were the only classes that did not achieve 100%. The sounds from
the rain class were misclassified as belonging to the crackling fire and helicopter classes,
and crackling fire sounds were misclassified as rain and helicopter. However, both classes
achieved an accuracy of 95%.

Using the best Transformer configuration, similar results were obtained for the Ur-
banSound8K dataset with the Adamax and AdamW optimization functions. However,
Adamax was considered the preferable optimization function due to a more linear be-
haviour throughout the training epochs than AdamW. Furthermore, by analysing the
confusion matrix shown in Figure 12, it is possible to identify that air conditioner, drilling,
engine idling, and jackhammer were the most challenging classes. Nonetheless, besides all
instances identified by the model, gunshot sounds belonged to the only class of sounds
not mistaken for another class, and no class was confused as being of the gunshot class.
Compared with the baseline and the CNN models, the improvement was, on average, of
all metrics, of 51.4 pp and 4.95 pp for the ESC-50 dataset, of 21.0 pp and 3.40 pp for the
ESC-10 dataset, and of 25.9 pp and 6.02 pp for the UrbanSound8K dataset, respectively.

Figure 10. Confusion matrix for the ESC-50 dataset.
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Figure 11. Confusion matrix for the ESC-10 dataset.

Figure 12. Confusion matrix for the UrbanSound8K dataset.

Considering the results in Table 2, it is possible to conclude that, in terms of com-
putational time, the baseline models were the fastest and did not require the use of a
GPU; however, the models led to the poorest performance. As for the best pre-trained
CNN model, even though they required less GPU memory capacity compared to the best
Transformer model, the performance and computational time were far worse. These re-
sults confirm the superiority of the Transformer models, which can give highly reliable
predictions relatively fast. The only downside is the required memory capacity.

5. Conclusions and Future Work

This study explored different CNN model variations, particularly DenseNet, ResNet,
and Inception, with features learned from an input spectrogram and Transformer model
variations, and compared them with different baseline models based on a simple set of
dense layers. Several model parameters and strategies were evaluated: network depth,
architecture, transfer learning from ImageNet and AudioSet, data augmentation strategies,
fine-tuning hyperparameter, dropout rate, and optimization functions.
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Pre-training based on ImageNet significantly increased the models’ performance re-
gardless of the chosen architecture. Furthermore, using data augmentation techniques,
depending on the used dataset or chosen architecture, might not always be advantageous
due to the dramatic modification in sound characteristics that approximate one class to
another. However, the SpecAugment technique proved to be the more effective of the
studied models and datasets. Regarding the other experiments, the batch size was not a
very significant parameter, apart from alleviating the memory footprint required to train the
evaluated models. Concerning the various studied optimization functions, they dramati-
cally depend on the model architecture, dataset, input, pre-training, and data augmentation
used. These findings are in concordance with what the “no free lunch” theorem states.
However, three optimization functions consistently gave the best performances: for the
baseline models, the Nadam optimizer was the most suitable; for the end-to-end models,
the Adam optimizer; for the Transformer, the best optimization function was AdamW for
the ESC-50 dataset, Adam for the ESC-10 dataset, and Adamax for the UrbanSound8K
dataset, respectively. This demonstrates that, although no optimization function is equally
good for all situations, it is possible to find one more adequate for each circumstance, which
reaffirms the “no free lunch theorem”.

However, there was a common difficulty between all the models concerning the
accuracy per class for the UrbanSound8K dataset. All models exhibited lower accuracy
values in the air conditioner, engine idling, jackhammer, and drilling classes, which must be
similar because they were mostly misclassified as being of each other’s classes. In addition,
having the gunshot class as the most accessible class was also a common point among all
studied models. Regarding the ESC datasets, the most challenging class was the helicopter
class, which presented the low scores in most situations. The most straightforward class
was sneezing for the ESC-10 dataset and toilet flush for the ESC-50 dataset.

As a final model overview, Transformer was shown to be the most capable of providing
better results by offering significant improvements compared with the best baseline and
end-to-end model for each studied dataset, with an average difference between all metrics
of 32.8 pp and 4.79 pp, respectively. In this work, it was not possible to achieve state-of-the-
art results. However, very competitive results were obtained by providing the second-best
result on the ESC-10 dataset with only a difference of 0.22 pp to the top outcome, the
third-best score for the ESC-50 dataset, and the fourth-best for UrbanSound8K considering
the official splits.

The differences between the baseline and the other models were not only due to
the less complex architecture, but also due to the inferiority of the handcrafted features
compared to deep features to produce more distinguishable representations of the different
sounds. The superiority of the Transformer models compared with the other implemented
models can be explained by the attention mechanisms focusing more on the most important
distinguishable parts of the sound.

For future work, mainly to improve the model’s robustness, the introduction of new
augmentation techniques should be taken into account, such as Patchout or random erase.
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Abbreviations
The following abbreviations are used in this manuscript:

AAML Additive Angular Margin Loss
AST Audio Spectrogram Transformer
AUC Area Under the Receiver Operating Characteristic (ROC) Curve
BERT Bidirectional Encoder Representations from Transformers
CENS Chroma Energy Normalized Statistics
CNN Convolutional Neural Networks
CQT Constant Q-Transform
CRNN Convolutional Recurrent Neural Networks
DCNN Deep Convolutional Neural Networks
DenseNet Dense Convolutional Network
DL Deep Learning
DNN Deep Neural Network
ESC Environmental Sound Classification
FN False Negative
FP False Positive
GPU Graphics Processing Unit
LSTM Long Short-Term Memory
M2M-AST Many-to-Many Audio Spectrogram Transformer
MFCC Mel Frequency Cepstral Coefficients
NLP Natural Language Processing
pp percentage points
ResNet Residual Neural Network
RNN Recurrent Neural Networks
STFT Short-Term Fourier Transformation
TFCNN Temporal-Frequency attention-based Convolutional Neural Network
TP True Positive
VATT Video–Audio–Text Transformer
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10. İlker Türker.; Aksu, S. Connectogram—A graph-based time dependent representation for sounds. Appl. Acoust. 2022, 191, 108660.

[CrossRef]
11. Kong, Q.; Xu, Y.; Plumbley, M. Sound Event Detection of Weakly Labelled Data with CNN-Transformer and Automatic Threshold

Optimization. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2450–2460. [CrossRef]

http://doi.org/10.1007/978-3-319-63450-0_13
http://dx.doi.org/10.3390/electronics10070850
http://dx.doi.org/10.1111/exsy.12804
http://dx.doi.org/10.1109/ICDS50568.2020.9268723
http://dx.doi.org/10.3390/sym12111822
http://dx.doi.org/10.1038/s41598-021-01045-4
http://www.ncbi.nlm.nih.gov/pubmed/34732762
http://dx.doi.org/10.1016/j.apacoust.2020.107819
http://dx.doi.org/10.1016/j.apacoust.2022.108660
http://dx.doi.org/10.1109/TASLP.2020.3014737


Sensors 2022, 22, 8874 17 of 17

12. Gimeno, P.; Viñals, I.; Ortega, A.; Miguel, A.; Lleida, E. Multiclass audio segmentation based on recurrent neural networks for
broadcast domain data. EURASIP J. Audio Speech Music Process. 2020, 2020, 5. [CrossRef]

13. Zhang, Z.; Xu, S.; Zhang, S.; Qiao, T.; Cao, S. Learning Attentive Representations for Environmental Sound Classification. IEEE
Access 2019, 7, 130327–130339. [CrossRef]

14. Zhang, Z.; Xu, S.; Zhang, S.; Qiao, T.; Cao, S. Attention based convolutional recurrent neural network for environmental sound
classification. Neurocomputing 2020, 453, 896–903. [CrossRef]

15. Qiao, T.; Zhang, S.; Cao, S.; Xu, S. High Accurate Environmental Sound Classification: Sub-Spectrogram Segmentation versus
Temporal-Frequency Attention Mechanism. Sensors 2021, 21, 5500. [CrossRef] [PubMed]

16. Tripathi, A.M.; Mishra, A. Environment sound classification using an attention-based residual neural network. Neurocomputing
2021, 460, 409–423. [CrossRef]

17. Ristea, N.C.; Ionescu, R.T.; Khan, F.S. SepTr: Separable Transformer for Audio Spectrogram Processing. arXiv 2022,
arXiv:2203.09581. [CrossRef]

18. Akbari, H.; Yuan, L.; Qian, R.; Chuang, W.; Chang, S.; Cui, Y.; Gong, B. VATT: Transformers for Multimodal Self-Supervised
Learning from Raw Video, Audio and Text. arXiv 2021, arXiv:2104.11178.

19. Elliott, D.; Otero, C.E.; Wyatt, S.; Martino, E. Tiny Transformers for Environmental Sound Classification at the Edge. arXiv 2021,
arXiv:2103.12157.

20. Wyatt, S.; Elliott, D.; Aravamudan, A.; Otero, C.E.; Otero, L.D.; Anagnostopoulos, G.C.; Smith, A.O.; Peter, A.M.; Jones, W.; Leung,
S.; et al. Environmental Sound Classification with Tiny Transformers in Noisy Edge Environments. In Proceedings of the 2021
IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; pp. 309–314. [CrossRef]

21. Park, S.; Jeong, Y.; Lee, T. Many-to-Many Audio Spectrogram Tansformer: Transformer for Sound Event Localization and
Detection. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2021, Online, 15–19 November 2021;
pp. 105–109.

22. Koutini, K.; Schlüter, J.; Eghbal-zadeh, H.; Widmer, G. Efficient Training of Audio Transformers with Patchout. arXiv 2021,
arXiv:2110.05069.

23. Salamon, J.; Bello, J.P. Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification.
arXiv 2021, arXiv:1608.04363.

24. Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
25. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-

standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies; Volume 1 (Long and Short Papers); Association for Computational Linguistics: Minneapolis, MN, USA,
2019; pp. 4171–4186. [CrossRef]

26. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.
In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [CrossRef]
28. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2016,

arXiv:1608.06993. [CrossRef]
29. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with

Convolutions. arXiv 2014, arXiv:1409.4842. [CrossRef]
30. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2818–2826. [CrossRef]

http://dx.doi.org/10.1186/s13636-020-00172-6
http://dx.doi.org/10.1109/ACCESS.2019.2939495
http://dx.doi.org/10.1016/j.neucom.2020.08.069
http://dx.doi.org/10.3390/s21165500
http://www.ncbi.nlm.nih.gov/pubmed/34450942
http://dx.doi.org/10.1016/j.neucom.2021.06.031
https://doi.org/10.48550/ARXIV.2203.09581
http://dx.doi.org/10.1109/WF-IoT51360.2021.9596007
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1608.06993
https://doi.org/10.48550/ARXIV.1409.4842
http://dx.doi.org/10.1109/CVPR.2016.308

	Introduction
	Related Works
	CNN for Audio Classification
	RNN for Audio Classification
	Transformers for Audio Classification

	Proposed Approach
	Feature-Based Models for Audio
	CNN for Audio
	Transformers for Audio

	Experimental Validation
	Datasets
	Experimental Setup and Baselines
	Metrics
	Results and Discussion

	Conclusions and Future Work
	References

