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Abstract: We consider the mathematical properties of a new musical instrument referred to as a 
SphereHarmonic. The SphereHarmonic is designed based on the basic divisions of a temari, that is, 
a spherical surface with congruent triangles defined by great circles. Each triangle on the sphere 
corresponds to a tone, and each vertex, which is connected to multiple triangles, represents a chord 
composed of the corresponding tones. Different chords are created by different combinations of the 
triangles, which are obtained by rotating the hemispheres. We describe four types of SphereHar-
monics characterized by their divisions: Sn, C6, C8, and C10. These four SphereHarmonics have 
different mathematical characteristics, including the numbers of triangles, the degrees of the verti-
ces, and the numbers of axes. We summarize these properties and also calculate the combinations 
for the possible vertices.  
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INTRODUCTION 

Musical instruments with various interesting shapes have been proposed recently. Historically, the 

shape of a musical instrument was strongly related to how it produces tones. For example, the piano 

uses hammers to produce vibrations in long steel wires of different lengths; on the other hand, the 

violin has strings of equal length and is played with a bow. However, with the development of elec-

tronic sound wave generators (e.g., MIDI systems), the shape of a musical instrument can be de-

signed without considering the physical mechanism by which it would produce sound. In this man-

ner, it is possible to recognize a musical instrument simply as a device that generates chords, that is, 

combinations of tones. As an example, the CubeHarmonic (Mannone et al., 2019) is a musical in-

strument based on the design of a Rubik’s cube. It is also possible to design a new type of musical 

device by using a sphere. SphereHarmonic is designed based on the geometry of the basic divisions 

of a temari, a Japanese craftwork ball developed in the Edo period (Suess, 2012). The temari is 

spherical in shape, and its surface is stitched colorfully and symmetrically. The stitching starts from 

one of the basic divisions of the spherical surface to form congruent triangles. The SphereHarmonic 

uses these divisions to generate chords. In this manuscript, we describe the mathematical aspects of 

the SphereHarmonic. The remainder of the paper contains three sections: a description of the basic 

concepts of the SphereHarmonic, the combinational properties of the SphereHarmonic, and con-

cluding remarks.  

BASIC CONCEPT OF THE SPHEREHARMONIC 

The SphereHarmonic uses the rotational symmetry of the basic divisions of a temari. The divisions 

are classified into two types: simple divisions (S𝑛𝑛) and combination divisions (C6, C8, and C10). 

Figure 1 shows the basic divisions; the congruent triangles are colored in alternating white and 

black. The simplest divisions are the divisions obtained by using latitude lines and the equator of 

the sphere. The even number 𝑛𝑛 denotes the number of divisions at the poles. Two examples, S10 

and S12, are shown in Figure 1. Next, the combination divisions correspond to the Platonic polyhe-

drons: tetrahedrons for C6, cubes and octahedrons for C8, and dodecahedrons and icosahedrons for 

C10. The divisions are obtained by a two-step process: first, the polyhedron is divided into congru-

ent triangles using the centroids of the faces and midpoints of the edges; second, triangles are pro-

jected from the common centroids of the polyhedron and the sphere to the spherical surface. Note 

that the duality of Platonic polyhedrons causes the variation of the combination divisions to be 

three. As a result, we have four types of SphereHarmonics which differ in the division of the sur-

face. 
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Figure 1 Computer-generated images of temari basic divisions. 
 
The SphereHarmonic can be rotated along each great circle that divides its surface. Each spherical 

triangle on the surface represents a tone. The locations of the spherical triangles can be adjusted by 

rotations of the hemispheres. Each vertex represents a combination of tones, that is, a chord. Select-

ing a vertex corresponds to selecting a chord of the instrument. In other words, the combinations of 

the tones can be changed by the rotations of the hemispheres. Sequential rotations of hemispheres 

and vertex selection generate sequential changes of combinations of tones. Although the method of 

generating different combinations is simple, the combinational and geometrical features are not so 

simple. 

 

Figure 2 Stereographical projections of the lower hemispheres of the SphereHarmonic.  

Stereographic projection (e.g., Feeman, 2002) is used to visualize the spherical surface with the de-

tails as follows. We presuppose that all spheres considered in this manuscript are unit spheres and 

that their centres are located at the origin in Cartesian coordinates. Figure 2 shows the stereographic 

projections of the basic divisions. The projection represents the surface of the lower hemisphere in 

three-dimensional Euclidean space. Projections of the upper hemisphere are also used in order to 

illustrate the whole surface of the sphere. 

The great circles are characterized by unit vectors perpendicular to the circles; we refer to these unit 

vectors as axes. For example, the outermost circles of the projections in Figure 2 represent great cir-

cles dividing the spheres into two hemispheres: the upper for 𝑧𝑧 > 0 and the lower for 𝑧𝑧 ≤ 0. The 
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coordinates of the axes are taken in order for the 𝑧𝑧-coordinate of all axes to be greater than or equal 

to 0. Besides the description using upper and lower hemispheres, we also introduce another descrip-

tion of the hemispheres based on the axes. We refer to the volume close to an axis (the inner prod-

uct of the axis vector and the position vector is positive) as the northern hemisphere of the axis and 

the rest as the southern hemisphere of that same axis.  

The small black circles in Figure 2 represent the locations of axes of rotations. Some axes are not 

overlapped with axes for S𝑛𝑛 (for 𝑛𝑛 = 4𝑘𝑘 ± 2) and C6. The axes are also characterized by the mini-

mum amount of rotation because the divisions of the surface after the rotation of a hemisphere must 

be the same as before. All axes of the combination divisions C6 and C10 are characterized as 𝜋𝜋. On 

the other hand, there are two types of axes for the divisions of S𝑛𝑛 and those of C8: 2𝜋𝜋/𝑛𝑛 and 𝜋𝜋 for 

S𝑛𝑛, and 𝜋𝜋/2 and 𝜋𝜋 for C8. Figure 2 illustrates the projection patterns obtained by setting all types of 

axes to (0, 0, 1).  

Figure 3 Representation of sequential rotations of the hemispheres of C8.  

Figure 3 illustrates the sequential rotations of the hemispheres of C8 from the initial state (Figure 

3A) to the final state (Figure 3D) via the intermediate states (Figs. 3B and 3C) as an example. The 

left and right projections for each state represent the lower and upper hemispheres, respectively. 

The congruent triangles and the axes of rotations are numbered for convenience. Two spherical tri-

angles numbered 36 and 39 are filled in with light and dark gray to track their positions during the 

states of rotation. The rotation of the northern hemisphere of axis 1 is illustrated in Figures 3A and 

3B. Similarly, the rotation of the southern hemisphere of axis 1 and that of the northern hemisphere 

of axis 9 is shown in Figs. 3B and 3C and Figs. 3C and 3D, respectively. Thick curves denote the 

great circles determined by the axes of rotations—for example, the curves containing axis 6 in Fig-



MATHEMATICAL ASPECTS OF A NEW SPHERICAL MUSICAL INSTRUMENT: SPHEREHARMONIC 
Maria Mannone and Takashi Yoshino 

336 

ures 3C and 3D represent the great circle perpendicular to axis 9. Note that the amount of rotation 

of axes 1 and 9 is different—𝜋𝜋/2 for axis 1 and 𝜋𝜋 for axis 9—because of the difference in the axis 

type. 

For the combination divisions, the triangles have parity. This means that black triangles can never 

take the positions of white triangles, and vice versa (see Figure 1). This is because the black and 

white triangles have different orders of angles, although they are congruent. This property restricts 

the combination of triangles obtained from the rotations of the hemispheres. The triangles in Figure 

3 were numbered accounting for parity, and the locations of even/odd numbers did not change after 

the rotations. It should be noted that the triangles of the simple divisions do not have this property 

because they are all isosceles triangles. 

In the following calculations, we assume that all pairs of triangles having the same parity can be 

transposed by finite numbers of rotational manipulations. We have not proven this assumption; 

however, it seems to be acceptable intuitively. 

RESULTS 

The number of combinations or the variation of chords depends on the type of division. In the fol-

lowing, we considered the combinations that appeared in the SphereHarmonic by using the basic 

properties of the divisions summarized in Table 1. The numbers of congruent triangles are 2𝑛𝑛 for 

S𝑛𝑛, 24 for C6, 48 for C8, and 120 for C10. The degrees of the vertices correspond to the numbers of 

tones a chord consists of. The basic divisions have two or three types of vertices: 4 and 𝑛𝑛 for S𝑛𝑛; 4 

and 6 for C6; 4, 6, and 8 for C6; and 4, 6, and 10 for C10.  

 

Table 1. Basic properties of the SphereHarmonic 

Divisions Number of 
Triangles 

Number of 
Vertices 

Degrees of 
Vertices 

Number of vertex 
combinations Number of Axes Amount of 

Rotation 

S𝑛𝑛 2𝑛𝑛 𝑛𝑛 + 2 
2 𝑛𝑛  �

2𝑛𝑛

𝑛𝑛
� 

𝑛𝑛/2 + 1 
1 2𝜋𝜋/𝑛𝑛 

𝑛𝑛 4 �
2𝑛𝑛

4
� 𝑛𝑛/2 𝜋𝜋 

C6 24 14 
6 4 4,356 

6 𝜋𝜋 
4 6 48,400 

C8 48 26 
12 4 76,176 

9 
6 𝜋𝜋 

8 6 4,096,576 
3 𝜋𝜋/2 

6 8 112,911, 876 

C10 120 62 
30 4 3, 132, 900 

15 𝜋𝜋 20 6 1,171,008,400 
12 10 29,828,113,326,144 
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The numbers of vertex combinations were obtained, assuming that all triangles had different num-

bers/tones. For the cases involving simple divisions, the numbers were straightforwardly obtained 

by selecting 𝑛𝑛 from 2𝑛𝑛 because of the lack of parity; they were �2𝑛𝑛𝑛𝑛 � for degree 𝑛𝑛 vertices and �2𝑛𝑛4 � 

for degree 4. On the other hand, the numbers for the combination divisions were calculated consid-

ering the parity as the products of numbers of combinations for white and black triangles. The re-

sults were �122 �
2

= 4,356 for degree 4 vertices and �123 �
2

= 48,400 for degree 6 vertices in the case 

of C6. Similar calculations were carried out for C8 and C10. The results are also summarized in Ta-

ble 1. 

It was complicated to obtain the variations of configurations for the whole surface. For the simple 

divisions S𝑛𝑛, the estimated number can be obtained by [the number of ways to select 𝑛𝑛 tones from 

2𝑛𝑛] multiplied by [the number of circular permutations of the upper hemisphere] multiplied by [the 

number of circular permutations of the lower hemisphere] multiplied by [the number of rotations of 

the upper hemisphere]: �2𝑛𝑛𝑛𝑛 �(𝑛𝑛 − 1)! (𝑛𝑛 − 1)! 𝑛𝑛 = (2𝑛𝑛)!/𝑛𝑛. However, we were not able to estimate 

the numbers for the combination divisions. 

Another simple problem is listing the configurations that cannot be used to change the combinations 

of tones, that is, to generate different chords. The simplest but trivial solution is to allocate the same 

tone to all triangles. The next simplest solutions for the combination divisions were allocating one 

tone to black triangles and another to white ones. However, note that this latter solution does not 

apply in the cases involving simple divisions because the triangles lack parity. 

CONCLUSION 

The mathematics of a new type of musical instrument, the SphereHarmonic, was discussed. This 

instrument is designed according to the basic divisions of a temari ball. Individual musical tones are 

allocated to the triangles, and a chord can be generated by selecting a vertex, which selects the tones 

that are connected to that vertex simultaneously. The variations of the chords are numerous enough 

to play musical pieces if we allocate different tones to all triangles. For the simple division S𝑛𝑛, the 

number of possible variations is (2𝑛𝑛)!/𝑛𝑛. The estimation of the numbers of the combinations is a 

complicated problem that may be fruitful for further study.  
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