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Abstract: Particulate matter with an aerodynamic diameter of less than 2.5 um (PMj 5) is associated with
adverse effects on human health (e.g., fatal cardiovascular and respiratory diseases), and environmental
concerns (e.g., visibility impairment and damage in ecosystems). This study aimed to evaluate temporal
and spatial trends and behaviors of PM; 5 concentrations in different European locations. Statistical
threshold models using Artificial Neural Networks (ANN) defined by Genetic Algorithms (GA) were
also applied for an urban centre site in Istanbul, to evaluate the influence of meteorological variables and
PM; concentrations on PM, 5 concentrations. Lower PM; 5 concentrations were observed in northern
Europe. The highest values were found at traffic-related sites. PM, 5 concentrations were usually
higher during the winter and tended to present strong increases during rush hours. PM;5/PMj
ratios were slightly higher at background sites and the lower values were found in northern Europe
(Helsinki and Stockholm). Ratios were usually higher during cold months and during the night.
The statistical model (ANN + GA) allowed evaluating the combined effect of different explanatory
variables (temperature, wind speed, relative humidity, air pressure and PM;g concentrations) on
PM, 5 concentrations, under different regimes defined by relative humidity (threshold value of
79.1%). Important information about the temporal and spatial trends and behaviors related to PM; 5
concentrations in different European locations was developed.

Keywords: air pollution; artificial neural network; genetic algorithm; particulate matter; spatial
variation; temporal variation

1. Introduction

Air pollution has become a major issue in recent years and is one of the biggest focuses of study
in atmospheric science. According to the World Health Organization (WHO), 90% of people breathe
highly polluted air and 7 million deaths are caused every year by outdoor and indoor air pollution [1].
One of the main pollutants considered in air pollution studies is particulate matter (PM). In particular,
because of its small size and capacity to penetrate deeply in the human respiratory system, PM; 5
(PM with an aerodynamic diameter of less than 2.5 pm) is associated with harmful effects on human
health, especially on a long-term exposure [2]. Those effects include fatal cardiovascular and respiratory
diseases and decreased cognitive functions [3,4]. In addition, it has been linked to environmental
concerns, such as visibility impairment (haze) and damage in ecosystems. These negative consequences
of PMj 5 are dependent on its concentration in the atmosphere, which is highly affected by its variety of
anthropogenic and natural sources (e.g., traffic emissions, industrial processes, residential combustion,
biogenic emissions), related factors (e.g., climate, meteorology, urbanization level), and other episodes
like dust transport and deposition.

To implement policies and carry out targeted and effective measures to improve air quality
and mitigate PM presence and its effects, it is important to understand the temporal and spatial
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behaviors of PM; 5 concentrations in different environments. On the same way, since PM, 5 and PMy
are differently affected by their diverse sources and have different physical and chemical properties,
studying PM; 5/PMjq ratio also becomes a useful tool to identify PM sources and effects on human
health [5,6]. PM; 5 concentrations are also strongly correlated with meteorological variables and other
pollutants presence, including PM;, and so understanding these relationships becomes very important
to address this issue [7]. A recently developed technique, which has become an important tool to
develop effective strategies to air pollutants reduction, is computational modelling. This method
was a precursor to an exponential increase in atmospheric pollution studies. It allows for identifying
source contributions to air quality problems and can be applied to describe relationships between
factors like emissions, meteorology, concentrations, transport, and deposition at specific locations
and time [8,9]. In recent years, decreasing trends of PM concentrations have been reported for many
European sites [6,10,11]. However, the impacts of this pollutant persist, and air quality targets are still
not being fully achieved [12]. Thus, the continuous study and increasing information about this matter
become very important.

This study aimed to evaluate temporal and spatial trends and behaviors of PM; 5 concentrations
in different European locations. Specific objectives included: (i) the analysis of the overall levels
and annual and daily profiles of PM; 5 concentrations and PM, 5/PMj ratios in different European
locations during recent years; and (ii) the application of computational modelling, using Artificial
Neural Networks defined by Genetic Algorithms, to evaluate the combined effect of different variables
(meteorological variables and PMjy concentration) on PM, 5 concentrations in a specific location.

2. Materials and Methods

2.1. Study Areas

This study was performed with the data and information of different European capitals and main
cities. The criteria applied for the selection of the cities and stations considered the following points:
(i) coverage of a variety of regions with different climatology and geography in the European continent;
(ii) coverage of a variety of type of sites (urban background, urban traffic, etc.); (iii) availability of
valid hourly data for both PM, 5 and PM;y concentrations and for all the years of the study period
(2013-2017), with Athens being the only exception (hourly data were only obtained for 2016 and 2017);
(iv) valid hourly data collection efficiency above 75% for the correspondent study period, for both
PM; 5 and PM; concentrations; and, (v) for the selection of the specific sites to study in each country,
the ones with higher levels of contamination were privileged, due to their higher relevance in the
respective city’s air pollution.

Based on the criteria described above, a total of 23 stations, distributed in 12 different European
cities, were selected. Figure 1 presents the cities studied in this work and their location on the
continent. The selection did not cover all available possibilities existing across Europe. However, it
included a big distribution throughout the continent and regions with different conditions (geography,
meteorology, etc.).

2.2. Sample Collection

Sample collection included PM; 5 and PM;g hourly concentrations, in pg/m3, for the selected
stations, during the respective study period. Meteorological data (temperature, wind direction, wind
speed, relative humidity and air pressure) were also collected from the station in Silivri (Istanbul).
These data were obtained from different sources at European, national, and municipal levels. Table 1
presents the data sources for each city.



Sustainability 2019, 11, 6019 3 of 26

hon ® Madrid

. B -5
Ay R A
~ A -, .‘O' ot

9
A Athens

Figure 1. Geographical distribution of selected European cities (study area).

Table 1. Data sources for each selected city.

Country City Source
Netherlands Amsterdam European Environment Agency (EEA)
Greece Athens Ministry of Environment and Energy of Greece
Finland Helsinki Helsinki Region Environmental Services Authority
Turkey Istanbul Republic of Turkey Ministry of Environment and Urbanization
Portugal Lisbon Portuguese Environment Agency (APA)
England London London Air Quality Network—King’s College London
Spain Madrid Ayuntamiento de Madrid
Norway Oslo European Environment Agency (EEA)
France Paris Airparif
Czech Republic Prague European Environment Agency (EEA)
Sweden Stockholm Swedish Meteorological and Hydrological Institute
Austria Vienna

Provincial Government of Vienna

Table 2 summarizes information about the type, geographical locations (in Decimal Degrees
Coordinates and Altitude), and the sampling period of all selected stations. Station ID was defined

according to a XXYYZZ code, where XX refers to the station name, YY refers to the station type, and
Z7 refers to the country code.
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Table 2. Characterization of the selected stations (identification, type, geographical location, and sampling period).
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Station ID City Station Name Station Type Latitude Longitude Altitude (m) Sampling Period
VDUTNL Amsterdam Van Diemenstraat 52.390003 4.888058 4 2013-2017
PEUTGR Athens Peiraias 37.943287 23.647511 20 2016-2017
MNUTFI Helsinki Mannerheimintie 60.16964 24.93924 5 2013-2017
EAUTES Madrid Escuelas Aguirre Urban Traffic 40.421667 —-3.682222 672 2013-2017
SMUTCZ Prague Smichov 50.073135 14.398141 216 2013-2017
HGUTSE Stockholm Hornsgatan 108 Gata 59.317299 18.048994 24 2013-2017
TBUTAT Vienna TaborstrafSe 48.205000 16.309750 236 2013-2017
WGUBNL Amsterdam Wagenschotpad 52.450001 4.816667 1 2013-2017
KAUBFI Helsinki Kallio 60.187390 24.950600 21 2013-2017
LAUBPT Lisbon Laranjeiro 38.663611 -9.157778 63 2013-2017
CBUBGB London Camden-Bloomsbury 51.522290 —0.125889 20 2013-2017
MAUBES Madrid Méndez Alvaro Urban Background 40.420000 —3.749167 645 2013-2017
SOUBNO Oslo Sofienbergparken 59.922950 10.765730 24 2013-2017
GNUBFR Paris Gennevilliers 48.929692 2.294719 28 2013-2017
TKUBSE Stockholm Torkel Knutssongatan 59.316940 18.057501 58 2013-2017
STUBAT Vienna Stadlau 48.226361 16.458345 159 2013-2017
LYSBGR Athens Lykrovisi Suburban 38.065200 23.787289 234 2016-2017

LISBCZ Prague Libus Background 50.007305 14.445933 301 2013-2017
SIUCTR Istanbul Silivri Urban Centre 41.073056 28.255278 32 2013-2018
CHRBPT Lisbon Chamusca Rural Background 39.352500 —8.466111 143 2013-2017
LHRSGB London Lewisham - New Cross Roadsid 51.474954 —0.039641 25 2013-2017
ARRSFR Paris Autoroute A1 - Saint-Denis oadside 48.925265 2.356667 35 2013-2017
HJSTNO Oslo Hjortnes Suburban Traffic 59.911320 10.704070 8 2013-2017
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The criteria applied to exclude invalid PM concentration values was the following:

(a) Negative concentration values were excluded;
(b) Upper outliers (values 1.5 times above the 3™ quartile of each station’s hourly data) were excluded.

All the stations considered in this study presented data efficiency above 75% for the correspondent
study period, for both PM, 5 and PMjy concentrations.

In Europe, the method for determining the PM concentrations at each station must be in accordance
with the legislated standard gravimetric method (EN 14907:2005 for PM; 5 concentrations and EN
12341:1999 for PM;g concentrations), which validates the comparisons made in this study.

2.3. Temporal and Spatial Analysis

In this work, PM concentrations for different types of sites around Europe were compared to
evaluate trends and behaviors in locations with different characteristics. Sites were organized according
to their classification and different parameters were calculated and analyzed with Microsoft Excel +
Visual Basic for Applications (VBA). The average annual, monthly, and daily values were calculated
from the validated hourly data. In this analysis, the study period considered for Silivri (Istanbul) went
from 2013 to 2017, despite its different sampling period (2013-2018).

To evaluate the overall temporal trends observed at the selected sites, linear regression was
applied to their annual average concentration values. The variability of the profiles was evaluated
according to their standard deviation (o) values (Equation (1)):

@

where x; refers to the concentration values at a specific time (i), x refers to the respective average value,
and # is the size of the data set.

2.4. Statistical Model

In this study, a statistical model using Artificial Neural Networks (ANN) defined by Genetic
Algorithm (GA) was applied (through MATLAB software, R2014a, MathWorks, Natick, MA, USA) to
simulate and evaluate the combined effect of different variables on PMj; 5 levels at the urban centre site
SIUCTR (Istanbul), which presented the second highest PM; 5 concentrations between the selected
sites. The selection of this station was also based on the availability of meteorological data needed to
apply the model.

2.4.1. Artificial Neural Networks

ANN are nonlinear models inserted in the field of Machine Learning used to perform complex
calculations. This model is based on the behavior of the human brain. The human brain is composed,
learns, and works through numerous neurons strongly interconnected between them. In the same
way, ANN are computational methods that use a large set of elementary computational units (artificial
neurons). Figure 2 presents a representative scheme of a possible ANN structure.
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Figure 2. Artificial Neural Network (ANN) scheme [13].

In ANN, a neuron can apply a local transformation (referred to as the activation function) to an
input, providing an output signal. Besides the neurons, an ANN is constituted by the connection
pattern among the neurons (structure or architecture of the network) and by the process used for
training the neural network (learning algorithm). The structure of the network is defined by the way
these neurons are distributed in layers (input, hidden, and output layers) and connected by synapses
(each one carrying a weight/strength value, defined iteratively by the learning rule, according to the
importance of input source). The neural network works to obtain valid outputs from the inputs [14-18].

2.4.2. Genetic Algorithms

GA are used to solve optimisation and search problems and are based on evolutionary biology.
These algorithms encode a potential solution to a specific problem by iteratively modifying an initial
randomly defined population of candidate solutions, tested against the objective/fitness function, and
“evolving” them over successive generations toward an optimal solution. At each step, subsequent
generations evolve from the previous using three rules: (i) selection of the fittest individuals (called
parents) created in each generation, which will contribute to the population at the next generation;
(ii) crossover of two parents to produce new solutions (called children) for the next generation; and
(iii) mutation that applies random changes to individual parents to generate more new solutions [19-22].

2.4.3. Model Structure

The model applied in this study was structured similarly as defined by Afonso and Pires (2017) [23]
and can be characterised by the following equation:

@

| neti(xy), ifxg <v
| nety(x), ifxg>v '

where y is the output variable, net; and net, are the ANN models, x; refers to the exploratory variables,
x, is the threshold variable, and v is the threshold value.

The data of the explanatory variables were used as inputs to develop the proposed statistical
model. These variables were related to hourly PMjy concentrations, the hour of measurement, the
month of measurement, and meteorological variables (temperature, wind direction, wind speed,
relative humidity and air pressure) measured from January 2013 to December 2018. Values related to
the hour of measurement (H), the month of measurement (M) and wind direction (WD) were converted
trigonometrically (Equation (3)) before being used as inputs:

®)

X X
Y; = sin(7T 1),

where Y; refers to the converted value of the variable, X; refers to the initial value of the variable, and T
refers to the period of the variable (24 h for hour of measurement, 12 for the month of measurement,
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and 360" for wind direction) The output variable was the hourly PM; 5 concentrations measured at the
same time as the input.

In this study, GA were used to define the threshold variable and value, the number of hidden
neurons in the ANN, the activation function in the hidden layer of the ANN, and to select the
explanatory variables to be used in each ANN model for three separate sets of time series (2013-2014;
2015-2016; 2017-2018). The specifications used in the determination of the model were defined as
described by Afonso and Pires [23].

2.4.4. Model Performance Evaluation

The performance of the obtained models was evaluated using the following metrics: Mean Absolute
Error (MAE), Mean Bias Error (MBE), Coefficient of Determination (R?), Root Mean Square Error (RMSE),
and Index of Agreement of second-order (dy). MAE and RMSE are very common scale-dependent
parameters, which measure the average magnitude of the error in a set of predictions [24]. If the
positive/negative signs of the error are considered, MAE becomes MBE, which measures the average
model bias. R? translates the level of variance in the dependent variable that is predictable from the
independent variable, while d, measures the degree to which the model predictions are exact matches
with no proportionality [24,25]. These parameters are calculated using the following equations:

1 n
MAE = ~ Zj:1|oj P,

, (4)

n

MBE = % Z(oj -P), (5)
=1

. (0 -B)

R? = —, (6)
",(0-0)
n (0 _ )2

RMSE — M ?)
n (0 -P)

dy=1- 1(6-P) ®)

£, (|7~ 0] +]o; o))"

where O]' refers to the observed values, O is the mean of the observed values, P]' refers to the predicted
values, and n is the size of the data set.

3. Results and Discussion
3.1. Behavior of PM, 5 Concentrations

3.1.1. Analysis of the Study Period

Figure 3 presents the distribution of PM, 5 concentrations during the study period of each
selected site.
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Figure 3. Distribution of hourly PM; 5 concentrations for the study period.

Different levels and ranges of PM; 5 concentrations were observed between the selected sites.
Median concentration values ranged from 3.5 pg/m3 at TKUBSE (Stockholm) to 21.0 pg/m® at ARRSFR
(Paris). In general, higher levels of PM;5 concentrations were observed at traffic-related sites,
when compared to background sites. This behavior is commonly presented in a variety of studies
related to PM levels in different environments, mainly due to the strong influence of traffic in PM
emissions [12,26-28]. Another important observation is the lower PMj; 5 levels at sites allocated in
northern European cities (Helsinki, Stockholm and Oslo) when compared with other sites. Significant
levels of concentration were observed at sites located in the Mediterranean area, especially those in
Athens and Istanbul (south-eastern Europe). One of the reasons that can partially contribute to this
behavior is the intense Saharan dust advection and deposition episodes that affect this area [29-31].
This phenomenon is considered an important source of dust particles, and it is responsible for significant
increases of ambient PM concentrations in the Mediterranean area. According to the Air Quality
Expert Group [32], high PM, 5 concentrations in the United Kingdom are partially associated with air
transported from continental Europe, which may have had its impact on the selected sites located in
London. Eeftens et al. [2] and EEA [11] analyzed the spatial variation of PM; 5 concentrations across
Europe between 2008 and 2011 and during 2016, respectively. In these studies, the observed behavior
was similar to the one found in this work, with lower PM, 5 values also happening in Northern Europe
and the highest in Southern and Eastern Europe.

3.1.2. Annual Profiles

Figures 4-6 present the annual average profiles of PM; 5 concentrations at the selected sites.
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Figure 4. Annual average profiles of PM; 5 concentrations (urban traffic sites).

Different annual profiles of PM; 5 concentrations were observed at the selected sites. Seasonal
behaviors are influenced by the combination of the diverse PMj 5 emission sources (e.g., industry, traffic,
re-suspended dust) and factors like the meteorology, geography or economy. SMUTCZ (Prague) and,
especially, TBUTAT (Vienna) were the urban traffic sites (Figure 4), where a stronger variability between
months was observed (o = 1.27 ug/m® and 3.91 ug/m3, respectively). At these sites, significantly
higher PM; 5 levels occurred during autumn and winter. This behavior is often associated with higher
levels of combustion for central heating (domestic and industrial) and stronger thermal inversion
conditions, which cause an accumulation of air pollutants in the lower layers of the atmosphere and
are much stronger and frequent in colder months [33-36]. At both sites, a well-defined U-shaped
profile is even observed during the period from March to October. Analyzing the different profiles, the
variability, and behavior observed at the city of Vienna (Austria) stood out from the rest of the sites.
According to Stadt Wien [37] (a Vienna environmental report), significantly higher levels in Vienna
during winter can additionally be caused by stronger and adverse transport conditions of precursor
pollutants (NOx, SO,, and NHj3) over large distances. The same source informs that these transport
conditions have a strong contribution on PM levels in Vienna (contribution of supra-regional sources
were estimated to be approximately 75%, a much higher contribution compared to the 25% attributed to
Vienna’s local sources). Despite the weak variability observed at VDUTNL (Amsterdam) and HGUTSE
(Stockholm) sites (o = 0.69 ug/m3 and 0.50 pg/m3, respectively), higher PMj 5 levels also happened
during colder months at both sites, decreasing during spring and summer. This pattern is commonly
presented in a variety of studies related to PM; 5 seasonality [6,38-42]. On the other hand, higher
concentrations during summer were observed at MNUTFI (Helsinki) (o = 0.66 ug/mS). As reported
by some authors, a possible reason for this behavior is the stronger photochemical activity during
higher temperatures, which contributes to the formation of secondary PM particles [38,43]. Biogenic
emissions, which are higher in warmer seasons, can also have a significant impact on PM, 5 levels
during that season [44—47]. In addition, the drier soils during warm months, together with strong
winds, generate more dust, which might also have a contribution to higher levels [39,48]. Compared to
other sites, PM; 5 variability at PEUTGR (Athens) and EAUTES (Madrid) was significant (o = 1.22
ug/m3 and 0.90 pg/m3, respectively). However, evident seasonality was not found at these sites, and
higher values were observed in both cold and warm months.
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Figure 5. Annual profiles of PM; 5 concentrations (urban background sites).

Compared to urban traffic sites, a weaker variability was observed at the urban background
sites. However, significant seasonal behaviors were still found in the annual profiles. The highest
monthly variation between the urban background sites happened at STUBAT (Vienna) (o = 3.12 ug/m3 ).
A clear seasonal behavior was also found at the same site through a well-defined U-shaped profile
from March to October and much higher PMj; 5 levels during colder months. Significant variations
were also observed at WGUBNL (Amsterdam) and GNUBFR (Paris) (o = 0.93 ug/m3 and 1.00 ug/rn3,
respectively), as well as higher PM,; 5 concentrations in autumn and winter. Despite some relevant
monthly variations (o = 1.08 pg/m> and 0.76 pug/m?, respectively), a clear seasonal behavior was not
found at MAUBES (Madrid) and LAUBPT (Lisbon) sites. At KAUBFI (Helsinki), CBUBGB (London),
SOUBNO (Oslo), and TKUBSE (Stockholm), weak monthly variations (o = 0.39 ug/rna, 0.60 ug/m3,
0.65 pg/m? and 0.21 pg/m?, respectively) and weak seasonality were observed.
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Figure 6. Annual profiles of PM;5 concentrations (suburban background, urban centre, rural
background, roadside and suburban traffic sites).
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Strong monthly variations were also observed at the suburban background site of LISBCZ (Prague),
urban centre site of STUCTR (Istanbul) and roadside site of ARRSFR (Paris) (o = 1.81 pug/m?, 2.01 pg/m3
and 1.57 pg/m?, respectively). At these sites, a U-shaped profile was observed during spring and
summer, with higher PM; 5 levels happening during autumn and winter. In comparison, weaker
variations (0 = 0.75 ug/m? and 0.76 pg/m3, respectively) were observed at the roadside site of LHRSGB
(London) and suburban traffic site of HISTNO (Oslo). Similar seasonal behaviors were found at these
sites, with decreasing PMj 5 levels in spring and generally higher values happening in colder months.
In the case of the suburban background site of LYSBGR (Athens), a clear seasonal behavior was not
observed despite some relevant monthly variations (o = 1.35 pg/m?). At the rural background site of
CHRBPT (Lisbon), monthly variation (¢ = 0.53 pg/m3) and seasonal behavior were not evident.

The PM, 5 annual profiles of Athens, Madrid and Lisbon (cities located in the Mediterranean
area) exhibited high PM, 5 values during summer. This strengthens the idea of the influence and
impact of Saharan dust episodes, which are usually more frequent in summer and highly affect the
Mediterranean area [29-31,48-50]. Kopanakis et al. [29] studied PM levels in the eastern Mediterranean
area of Europe. In that study, higher PM levels were observed during the summer, with correlation to
dust events. Querol et al. [31] evaluated the influence of African dust outbreaks (ADOs) in Barcelona,
which were also more frequent during summer and spring, and stated that PMj.1g and PM; 5.1¢ during
ADOs were, respectively, 43 and 46% higher compared to non-ADO days.

In terms of differences of seasonal trends between the types of sites, no clear pattern was found.
Generally, sites located in the same city presented similar annual behaviors, despite the type of
environment in which they were located, which indicates that the geographic location in Europe has a
big influence on these behaviors. In terms of general spatial differences, sites located in southern Europe
presented weaker seasonal patterns, except at SIUCTR (Istanbul), while those located in northern and,
especially, central Europe showed a stronger tendency to exhibit a seasonal pattern of higher PM; 5
levels during cold months.

3.1.3. Daily Profiles
Figures 7-9 present the daily average profiles of PM; 5 concentrations at the selected sites.

25

PM; s concentrations (ug/m?)

Hour
VDUTNL (Amsterdam) =#=PEUTGR (Athens) MNUTFI (Helsinki) EAUTES (Madrid)

=4=SMUTCZ (Prague)  ====HGUTSE (Stockholm) =#=TBUTAT (Vienna)

Figure 7. Daily profiles of PM, 5 concentrations (urban traffic sites).

PM, 5 concentrations are also daily affected by their sources and related parameters like climate and
meteorology, which lead to different diurnal behaviors in different regions. Relevant daily behaviors
of PM; 5 concentrations were observed at the urban traffic sites. The strongest diurnal variability in
urban traffic sites was observed at PEUTGR (Athens), EAUTES (Madrid) and SMUTCZ (Prague) sites
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(0 = 1.47 pg/m>, 1.21 pg/m?® and 1.59 pg/m3, respectively), especially during morning rush hours,
where significant increases were observed. At these sites, decreasing PM, 5 values happened after
morning rush hours until afternoon and during late night, and increasing values happened around
morning and late rush hours. This pattern was also observed at TBUTAT (Vienna) and VDUTNL
(Amsterdam), despite the lower variability (0=0.85 pLg/m3 and 1.05 pg/m3, respectively). This behavior
is commonly stated in a variety of studies about diurnal variations of PM; 5 concentrations in different
locations [6,40,51,52]. Increases of PM levels during the night period can be associated with more
frequent temperature inversions and boundary layer dynamics related to that period [38,51,53,54].
In the case of MNUTFI (Helsinki) and HGUTSE (Stockholm), highly stable PM; 5 diurnal concentrations
were observed (o = 0.39 pg/m3 and 0.31 pug/m3, respectively).

25

20

mw

—a- il gy

PM; 5 concentrations (pg/m?)

0 1 2 3 4 5 6 7 8 9 0 1" 12 13 14 15 16 17 18 19 20 21 22 23
Hour

WGUBNL (Amsterdam ) =-e=KAUBFI (Helsinki) LAUBPT (Lisbon)
CBUBGB (London) ~&—MAUBES (Madrid) ==+=SOUBNO (Oslo)
~+—GNUBFR (Paris) ~w=TKUBSE (Stockholm) ~#=STUBAT (Vienna)

Figure 8. Daily profiles of PM, 5 concentrations (urban background sites).

The most significant diurnal variations of PM; 5 concentrations at urban background sites were
observed at LAUBPT (Lisbon), SOUBNO (Oslo), and STUBAT (Vienna) sites (o = 1.38 pig/m3, 1.01 pg/m3
and 1.04 ug/m?, respectively). Increasing levels from morning/noon until late afternoon were observed
at SOUBNO (Oslo), CBUBGB (London), and LAUBPT (Lisbon). This behavior can be linked to
higher dynamic human activities and higher levels of dust resuspension during that period of the
day [5,54]. On the other hand, a continuous decrease during the same period was observed at GNUBFR
(Paris) and STUBAT (Vienna). The more easily identifiable influence of rush hours among the urban
background sites was found at MAUBES (Madrid). At this site, PM; 5 values increased significantly
during morning rush hours, decreasing continuously afterwards. High diurnal stability was found at
WGUBNL (Amsterdam), KAUBFI (Helsinki), and TKUBSE (Stockholm) (o = 0.32 pug/m3, 0.32 pg/m?
and 0.16 pg/m?, respectively).
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Figure 9. Daily profiles of PM, 5 concentrations (suburban background, urban centre, rural background,
roadside and suburban traffic sites).

Strong variability of PM; 5 was also found at the roadside sites of LHRSGB (London) and ARRSFR
(Paris) (o = 1.64 pg/m> and 2.47 pg/m3, respectively). In the case of LHRSGB (London), a strong peak
was observed during the afternoon. At ARRSFR (Paris), a U-shaped profile was observed from 20 h
to 6 h. Some diurnal variations were also observed at the suburban background sites of LYSBGR
(Athens) and LISBCZ (Prague) and at the rural background site of CHRBPT (Lisbon) (o = 1.04 pg/m?,
o = 1.14 pg/m3 and 1.36 pg/m3, respectively). Very similar behaviors were found at the suburban
background sites of LYSBGR (Athens) and LISBCZ (Prague), with increases of PM; 5 concentrations
being observed during rush hours, decreasing afterwards. At the rural background site of CHRBPT
(Lisbon), PM; 5 levels continuously decreased from O h to 14 h and increased during the rest of the
period. Less variability of PM; 5 concentrations was observed at the urban centre site of SIUCTR
(Istanbul) and suburban traffic site of HISTNO (Oslo) (o = 0.62 pLg/m3 and 0.68 ug/m3, respectively).
However, increasing PMj 5 levels during rush hours were found at both sites, decreasing afterwards.

As expected, rush hour influence on diurnal profiles of PM; 5 concentration was more noticeable
at traffic-related sites than background sites. However, the highest PM; 5 concentrations at background
sites were also observed during that period. Some differences were also found on a spatial level. Sites
located in northern Europe, especially those in Helsinki and Stockholm, exhibited higher stability in
their daily profile when compared to the rest of the sites.

3.2. Behavior of PM, 5/PM;j( Ratios

3.2.1. Analysis of the Study Period

Figure 10 presents the distribution of the average PM, 5/PMy ratio values at the selected sites.
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Figure 10. Distribution of hourly PM; 5/PMj ratio values for the study period.

Considering the variety of complex and changing PM sources and the factors that influence its
values, it was expected that the PM, 5/PM ratio values would also show significant variations between
sites. These results were in agreement with that, with a variety of levels and ranges of PM; 5/PMjg
ratio values being observed at the selected sites. Median ratio values ranged from 0.31 at HGUTSE
(Stockholm) to 0.73 at TBUTAT (Vienna).

At most sites, median ratio values were above 0.5, which indicates that the concentrations of fine
particles, which can be located in deep regions of the respiratory system, tended to be higher than
those of coarse particles. Munir [6] and Xu et al. [5] studied PM presence at different sites in Wuhan
(China) (2013-2015) and UK (2010-2014), respectively. In both studies, the predominance of PM; 5 over
coarse particles was stated. According to Munir [6], this can be partially attributed to fine particles
being more persistent in the atmosphere than coarse particles.

Generally, PM; 5/PM ratios were slightly higher at background sites, which can be associated
with higher levels of re-suspended road dust at traffic sites, which is a major contributor to higher
PM;( concentrations and, therefore, lower PM, 5/PM; values [5]. However, in the case of Amsterdam,
London, Paris, and Vienna, higher values were observed at the respective traffic site than at the
background site. This observation can be an indicator of a higher predominance of vehicular combustion
emissions in these locations because fine particles (PM; 5) are more influenced by combustion sources
than coarse particles (PMy5-19) [6,26,55]. Querol et al. [28] compared PM characteristics, from 1998 to
2002, at different European regions and stated that the ratio was highly dependent on the type of site.
In the same study, lower ratios were obtained at kerbside sites, while the values at regional background
sites were generally higher, which differs from the results obtained in this work.

In terms of overall spatiality, the lowest PM; 5/PM;( values of the selected sites were found at
sites located in northern Europe (specifically Helsinki and Stockholm), while no clear difference was
observed between the rest of the continent.

3.2.2. Annual Profiles

Figures 11-13 present the annual average profiles of the PM, 5/PM ratio at the selected sites.
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Figure 11. Annual profiles of the PM, 5/PMj ratio (urban traffic sites).

Different annual profiles of PM; 5/PM; ratio were observed at the selected sites. Meteorological
factors like temperature, wind speed, and precipitation have an important effect on PM concentrations
and their ratios. These factors tend to vary a lot during a year, and so they have a big impact on
the seasonality of the annual profiles. That tendency was also observed in the results obtained in
this section.

EAUTES (Madrid), HGUTSE (Stockholm), and TBUTAT (Vienna) were the urban traffic sites where
a stronger variability between months was observed (o = 0.067, 0.075 and 0.087, respectively). Similar
seasonal behavior was also observed at these sites, with a general decrease of the ratio happening
during warmer months, increasing during the colder season. The same behavior was observed at
MNUTEFI (Helsinki), but with lower levels of variation (o = 0.054), which was the most common pattern
observed at the selected urban traffic sites. Some authors associate this behavior with: (i) higher usage
of domestic and industrial heating (important sources of PM; 5) during the cold season; (ii) higher dust
re-suspension (major contributor to higher PM;q levels) during the dry season; (iii) higher wind speed
and precipitation and their negative effect on larger particles; and an (iv) increase of biogenic coarse PM
during the warm season [5,6,26,43,56,57]. Munir [6] and Xu et al. [5] also identified generally higher
levels during winter in their studies. However, a strong increase of the ratio during June and July was
observed by Munir in the UK. Sorek-Hamer et al. [58] also evaluated the seasonality of the PM ratio
in different global locations (France, Israel, Italy, and the USA) and observed ratio increases in Israel
during the warm season. The study states that this tendency can be partially related to air transport
events, which affect both PM fractions differently. VDUTNL (Amsterdam), PEUTGR (Athens), and
SMUTCZ (Prague) were the urban traffic sites where less variability of PM, 5/PM; ratios was observed
(o0 =0.023, 0.026 and 0.016, respectively). However, slightly higher PM; 5/PM;( values during autumn
and winter were also observed at VDUTNL (Amsterdam), while higher values were found in both
cold and warm months at PEUTGR (Athens), SMUTCZ (Prague).
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Figure 12. Annual profiles of the PM; 5/PMj ratio (urban background sites).

Comparing the monthly variability of PM;5/PM;g values between urban traffic and urban
background sites, no clear differences were found. The highest monthly variation of PM, 5/PM; ratio
of all selected sites was observed at STUBAT (Vienna) (o = 0.096). A clear seasonality was also observed
at this site, with continuously declining values happening in the first half of the year, increasing during
the rest of the months. Monthly variations were also significant at KAUBFI (Helsinki), MAUBES
(Madrid), SOUBNO (Oslo), and TKUBSE (Stockholm) (o = 0.055, 0.064, 0.053 and 0.052, respectively).
A strong decline of the ratios during winter and spring, increasing in summer, was found at KAUBFI
(Helsinki) and MAUBES (Madrid). In the case of SOUBNO (Oslo) and TKUBSE (Stockholm), a
similar seasonality was observed between them, with the profile declining from January to April and
increasing almost continuously during the rest of the year. WGUBNL (Amsterdam), LAUBPT (Lisbon),
CBUBGB (London), and GNUBER (Paris) (o = 0.033, 0.026, 0.025 and 0.035, respectively) were the
urban background sites where less variability was found. Weak seasonal behaviors were observed at
CBUBGB (London) and GNUBER (Paris). Higher ratio values happened mainly during winter and
spring at WGUBNL (Amsterdam) and during the summer at LAUBPT (Lisbon).

1.0

January February March April May June July August September October November December
Month

«~-#-~LYSBGR (Athens) ==#-LISBCZ (Prague) SIUCTR (Istanbul) CHRBPT (Lisbon)

et LHRSGB (London) === ARRSFR (Paris) ==t==HJSTNO (Oslo)
Figure 13. Annual profiles of the PM;5/PM;jg ratio (suburban background, urban centre, rural
background, roadside, and suburban traffic sites).
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Significant seasonal variability was observed at the suburban background sites of LYSBGR (Athens)
and LISBCZ (Prague), urban centre site of SIUCTR (Istanbul) and the suburban traffic site of HISTNO
(Oslo) (o = 0.050, 0.043, 0.056 and 0.045, respectively). PM;s5/PM;g values were generally higher
during autumn and winter at LYSBGR (Athens) and LISBCZ (Prague). Lower values happened during
the spring at HJISTNO (Oslo). Continuously decreasing values from January to August, increasing
during the rest of the months, happened at SIUCTR (Istanbul). Highly stable values were observed
in the annual profile of the rural background site of CHRBPT (Lisbon) and at the roadside sites of
LHRSGB (London) and ARRSER (Paris). PM; 5/PM;, values were higher during the winter, slightly
decreasing in warmer months at CHRBPT (Lisbon). Ratio values presented a weak seasonality at
LHRSGB (London) and ARRSEFR (Paris). In general, a slightly more evident seasonality was found at
the selected background sites compared to traffic-related sites.

3.2.3. Daily Profiles
Figures 14-16 present the daily average profiles of PM; 5/PMj ratios at the selected sites.

1.0

0.9

1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

VDUTNL (Amsterdam) ==#==PEUTGR (Athens) MNUTFI (Helsinki) EAUTES (Madrid)
~—8—SMUTCZ (Prague) === HGUTSE (Stockholm) =s=TBUTAT (Vienna)

Figure 14. Daily profiles of the PM, 5/PMj ratio (urban traffic sites).

The variety of sources and factors that influence PM, 5/PMj ratio values not only have their impact
on a seasonal level but also on a diurnal level, as it is perceptible by the variations and behaviors of the
daily profiles in this analysis. The urban traffic sites with stronger diurnal variations were HGUTSE
(Stockholm) and TBUTAT (Vienna) (o = 0.045 and 0.052, respectively). Similar and clear seasonality
happened at these sites, with the ratio values strongly and continuously increasing during the night
and decreasing during morning and afternoon. This was the most common pattern found in the
analysis of the diurnal profiles in this work. This behavior was also stated in a variety of studies [5,6,55].
According to Xu et al. [5], this night-day difference can be associated with stronger temperature
inversion during the night and stable atmospheric conditions favourable to the dry deposition of
coarse particles and the accumulation of PM; 5 in the air. Significant diurnal variations also happened
at EAUTES (Madrid) and SMUTCZ (Prague) (o = 0.031 and 0.034, respectively). Ratio values were
higher during the night/early morning and slightly increased during rush hours at EAUTES (Madrid).
At SMUTCZ (Prague), those values were higher during the daytime, especially after morning rush
hours. The urban traffic sites with higher stability were VDUTNL (Amsterdam), PEUTGR (Athens),
and MNUTFI (Helsinki) (o = 0.027, 0.027 and 0.020, respectively). At VDUTNL (Amsterdam) and
PEUTGR (Athens), ratio values were higher during the night/early morning, declining during the
daytime. Slight increases during rush hours were observed at MNUTEFI (Helsinki). Increases of the
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ratio values during rush hours, as the one observed at EAUTES (Madrid) and MNUTFI (Helsinki), can
be linked to the significant contribution by direct vehicular emissions during that period, which is
stronger for PM; 5 than for coarse particles [5,6,26].

1.0

0.9

0.8

PM;.5/PMyo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour
== WGUBNL (Amsterdam) === KAUBFI (Helsinki) LAUBPT (Lisbon)
CBUBGB (London) 8- MAUBES (Madrid) «=4==SOUBNO (Oslo)
== GNUBFR (Paris) === TKUBSE (Stockholm) ==#==STUBAT (Vienna)

Figure 15. Daily profiles of the PM, 5/PMj ratio (urban background sites).

The urban background sites where a higher diurnal variability was observed were MAUBES
(Madrid), SOUBNO (Oslo), TKUBSE (Stockholm) and, especially, STUBAT (Vienna) (o = 0.032, 0.034,
0.034 and 0.054, respectively). In comparison, stable diurnal values were observed at KAUBFI (Helsinki)
and CBUBGB (London) (o = 0.028 and 0.026, respectively). Similar daily profiles were found at these
sites, with higher/increasing ratio values happening during the night/early morning and having the
opposite behavior during the daytime. The urban background sites with a higher ratio stability
were WGUBNL (Amsterdam), LAUBPT (Lisbon) and GNUBEFR (Paris) (o = 0.006, 0.022, and 0.015,
respectively). Increasing values during late afternoon happened at GNUBER (Paris) and LAUBPT
(Lisbon), while no clear seasonal behavior was observed at WGUBNL (Amsterdam).

1.0

0.9

0.8

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

8- LYSBGR (Athens) =#-LISBCZ (Prague) =#=SIUCTR (Istanbul) CHRBPT (Lisbon)
LHRSGB (London) ==#==ARRSFR (Paris) ==#=HJSTNO (Oslo)
Figure 16. Daily profiles of the PM; 5/PMj ratio (suburban background, urban centre, rural background,
roadside, and suburban traffic sites).
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A strong diurnal variability was observed at the suburban background site of LYSBGR (Athens)
(o= 0.049). Significant diurnal variations were also found at the suburban background site of LISBCZ
(Prague), urban centre site of SIUCTR (Istanbul), rural background site of CHRBPT (Lisbon), and
suburban traffic site of HISTNO (Oslo) (o = 0.035, 0.031, 0.029, and 0.029). At these sites, higher and
increasing ratio values happened during the night, decreasing during early morning and morning
rush hours. Stronger decreases observed during rush hours, like the one at LYSBGR (Athens), can
be influenced by the higher occurrence of re-suspended coarse road dust [5,6,26]. A weak diurnal
variability was observed at the roadside sites of LHRSGB (London) and ARRSFR (Paris) (o = 0.021
and 0.018, respectively). However, some diurnal behaviors were still found. Increasing ratio values
happened during the day at LHRSGB (London). At ARRSFR (Paris), the ratio values were stable
during morning and afternoon, oscillating during the night, with the highest values occurring during
late rush hours.

When comparing overall diurnal variability values between traffic and background sites, those
presented to be very similar. The most commonly observed pattern, with higher/increasing ratio
values during the night-time and lower/decreasing values during the daytime, was more frequent in
background sites. However, that tendency was also found in traffic-related sites.

3.3. Modelling of PM, 5 Concentrations

3.3.1. Statistical Models

The combination of ANN with GA allowed obtaining different threshold models for the three
considered periods (20132014, 2015-2016, and 2017-2018). Table 3 presents the characteristics of the
obtained models, in terms of explanatory variables, threshold variables and values, activation function
(AF), and the number of hidden neurons (HN).

Table 3. Characterization of the obtained models (selected explanatory variables, threshold variable
and value, activation function (AF), and the number of hidden neurons (HN)).

Period Model AF HN
oot Pas = { e R Pk, i 5 092 s b
s - { ST VSR ARG S e
2017-2018 PMp5 = { net (I}l\gézfll—/l,Tlr“,‘\lfvvl])D/, Vv\\/]; IZI;: II’A‘I\EI);[;IYHE)% ;flle e izzzg g

Note: M = month of measurement; H = hour of measurement; T = temperature; WD = wind direction; WS = wind
speed; RH = relative humidity; AP = air pressure; PMjg = concentration of PMg.

The obtained threshold models defined the month of measurement (M), RH and T as the variables
that could set different regimes for PM; 5 concentrations. For the 2013-2014 period, the obtained model
did not select the variables H and RH when M < 0.92 (January to April and August to December) and
RH when M > 0.92 (May to July). For the 2015-2016 period, the selected variables did not include M
and WD when RH < 79.1% and M when RH > 79.1%. For the 2017-2018 period, the selected variables
included all the input variables when T < 11.2 °C and did not include M and RH when T > 11.2° C.

In terms of fitting performance, the model related to the 2017-2018 period presented the best
results (MAE = 2.85 ug/m3; MBE = 0.03 p.g/m3; R 2=0.61; RMSE = 3.67 ug/m3; d, = 0.87), followed
by 2015-2016 (MAE = 2.98 pg/m3; MBE =-0.03 pg/m3; R? =0.52; RMSE= 3.89 pug/m?; d, = 0.83) and
2013-2014 (MAE = 3.56 pg/m>; MBE = -0.59 pg/m3; R? = 0.42; RMSE= 4.64 pg/m3; d; = 0.79). Despite
the computational model being only applied to one station (due to the availability of meteorological
data), the performance results show that the model can be an important tool in the analysis of the
PM, 5 concentration behaviors at other sites. The relationships between PM,; 5 concentrations and
meteorological variables may be similar.
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3.3.2. Combined Effects of Meteorological Variables and PM;y Concentrations on PM; 5 Concentrations

Figure 17 presents the combined effects of temperature (T), wind speed (WS), relative humidity
(RH) and PMjg concentrations (PM;g) on PM; 5 concentrations, for two different regimes (RH < 79.1%
and for RH > 79.1%), at SIUCTR (Istanbul). These results were obtained from the determined model
based on the 2015-2016 period because this period allowed for evaluating the effect of all the variables
mentioned above for both regimes. These explanatory variables are also commonly found as prominent
in PMj; 5 behaviors by different authors [7,38,42,43,59-63].
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Figure 17. Combined effect of temperature (°C), wind speed (m/s), relative humidity (RH, %) and PM;
concentrations (pg/ms) on PM, 5 concentrations (ug/m?’) for RH < 79.1% (a,c,e,g,i,k) and RH > 79.1%

(b,d,f,h,j,1).

These results showed that, for RH < 79.1%, PM, 5 concentrations tended to: (i) decrease with
T; (ii) decrease with WS; (iii) slightly decrease with RH, except when T > 23.0 °C and WS > 1.9 m/s;
(iv) strongly increase with PMyg. For RH > 79.1%, PM, 5 concentrations tended to (i) decrease with T;
(if) decrease with WS, except when T < 10.7 °C; (iii) increase with RH; and (iv) strongly increase with

PM;.

The behaviors observed for the combined effects of T-PM;7, WS-PM;7 and RH-PM;, were similar
between the two regimes, with the relation between PM; presence and PM; 5 concentrations prevailing
over the meteorological variables. This behavior was expected, considering that some PM sources are
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common for both pollutants. The combined effect of T-PM; showed that the PMj influence on PM; 5
concentrations was higher during lower T. In the case of T-WS, PM, 5 concentrations presented to be
more influenced by T when RH > 79.1%. For T-RH, RH presented the opposite behavior between the
two regimes for lower T. For RH-WS, RH presented the opposite behavior between the two regimes
for lower WS and PM; 5 concentrations were more influenced by RH when RH > 79.1%. These
behaviors also indicate that the effect of WS was lower for high RH, possibly because RH is linked to
the agglomeration of the particles, which weakens the influence of WS [38,62].

The observed decreases of PM, 5 concentrations with T might be associated with combustion
for central heating and stronger thermal inversion conditions during cold seasons, and with the
evaporation of ammonium nitrate (an important constituent of PMj; 5) during warm seasons [7,35,36].
Decreases of PM, 5 with WS can be linked to the dispersion of PM away from the sources [7,43,60,62,63].
Increases of PMj, 5 with WS observed during low T, for RH > 79.1%, can be attributed to higher
levels of dust resuspension [48]. Higher PM, 5 concentrations were observed in the second regime
(HR > 79.1%) when compared to the first regime (HR < 79.1%). Humidity is linked to the higher
formation of sulphate and nitrate (constituents of PM; 5) and reduces the amount of solar radiation
in the atmosphere, promoting temperature inversion episodes, which might be the causes to that
behavior [7,57,63]. Decreases of PM; 5 with RH, like the one observed for RH < 79.1% during lower WS
and T, can be associated with the stronger agglomeration of the particles, which makes them deposit
from the air, reducing their concentration in the atmosphere [38,62]. Lower WS and T are associated
with a higher stability of particles in the atmosphere, which enhances this behavior.

4. Conclusions

PM, 5 concentrations presented significant variations across the European sites. The highest
concentrations were observed at sites strongly influenced by traffic. Compared to central and southern
Europe, northern cities presented lower PM; 5 levels. In general, PM; 5 concentrations were usually
higher during the winter and tended to present strong increases during rush hours, which indicates the
relevance of central heating and traffic as anthropogenic PMj; 5 sources. Significant spatial variations
were also observed in terms of PM; 5 / PMjg ratios. These ratios were slightly higher at background
sites, and the lower values were found at sites located in northern Europe (Helsinki and Stockholm),
while no clear spatiality was observed for the rest of the continent. PM; 5 / PMj( ratios were usually
higher during cold months and during the night.

Threshold ANN models defined with GA allowed for evaluating the combined effect of different
explanatory variables on PM; 5 concentrations at SIUCTR (Istanbul). These models defined a month
value of 0.92 (M < 0.92 refers to the period from January to April and August to December and M > 0.92
refers to the period from May to July), RH of 79.1%, and T of 11.2 °C as the variables that could set
different regimes for PM; 5 concentrations. The results showed that PM, 5 concentrations decreased
with T and strongly increased with PM;( concentrations on both regimes. WS presented a negative
effect on PM, 5 concentrations, except for RH > 79.1% when T < 10.7 °C. The effect of WS was shown
to be lower for high RH. PM; 5 decreased with RH for RH < 79.1%, except when T > 23.0 °C and
WS > 1.9 m/s. For RH > 79.1%, PMj, 5 increased with RH. The specific objectives proposed for this study
were achieved, which allowed for developing important information about the temporal and spatial
trends and behaviors of PM, 5 concentrations observed in different European locations in recent years.
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