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Abstract  

Background: Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disease with 

no cure, presenting a challenging diagnosis and management. However, despite a significant number 

of criteria and guidelines have been proposed to improve the diagnosis of PD and to determine the 

PD stage, the gold standard for diagnosis and symptoms monitoring of PD is still mainly based on 

clinical evaluation, which includes several subjective factors. The use of machine learning (ML) 

algorithms in spatial-temporal gait parameters is an interesting advance with easy interpretation and 

objective factors that may assist in PD diagnostic and follow up. Research question: This article 

studies ML algorithms for: i) distinguish people with PD vs matched-healthy individuals; and ii) to 

discriminate PD stages, based on selected spatial-temporal parameters, including variability and 

asymmetry. Methods: Gait data acquired from 63 people with PD with different levels of PD motor 

symptoms severity, and 63 matched-control group individuals, during self-selected walking speed, 

was study in the experiments. Results: In the PD diagnosis, a classification accuracy of 84.6%, with 

a precision of 0.923 and a recall of 0.800, was achieved by the Naïve Bayes algorithm. We found four 

significant gait features in PD diagnosis: step length, velocity and width, and step width variability. 

As to the PD stage identification, the Random Forest outperformed the other studied ML algorithms, 

by reaching an Area Under the ROC curve of 0.786. We found two relevant gait features in identifying 

the PD stage: stride width variability and step double support time variability. Significance: The 

results showed that the studied ML algorithms have potential both to PD diagnosis and stage 

identification by analysing gait parameters.  
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1. Introduction 

An accurate diagnosis is required to differentiate Parkinson’s disease (PD) from other 

neurological disorders and healthy individuals, and to improve PD treatment and follow up. 

Particularly, the diagnosis is challenging in the early stages of PD [1]. Despite a significant number 

of criteria and guidelines have been introduced to improve the PD diagnosis, the gold standard for 

PD diagnosis and symptoms monitoring is still based on clinical evaluation, which includes several 

subjective factors [2], and an accuracy from 75 to 82%, depending who perform it [3]. Also, the motor 

symptoms become more generalized with the disease progression - the trunk tends to bend forward, 

balance is reduced and gait becomes problematic [4] - which can hamper the identification of the PD 

stage. 

Only the use of subjective clinical measures for PD evaluation can assure the validity and 

reliability of the PD diagnosis [5]. The Movement Disorder Society and previous studies have 

recently proposed other diagnostic aids to improve the accuracy. Machine learning (ML) based 

approaches applied to gait parameters have been suggested to aid the diagnosis and follow up of PD 

[6,7]. Gait analysis is an interesting option with easy interpretation to be considered in PD diagnostic 

and follow up, mainly, due to gait impairments appearing early in PD and getting worse over time, 

differentiating the PD stages [8]. The spatial-temporal gait parameters are less prone to physiological 

parameters like age, height and weight [7], being a critical feature to identify the presence of PD and 

quantify the progression of the disease [6,7]. The spatial-temporal gait variability and asymmetry 

level are hallmarks of PD features [9,10]: while gait variability may predict falls in older adults and 

people with PD (PwPD), gait asymmetry may be helpful in early and moderate PD [6]. However, 

despite previous studies have shown interesting and relevant findings, there is not a consensus about 

the application of ML algorithms on gait parameters in order to diagnose and follow up PD. 

As ML algorithms can extract useful patterns from processed data [5], they can potentially 

help physicians to diagnose PD, as well as quantify the disease progression. Although gait analysis 
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by itself may not be a solution to PD, gait features could provide insights that are complementary to 

other sources of information [11]. Hence, from the spatial-temporal features of gait analysis, ML 

algorithms can find hidden patterns in the acquired data that can be important in PD diagnostic and 

follow up. Actually, by detecting changes in the gait pattern, ML algorithms were successfully used 

to identify PwPD from healthy subjects and to classify different PD stages [12,13]. Despite previous 

studies reported promising findings, indicating an accuracy between 73 and 99.4% to discriminate 

PD subjects from healthy subjects, or to classify different stages of PD [14,15], the literature has not 

identified the best ML based approach to help in PD diagnostic and follow up yet. Also, previous 

studies have included a limited sample size to perform ML techniques and the spatial-temporal gait 

variability and asymmetry level were not included in the ML model. Thus, our study seems to have 

a more comprehensive approach compared to others. 

Therefore, to help defining such as ML based approach that can improve the PD diagnostic 

and follow up, the main purpose of this work was to study several ML algorithms to diagnose PD 

based on spatial-temporal gait characteristics. Specifically, our aims were to identify, based on ML 

algorithms, suitable spatial-temporal gait features that can better i) distinguish PwPD from age, height 

and body mass matched-healthy individuals, and ii) identify PD stages. The present study is a 

diagnostic accuracy observational study. The spatiotemporal gait parameters of PwPD and healthy 

individuals were used to produce an algorithm for the detection and classification of PD. The 

approach of this study could pave the basis for additional important perspectives for a precise 

diagnosis and stage determination in PD, determining gait biomarkers to help in the differential 

diagnosis. Also, the results of this study may help to predict disease progression, translating ML 

methods from the research field to clinical practice. 

 

2. Materials and methods            
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2.1. Participants  

Sixty-three idiopathic PwPD and 63 healthy individuals from the community were recruited. 

Specifically, the PwPD were invited from Movement Disorders Clinics. The PwPD were diagnosed 

by neurologists according to the UK Brain Bank Criteria. The exclusion criteria were: a) both groups: 

age below 50 years, score on the Mini-Mental State Examination (MMSE) of 24 points or below [16], 

and history of orthopaedic or vision problems that would make it impossible to perform the 

experimental protocol; b) PwPD: disease stage above 3 on Hoehn and Yahr (H&Y) scale [17], and 

starting PD medication lesser than three months before the data acquisition. Written informed consent 

was obtained from all participants according to the protocol approved by the local University Ethical 

Committee Board and it was conducted according to the Declaration of Helsinki. 

To determine the motor condition and the disease stage, the PwPD were evaluated by a 

specialist using the motor part of the Unified Parkinson’s Disease Rating Scale (UPDRS-III) [18] and 

H&Y scales, respectively. All evaluations were performed in the PD group approximately one hour 

after taking the dopaminergic medication (ON-state).  

 

2.2. Gait task and analysis 

The participants walked three times at their self-selected velocity for 8.5 m on an unobstructed 

walkway (1.5 m wide). The gait parameters were acquired using 10 Vicon Motion Systems® cameras 

(100 Hz). Two passive reflective markers were placed on each participants’ foot (second metatarsal 

and calcaneus) in order to acquire the spatial-temporal gait parameters. The acquired data was filtered 

using a 5th order low-pass digital Butterworth filter (zero-lag) with a 6 Hz cut-off frequency.  

The following spatial-temporal gait parameters were calculated: step/stride length, width, 

duration and velocity, single and double support time and cadence. Additionally, step/stride 

variability and asymmetry (i.e., coefficient of variation and symmetry index, respectively), 

parameters were calculated. The average of three trials for each participant was used in the assessment 
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of the studied ML algorithms and gait parameters. 

 

2.3. Machine learning 

2.3.1 Feature Selection and Classification  

The implementation of the studied ML algorithms was done using the Python programming 

language on the Spyder integrated development environment (3.3.6 version). The used library 

packages were: scikit-learn, for the supervised ML algorithms; numpy and pandas, for data operations 

and mathematical computations; and matplotlib and seaborn, for graphs plotting.   

In this study, we developed two different ML models for each case: first for PD diagnosis and 

another for the PD stage identification. We adopted the same strategy for each case: preprocessing 

step, feature selection, classification, and evaluation.  

In the pre-processing step, the acquired data were randomly split into 80-20%, in case of the 

PD diagnosis, as training and testing sets, respectively. In the second case, the split was stratified into 

50-50% to ensure that the ratio of the two classes was the same in both training and test sets, followed 

by feature scaling. Each PD stage was identified according to H&Y scale, mild PD corresponds to 

H&Y score from 1 to 2 and medium PD matches with H&Y score from 2.5 to 3. The features were 

scaled in terms of median and quartiles, which is a technique useful when the data under study have 

many outliers [19].  

Then, feature selection on the training set was performed in the same way in both objectives 

of the study. One form of feature selection is based on the univariate feature selection method, which 

considers each feature individually. So, a feature is discarded if it is only informative when combined 

with another feature. Choosing a test, for instance f_classif, and computing a threshold, all features 

with a too high p-value are discarded because they are unlikely to be related to the target class. 

SelectKBest is an example of a method which computes this threshold, by selecting a fixed k number 

of features [20].  
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In this work, the univariate feature selection method was used for selecting the important 

features; although, as a first step, features with a pairwise Pearson’s correlation coefficient above 0.80 

were removed. Following Evans [21] recommendations, 0.8-1.0 is considered very strong correlation 

between features, so they are not independent and should be removed. Because the univariate feature 

selection method [22] does not capture redundancy among features, correlation-based feature 

selection was applied before. However, the optimum number of features varied according to the used 

ML algorithm. Because of this, each classifier algorithm was used with its default parameters and the 

optimum number of features to use was chosen according to the corresponding highest achieved 

accuracy assessed by the 10-fold cross validation method. Due to that, to identify PD stages, the 

accuracy was replaced by the Area Under the Curve (AUC) metric and a repeated 10-fold cross 

validation technique was adopted to evaluate the classification performance [23]. Furthermore, AUC 

is much suitable for imbalanced classification problems than accuracy [20], because a high accuracy 

is still possible achieved by an unskilful ML classification algorithm that only predicts the majority 

class [24]. 

The selected features from the training data set were used as inputs for the ML classification 

algorithms. In this work, in the two cases under study, we employed different ML algorithms: Naïve 

Bayes (NB) [25], Support Vector Machine (SVM) [26], Decision Tree (DT) [27], Random Forest 

(RF) [28], Logistic Regression (LR) [29] and Multilayer Perceptron (MLP) [30].  

Before the learning process, a set of hyperparameters were determined by grid search. This 

technique can help to improve the performance of a ML algorithm by finding the optimal combination 

for the hyperparameter values. During this process, an exhaustive search is performed in order to 

specify different hyperparameter values [31]. 

As the dataset is composed of 63 individuals in PD stage identification, which is a reduced 

dataset, and consists of 42 mild and 21 medium PwPD, the distribution of instances across the known 

classes is not equal, so the training set is slightly imbalanced. We reported the classification 
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performance comparison between the five algorithms for the original training set and also for the 

balanced training set using the Synthetic Minority Oversampling Technique (SMOTE) [23] 

oversampling algorithm. This algorithm generates new synthetic samples by interpolation until 

minority class becomes of the same size as the majority class. 

 

2.3.2. Classification Evaluation 

The performance of the studied ML classifiers on the test data was assessed using evaluation 

metrics such as accuracy, precision, recall, F1-score, and AUC value. Based on the outcome of a 

classification test, the number of true positives (TP) can be calculated as well as of true negatives 

(TN), false positives (FP) and false negatives (FN) [32]. Accuracy, which is one of the most used 

evaluation metrics, measures the proportion of correct predictions [33] over the total number of 

evaluated instances: 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 (1) 

Precision is used to measure the positive patterns that are correctly predicted from the total 

predicted patterns in a positive class: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2) 

 

Recall represents the proportion of positive patterns that are correctly classified: 

 

 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 

(3) 

F1-score measures the harmonic mean between recall and precision values: 
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 𝐹1-𝑠𝑐𝑜𝑟𝑒 =
2. 𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (4)                    

 

One of the popular ranking type metrics is AUC. Instead of the threshold and probability 

metrics, the AUC value reflects the overall ranking performance of a classifier. It was theoretically 

and empirically proven that the AUC is better than the Accuracy for evaluating the performance of a 

ML classifier.   

 

3. Results  

The demographic and clinical details of the participants are shown in Table 1. The PwPD and 

healthy individuals were matched by age, height and body mass. 

 

***Table 1 near here*** 

 

3.1. Performance in PD classification 

In the first feature selection step, we calculated the Pearson correlation coefficients among 44 

features. Figure 1 shows the resulting correlation matrix after the highly correlated features have been 

removed (𝑟>=0.8). 

 

***Figure 1 near here*** 

 

Figure 2 shows the accuracy of the machine learning methods in correctly classifying healthy 

and PwPD. One can be observed that the NB algorithm significantly improved the classification 

accuracy from 61.5 to 84.6%. On the other hand, LR algorithm did not increase the classification 

accuracy after SelectKBest, remaining in 76.9%. Furthermore, the RF algorithm did not change its 



9 
 

accuracy (stayed in 57.7%) after the highly correlated features have been removed, but improved it 

to 69.2% after SelectKBest. 

***Figure 2 near here*** 

The NB algorithm with the optimum number of four features, which include step length, step 

velocity, step width and step width variability, provided the maximum accuracy (84.6%), precision 

(0.923), recall (0.800), and F1-score (0.857). SVM with the RBF kernel achieved the higher AUC 

value (0.915) using the same features used with the NB algorithm (Table 2).  

 

***Table 2 near here*** 

 

The optimized hyperparameters of the studied ML algorithms, which were found by grid 

search, are indicated in supplementary material 1 (S1). Figure 3 shows the feature importance of the 

RF classifier in PD classification. 

 

***Figure 3 near here*** 

 

This classifier chose a total of twelve features and the three most important features were step 

length, step velocity variability and step velocity. 

3.2. Performance in PD stage classification 

The performance of the five studied algorithms on the original and balanced training sets is 

shown in Table 3. We used macro-averaging methods for evaluating the scoring metrics: precision, 

recall and F1-score. These methods give equal weight to all classes, no matter what their size is [20]. 

 

***Table 3 near here*** 
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All algorithms showed a higher AUC value, standing out RF which was the best classifier 

with an AUC value of 0.786, followed by NB with an AUC of 0.771. In addition to the AUC value, 

the macro average (macro avg) of precision, recall and F1-score, are other important measures to 

assess the quality of the classification results. The NB algorithm had achieved a higher precision 

macro avg, recall macro avg and F1-score macro avg.  

 

4. Discussion  

We studied the use of common ML algorithms to classify and rate PwPD using spatial-

temporal gait parameters. We observed that as to the PD diagnosis, an accuracy of 84.6% with a 

precision of 0.923 and a recall of 0.800 could be achieved by the NB algorithm. Regarding the gait 

parameters, we found four significant features in terms of PD diagnosis: step length, step velocity, 

step width and step width variability. In the second case, regarding the PD severity classification, RF 

reached an AUC value of 0.786 and NB achieved the best precision macro average (0.729), recall 

macro average (0.745), and F1-score macro average (0.733). We found two relevant features in rating 

the PD severity: stride width variability and step double support time variability. 

The NB algorithm had the number of TP (PD cases) greater than the number of TN (healthy 

cases). In this classifier, the number of FN is always higher than of FP. In the medical context, the 

number of FN should be as low as possible, because it is a risk in a patient’s treatment if the medical 

specialist uses the results of a classifier that predicts incorrectly PwPD as healthy (S2). 

PD induces gait disturbances, such as reduced step length and reduced velocity [34], caused 

by bradykinesia, hypokinesia and rigidity. Still, step width variability is related to active step-to-step 

adjustment by the central nervous system to maintain balance during gait [35]. Hence, step width was 

also included in this study, and unlike happened in previous studies, medio-lateral stability seems to 

be an important feature to classify PD. LR and MLP algorithms selected two more features than NB 
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and SVM by including step time variability and step velocity asymmetry. The ML algorithms 

attributed less importance weight to the asymmetry parameters. In addition, the RF algorithm, which 

also gave less importance to the asymmetry parameters. 

Five different machine learning algorithms: NB, LR, SVM with RBF kernel, RF, and MLP, 

were applied in this study to spatial-temporal gait data. In a previous work, Rehman et al. [6] 

identified five clinical gait characteristics using a SVM classifier with a RBF kernel: mean step 

velocity, mean step length, step length variability, mean step width, and step width variability, and 

reached a classification accuracy between 73-97%, with 63-100% of sensitivity and 79-94% of 

specificity. Here, we found step length, step velocity, step width and step width variability as 

important parameters to classify PD. 

On the other hand, Wahid et al. [36] revealed significant differences in stride length, cadence, 

stance time, and double support time, and a RF classifier attained the best PD classification with an 

accuracy of 92.6%. In Urcuqui et al. [37], the RF classifier also achieved higher accuracy (82%) in 

comparison to other classifiers, and lower FN (23%) and false positive (12%) rates. They concluded 

that stride length and age were important features. Aich et al. [38] extracted six spatiotemporal gait 

parameters, including step length, stride length, step time, stride time, step velocity, and stride 

velocity. Among all the ML techniques used in their study, RF detected the two states with an 

accuracy of 96.72%, recall of 97.35%, and precision of 96.92%. In another study, Aich et al. [39] 

measured five important gait characteristics: step time, stride time, step length, stride length, and 

walking speed. The results showed that the DT classifier reached the best classification accuracy with 

a value equal to 88.46%. Overall, previous studies identified step/stride length and step/stride time as 

important gait characteristics. Furthermore, RF and SVM classifiers obtained the best performance 

with an accuracy that varies between 72.67 and 100%. Some aspects may decrease performance 

evaluation metrics in our study compared to previous studies, including i) great dispersion in the gait 

parameters, including significant differences for sex, body mass and preferred gait speed. In addition, 
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the inclusion of other gait parameters, such as muscle activity and kinetic parameters, may improve 

the precision of the algorithm, ii) despite H&Y is used as the main PD classification, the inclusion of 

full UPDRS could help to improve the performance evaluation metrics, and iii) reduced sample for 

training, increasing the risk of overfitting. We have included this information in the manuscript. 

Neurodegenerative diseases such as PD increase the variability of walking and is related to 

falls. The center responsible for automatic gait control causes walking less automatic and more 

dependent on the cortical control [9]. Concerning the classification for different stages of PD, we 

used a total of five different ML algorithms: NB, LR, SVM linear, RF and DT. Each algorithm chose 

the optimum number of two features, which include stride width variability and step double support 

time variability. The selection of variability parameters as important characteristics to classify PD 

stage is interesting, because the variability of the temporal parameters of gait is related to mechanisms 

that regulate the movement rhythm and central pattern generator, and the variability of spatial 

parameters is associated to the balance control mechanisms.  

Analysing Table 3, one can observe that class imbalanced had a negative impact, mainly on 

the LR and SVM algorithms’ performance. Due to poor performance of these algorithms, we applied 

SMOTE based oversampling to solve the imbalance between the classes in order to improve the 

classification performance. The application of SMOTE technique is a novelty method for determining 

PD severity classification. Generally, the dataset is unbalanced due to the heterogeny of PD. To avoid 

errors in the calculation and classification, it is necessary to correct the dataset unbalance. Previous 

studies tried to solve this problem using cross-validation k-fold [12-15]. However, this technique does 

not correct the dataset unbalance, increasing the errors in the calculation. 

In the current literature as to PD, only a few studies are focused on the classification affected 

by different disease severity. Buongiorno et al. [40] used SVM and Artificial Neural Networks (ANN) 

classifiers for comparison. The results showed that the ANN classifier achieved the best accuracy by 

reaching a value of 95.0% using six selected features for PD severity rating, but variability gait 
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characteristics were not analysed. On the other hand, Balaji et al. [7] showed that the Decision Tree 

(DT) classifier attained an overall accuracy of 99.4%, with the least negative predictive value of all 

classifiers, and the lowest misclassification rate for all stages considered: healthy, high, medium, and 

mild.  

We can conclude that spatial-temporal gait parameters together with ML techniques could 

support medical specialists in the identification and assessment of PwPD. The results showed that the 

studied ML algorithms have potential to diagnosis and follow up PD by analysing gait parameters. 

However, external validation is needed to confirm these results. In addition, ML techniques using 

spatial-temporal gait parameters in PD has clinical applications: i) it may support the diagnosis of PD 

by classifying people with PD with specific PD-related gait characteristics, ii) it has a significant 

impact on clinical practice by allowing identification of specific gait characteristics and further 

supporting tailored interventions focus on those specifics characteristics; iii) it increases the precision 

of PD identification and classification, making the clinical decisions more assertive. 

As future work, we recommend exploring low-cost systems for data acquisition. A similar 

analysis can also be performed with wearable systems in the home environment. In addition to that, 

a larger number of individuals in the used dataset may improve the reliability of the ML algorithms; 

this can turn possible the use of more advanced ML algorithms such as deep learning, which require 

huge datasets for training. For enhancing the stage classification, we suggest assessing tremor data 

together with gait parameters. Also, in order to obtain a more complete diagnosis of PD, other motor 

and non-motor symptoms could be included in the ML classifiers.  
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TABLE / FIGURE CAPTIONS 

 

Table 1. Demographic and clinical characteristics (means ± standard deviations) of the studied 

neurologically healthy and PD individuals. BMI: body mass index; MMSE: Mini – Mental State 

Examination; H&Y: Hoehn and Yahr; UPDRS-III: motor part of Unified Parkinson’s Disease Rating 

Scale. 

 

Table 2. Performance values obtained by the studied ML algorithms trained on the found optimum 

number of features. These values are referred to distinguish PD group from control group in the 

training set. NB: Naïve Bayes; LR: Logistic Regression; SVM: Support Vector Machine; RBF: 

Radial Basis Function; RF: Random Forest; MLP: Multilayer Perceptron. 

 

Table 3. Performance obtained by the different studied ML algorithms on the original training set 

and balanced training set with SMOTE. NB: Naïve Bayes; LR: Logistic Regression; SVM: Support 

Vector Machine; RF: Random Forest; DT: Decision Tree; AUC: Area Under the Curve; macro avg: 

macro average.     
 

Figure 1. Correlation matrix showing the Pearson correlation coefficients among the selected 

features. 

 

Figure 2. Impact of the feature selection in the classification accuracy obtained by the studied ML 

algorithms. NB: Naïve Bayes; LR: Logistic Regression; SVM: Support Vector Machine, RBF: 

Radial Basis Function kernel, RF: Random Forest, MLP: Multilayer Perceptron. 

 

Figure 3. Feature importance found as to the Random Forest classifier. 
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Fig 3 

Table 1. Demographic and clinical characteristics (means ± standard deviations) of the studied 

neurologically healthy and PD individuals. 

Control Group PD group 
H&Y 1 to 2 

(mild - n=42) 

H&Y 2.5 to 3 

(moderate - n=21) 

M/F (n) 18 M / 45 F 34 M / 29 F 21 M / 21 F 13 M / 8 F 

Age (yr) 68.0 ± 6.0 68.7 ± 7.5 68.0 ± 7.5 70.4 ± 7.5 

Body mass (kg) 72.1 ± 13.2 69.4 ± 13.7 73.1 ± 11.9 62.0 ± 14.6 

Height (m) 1.60 ± 0.08 1.62 ± 0.09 1.63 ± 0.09 1.61 ±0.09 

BMI (kg/m
2
) 28.2 ± 4.6 26.3 ± 4.6 27.7 ± 3.0 23.9 ± 5.7 

MMSE (pts) 27.9 ± 2.0 27.4 ± 2.0 27.7 ± 2.0 27.1 ± 1.9 

Time from clinical diagnosis (yr) - 5.33 ± 3.67 5.2 ± 3.6 5.5 ± 3.8 

UPDRS-III (pts) - 27.4 ± 10.6 24.7 ± 10.1 32.9 ± 9.7 

H&Y (pts) - 2.1 ± 0.4 - - 

 BMI: body mass index; MMSE: Mini – Mental State Examination; H&Y: Hoehn and Yahr; 

UPDRS-III: motor part of Unified Parkinson’s Disease Rating Scale. 

Table 2. Performance values obtained by the studied ML algorithms trained on the found optimum 

number of features.  

Algorithms Number of features Accuracy (%) Precision Recall F1-score AUC 

NB 4 84.6 0.923 0.800 0.857 0.891 

LR 6 76.9 0.909 0.667 0.769 0.885 

SVM - RBF 4 80.8 0.917 0.733 0.815 0.915 

RF 12 69.2 0.889 0.533 0.667 0.739 

MLP 6 76.9 0.909 0.667 0.769 0.885 
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NB: Naïve Bayes; LR: Logistic Regression; SVM: Support Vector Machine; RF: Random Forest; 

MLP: Multilayer Perceptron. 

Table 3. Performance obtained by the different studied ML algorithms on the original training set 

and balanced training set with SMOTE. 

Algorithms Training set AUC 
Precision Recall F1-Score 

(macro avg) (macro avg)  (macro avg) 

NB 
Original 0.766 0.737 0.680 0.691 

Balanced 0.771 0.729 0.745 0.733 

LR 
Original 0.762 0.328 0.500 0.396 

Balanced 0.766 0.692 0.699 0.695 

SVM (linear) 
Original 0.762 0.328 0.500 0.396 

Balanced 0.766 0.692 0.699 0.695 

RF 
Original 0.760 0.725 0.701 0.709 

Balanced 0.786 0.723 0.723 0.723 

DT 
Original 0.695 0.679 0.695 0.653 

Balanced 0.706 0.723 0.723 0.723 

NB: Naïve Bayes; LR: Logistic Regression; SVM: Support Vector Machine; RF: Random Forest; 

DT: Decision Tree; AUC: Area Under the Curve; macro avg: macro average.
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