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Abstract

An accurate early-stage leukemia diagnosis plays a critical role in treating
and saving patients’ lives. The two primary forms of leukemia are acute and
chronic leukemia, which is subdivided into myeloid and lymphoid leukemia.
Deep learning models have been increasingly used in computer-aided medical
diagnosis (CAD) systems developed to detect leukemia. This article assesses
the impact of widely applied techniques, mainly data augmentation and mul-
tilevel and ensemble configurations, in deep learning-based CAD systems.
Our assessment included five scenarios: three binary classification problems
and two multiclass classification problems. The evaluation was performed us-
ing 3,536 images from 18 datasets, and it was possible to conclude that data
augmentation techniques improve the performance of convolutional neural
networks (CNNs). Furthermore, there is an improvement in the classification
results using a combination of CNNs. For the binary problems, the perfor-
mance of the ensemble configuration was superior to that of the multilevel
configuration. However, the results were statistically similar in multiclass
scenarios. The results were promising, with accuracies of 94.73% and 94.59%
obtained using multilevel and ensemble configurations in a scenario with four
classes. The combination of methods helps to reduce the error or variance of
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the predictions, which improves the accuracy of the used deep learning-based
model.

Key words: Image Classification, Deep Learning, Ensemble, Leukemia,
Multilevel

1. Introduction

Bone marrow occupies the bone cavity, where blood cells are produced.
It contains the cells that give rise to red blood cells, known as erythrocytes,
platelets, and white blood cells, also known as leukocytes (Souza and Gorini,
2006). The latter cells actively participate in the human immune system and
help it to defend the body against invaders. Progenitor cells in the marrow,
also known as stem cells or precursor cells, produce an average of 100 million
leukocytes per day. These leukocytes help the body to combat and eliminate
microorganisms and chemical structures that are strangers to it through their
capture, i.e., phagocytosis or through the production of antibodies. One
of the diseases that affect the functioning of the bone marrow is leukemia
(Travlos, 2006).

Leukemia is a malignant disease of the white blood cells, usually of un-
known origin. Its main characteristic is the accumulation of diseased cells in
the bone marrow, which replace normal blood cells. A blood cell that has
not yet reached maturity undergoes a genetic mutation that turns it into a
cancer cell in leukemia. This abnormal cell does not operate properly, and it
multiplies faster and has a shorter lifespan than of normal cells. Hence, the
abnormal cancer cells replace healthy blood cells in the bone marrow.

The American Cancer Society (ACS) (Society, 2021) estimated that there
would be 61,090 new cases of leukemia in 2021, with approximately 23,660
deaths; in particular, there would be 35,530 male cases and 25,560 female
cases, leading to 13,900 male deaths and 9,760 female deaths.

The types of leukemia can be classified according to the worsening speed
of the disease. Hence, the condition can be of the chronic type, which usually
gets worse slowly, or of the acute type, which usually gets worse quickly. The
types of leukemia can also be classified based on the kind of white blood cells
they affect: lymphoid or myeloid cells (Mrozek et al., 2004). Thus, the main
types of leukemia are acute lymphoblastic leukemia (ALL), acute myeloid
leukemia (AML), chronic myeloid leukemia (CML), and chronic lympho-
cytic leukemia (CLL). Acute leukemia affects mainly children, and chronic
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leukemia tends to affect adults and the elderly (Souza and Gorini, 2006).
Each type of leukemia has an appropriate treatment; therefore, a diag-

nosis in the early stage of the disease is demanded to provide the proper
treatment successfully. On the other hand, the main treatments for more
advanced disease phases aim to destroy the leukemic cells so that the bone
marrow returns to produce normal cells. Figure 1 shows examples of the
blood slide images used in the experiments of the current study, mainly
ALL, AML, chronic leukemia, and healthy blood slides (HBS).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1: Examples of images used in this study: (a-c) ALL images, (d-f) AML images,
(g-i) chronic leukemia images and (j-l) HBS images.

Deep learning models have been increasingly used in computer-aided med-
ical diagnosis (CAD) systems (Puttagunta and Ravi, 2021). In particular, 
convolutional neural networks (CNNs) can learn hierarchical representations, 
from more general features in the first convolutional layers, to more semantic 
features in the last few layers. Currently, CNNs are one of the most effec-tive 
techniques used in medical imaging-based diagnosis (Upreti et al., 2021). 
Researchers have been seeking to increase the generalizability of CNNs, par-
ticularly based on techniques of data augmentation and the combination of 
CNNs in ensemble (Dietterich, 2000) and multilevel (Szegedy et al., 2015) 
configurations.

In this study, techniques that are widely used in CNN based CAD sys-
tems were evaluated, mainly data augmentation and ensemble and multilevel 
configurations (Kim et al., 2021). Therefore, seven CNNs were studied using 
different techniques of data augmentation and ensemble and multilevel con-
figurations. According to five leukemia classification scenarios, the analysis 
was performed using 3,536 images from 18 heterogeneous datasets. Three of 
these scenarios are binary classification problems: leukemia vs. HBS, ALL
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vs. HBS, and AML vs. HBS. The other two scenarios are multiclass classi-
fication problems: ALL vs. AML vs. HBS and ALL vs. AML vs. HBS vs.
other types.

The main contributions of this article are the following: the identifications
of the datasets that are widely used for leukemia classification, the introduc-
tion of five scenarios for the classification of different types of leukemia, the
evaluation of the performance achieved by various CNN-based models on
leukemia classification, the assessment of the impact of multiple data aug-
mentation techniques on the classification performance, and assessment and
comparison of the improvements achieved by multilevel and ensemble model
configurations.

This article is organized as follows. Section 2 presents related work. Sec-
tion 3 describes the used materials and methods, such as the used datasets,
the employed techniques of data augmentation, the evaluated network archi-
tectures, the used ensemble and multilevel configurations, and, finally, the
adopted evaluation metrics. Sections 4 and 5 present the achieved results
and a comparison of them against the ones of previous works found in the
literature, respectively. Finally, the conclusions and possibilities for future
work are pointed out in Section 6.

2. Related work

This section presents studies that have been developed for leukemia de-
tection. Taking into account the applied methodology, we identified tradi-
tional methods (Singhal and Singh, 2016; Madhukar et al., 2012; Goutam and
Sailaja, 2015; Rawat et al., 2017; Laosai and Chamnongthai, 2018) and meth-
ods based on deep learning (Thanh et al., 2018; Vogado et al., 2018; Loey
et al., 2020; Shafique and Tehsin, 2018). Traditional methods comprise sev-
eral steps, such as image pre-processing, segmentation, feature extraction,
and classification. On the other hand, procedures based on deep learning
usually apply CNNs. This kind of procedures aims to design and build a
CNN that takes the input image and returns the output class without going
through the different challenging tasks involved in traditional methods, such
as the segmentation of regions of interest (ROIs) and feature extraction.

We performed the current state-of-art review using the Scopus, Web of
Science, and IEEE Xplore databases. The following search strings were used
to search the engineering and computer science fields: “leukemia acute clas-
sification,” “white blood cell classification” and “blood smear leukemia clas-
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sification”. The first string returned 337 articles, the second string returned 
271 articles, and the last string returned 59 articles. We then analyzed the 
titles and abstracts of all returned articles to eliminate the repeated docu-
ments, documents with non-automatic classification methods, and documents 
whose goal was just leukocyte segmentation as in (Jiang et al., 2003; Abbas 
and Mohamad, 2014; Arslan et al., 2014; Vogado et al., 2016; Li et al., 2016).

Given the accelerated evolution of CAD systems seen in the last decade, 
just the works published after 2012 were selected. About older approaches, 
the articles written by Mishra et al. (2016), Anilkumar et al. (2020) and Khan 
et al. (2020) can be suggested. Mainly, Mishra et al. (2016) performed a com-
parative analysis of methods published between 2002 and 2014. Anilkumar 
et al. (2020) presented a review of works published between 2004 and 2020 in 
the area of blood slide image processing, highlighting the automatic detection 
of leukemia. On the other hand, Khan et al. (2020) investigated works based 
on traditional machine learning and deep learning models. These authors col-
lected 80 articles published in journals, books, conferences and online from 
2014 to 2020.

The found articles can be classified based on two criteria: (1) the method-
ology applied and (2) the number of leukemia types present in the used 
image dataset. Due to the number of articles that were found, they were 
divided them into six groups of approaches that have been proposed to de-
tect leukemia: (1) the approaches that differentiate between images with 
leukemia and healthy patterns, regardless of the type of leukemia; (2) the 
approaches that differentiate blood slides with ALL from healthy slides; (3) 
the approaches that differentiate images with AML from healthy images; (4) 
the approaches that differentiate images with CLL from healthy images; (5) 
the approaches developed to classify types of acute leukemia (ALL and AML) 
and healthy images; and finally, (6) the approaches that differentiate the four 
main types of leukemia (ALL, AML, CLL, and CML) from healthy images. 
Table 1 summarizes the main characteristics of the selected sate-of-art arti-
cles.

In the group of works performing binary classification, the input im-
ages are classified into healthy slides and images with leukemia, regardless 
of the type of leukemia. In the study performed by Thanh et al. (2018), 
a CNN-based method is proposed for the ALL-IDB1 dataset (Labati et al., 
2011), which has 108 images: 59 healthy images and 49 images with ALL. 
These authors used techniques of data augmentation such as reflection, trans-
lation, rotation, and shear. The proposed method achieved 96.6% of ac-
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Table 1: Summary of the identified state-of-the-art articles in terms of the used descrip-
tor(s), classifier, number of datasets, number of images and obtained accuracy.

Work Descriptor(s) Classifier
Number of
datasets

Images Accuracy (%)

Leukemia - HBS
Thanh et al. (2018) Proposed CNN CNN 1 108 96.60
Vogado et al. (2018) CNNs VGG-f, AlexNet, CaffeNet SVM 8 1,268 99.76
Loey et al. (2020) CNN AlexNet CNN 2 564 100

Vogado et al. (2021) CNN LeukNet CNN 18 3.536 98.61
ALL - HBS

Singhal and Singh (2016) Texture SVM 1 260 93.80
Shafique and Tehsin (2018) CNN AlexNet CNN 2 368 99.50

Ahmed et al. (2019) Proposed CNN CNN 2 354 88.25
Pansombut et al. (2019) CNN ConVNet CNN 2 363 81.74

Gehlot et al. (2020) CNN SDCT AuxNetθ CNN 1 15,114 93.40

Das and Meher (2021)
MobileNetV2+

ResNet18
CNN 2 368 97.92 and 96.00

Khandekar et al. (2021) Yolov4 Yolov4 2 1,108 mAP:96.06;98.70
Zakir Ullah et al. (2021) VGG16-ECA CNN 1 15,114 91.10

Karar et al. (2022) CNN GAN 1 368 98.65
Rodrigues et al. (2022) ResNet-50V2-GA CNN 1 260 98.46
Abhishek et al. (2022) Vgg16 CNN 2 608 97.00
Rastogi et al. (2022) LeuFeatx ETC 1 260 96.15

AML - HBS
Madhukar et al. (2012) Texture SVM 1 50 93.50

Goutam and Sailaja (2015) Texture SVM 1 90 98.00
Dasariraju et al. (2020) Shape and Color Random Forest 1 1,274 92.99

CML - HBS
Khosla and Ramesh (2018) Deep Features CNN 1 67 97.60

ALL - AML - HBS
Rawat et al. (2017) Geometrical, color and texture GA-SVM 1 240 99.50

Laosai and Chamnongthai (2018)
Shape, color distribution,
texture and number of nucleoli

SVM 2 500 99.85

Tran et al. (2018) CNN LeukemiaNet CNN 2 141 97.20
Claro et al. (2020) CNN Alert Net-RWD CNN 16 2,415 97.18
Karar et al. (2022) CNN GAN 2 445 95.50

Abhishek et al. (2022) ResNet50 SVM 2 608 98.00
ALL - AML - CLL - CML - HBS

Ahmed et al. (2019) Proposed CNN CNN 2 903 81.74
Bibi et al. (2020) CNN DenseNet121 CNN 2 518 99.91

curacy. Vogado et al. (2018) used eight datasets: the ALL-IDB1, ALL-
IDB1 (Crop), ALL-IDB2 (Labati et al., 2011), Leukocytes (Sarrafzadeh and
Dehnavi, 2015), CellaVision (Rollins-Raval et al., 2012), Atlas (Sarrafzadeh
et al., 2014) and (Sarrafzadeh et al., 2015) datasets. The total number of
used images was equal to 1,268, and CNNs VGG-F (Chatfield et al., 2014),
AlexNet (Krizhevsky et al., 2012) and CaffeNet (Jia et al., 2014) were used
to extract the used descriptors; the used classifier was the support vector ma-
chine (SVM), and an accuracy of 99.76% was achieved. Loey et al. (2020)
used the AlexNet network (Krizhevsky et al., 2012) for feature extraction
and classification. The used dataset has 564 images: 282 healthy images and
282 images with leukemia, which were obtained from the American Society
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of Hematology (ASH) (ASH, 2020) and Kangle1, and techniques of data aug-
mentation were applied to reduce overfitting. Vogado et al. (2021) developed 
a network called LeukNet to diagnose 3,536 images, which are also used in 
this study; these images were gathered from 18 different datasets, and the 
authors obtained an accuracy of 98.61%.

Singhal and Singh (2016) extracted texture features of images from the 
ALL-IDB2 dataset (Labati et al., 2011), which includes 130 healthy images 
and 130 images with ALL, and obtained an accuracy of 93.80%. Shafique and 
Tehsin (2018) applied the AlexNet convolutional neural network (Krizhevsky 
et al., 2012) to 368 images from the ALL-IDB1 and ALL-IDB2 datasets 
(Labati et al., 2011), where 179 images present ALL and 189 are healthy. 
The authors applied data augmentation and obtained 99.50% of accuracy on 
the binary classification problem. Ahmed et al. (2019) proposed a new CNN 
to perform the classification of healthy images and images with ALL. The 
tests used images from the ASH (ASH, 2020) and ALL-IDB (Labati et al., 
2011) datasets; in total, there were 179 images with ALL and 175 healthy 
images. By also applying techniques of data augmentation based on rotation, 
translation, flip, shear, and zoom, Ahmed et al. (2019) obtained an accuracy 
of 88.25%.

As to the second group of approaches, Pansombut et al. (2019) used 
the ASH (ASH, 2020) and the ALL-IDB1 (Labati et al., 2011) datasets to 
classify the imaged cells as either ALL or healthy cells. The authors used 121 
images, applied techniques of data augmentation, and developed a network 
called ConvNet, which obtained 81.74% of accuracy. Gehlot et al. (2020) 
developed a new CNN called SDCT AuxNetθ. The training and testing steps 
were performed using a private ALL cancer dataset of 118 subjects (Gupta 
et al., 2019), and an accuracy of 93.40% was obtained for 15,114 segmented 
cell images.

Das and Meher (2021) developed a hybrid model based on the Mo-
bilenetV2 and ResNet18 networks to detect healthy and ALL blood slides. 
Two datasets (ALL-IDB1 and ALL-IDB2) with 368 images (179 with ALL 
and 189 healthy) were used. Two tests were performed with a different num-
ber of training and test images. The best result was achieved by using 70% of 
the images for training and 30% for testing. Accuracies of 97.92 and 96.00%
were obtained on the ALL-IDB1 and ALL-IDB2 datasets, respectively.

1www.kaggle.com/paultimothymooney/blood-cells
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Khandekar et al. (2021) used the Yolov4 model to detect the cells and 
classify them into ALL and healthy cells. Two datasets were used: the ALL-
IDB1 and C-NMC-2019 datasets. For the first dataset, the validation was 
done on 21 images, and 11 were used to test the model. The remaining 76 
images were used for training, and after augmenting the 11 test images, the 
cells belonging to each class were counted and compared to the ground truth 
labels. As to the C-NMC-2019 dataset, the test was performed on 1000 
images, with 500 images belonging to each class. The obtained mean Average 
Precision (mAP) was equal to 96.06% for the ALL-IDB1 dataset and 98.7% 
for the C-NMC-2019 dataset, respectively.

Zakir Ullah et al. (2021) used the C-NMC-2019 dataset as the input to the 
VGG16 network, and applied the efficient channel attention (ECA) module 
(Wang et al., 2021) in each convolutional block of this network to further 
increase the relevance of the extracted resources. The authors compared the 
performances of the VGG16 model with and without the ECA module. The 
latter showed that this attention mechanism helps to improve the accuracy of 
the used model, as it explores the relationship between channels and obtains a 
better representation of the resources. The accuracy obtained was equal to 
91.10%.

The research of Karar et al. (2022) proposed an intelligent framework for 
classifying acute leukemias using blood microscopy images. Former blood 
samples were collected using digital devices without microscopy and sent to a 
cloud server. Then, a cloud server used a generative adversarial network 
(GAN) classifier to automatically identify blood conditions, leucemias, and 
healthy conditions. The developed classifier was evaluated on two public 
datasets: ALL-IDB and the ASH image bank. The authors achieved accuracy 
rates of 98.67% for the binary classification (ALL or healthy) and 95.5% for 
the multiclass classification (ALL, AML, and healthy blood cells).

Rodrigues et al. (2022) proposed a hybrid model using a genetic algorithm 
(GA) and a neural convolutional residual network (ResNet-50V2) to predict 
ALL using microscopy images available in the ALL-IDB dataset. The genetic 
algorithm was used to find the best hyperparameters leading to the highest 
precision level in the classification. The results shown that the optimizing with 
GA improved the classifier precision, which was of 98.46%. Experiments were 
conducted on cut cells and real-size microscopy images and data aug-
mentation was applied. The proposed model was tested on two datasets: the 
ALL-IDB1 and ALL-IDB2 datasets. Several tests were performed accroding 
to two classification scenarios: ALL-HBS and ALL-AML-HBS, with the best

8



result accuracy obtained for the binary classification scenario equal to 97%
when the adjustment technique was applied to the Vgg16 network. The best 
accuracy obtained for the classification according to three classes was of 95%, 
which was obtained when the SVM was trained using the ResNet50 features.

Among the tests presented in Rastogi et al. (2022), a binary classifica-tion 
experiment using the ALL-IDB2 dataset was described, where different 
trained classifiers were used, with the extra trees classifier (ETC) obtaining 
the best performance from features extract using a deep network feature ex-
tractor developed by the authors: LeuFeatx. The reported accuracy was of 
96.15%.

For the third group of approaches, two articles that classify images into 
AML and HBS images were found. Madhukar et al. (2012) developed a classi-
fication system that improved the contrast of the input image and extracted 
five features from it. The SVM classifier was used on 50 images included in the 
ASH (ASH, 2020) dataset, and an accuracy of 93.50% was obtained. Goutam 
and Sailaja (2015) used 90 images from the ASH dataset (ASH, 2020) and 
attained an accuracy of 98.00%. From the number of images in-cluded in this 
dataset, one can realize that it is like a reference dataset, and that each work 
based on it uses a different subset of the included images.

Dasariraju et al. (2020) suggested a method for identification and catego-
rization AML using a random forest classifier. Images of leukocytes in AML 
patients and healthy controls were obtained from a dataset publicly avail-able 
in The Cancer Imaging Archive. Sixteen features of each image of white blood 
cells were extracted, and the five most important features were used in the 
classification step. The number of images from each kind of leuko-cyte was 
1,274. The random forest classifier was trained for the detection and 
classification of immature leukocytes. The model achieved 92.99% of accuracy 
for detection, and 93.45% of accuracy for classification of immature leukocytes 
into four types.

Few studies that detect chronic leukemia were found, and one can believe 
that this is due to the unavailability of images. Particularly, for the fourth 
group of approaches, only the work by Khosla and Ramesh (2018), which is 
based on CNN concepts, was found. Chronic leukemia does not have many 
publicly available images, so the authors used data augmentation. There were 
67 original slides, and the authors divided them into four patches, which were 
rotated twice to achieve data augmentation, which led to 536 images, and an 
accuracy of 97.60% was reported.

The fifth group of approaches has the goal of the classification of the
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input images into three classes: ALL, AML and HBS. The works found for
this group have the main focus on the discovery of acute leukemia. Rawat
et al. (2017) performed the segmentation of the leukocyte nucleus in 240
images; there were 100 healthy images, 60 with ALL and 80 with AML.
Then, they analyzed 331 characteristics of each segmented core using an
SVM classifier. Laosai and Chamnongthai (2018) also took these classes into
account, and performed tests on 500 images: 150 of the ALL type, 150 of
the AML type and 200 of the HBS type. These images were acquired at
the Ubonratchathani Cancer Hospital and Sunpasit International Hospital,
in Thailand, and, according to the authors, promising results were achieved.
For this type of approaches, the works by Tran et al. (2018) and Claro et al.
(2020) were also found. These authors used convolutional neural networks
to classify both acute leukemia and non-leukemia images. In the first work,
the developed system was called: LeukemiaNet, and in the second one, the
proposed network was designated as: Acute Leukemias Recognition Network
(Alert Net-RWD). In the first work, 108 images from the ALL-IDB1 dataset
(Labati et al., 2011) and 33 AML images gather from the Internet were used,
while in the second work, 2,515 images from 16 different datasets were used.
In both works, data augmentation was applied, and accuracies of 97.2 and
97.18%, respectively, were obtained.

The last group of approaches involves the classification of images into
five classes: ALL, AML, CLL, CML and HBS. The solution proposed by
Ahmed et al. (2019) also performed the classification on images with ALL
and HBS. These authors developed a CNN and applied it to a total of 903
images: 179 ALL, 179 AML, 185 CLL, 185 CML and 175 HBS images, which
were gathered from the ASH (ASH, 2020) and ALL-IDB (Labati et al., 2011)
datasets. Data augmentation techniques such as rotation, translation, flip,
shear and zoom, were applied, which led to an accuracy of 81.74%. Bibi
et al. (2020) applied the DenseNet-121 convolutional neural network (Huang
et al., 2017) on 518 images: 181 ALL, 55 AML, 38 CLL, 57 CML and 187
HBS images. They also used data augmentation to reduce overfitting and
achieved an accuracy of 99.91%.

3. Materials and methods

This study aimed to evaluate the influence of using data augmentation
and combinations of CNNs on the detection of leukemia types in blood slide
images. The identification of leukemia types in images is a challenging is-
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sue. Here, five leukemia classification problems were addressed, mainly three 
binary classification and two multiclass classification problems: 1) leukemia 
vs. HBS, 2) ALL vs. HBS, 3) AML vs. HBS, 4) ALL vs. AML vs. HBS, and 5) 
ALL vs. AML vs. HBS vs. other types. Public image datasets were used for 
these classes, which were evaluated with and without data augmen-tation, 
and with CNNs combined into two different ways: a multilevel CNN 
configuration and a CNN ensemble configuration.

3.1. Proposed evaluation

The evaluation methodology used in this study follows the flowchart 
shown in Figure 2. Initially, publicly available datasets were searched, as 
the quality of the used image dataset has a significant impact on the clas-
sification performance. Thus, 3,536 images of blood slides were collected. 
Even though this is a number superior to those used in the literature, it is 
still insufficient for the adequate training of a CNN (Chen, 2019). Therefore, 
the solution used in this study was to increase the generalization capacity of 
the classification models using techniques of data augmentation (DA). The 
techniques of DA generate new samples for training, and the performances 
of the developed models were evaluated with and without the use of these 
techniques. Then, the five scenarios under study for the gathered dataset 
were took into account, and seven neural networks were used to extract fea-
tures from the input images and classify them. After performing all these 
experiments, the multilevel and ensemble configurations were applied and 
evaluated.

3.2. Image dataset

The development of a robust methodology to aid in diagnosis strongly 
depends on the data used in its validation. The main challenges found in the 
reviewed state-of-the-art methods are related to the used datasets, since most 
of them are private. However, in this study was possible to ob-tain 18 public 
datasets with 3,536 images for the evaluation of the models under study. The 
restrictions for using a given dataset in the current re-search were the 
following: it had to be a public image dataset, it had to have the ground-truth 
of the images classification, and it had to be used in works found in the 
literature. Table 2 presents the used image datasets, including information 
about the number of comprised images per class. The leukemia-images 
(http://www.leukemia-images.com/ (accessed on 16 August 2021)), UFG 
dataset (https://hematologia.farmacia.ufg.br (accessed on 16
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Figure 2: Flowchart of the evaluation methodology used to detect different types of 
leukemia from images.

August 2021)) and MIDB (http://www.midb.jp/blood db/db.php?lang=en 
(accessed on 16 August 2021)) datasets were obtained from the indicated 
URLs.

Table 2: Summary of the used image datasets.
Dataset HBS ALL AML Other types Total Size Focus on cells Country Ref.
ALL-IDB 1 59 49 - - 108 2592 × 1944 No Italy Labati et al. (2011)
ALL-IDB 1 (Crop) - 510 - - 510 2592 × 1944 Yes Italy Labati et al. (2011)
ALL-IDB 2 130 130 - - 260 257 x 257 Yes Italy Labati et al. (2011)
Leukocytes 149 - - - 149 609 x 584 Yes Iran Sarrafzadeh and Dehnavi (2015)
CellaVision 109 - - - 109 399 x 399 Yes Sweden Rollins-Raval et al. (2012)
Atlas - 25 40 23 88 460×307 No - -
Omid et al. 2014 154 - - - 154 3872×2592 No Iran Sarrafzadeh et al. (2014)
Omid et al. 2015 - - 27 - 27 3246×2448 No Iran Sarrafzadeh et al. (2015)
ASH - - 96 - 96 184 × 138 No - ASH (2020)
Bloodline - - 217 - 217 1280 x 720 Yes/No Brazil Vale et al. (2014)
ONKODIN - - 78 - 78 768 x 576 No Germany Böhm (2008)
CellaVision 2 100 - - - 100 300×300 Yes Sweden Zheng et al. (2018)
JTSC 300 - - - 300 2048 × 1536 Yes China Zheng et al. (2018)
UFG 57 10 27 27 121 640 x 480 Yes/No Brazil link
SN-AM - 30 - - 30 224 x 224 No India Gupta et al. (2019)
leukemia-images - 40 78 22 140 755×570 No - link
MIDB Dataset - 87 415 171 673 768×576 No World link
LISC Dataset 376 - - - 376 720×576 No Iran Rezatofighi and Soltanian-Zadeh (2011)
Total of images 1,434 881 978 243 3,536

From the number of images indicated in Table 2, one can verify that, out
of the total number of images, 1,434 images belong to the HBS class (40.55%
of the total), 881 belong to the ALL class (24.92%), 978 belong to the AML
class (27.66%) and 243 belong to the “other types” class (6.87%). Hence, it
can be realized that the gathered image dataset is unbalanced.
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Some of the 18 gathered datasets have images with only one leukocyte 
per image, and others have multiple leukocytes per image. Only the UFG 
and Bloodline datasets have both kinds of images. Hence, the combination 
of the gathered datasets resulted in a dataset of images with distinct color, 
texture, contrast and resolution. This diversity created a challenge for the 
models under study. Figure 3 shows examples of the used images.

(a) Leukocytes (b) Cella Vi-
sion

(c) JTSC (d) LISC

(e) ALL-IDB1 (f) ALL-IDB1
(Crop)

(g) ALL-IDB2 (h) SN-AM

(i) Sarrafzadeh
et al. (2015)

(j) ASH (k) Bloodline (l) ONKODIN

(m) Atlas (n) UFG (o) Leukemia (p) MIDB

Figure 3: Examples of the used (a-d) HBS images, (e-h) ALL images, (i-l) AML images
and (m-p) Other type of images.

3.3. Data augmentation

Overfitting occurs when a model learns the details, including the existent
noise, in the training data, which means that noise or random fluctuations
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in the training data are picked up and learned as concepts by the model. 
The problem is that these concepts do not apply to new data, and there-
fore, negatively impact the ability of the model to generalize (Shorten and 
Khoshgoftaar, 2019).

There are several strategies that have been proposed for overfitting re-
duction. Most of the strategies that contribute to increase the generalization 
capability are focused on the architecture of the model used. Hence, there 
are strategies that aim to improve deep learning models for applications with 
smaller datasets, such as dropout, batch normalization, transfer learning and 
pre-training (Kukačka et al., 2017). Contrary to these techniques, data aug-
mentation attempts to solve overfitting by solving the problem of a limited 
available training dataset.

Limited data is a significant obstacle to the application of deep learning 
models. Moreover, unbalanced classes can be an additional hurdle to tackle. 
Although there may be enough data for some equally essential classes, classes 
with reduced data will suffer from a low class-specific accuracy (Shorten and 
Khoshgoftaar, 2019).

Image augmentation is essential in deep learning-based methods, regard-
less of the problem under study Li et al. (2021). Particularly, in medicine, the 
use of image augmentation is necessary to successfully achieve the segmenta-
tion, classification and analysis of images with deep learning-based models. 
There are articles in the literature about techniques of data augmentation for 
specific types of images, such as skin images, as, for example, (Goceri, 2020). 
The literature also presents several different techniques of data augmenta-
tion, including based on image semantics (Wang et al., 2021). However, these 
methods need the definition of several configuration parameters. Thus, it was 
decided in this study to apply the most common techniques of data augmen-
tation, which are based on geometric transformations such as the rotation, 
translation, flipping, scale and shear transformations (Figure 4).

3.4. Evaluated architectures

According to Sarvamangala and Kulkarni (2021), several CNNs have been 
proposed to classify medical images. However, most authors used CNNs that 
were pre-trained on the ImageNet challenge dataset. However, unfortunately, 
it is not always straightforward to reproduce the study of related articles. 
Hence, to perform the experiments under study, pre-trained CNNs that have 
attained good performance on the ImageNet challenge dataset, particularly,
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(a) (b) (c) (d) (e) (f)

Figure 4: Examples of data augmentation transformations: (a) the original image, and
the image after (b) a rotation of 40º, (c) a translation of 20%, (d) flipping, (e) a scaling
by a factor of 20% and (f) a shear of 20º.

the AlexNet, VGG (VGG16 and VGG19), ResNet (ResNet50), GoogLeNet
(InceptionV3 and Xception), and DenseNet121 networks, were evaluated.

The network Alexnet, which was developed by Krizhevsky et al. (2012),
was designed for the ILSVRC-2010 competition, mainly to carry out training
and classification on the ImageNet dataset. It comprises eight layers that
need to be trained: there are five convolutional layers with filters of 5 × 5
and 7 × 7 kernels, which are followed by three fully connected layers and
max-pooling layers.

Simonyan and Zisserman (2014) introduced the VGG network architec-
ture, which is characterized by its simplicity: it uses only 3×3 convolutional
layers stacked on top of each other with increasing depth. The reducing vol-
ume size is handled by max pooling. Two fully connected layers, each with
4,096 nodes, are followed by a softmax classifier, and “16” and “19” stand
for the number of weight layers in the network (Simonyan and Zisserman,
2014).

ResNet50 (He et al., 2016) is a deep convolutional network architecture
proposed in 2016 to solve the vanishing gradient problem, which causes satu-
ration in learning and, consequently, slows down the training. The basic idea
is to skip blocks of convolutional layers using shortcut connections to form
unions called residual blocks, which significantly improve the training effi-
ciency, and mostly solve the degradation problem generally present in deep
networks.

The InceptionV3 (Szegedy et al., 2016) architecture emerged as a new
version of the GoogLeNet and InceptionV2 architectures. This architecture
reduces the complexity of a CNN in terms of the number of operations per-
formed using Inception modules, which consist of parallel combinations of
layers with convolutional filters of size 1×1, 3×3, and 5×5. Convolutions
with larger filters are computationally more costly; therefore, the authors
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proposed performing 1×1 convolutions first, reducing the dimensionality of
the characteristics map, and then performing convolutions with the other
filters. The Inception modules result in a reduction of 28% in the number of
parameters relatively to traditional convolutional layers.

The Xception (Chollet, 2017) architecture is an extension of the Inception
architecture that replaces the standard Inception modules with separable
convolutions in depth. Instead of partitioning the input data into multiple
compressed blocks, it maps the spatial correlations for each output channel
separately. Then, it performs a convolution of 1×1 in-depth to capture the
correlation between channels. This operation is essentially equivalent to an
existing process known as depthwise separable convolution, which consists of
a depthwise convolution - a spatial convolution performed independently for
each channel, followed by a pointwise convolution, using filters with size 1×1
between channels. Xception achieved superior results compared to previous
versions, despite having fewer layers and parameters. The inclusion of the
depthwise separable convolution layers also provided greater efficiency in
terms of the computational cost; it is less costly and faster than the standard
convolution by performing less operations.

The dense convolutional network, or DenseNet, is a dense block used to
improve the flow of information between layers. This network uses fewer
parameters than ResNet for its training (Huang et al., 2017). DenseNet121
consists of 121 layers, and each layer is connected to all subsequent layers.
In addition, each layer receives important features learned by any previous
layers of the network, which makes the network training more efficient (Li
et al., 2018).

3.5. Multilevel configuration

Due to the variety of sizes and morphologies of white blood cells, the
extraction of various features using different CNNs is interesting. To ensure
that helpful information is not lost, in this study, a CNN based on the mul-
tilevel concept was evaluated. The main idea behind using this concept is
that each used CNN will extract different features and, at the end, all these
features are concatenated.

Hence, according to Lyu and Ling (2018), all feature maps are concate-
nated into a one-dimensional vector and then connected to a fully connected
layer, as show in Figure 5. This strategy can help to improve the accuracy
of the classification model.
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Figure 5: Generic scheme showing how a CNN multilevel configuration works.

This adopted multilevel setup is based on a few main ideas. First, all 
feature maps from all CNNs are flattened and concatenated into a one-
dimensional vector, and then connected with a fully connected layer. This 
strategy can help to improve the classification accuracy of the classification 
model, as each CNN plays an important role in the final result, since they 
extract various features to represent the input image, whether are focused on 
the cells or on the blood slide images. Second, this technique helps to improve 
the variance rate of the classification results. Variance refers to the sensitivity 
of the learning model to the specifics of the training data, e.g., the noise and 
specific observations. This is interesting, as the model will be specialized to the 
data by learning random noise, and will be varied each time it is trained on 
different data (Belkin et al., 2019).

3.6. Ensemble technique

The ensemble technique was proposed long before the emergence of the 
deep learning paradigm (Dasarathy and Sheela, 1979). The theory behind 
this technique is quite simple and supported by the well-known notion of “the 
wisdom of crowds”: instead of relying on just one model for prediction, a set 
of multiple pre-trained models is created; then, the results of the models are 
combined into a final classification by merging their votes. The original idea 
was developed to reduce the variance of the classifiers in order to achieve a 
better overall performance (Dietterich, 2000).

The majority vote method is one of the most popular methods used in 
ensemble based classifiers. This method involves taking the decision of each 
model and selecting the one with the most votes as the final decision. That is, 
the class label provided for a specific sample, i.e., prediction, will be the class
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label representing the majority of the class labels supplied for each classifier
(Dietterich, 2000).

As our problem has four classes, a tie may occur when the majority voting
technique is used. In this case, the accuracy values achieved by the CNNs
during the training stage are used as a tiebreaker criterion. For example, if
each CNN in the ensemble predicts a different class, the final decision will
be that of the CNN that obtained the highest accuracy in the training step.
Figure 6 shows how the adopted ensemble technique works. Particularly, this
figure presents an example output for four elements from a dataset. There
was no tie in the first three cases: element 1 belongs to class 1, element 2 to
class 0 and element 3 to class 3. However, in the case of the fourth element,
each CNN voted for a different class, creating a tie. The final result was class
0 (zero), as this class was the output of CNN 3, the network that obtained
the best accuracy during the training.

Figure 6: Example of the adopted ensemble classification method.

3.7. Evaluation metrics

To analyze the classification results, the confusion matrix was computed.
Then, from the elements of this matrix, the accuracy (A), precision (P), recall
(R) and F1-score were calculated (Powers, 2007).

The kappa index (k), which is recommended as an appropriate exactitude
measure because it can adequately represent the confusion matrix, was also
computed. This index takes all elements of the confusion matrix into account,
rather than just those on the main diagonal; the global classification accuracy
only considers the main diagonal elements. It can be calculated as:

k =
observed− expected

1 − expected
. (1)
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According to Landis and Koch (1977), k assumes values between 0 (zero)
and 1 (one). The result is classified according to the k value as follows: k
≤ 0.2: Bad; 0.2 < k ≤ 0.4: Fair; 0.4 < k ≤ 0.6: Good; 0.6 < k ≤ 0.8: Very
Good and k > 0.8: Excellent.

The cost function metric (loss) was also used in this study. This function
is responsible for showing how far one is from the ideal prediction, and, there-
fore, it quantifies the “cost” or “loss” by accepting the prediction generated
by the current parameters of the model (Janocha and Czarnecki, 2017).

4. Experiments and results

The dataset used to study the five scenarios under evaluation is com-
posed of the following images: 1,434 images of healthy slides, 881 images
of ALL, 978 images of AML and 243 images of “other types” of leukemia.
K-fold cross-validation with the value of k equal to 5 was applied in the
evaluated experiments, which were performed on a PC with a 3.6 GHz In-
tel®Xeon™processor with 24GB of RAM and an NVIDIA TITAN XP 12GB
graphics card.

The influence of the use of data augmentation on the classification results
was first investigated. To do this, the results obtained by the seven networks
introduced in Section 3.4 with and without the use of DA were compared.
For the last scenario, it was also studied the individual results for each used
data augmentation technique.

4.1. Binary classification

The binary classification problem was subdivided into three sub-problems:
leukemia vs. HBS, ALL vs. HBS, and AML vs. HBS. These sub-problems
were chosen and analyzed due to two main reasons: the first one was the
availability of studies in the literature that carry out the same classification,
and the second reason was the availability of public datasets for each class.

4.1.1. Leukemia vs. HBS

For this scenario, images from the 18 gathered datasets were used (3,536
images in total), 1,434 from the HBS class and 2,102 from the leukemia class.
Table 3 presents the results obtained using the seven neural networks under
study with and without DA. Under this scenario, ResNet50-DA obtained the
best outcome in terms of all of the used classification metrics. One can see
that the AlexNet network obtained a good performance, but its results were
inferior compared to the ones obtained by the other networks.
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Table 3: Results obtained for the leukemia vs. HBS scenario, with and without data
augmentation (DA), after applying k-fold cross-validation. (The best values are in bold.)

Model A(%) P(%) R(%) F1-score(%) K
AlexNet 95.87±0.51 96.09±1.12 96.99±1.34 96.53±0.44 0.9141±0.010
AlexNet-DA 95.25±0.81 95.38±1.41 96.70±2.15 96.01±0.71 0.9011±0.016
VGG16 99.15±0.22 99.00±0.30 99.56±0.35 99.28±0.18 0.9823±0.004
VGG16-DA 99.23±0.29 99.04±0.28 99.66±0.27 99.35±0.24 0.9841±0.006
VGG19 98.98±0.36 99.09±0.31 99.18±0.40 99.13±0.31 0.9788±0.007
VGG19-DA 99.23±0.15 99.18±0.12 99.51±0.28 99.35±0.13 0.9841±0.003
ResNet50 99.43±0.26 99.37±0.36 99.66±0.13 99.52±0.22 0.9882±0.005
ResNet50-DA 99.54±0.27 99.47±0.53 99.75±0.23 99.61±0.23 0.9904±0.005
InceptionV3 98.58±0.36 98.89±0.54 98.71±0.31 98.80±0.30 0.9706±0.007
InceptionV3-DA 99.23±0.15 99.28±0.35 99.40±0.13 99.34±0.13 0.9838±0.003
Xception 98.19±0.68 98.19±0.63 98.75±0.51 98.47±0.57 0.9623±0.014
Xception-DA 98.16±0.51 98.56±0.66 98.32±0.47 98.44±0.42 0.9618±0.010
DenseNet121 99.32±0.27 99.28±0.16 99.56±0.39 99.42±0.23 0.9858±0.005
DenseNet121-DA 99.37±0.16 99.28±0.28 99.66±0.27 99.47±0.13 0.9870±0.003

4.1.2. ALL vs. HBS

There is a good number of articles in the literature addressing this sce-
nario, as there are many public datasets available for it. Here, 14 datasets
with 2,315 images in total: 1,434 healthy images and 881 images with ALL,
were used. Table 4 indicates the performance obtained by the seven networks
under study with and without DA. The data presented in this table shows
that the DenseNet121-DA network obtained the best result in terms of ac-
curacy, recall, F1-score and kappa index. On the other hand, the ResNet50
network obtained the best accuracy (99.71%).

4.1.3. AML vs. HBS

For the last binary classification scenario, 2,412 images from 16 datasets
were used, including 1,434 healthy images and 978 images with AML. Table
5 presents the performances obtained by each of the seven networks under
study with and without DA. The data presented in this table show that
the ResNet50-DA network obtained the best result in terms of accuracy,
precision, F1-score, and kappa index. On the other hand, the DenseNet121
network had the best recall value (99.71%).

From the obtained results, one can see that an improvement was achieved
by applying data augmentation in practically all evaluated networks for the
three binary classification scenarios under study.
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Table 4: Results obtained for the ALL vs. HBS scenario, with and without data augmen-
tation (DA), after applying k-fold cross-validation. (The best values are in bold.)

Model A(%) P(%) R(%) F1-score(%) K
AlexNet 96.19±0.69 96.74±0.94 97.14±0.96 96.93±0.55 0.9192±0.014
AlexNet-DA 97.32±0.69 97.57±1.10 97.81±1.42 97.68±0.56 0.9392±0.014
VGG16 99.35±0.43 99.44±0.52 99.51±0.31 99.47±0.34 0.9862±0.009
VGG16-DA 99.52±0.18 99.71±0.28 99.50±0.30 99.61±0.14 0.9898±0.003
VGG19 99.08±0.21 99.30±0.35 99.30±0.35 99.29±0.17 0.9816±0.004
VGG19-DA 99.57±0.30 99.78±0.19 99.51±0.39 99.65±0.24 0.9908±0.006
ResNet50 99.61±0.28 99.65±0.24 99.71±0.29 99.68±0.22 0.9917±0.005
ResNet50-DA 99.74±0.38 99.79±0.31 99.79±0.31 99.79±0.31 0.9944±0.008
InceptionV3 99.30±0.41 99.23±0.56 99.64±0.24 99.40±0.33 0.9852±0.008
InceptionV3-DA 99.43±0.12 99.51±0.39 99.57±0.38 99.54±0.09 0.9880±0.002
Xception 98.79±0.58 98.54±0.56 99.50±0.39 99.02±0.47 0.9742±0.012
Xception-DA 98.70±0.48 98.61±0.53 99.30±0.35 98.95±0.38 0.9696±0.011
DenseNet121 99.69±0.24 99.65±0.42 99.85±0.18 99.75±0.19 0.9935±0.005
DenseNet121-DA 99.78±0.26 99.78±0.31 99.85±0.18 99.82±0.21 0.9954±0.005

4.2. Multiclass classification

For multiclass classification, two scenarios were studied: The first scenario
involved dividing the images into the ALL vs. AML vs. HBS classes, and the
second scenario involved the ALL vs. AML vs. HBS vs. other type images.
This last scenario includes the “other types” class due to the small number of
images available for some types of leukemia, such as chronic leukemia. Thus,
if this class was divided further, it would be even more unbalanced. So far,
any work that performs this division has been found; therefore, more tests
for this scenario were performed in this study.

4.2.1. ALL vs. AML vs. HBS

For this scenario, a total of 3,293 images from the 18 gathered datasets,
including 1,434 images from the HBS class, 881 from the ALL class and
978 from the AML class, were used. One can find the results obtained for
this scenario in Table 6. Relatively to the results obtained for the binary
classification problem, the results presented in this table indicate a reduced
performance. The DenseNet121-DA network achieved the best performance,
with 97.11% of accuracy.

4.2.2. ALL vs. AML vs. HBS vs. other types

The dataset used in developing this scenario is composed of 1,434 images
of healthy slides, 881 images of ALL, 978 images of AML and 243 images
of “other types” of leukemia. As with the other scenarios, the use of data
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Table 5: Results obtained for the AML vs. HBS scenario, with and without data augmen-
tation (DA), after applying k-fold cross-validation. (The best values are in bold.)

Model A(%) P(%) R(%) F1-score(%) K
AlexNet 96.81±0.47 97.48±0.78 97.13±1.08 97.30±0.41 0.9338±0.009
AlexNet-DA 96.93±0.71 96.78±0.97 98.11±1.53 97.43±0.60 0.9362±0.014
VGG16 99.17±0.29 99.23±0.28 99.50±0.39 99.30±0.24 0.9827±0.006
VGG16-DA 99.66±0.18 99.71±0.15 99.71±0.28 99.71±0.15 0.9931±0.003
VGG19 99.04±0.45 99.09±0.39 99.29±0.65 99.19±0.38 0.9802±0.009
VGG19-DA 99.42±0.22 99.64±0.24 99.36±0.51 99.50±0.19 0.9879±0.004
ResNet50 99.46±0.47 99.64±0.34 99.43±0.52 99.54±0.40 0.9888±0.009
ResNet50-DA 99.70±0.18 99.92±0.15 99.57±0.38 99.75±0.15 0.9939±0.003
InceptionV3 98.59±0.17 98.27±0.47 99.30±0.24 98.78±0.17 0.9698±0.004
InceptionV3-DA 99.46±0.23 99.43±0.30 99.64±0.24 99.54±0.19 0.9887±0.004
Xception 98.05±0.63 97.73±0.81 99.02±0.29 98.37±0.52 0.9594±0.013
Xception-DA 97.80±0.27 97.13±0.48 99.23±0.57 98.16±0.23 0.9541±0.005
DenseNet121 99.42±0.30 99.64±0.24 99.37±0.45 99.50±0.26 0.9879±0.006
DenseNet121-DA 99.67±0.10 99.65±0.15 99.71±0.28 99.71±0.09 0.9931±0.002

augmentation was evaluated. Table 7 presents the results of this evaluation,
where one can see an improvement in terms of the used performance metrics
in all the networks evaluated with the use of DA. The DenseNet121 archi-
tecture obtained the best performance, with accuracy, precision, recall and
F1-score values equal to or greater than 94%.

Each data augmentation technique can have a different impact in terms
of the overall robustness it brings to a neural network. It is known that some
techniques of data augmentation improve the decision stability of the used
neural network, but others can have a detrimental effect (Shorten and Khosh-
goftaar, 2019). Based on this and the obtained results, individual tests were
performed for each technique of DA with the seven network architectures
under study. Each network was trained according to the five scenarios un-
der study, and five data augmentation transformations were used: rotation,
translation, flip, zoom and shear.

Table 8 indicates the best performance obtained among the five scenarios
for each network. From this table, one can confirm that the best results
for ResNet50 and DenseNet121 were found when rotation was applied as a
data augmentation technique. On the other hand, InceptionV3 and AlexNet
had the best performance when translation was applied. For the Xception,
VGG16 and VGG19 networks, the flip operation led to the best performance.
Analyzing the results in Tables 7 and 8, one can verify that the DenseNet121
network with data augmentation obtained the best performance, achieving
an accuracy of 94%.
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Table 6: Results obtained for the ALL vs. AML vs. HBS scenario, with and without data
augmentation (DA), after applying k-fold cross-validation. (The best values are in bold.)

Model A(%) P(%) R(%) F1-score(%) K
AlexNet 89.58±1.44 89.93±1.23 89.58±1.44 89.50±1.51 0.8394±0.022
AlexNet-DA 89.58±1.69 90.00±1.38 89.71±1.74 89.42±1.88 0.8389±0.026
VGG16 96.41±0.69 96.49±0.71 96.42±0.69 96.41±0.70 0.9448±0.010
VGG16-DA 96.99±0.82 97.01±0.84 97.00±0.82 96.99±0.81 0.9537±0.012
VGG19 96.05±0.55 96.09±0.55 96.05±0.54 96.04±0.56 0.9392±0.008
VGG19-DA 96.81±0.56 96.86±0.59 96.82±0.58 96.80±0.57 0.9509±0.008
ResNet50 95.65±1.07 95.81±1.03 95.72±1.05 95.64±1.09 0.9331±0.016
ResNet50-DA 96.69±0.46 96.70±0.44 96.69±0.45 96.68±0.45 0.9490±0.007
InceptionV3 94.50±0.76 94.66±0.64 94.52±0.76 94.47±0.79 0.9152±0.011
InceptionV3-DA 96.51±0.56 96.58±0.49 96.52±0.53 96.49±0.58 0.9462±0.008
Xception 93.56±0.97 93.70±0.91 93.57±0.95 93.50±1.00 0.9006±0.015
Xception-DA 93.50±1.52 93.65±1.40 93.55±1.45 93.45±1.56 0.8997±0.023
DenseNet121 96.05±0.91 96.15±0.89 96.09±0.89 96.04±0.93 0.9434±0.006
DenseNet121-DA 97.11±0.53 97.13±0.55 97.12±0.55 97.11±0.54 0.9556±0.008

4.3. Multilevel and ensemble configurations

The second step was to evaluate whether combining the CNNs would
benefit the classification performance. Thus, multilevel CNNs and ensembles
of CNNs were implemented. As explained earlier, for multilevel CNNs, the
flattened layers of the pre-trained networks were concatenated in order to
form a new network with various features. The multilevel architecture was
evaluated with a configuration of two networks. Then, based on the results
obtained in each scenario for each network, they were combined. Therefore,
the leukemia vs. HBS scenario included tests with a combination of two
networks, and the same was done for the other scenarios. Table 9 indicates
the studied combinations of networks that led to the best results for each
scenario under study.

Comparing the results presented in Table 9 with the individual results
obtained by each CNN presented in the previous tables, one can see that the
multilevel technique improved the results only in the multiclass classification
problems. Investigating the reason for this, it was found the work of Srini-
vas et al. (2015), where it is claimed that without the use of combination
techniques, together with the use of unbalanced datasets, poor classification
performances are generally obtained. This was the case in the multiclass
problems studied here, because there are unbalanced classes, mainly for the
last scenario. Thus, according to the authors, the use of a multilevel classifi-
cation approach can address the problems of data imbalance and reduce the
variation of the estimation errors.
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Table 7: Results obtained for the ALL vs. AML vs. HBS vs. other types classification
problem, with and without data augmentation (DA), after applying k-fold cross-validation.
(The best values are in bold.)

Model A(%) P(%) R(%) F1-score(%) K
AlexNet 82.74±0.89 82.14±1.16 82.76±0.89 81.46±0.91 0.7461±0.013
AlexNet-DA 84.46±1.05 84.29±1.55 84.28±1.16 83.07±1.30 0.7713±0.016
VGG16 92.72±1.44 92.87±1.42 92.73±1.49 92.72±1.41 0.8946±0.020
VGG16-DA 92.95±0.93 92.98±0.74 92.94±0.93 92.88±0.87 0.8979±0.013
VGG19 91.30±1.02 91.34±1.09 91.32±1.09 91.21±1.09 0.8741±0.014
VGG19-DA 91.65±1.41 91.66±1.50 91.62±1.45 91.59±1.43 0.8792±0.020
ResNet50 91.62±1.25 91.68±1.03 91.63±1.40 91.59±1.20 0.8786±0.018
ResNet50-DA 92.89±0.86 92.87±0.90 92.88±1.11 92.86±0.89 0.8972±0.012
InceptionV3 89.24±1.19 89.12±1.12 89.24±1.09 88.94±1.21 0.8419±0.017
InceptionV3-DA 92.75±0.78 92.69±0.73 92.73±0.90 92.66±0.75 0.8949±0.011
Xception 89.04±1.09 88.86±1.05 89.06±1.48 88.63±1.10 0.8401±0.016
Xception-DA 89.30±1.12 89.18±1.34 89.31±1.12 88.63±1.03 0.8371±0.012
DenseNet121 92.55±1.03 92.78±0.77 92.61±0.97 92.56±0.98 0.8922± 0.014
DenseNet121-DA 94.00±0.81 94.09±0.82 94.07±0.80 94.08±0.82 0.9133±0.011

Table 8: Results obtained with k-fold cross-validation for the best results achieved by each
data augmentation transformation. (The best values are in bold.)

Model A(%) P(%) R(%) F1-score(%) K
ResNet50-Rotation 92.78±0.68 92.82±0.66 92.78±0.69 92.74±0.60 0.8954±0.009
InceptionV3-Translation 91.14±0.58 91.27±0.44 91.14±0.52 91.14±0.49 0.8718±0.014
Xception-Flip 89.41±1.01 89.35±0.91 89.41±0.96 88.98±0.96 0.8454±0.014
VGG16-Flip 93.17±1.71 93.16±1.89 93.17±1.70 93.07±1.81 0.9010±0.025
VGG19-Flip 92.21±0.78 92.19±0.66 92.21±0.80 92.08±0.75 0.8871±0.011
AlexNet-Translation 84.69±0.73 83.65±2.09 84.13±1.02 83.13±0.88 0.7746±0.010
DenseNet121-Rotation 93.69±0.66 93.75±0.58 93.70±0.62 93.70±0.63 0.9087±0.009

In the conducted experiments, the ensemble method was also applied and
evaluated. As with the multilevel technique, the previous results were ana-
lyzed to built an ensemble in order to improve the classification performance.
Thus, the networks that obtained the best performances were selected and
combinations of pre-trained CNNs were done as inputs for ensemble mod-
els composed of three, four, five and six networks. Table 10 presents the
results found in the tests performed for each scenario under study. For all
five scenarios, the performance was improved, both in terms of the mean and
standard deviation values.

It is accepted that selecting diversified CNNs that present high precision
rates in several regions in the characteristics space is essential to building ef-
fective multilevel and ensemble configurations. For this reason, model combi-
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Table 9: Results of k-fold cross-validation performed on the best classification results
obtained using multilevel CNNs. (The best values are in bold.)
Model-multilevel A(%) P(%) R(%) F1-score(%) K

Leukemia - HBS
DenseNet121-DA and VGG19-DA 99.39±0.09 99.28±0.23 99.75±0.16 99.52±0.08 0.9882±0.002
DenseNet121-DA and VGG16-DA 99.35±0.12 99.27±0.37 99.61±0.31 99.44±0.10 0.9864±0.003
DenseNet121-DA and InceptionV3-DA 99.31±0.16 99.24±0.21 99.59±0.14 99.40±0.10 0.9852±0.003

ALL - HBS
DenseNet121-DA and VGG16-DA 99.70±0.24 99.85±0.30 99.65±0.24 99.75±0.19 0.9935±0.005
DenseNet121-DA and InceptionV3-DA 99.61±0.25 99.72±0.28 99.62±0.21 99.68±0.29 0.9913±0.004
ResNet50-DA and Vgg16-DA 99.69±0.25 99.73±0.31 99.63±0.23 99.74±0.20 0.9932±0.006

AML - HBS
ResNet50-DA and VGG16-DA 99.70±0.16 99.82±0.15 99.64±0.21 99.75±0.14 0.9939±0.003
DenseNet121-DA and VGG16-DA 99.67±0.18 99.92±0.15 99.51±0.19 99.71±0.15 0.9931±0.004
DenseNet121-DA and Vgg19-DA 99.59±0.14 99.72±0.19 99.58±0.23 99.63±0.24 0.9936±0.004

ALL - AML - HBS
DenseNet121-DA and VGG19-DA 97.60±0.39 97.74±0.56 97.59±0.38 97.59±0.39 0.9631±0.006
DenseNet121-DA and VGG16-DA 97.48±0.57 97.49±0.59 97.48±0.57 97.47±0.59 0.9612±0.008
DenseNet121-DA and InceptionV3-DA 97.20±0.68 97.53±0.54 97.21±0.62 97.47±0.39 0.9601±0.007

ALL - AML - HBS - Other types
DenseNet121-DA and InceptionV3-DA 94.57±0.32 94.59±0.36 94.56±0.32 94.55±0.33 0.9214±0.004
DenseNet121-DA and VGG16-Flip 94.73±0.61 94.75±0.60 94.72±0.62 94.71±0.62 0.9237±0.008
DenseNet121-DA and VGG19-DA 94.31±0.79 94.37±0.77 94.30±0.79 94.32±0.32 0.9177±0.011

nations were evaluated and it was found the best combination to use in order
to build the proposed ensemble configuration. Combining CNN models not
only increases the performance, but also reduces the risk of overfitting (Sol-
lich and Krogh, 1995). Thus, a more generalized evaluation was performed.
Experimental results are statistically significant for a given level of statistical
significance, if they are not attributed to chance and if there is a relationship
between results. Thus, one can realize that the proposed approach can help
in developing clinically valuable solutions to detect and differentiate leukemia
in blood slide images.

Figure 7 depicts the best results found for the experiments with individ-
ual CNNs, multilevel CNNs and ensemble configurations for the five scenarios
under study. Based on this figure, one can realize the improvements achieved
using the ensemble technique relatively to the best individual results of the
networks or the multilevel model. One can also realize that for the multi-
class problems (Figures 7(d) and 7(e)), the combination models obtained a
significant improvement over the best individual performance of the CNN
models. Another point to be noted is the individual performance of the
DenseNet121-DA and ResNet50-DA models, which obtained the best results
in all five scenarios relative to the other evaluated models.
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Table 10: Results obtained by the ensemble models. (Best values in bold.)
Model-ensemble A(%) P(%) R(%) F1-score(%) K

Leukemia - HBS
DenseNet121-DA, ResNet50-DA and ResNet50 99.54±0.23 99.54±0.23 99.54±0.23 99.54±0.23 0.9905±0.004
DenseNet121-DA, ResNet50-DA,
DenseNet121 and ResNet50

99.54±0.23 99.54±0.23 99.54±0.23 99.54±0.23 0.9905±0.004

DenseNet121-DA, ResNet50-DA, DenseNet121,
ResNet50 and VGG16-DA

99.43±0.14 99.43±0.14 99.43±0.14 99.43±0.14 0.9882±0.002

DenseNet121-DA, ResNet50-DA, DenseNet121,
ResNet50, VGG16-DA and VGG19-DA

99.45±0.11 99.45±0.12 99.46±0.11 99.45±0.11 0.9887±0.002

ALL - HBS
DenseNet121-DA, ResNet50-DA and DenseNet121 99.82±0.28 99.82±0.27 99.82±0.28 99.82±0.28 0.9963±0.006
DenseNet121-DA, ResNet50-DA,
DenseNet121 and ResNet50

99.82±0.28 99.82±0.28 99.82±0.28 99.82±0.28 0.9963±0.006

DenseNet121-DA, ResNet50-DA, DenseNet121,
ResNet50 and VGG19-DA

99.91±0.12 99.91±0.12 99.90±0.13 99.91±0.12 0.9981±0.002

DenseNet121-DA, ResNet50-DA, DenseNet121,
ResNet50, VGG19-DA and VGG16-DA

99.95±0.09 99.95±0.09 99.95±0.10 99.95±0.09 0.9990±0.002

AML - HBS
DenseNet121-DA, ResNet50-DA and VGG16-DA 99.79±0.14 99.79±0.14 99.79±0.14 99.79±0.14 0.9957±0.003
DenseNet121-DA, ResNet50-DA,
InceptionV3-DA and VGG16-DA

99.87±0.11 99.87±0.11 99.87±0.11 99.87±0.11 0.9974±0.002

DenseNet121-DA, ResNet50-DA, ResNet50,
InceptionV3-DA and VGG16-DA

99.74±0.09 99.74±0.09 99.74±0.09 99.74±0.09 0.9948±0.002

DenseNet121-DA, ResNet50-DA, ResNet50,
InceptionV3-DA, VGG16-DA and VGG19-DA

99.87±0.11 99.87±0.11 99.87±0.11 99.87±0.11 0.9974±0.002

ALL - AML - HBS
DenseNet121-DA, VGG16-DA and VGG19-DA 97.35±0.57 97.44±0.53 97.36±0.57 97.35±0.56 0.9593±0.008
DenseNet121-DA, ResNet50-DA,
VGG16-DA and VGG19-DA

97.35±0.69 97.41±0.67 97.35±0.69 97.35±0.68 0.9593±0.010

DenseNet121-DA, ResNet50-DA, VGG16-DA,
VGG19-DA and InceptionV3-DA

97.44±0.84 97.54±0.76 97.45±0.83 97.44±0.83 0.9607±0.012

DenseNet121-DA, ResNet50-DA, VGG16-DA,
VGG19-DA, InceptionV3-DA and VGG16

97.53±0.62 97.61±0.62 97.54±0.62 97.53±0.62 0.9621±0.009

ALL - AML - HBS - Other types
DenseNet121-DA, DenseNet121-Translation
and DenseNet121-Rotation

94.42±0.30 94.40±0.34 94.41±0.32 94.42±0.32 0.9194±0.004

DenseNet121-DA, DenseNet121-Translation,
DenseNet121-Flip and DenseNet121-Rotation

93.82±0.47 94.02±0.47 93.89±0.46 93.86±0.49 0.9104±0.006

DenseNet121-DA, DenseNet121-Rotation,
DenseNet121-Translation, DenseNet121-Flip
and DenseNet121-Zoom

94.59±0.77 94.65±0.72 94.60±0.78 94.58±0.79 0.9218±0.011

DenseNet121-DA, DenseNet121-Rotation,
DenseNet121-Translation, DenseNet121-Flip,
DenseNet121-Zoom and VGG16-Flip

94.45±0.83 94.54±0.77 94.48±0.81 94.45±0.83 0.9196±0.012

5. Discussion

Table 11 allows a comparison among related state-of-the-art methods re-
garding the addressed classification problem, used number of datasets, used 
number of images and achieved accuracy. The obtained results suggest that 
even using general-purpose CNNs, by choosing suitable techniques of data 
augmentation and a appropriate combination of CNNs, results that are com-
petitive against the state-of-the-art methods can be achieved. To make a
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Figure 7: Comparison of the best results obtained by the individual, multilevel and en-
semble CNN configurations in the (a) leukemia vs. HBS, (b) ALL vs. HBS, (c) AML
vs. HBS, (d) ALL vs. AML vs. HBS and (e) ALL vs. AML vs. HBS vs. other types,
scenarios.

more reliable comparison, Table 11 is organized according to the type of the
addressed classification.

In distinguishing leukemia from HBS, excellent results were achieved by
the work of Loey et al. (2020), which reached 100% of accuracy. It can
be noted that the ensemble and multilevel configurations used in this study
obtained excellent accuracies. However, although used was used the AlexNet
network in the current study, as suggested by Loey et al. (2020), it did not
perform well, which could be due to the fact that its depth is much smaller
than the depths of the other studied networks. Therefore, it was difficult for
this network to learn the features of the used image datasets.

The ensemble and multilevel configurations achieved better performance
in classifying images for the ALL and HBS and for AML and HBS scenarios.
The ensemble configuration obtained 99.95% of accuracy for the first scenario,
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and 99.87% of accuracy for the second one. One could see that the other
works that used these classifiers did not used images of high diversity. In
fact, most of them used only one dataset, which does not lead to a robust
classifier.

As to the classification into three classes: ALL, AML and HBS, the study
by Laosai and Chamnongthai (2018) obtained the best results found, with
99.85% of accuracy on 500 images from two private datasets. In our test using
a dataset of 3,293 publicly available images, which is almost seven times as
large as the dataset used by Loey et al. (2020), the multilevel and ensemble
configurations achieved accuracies of 97.60 and 97.53%, respectively.

One can see that most of the state-of-the-art works presented higher ac-
curacy values than those of the proposed models. However, the number of
images used in those studies is lower than the one used here. Another de-
tail to be highlighted is that most related articles used data augmentation
techniques to reduce overfitting. It is also important to emphasize that a
heterogeneous set of images from eighteen publicly available datasets with
different image characteristics, such as illumination, contrast and brightness,
was used in the current study, which led to a greater diversity in the train-
ing data, allowing one to obtain a more robust classifier for different input
images.

To the best of our knowledge, the division into ALL, AML, HBS, and
other types of leukemia addressed here was the first study to explore all four
classes of leukemia types. According to Table 11, it was obtained 94.73% of
accuracy using the multilevel configuration and 94.59% of accuracy using the
ensemble configuration.

Figure 8 presents examples of the activation maps obtained by the VGG16
and DenseNet121 networks for the scenario with four classes. In this figure,
the first column presents the original images, and the second column corre-
sponds to the results obtained using the VGG16 network. For this network,
the blue shades indicate a low activation which suggests that the correspond-
ing regions are of low importance for the final classification; conversely, red
tones are associated with the areas that are the most critical to the final
classification. In the same figure, the third column presents the results ob-
tained using DenseNet121, and unlike the VGG16 network, the parts in blue
are those associated with the most critical regions for the final classifica-
tion. These regions of the peripheral blood smear are of great importance to
clinicians examining the appearance of cells, as changes in cell numbers and
appearance often help to diagnose leukemia.
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Table 11: Comparison among the results obtained using the proposed multilevel and
ensemble configurations and the results obtained using related methods.

Method Classification Number of Datasets Number of images Accuracy(%)
Thanh et al. (2018) Leukemia - HBS 1 108 96.60
Vogado et al. (2018) Leukemia - HBS 8 1,268 99.76
Loey et al. (2020) Leukemia - HBS 2 564 100

Vogado et al. (2021) Leukemia - HBS 18 3,536 98.61
Multilevel Leukemia - HBS 18 3,536 99.39
Ensemble Leukemia - HBS 18 3,536 99.54

Singhal and Singh (2016) ALL - HBS 1 260 93.80
Shafique and Tehsin (2018) ALL - HBS 2 368 99.50

Ahmed et al. (2019) ALL - HBS 2 354 88.25
Pansombut et al. (2019) ALL - HBS 2 363 81.74

Gehlot et al. (2020) ALL - HBS 1 15,114 93.40
Zakir Ullah et al. (2021) ALL - HBS 1 15,114 91.10

Karar et al. (2022) ALL - HBS 1 368 98.65
Rodrigues et al. (2022) ALL - HBS 1 260 98.46
Abhishek et al. (2022) ALL - HBS 2 608 97.00

Multilevel ALL - HBS 14 2,315 99.70
Ensemble ALL - HBS 14 2,315 99.95

Madhukar et al. (2012) AML - HBS 1 50 93.50
Goutam and Sailaja (2015) AML - HBS 1 90 98.00

Dasariraju et al. (2020) AML - HBS 1 1,274 92.99
Multilevel AML - HBS 16 2,412 99.67
Ensemble AML - HBS 16 2,412 99.87

Rawat et al. (2017) ALL - AML - HBS 1 240 99.50
Tran et al. (2018) ALL - AML - HBS 2 141 97.30

Laosai and Chamnongthai (2018) ALL - AML - HBS 2 500 99.85
Claro et al. (2020) ALL - AML - HBS 16 2,415 97.18
Karar et al. (2022) ALL - AML - HBS 2 445 95.50

Abhishek et al. (2022) ALL - AML - HBS 2 608 98.00
Multilevel ALL - AML - HBS 18 3,293 97.60
Ensemble ALL - AML - HBS 18 3,293 97.53
Multilevel ALL - AML - HBS - other Types 18 3,536 94.73
Ensemble ALL - AML - HBS - other Types 18 3,536 94.59

An alternative that was not evaluated in this study is enhancing the input 
images before starting the classification process. For example, a proper 
contrast transformation can improve the perceptual quality of the most used 
images (Gu et al., 2015). In fact, according to Gu et al. (2016), a good image 
enhancement transformation can noticeably improve the quality of the input 
images, so that they are even better than the originally acquired images, 
which are generally thought to be of high quality. However, the choice of the 
image enhancement transform should be prudent, since most relevant 
technologies often suffer from the drawback of excessive enhancement, thus 
introducing noise/artifacts and changing the visual attention regions (Gu et 
al., 2018).

Another essential point to be evaluated is using CNNs that are pre-trained 
on ImageNet. According to Kornblith et al. (2019), the architec-tures that 
perform best on ImageNet can provide better feature extraction and fine-
tuning. However, the authors observed this fact only in photo-graphic 
datasets. According to Sipes and Li (2018), leukemia images are considered 
fine-grained images. Classification tasks using datasets with fine-
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Figure 8: Examples of activation maps obtained for the imaging blood slides under study:
(a-c) ALL images, (d-f) AML images, (g-i) chronic leukemia images and (j-l) HBS images.

grained images can be particularly challenging, and the effects of pre-training 
with ImageNet were deemed to be small. Therefore, it is essential to evaluate 
the use of specific refinement techniques for fine-grained images (Du et al., 
2021).

In the tests conducted in this study, the original CNN architectures were 
used. However, changes in these architectures can lead to performance im-
provements. For example, Claro et al. (2020) performed an ablation pro-
cedure to define a specific acute leukemia CNN. Another possibility is the 
insertion of attention mechanisms, such as the one proposed by Xie et al.
(2021). The core idea of the attention mechanisms is that each time the
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model predicts an output, it only uses the parts of the input where the most 
relevant information is concentrated.

This study assessed the multilevel and ensemble combinations, but other 
configurations exist for CNN-based models. For example, hierarchical models 
can be used for problems with several classes. These models exploit the 
hierarchical structure of object categories to decompose classification tasks 
into multiple steps. They have shown better performance than flat models in 
performing image classification across multiple domains (Kowsari et al., 
2020).

6. Conclusion

In this study, techniques that can be integrated into computer-aided di-
agnostic systems in order to detect different types of leukemia, mainly ALL, 
AML, and other types, in addition to healthy slides, were evaluated. Several 
experiments were We performed. First, tests were performed according to 
five scenarios and the effectiveness of using techniques of data augmentation 
was analyzed. Then, a comparison among techniques of data augmentation for 
the ALL vs. AML vs. HBS vs. other types classification was performed. The 
total number of the used images, which were gathered from different public 
datasets, was equal to 3,536. Data augmentation is becoming an im-portant 
area of research, particularly in medical imaging. There are articles on 
techniques of data augmentation for specific types of images. However, there 
is not enough comprehensive work on leukemia images augmentation and 
classification. Therefore, this article will also benefit many researchers 
working on this area.

The concept of multilevel and ensemble configurations was applied in the 
conducted experiments, aiming to increase the accuracy and generalization of 
the classification and decrease its standard deviation rate. It is essential to 
highlight the use of the ensemble configuration, because it reduces the 
standard deviation rate of the classification by optimally combining the pre-
dictions of several models. The built ensemble model simulates real-world 
conditions leading to reduced standard deviation and overfitting, and en-
hanced generalization. One can concluded that the achieved findings can aid 
the development of clinically valuable solutions for detecting and differenti-
ating among different leukemia types in blood slide images.

In near future, more tests will be performed using an even larger number of 
testing images, and an image enhancement step will be included into the
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proposed classification configuration. Future research will also investigate the 
differences between cell images with chronic lymphoid leukemia and chronic 
myeloid leukemia. Additionally, a literature survey will be conducted to 
identify other new insights concerning these types of leukemia.
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