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Abstract: EEG signals play significant role in the study of mental disorders. Epilepsy is one of the major mental 

disorder and need significant technological support in the treatment. A method proposed here is an endorsement 

technique for epileptic seizures using electroencephalogram (EEG) signals captured using non-invasive method. 

The method uses power spectrum density and discrete wavelet transformation (DWT). The impact of power 

spectral analysis along with the usage of EEG characteristics in endorsement of epilepsy is addressed here. A 

publicly available EEG epileptic dataset is processed using FIR filters along with DWT. The power spectrum 

density and its average were compared with specific spectrum to get the results and were compared against the 

standard EEG signal frequency range. It is found that the usage of DWT is more accurate and reliable to process 

and classify the EEG data for epilepsy endorsement. 
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1 Introduction  

The area of EEG signal processing is now grabbing the interest of many researchers to contribute 

towards the achievement of accurate analysis and classification on epilepsy [2,17]. The clinical signs 

and EEG patterns of epilepsy depends on the type of subjects’ reaction. The cases like, head injury, 

cerebrum tumors, strokes and brain diseases are known as epileptogenesis. Hereditary changes can also 

be linked with such cases. EEG is one of the ways for recording brain electrical activity from the top of 

the skin on the head. The signals captured are the waveforms and they reflect the electrical activity of 

the outer layer of the cerebrum. The captured signals’ intensity indicates the small EEG activity and is 

commonly measured in microvolts (μV). Delta, Theta, Alpha and Beta waves are the categories into 

which the human EEG wave frequencies[1] are divided. A delta wave has a frequency less than or equal 

to 3 Hz and has the property of highest amplitude. The observation in this wave is prepotent rhythm in 

young babies up to one year and the sleeping stages of 3 and 4[1,2]. This occurrence may be observed 

focally in case of “sub cortical lesions”, “in general distribution with diffuse lesions”, “metabolic 

encephalopathy hydrocephalus or deep midline lesions” and most prominent posterior in children, and 

frontally in adults[1,2].  

mailto:anand@
mailto:tavares@fe.up.pt


 2 

The slow activity frequency range is from 3.5 Hz to 7.5 Hz in case of theta waves[1,2]. This can be 

considered as abnormal for adults in awake state but in case of children up to 13 years it is quite normal. 

It will be in general seen as an indication of focal subcortical wounds; it can likewise be seen in 

summarized scattering in diffuse messes up, for instance, metabolic encephalopathy or a couple of 

events of hydrocephalus[1,2]. The frequency range from 7.5 Hz to 13 Hz is termed as alpha wave; its 

place is on backside of the head on each side and is found higher to accept on the predominant side. On 

the other hand, a beta wave indicates "quick" action, has a frequency range of at least 14 Hz, and is 

generally seen on the two sides of the brain in even dissemination and is frontally most apparent[1,2]. 

It is emphasized by narcotic sleep-inducing drugs particularly the “benzodiazepines and the 

barbiturates”. It might be missing or decreased in areas of cortical harm, is typically considered as 

normal rhythm, and is the prevailing beat in patients who are alert or restless or have their eyes 

open[1,2]. The emphasizing characteristics of EEG waves are majorly considered in medical treatment 

of mentally disordered patients. Epilepsy is a mental disorder and based on the properties of human 

EEG waves, the medical practitioners can treat this disorder effectively. The technological support in 

epileptic seizure endorsement for medical practitioner will be a synergetic inclusion. 

The methodology for epileptic seizure endorsement is proposed here using EEG wave patterns. Four 

EEG wave patterns, namely Delta, Theta, Alpha and Beta waves, were studied. The publicly available 

EEG data [32] which has been captured with sampling rate of 128 Hz is tested for the said purpose. 

However, the acquisition system with the spectral bandwidth of 0.5 Hz to 85 Hz was set[32]. Therefore, 

40 Hz low pass filter is introduced first. The EEG data is collected on ten epileptic subjects in order to 

reassert each subject as epileptic[32]. The usage of a finite linear impulse filter (FIR) filter with DWT 

led to an effective classification and recognition. This article is organized as – introduction of related 

work in the next section, the adopted methodology is described afterwards, then a discussion on the 

obtained results, and finally the conclusions are pointed out.  

2. Related work 

Many research communities are now attracted towards Brain-Computer Interface (BCI). BCI acts like 

a channel from the brain to external equipment. The BCI treats the foreign device as a body part and 

also helps in achieving comprehensive brain mapping. The BCI involves research, augmenting, 

mapping, rectifying, and/or restoring sensory, experimentation, and cognitive functions. Artificial 

intelligence, machine learning, and data science are contributing in the arena of BCI; however, the work 

done in this area is still wide open for research. 

The BCI has been presented as one of the major contributors in the area of medical and non-medical 

applications [16, 17]. There are many challenges and difficulties in utilizing brain signals [2, 17]. For 

example, in the study of acts of hand movement or various finger movements, EEG signals have to be 

properly amplified and filtered [3]. Further to add more about BCI, the study of amyotrophic lateral 
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sclerosis (ALS) patients with the use of a P300 [8] speller BCI was also found effective [4][5]. For 

stroke motor recovery, BMI-based techniques are found useful and effective by many researchers. The 

physiological signals of the body and hemodynamic responses of the brain are combined with the brain-

body machine interface to improvise the detection of intention to move in healthy participants[7]. 

Moreover, studies examining whether NIRS-based BBMI systems boost reliability in determining 

stroke patients' intention to move are still missing, and the effectiveness of NIRS-based BBMI in 

restoring motor function in patients with stroke is still unknown[7]. 

 It is possible to design a prosthetic limb for amputees that allows them to behave like that of a normal 

person, with the arm actuated by system instructions derived from brain signals. Amputees who have 

lost appendages and whose brains work normally will use such a device [9]. Rarely occurs the front-

parietal and parieto-occipital networks primarily encode information on target and cursor positions and 

speeds, which are carried by EEG [10]. Attempts to raise the arm and head by people with spinal cord 

injuries (SCI) leave decodable neural correlates. An analysis of hand open, palmar grip, lateral grip, 

supination, and pronation in ten people with cervical SCI was carried out[10]. The same approach was 

tested on a person with cervical SCI as a proof-of-concept for classifying movement attempts online in 

a closed-loop, and a moderate classification output of 68.4 percent was achieved concerning palmar 

grasp vs hand open (chance level of 50 percent)[11]. When used as part of an intracortical brain-

computer interface (iBCI) in a closed-loop, offline decoders configured to reconstruct expected 

movements from neural recordings often struggle to achieve optimal online performance [12]. It was 

the first asynchronous high-speed BCI to distinguish between deliberate regulation (IC) and non-control 

(NC), with just 0.075 erroneous classifications per minute [13]. Using a matrix-keyboard of 32 targets, 

the asynchronous speller obtained an average information transmission rate (ITR) of 122.7 bits per 

minute. 

EEG-based lie detectors became common over polygraphs as a result of human actions cannot influence 

them. varied studies conducted "Guilty data Test" or "Concealed data Test" by making a mock crime 

state of affairs to spot potential changes within the brain [14]. This work enclosed a simulated crime 

state of affairs EEG acquisition tool for ten participants. The wavelet approach created most of the 

themes to perform higher for EEG data. A comparison between the bottom classifiers and therefore the 

ensemble structure was given with the over-performing ensemble approach across the fundamental 

classifiers. The additional projected framework was compared with some existing approaches, 

achieving the most accuracy of 92.4% [14].  

A 13-layer deep convolutional neural network (DCNN) rule was accustomed to find traditional, preictal, 

and seizure categories [20]. This DCNN technique had AN accuracy, specificity, and sensitivity of 

88.67%, 90.00%, and 95.00%, severally. Complete ensemble empirical mode decomposition with 

adaptive noise (CEEMDAN) for convulsion identification has eliminated the concern of medical 
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professionals and expedite encephalopathy analysis and diagnosing [21]. The Bayesian error and non-

parametric chance distribution estimation have created an effect to work out the importance of every 

feature extracted [22]. Moreover, a redundancy analysis was done with correlation-based feature choice. 

The features: variance, energy, nonlinear energy, and technologist entropy were ready to capture the 

seizures considerably.  

The baseline technique of classifying all epochs as traditional was shown AN improvement of 4.77 – 

13.51% in terms of the Bayesian error. The empirical mode decomposition (EMD) and a multilayer 

perceptron neural network (MLPNN) were accustomed to decompose a time phase graphical record 

into intrinsic mode functions (IMFs) on that autoregressive (AR) parameters were extracted, combined, 

and fed to the MLPNN classifier [23]. AN experiment doles out on an in public offered dataset[31][32], 

comprising traditional, interictal, and ictic graphical record signals achieved a classification accuracy 

of up to ninety-eight. smoothened pseudo-Wigner-Ville distribution gave 98.9% of accuracy [24]. AN 

adaptive multi-parent crossover Genetic rule was used for optimizing the options utilized in classifying 

epileptic seizures [25]. Weighted Permutation Entropy and a Support Vector Machine classifier model 

were accustomed to enhance the sensitivity and exactness of the detection method [26].  

The matrix determinant of graphical record as a big feature for recognition of epileptic seizures 

classified mistreatment support vector machine (SVM), K-nearest neighbor (K-NN) [30], multilayer 

perceptron (MLP) classifiers with 10-fold cross-validation was proposed[27]. The results disclosed 

classification accuracies of 99.45% employing a dataset from the University of urban center and of 

97.56% mistreatment the RMCH dataset once classifying between the traditional and epileptic graphical 

record. The signals were rotten into time-frequency sub-bands until sixth-level mistreatment dual-tree 

advanced ripple rework (DTCWT) [28]. Tunable-Q ripple rework (TQWT) was projected and twenty-

five frequency coefficients sub-bands were calculated by mistreatment TQWT within the pre-

processing [29]. Interaction with the physical world a Human-in-the-loop cyber-physical systems 

(HiLCPSs) are introduced. Human cognitive activity can be measured using a HiLCPS through body 

and brain sensors. [34]. The more accurate prediction along with low cost can be done with Human-in-

the-loop by the integration of experience and knowledge. A survey shows[35] works on human-in-the-

loop from a data perspective and classify them into three categories with a progressive relationship: (1) 

“the work of improving model performance from data processing”, (2) “the work of improving model 

performance through interventional model training”, and (3) “the design of the system independent 

human-in-the-loop”[35]. Artificial Intelligence(AI) is playing a major role to add more strength to the 

medical field. AI has a potential unique offer towards the best opportunities in improving medical 

practice. The argument in technological solutions should include integration of three conditions: (1) 

“they serve human ends”; (2) “they respect personal identity”; and (3) “they promote human 

interaction”. [36]. The field of soft wearable robotics is just beginning and will evolve based on a better 
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understanding of the underlying fundamental science of soft robotics and the human-machine 

interaction[37]. 

Further, the methodologies custom-made within the survey found strengthening the method of graphical 

record signal analysis and classification; but, a combination of power spectrum density and DWT can 

contribute additional towards increasing the potency of convulsion detection. Therefore, the 

methodology projected during this article is a cooperative inclusion in graphical record signal analysis 

and classification for the epileptic disorder. 

3. Methodology 

The importance of EEG signal processing can be seen in various medical and non-medical applications. 

The methodology proposed here is a set of different influential stages that plays a significant impact on 

the outcome. It is composed of dataset acquisition, filtering, feature extraction, classification, and 

recognition. The dataset [32] used in the proposed method was captured by using a 16-channel EEG 

cap aiming to reassert the subject under study is in an epileptic state. To begin with, the process EEG 

signal acquisition [32] of 10 subjects is done, channel selection is done to extract the signals of interest. 

Features are extracted using DWT to excerpt the attributes to be used in the classification. Feature 

extraction is done with the help of DWT because of its effectiveness compared to other methods in 

terms of accuracy of extraction features to ensure the effectiveness in the following steps, this had been 

proved in several previous studies such as [38,39]. The strength of power spectrum can be seen through 

the characteristics of hypnotic agent, which were discovered by raw EEG power spectral analysis; these 

characteristics are related to the mechanism of the agent. When inducing propofol sedation, beta 

oscillation is normal, and slow-delta oscillation occurs during the loss of consciousness. Since its mode 

of action is similar to propofol's, midazolam's EEG pattern is similar to propofol's, and beta oscillation 

is common when sedation is induced. The oscillations of ketamine, beta, and gamma can be seen in the 

25-32 Hz band. Slow oscillation of the delta and spindles is a characteristic of dexmedetomidine[17]. 

Hence DWT power spectrum will add more strength in EEG data processing. 

Basically the two level DWT is used here to extract features and these features are taken in the form of 

LL, LH, HL, HH band coefficients. From these features, the classification and recognition are done 
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Recognition 

Fig. 1 Brain EEG signal processing and analysis. 
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with respect to power spectrum. The propounded methodology of Fig.1 shows the brain EEG signal 

processing and classification. 

The patients’ epilepsy reassertion process is shown in the block diagram of Fig.2 along with the EEG 

signal processing and analysis. Fig.3 shows the EEG data acquired from 10 subjects using a 16 channels 

EEG cap. A publicly available EEG data [32] is used; with the settings like - sampling frequency (SF), 

passband frequency (PBF) and ripples for both initializing and stop band frequency (SBF) for the signal 

frequencies of delta, alpha, beta and theta waveforms. The PBF and SBF normalization is done to 

measure the signal as usual, fixed, ease-to-use range as {[PBF. SBF] / Half of SF}. The frequency f is 

normalized to get fn  for the range [0 to 1] using frequency sampling:  

     𝑓𝑛 =
𝑓

𝑓𝑠
⁄       (1) 

However, in accordance with the Nyquist-Shannon theorem, the sampling frequency is usually to the 

minimal of twice the frequency f. Therefore, Eq. (1) is not more than 1/2. In order to get fn between 

range [0, 1], Eq. (1) is multiplied with the factor of 2:  

    𝑓𝑛 = 2 ×
𝑓

𝑓𝑠
⁄       (2) 

The Parks–McClellan[33] algorithm works on iterative basis and is used for getting the most favorable 

Chebyshev Finite Incentive Response filter. The maximum filter coefficients were obtained by this 

algorithm, where optimal FIR filters were obtained using indirect approach. The main target of this 

algorithm is to reduce the error in the pass bands and stop bands with the help of Chebyshev 

approximation. The variation found in Remez exchange algorithm is termed as Parks–McClellan 

algorithm specially designed for FIR filters and considered as a standard way to design FIR filter. The 

Parks–McClellan algorithm can be described as: 

Step.1 Guess the extreme positions that are equally spaced in the stop and pass bands 

Step.2 Conduct interpolation of polynomial and re-assess the local extreme positions 

Parks-McClellan optimal 

FIR filter order estimation 
Coefficients of 

FIR filter 

DWT Compute Power 

Spectrum Density 

Normalize 

Frequency 

Average comparison 

Compute frequency 

vector 

Compute Average 

Load Data  

(Sampling period 2 and 

sampling frequency 128) 

(delta, theta, alpha, beta) 

Recognition / 

Reassertion 

 

To study behavioral 

patterns 

Fig. 2 Detailed methodology for brain EEG signal processing and analysis. 
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Step.3 Extremes are changed to new positions and continue iteration until the extreme stops 

moving 

Computing a discrete-time, direct-form FIR filter, with coefficients of numerator leads to filter the data 

with filter defined by a numerator coefficient vector. Applying DWT in order to extract LL, LH, HL 

and HH bands leads to get narrowed data called as feature extraction, which is useful in making the 

desired decision. The non-parametric estimation of the spectral power density of a broader sense 

uniform indiscriminate process is performed on LL, LH, HL and HH data. DWT is one of the finest 

transformation tools used to transform a given signal data into two-dimensional wavelets or applying  

 the one-dimensional wavelet transformation along rows and columns of the data successively as 

separable two-dimensional transform. 

In many cases, wavelets are used for signal data compression and signal data processing giving low 

computational complexity of separable transforms. Mathematically as a convolution operation, the 

wavelet transform passes the signal data through low and high pass filters. This transform will lead to 

data decomposition into LL, LH, HL, and HH frequency sub-bands, where L denote low-pass filtered 

bands and H denote high-pass filtered bands. The LL sub-band was obtained with the help of low-pass 

filters, filtered along with row and column-wise to get an approximated signal data. This approximation 

LL sub-band contains a very high quantity of information about the signal data under analysis; further 

obtained LL sub-band may be divided to get the most of the valuable quantity of information from the 

signal data. The components with high frequency can be found in other sub-bands, like LH, HL, and 

HH. These sub-bands may also be further divided to get four sub-bands and may be considered for 

utilization according to application. The decomposition of approximated data is done at each level, 

hence getting the pyramidal tree of four sub-bands. This particular two-level decomposition makes the 

wavelet disintegration by level two of the input signal data. 

The DWT is taken to pair up the input to get a directory of 2n values to store and pass them using Haar 

wavelet. When it is repeated recursively, it is observed that the 2n-1 differences together with a final 

sum can be got by pairing the sums to prove the following scale. DWT decomposition splits the input 

signal in the form of higher-frequency and lower-frequency parts. To assess the high frequencies and 

low frequencies, the signal is passed through several high and low pass filters respectively, with 

different cutoff frequencies at various resolutions. 

The DWT signal decomposition is done by spanning one-dimensional signal x[n] from 0 (zero) to π 

radians. First the signal x[n] is passed through the filters; high-pass g[n] along with a low-pass h[n].The 

Nyquist’s theorem eliminates one half of the sampled signals, which possesses π/2 radians i.e highest 

frequency range. The subsampling of this signal is done by the factor 2 and discard each second sample. 

This is a kind of a higher-level decomposition of x[n] and is expressed in mathematical form as: 

𝑦ℎ𝑖𝑔ℎ[𝑖] = ∑ 𝑥[𝑖]𝑔[2𝑖 − 𝑛]𝑛 ,        (3) 

𝑦𝑙𝑜𝑤[𝑖] = ∑ 𝑥[𝑖] ℎ[2𝑖 − 𝑛]𝑛 ,       (4) 
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Fig.3 EEG Data acquired for ten subjects (Patients) 
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The Nyquist’s theorem eliminates one half of the sampled signals, which possesses π/2 radians i.e 

highest frequency range. The subsampling of this signal is done by the factor 2 and discard each second 

sample. This is a kind of a higher-level decomposition of x[n] and is expressed in mathematical form 

as: 

 

𝑦ℎ𝑖𝑔ℎ[𝑖] = ∑ 𝑥[𝑖]𝑔[2𝑖 − 𝑛]𝑛 ,        (3) 

𝑦𝑙𝑜𝑤[𝑖] = ∑ 𝑥[𝑖] ℎ[2𝑖 − 𝑛]𝑛 ,       (4) 

 

where 𝑦ℎ𝑖𝑔ℎ[𝑖] and 𝑦𝑙𝑜𝑤[𝑖] are the results of the respective high and lowpass filters after sub-sampled 

by 2. The process shown above has a tendency of repeated extra decomposition. In a signal processing 

application, the usage of two-dimensional wavelet is limited to only square matrix data with the height 

and width equal to the power of two. If the data is in the form of N × N size, then it can be said that, N 

= 2n. Fig.4 presents a one level DWT decomposition of an input signal.  

 

The higher-level decomposition of x[n] is considered as an input to obtain periodogram. This 

periodogram is the Fourier transformation of a bias estimate of the autocorrelation sequence. In this 

case a signal x[n] is sampled at fs samples per unit time, then the periodogram is defined as: 

 

𝑃̂(𝜔) =
∆𝑡

𝑁
|∑ 𝑥[𝑘] × 𝑒𝑗2𝜋𝑓∆𝑡𝑘𝑛−1

𝑘=0 |
2

,         −1
2⁄ ∆𝑡 < 𝑓 < 1

2⁄ ∆𝑡,    (6) 

 

where Δt is considered as the sampling interval and for a one side periodogram, the values at all 

frequencies (except zero) and the Nyquist, ½ Δt, are multiplied by 2 to conserve the total power. 

Compute the average of power for classification (behavioral patterns) to make decision by comparing 

Fig. 4. Example of a one level wavelet signal decomposition. 
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with alpha, beta, theta and delta signals. Based on the comparison, the proposed methodology reasserts 

(recognition) the patient under test is in epileptic state and is summarized in the flowchart-1. 

  Flowchart 1 : Epileptic seizure detection process using Non-invasive method 

Set the sampling frequency (SF) 

Apply the linear-phase FIR filter 

using the Parks-McClellan algorithm 

Compute the normalized frequency  

NF = [PBF SBF]/(SF/2) 

Set stop band ripples of the 

delta/alpha/beta/theta waves (SBR) 

Set the pass band ripples of the 

delta/alpha/beta/theta waves (PBR) 

Set the stop band frequency of the 

delta/alpha/beta/theta waves (SBF) 

Initialize the pass band frequency data 

to 0 (PBF) 

Load the EEG data 

 

Compare the average power of delta, 

alpha, beta and theta waves with max 

(PSD) respectively to recognize the 

status of the patient: epileptic state 

Filter the data with the filter 

described by the numerator 

coefficient vector 

Apply DWT on the data taken to 

get LL,LH,HL,HH band data 

Take samples 

Get the coefficients of the FIR filter 

Compute the power spectrum 

density of the samples 

(periodogram) 

Compute the average power 

Compute a discrete-time, direct-form 

finite impulse response (FIR) filter, 

with numerator coefficients 

Start 

Stop 
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4. Results and discussion 

The impact and accuracy of the results obtained are addressed in this section. The contribution of the 

linear impulse FIR filter along with DWT in the process of classification and recognition is discussed, 

and also about how the LH and HH bands of DWT have given excellent outputs to justify the results. 

The results were obtained from EEG data [32] of ten epileptic patients. Table. 1 shows the comparison 

of the obtained results in terms of the standard frequency range. Fig. 5 shows the layout of the 16 EEG 

channels cap used to acquire the studied signals [32]. 

 

Fig. 5 Layout of the used 16 EEG channels cap.  

 

The LL, HL bands of DWT have shown slight deviation indicating the subject’s brain is not in a coma 

or in an unconscious state but is in the state of epilepsy. Epileptic seizures can jump from imperceptible 

and brief periods to significant stretches of vivacious shaking. From Fig.6 and Fig.8, it can be observed 

that during epilepsy, seizures tend to repeat and have no basic speedy cause. The fundamental system 

of epileptic seizures is excessive and non-uniform neuronal movement in the cortex of the brain. Ten 

subjects’ data is tested in the proposed scheme with different types of epileptic variants (Table 1). The 

linear phase FIR filter using Parks-McClellan [33] algorithm is applied to get coefficients of the FIR 

filter. The DWT is used to get the LL, LH, HL, and HH bands to obtain precise data for computing the 

power spectrum in decision-making. Then the average power of delta, alpha, beta, and theta waves were 

compared in order to recognize the status of the patient. The sampling frequency is set equal to 128 Hz 

[19, 20, 33]. The conversion of EEG data from a time domain to a frequency domain is done with the 

help of DWT. It can be realized from Table 1 that the signal strength obtained from LL and HL bands 

indicated that the subject under study is epilepsy. The strength of the signal obtained from LH shown 

the result as 0 (zero) because of the lowpass filter used as the first filter and then high pass filter in 

DWT, as also occurred in the case of the HH band. A filter here with cutoff frequency 128Hz passes 

the signals higher than a cutoff frequency (here equal to 128 Hz) and blocks the signals with frequencies 

lower than the cutoff frequency. However, HL and LL bands shown negligible strength and succeeded 

in showing the subject under study is epilepsy. As the EEG signal is of a low-frequency component, the 
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HL band first attenuates low frequencies and allows high frequencies then attenuates high frequencies 

to allow low frequencies. This led to identifying the frequencies required to classify and make a decision 

to identify the subject’s status. HL and LL bands gave more accurate results using the Haar wavelet. 

LL and HL bands corresponding to delta waves of Fig.6 and Fig.8 show very clear indications that as 

frequency increases, the amplitude decreases to zero leading to the observation as prepotent rhythm. 

Theta wave represents "slow" activity, “in general distribution with diffuse lesions”, “metabolic 

encephalopathy hydrocephalus or deep midline lesions”, showing a type of epilepsy, and also a similar 

observation can be found in the case of alpha wave activity. On the other hand, as the beta wave 

indicates a "quick" action, with low amplitude against an increase in frequency emphasizing epilepsy 

can be observed.  

The various sorts of seizure include muscle firmness, loss of muscle control, jerky muscle developments 

of the face, neck, and arms, unconstrained fast jerking of the arms and legs, hardening of the body 

shaking, loss of bladder or inside control, staying quiet, loss of cognizance and so on. The results when 

compared with the literature available, data set and techniques were different. So, the comparison needs 

uniform and standard data – like the type of epilepsy, type of patients, age, whether under any other 

medical specific treatment, etc. The comparative study needs uniform data set for different techniques 

employed; so, in this article reassertion of epilepsy is demonstrated. The results, for example, subject-

1 from fig.6 demonstrate that for the frequency range from 1 to 140 Hz the waveform is declining from 

1 to 40 Hz show the probability of slow activities in the case of LL bands of delta and theta waves. On 

the other hand, the alpha and beta waves show that very low amplitude movements showing a lack of 

high thinking and quick action movements. For subject-2, a few quick action movements can be 

observed in comparison with subject-1. The various types of body movements may be observed during 

epilepsy. In addition, the main focus of the present analysis is to identify the different relations between 

delta, theta, alpha, and beta waves and their significances for 10 subjects and as shown in the graphs of 

fig.6 and fig.8. We found indentations for the power spectrum for frequency of 1 Hz and its harmonics 

at 130 Hz.  Similarly, in the case of HL bands, the observations from fig.8 indicate the epileptic activities 

for the ten subjects that have been considered here. 

The higher frequency components suggest that muscular activity might have domination or possibly 

influenced the results, as the activity of EEG can be observed as higher in awareness and lower in 

unresponsiveness.  Classical EEG analysis is usually performed in frequency bands below 30 Hz, i.e. 

the delta, theta, alpha, and beta bands. 

 



 13 

  

  

  

  

  

 

Fig. 6  Nature of Power Spectrum on LL band extraction (DWT applied on FIR Filtered data). 
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Fig. 7  Nature of the Power Spectrum on the LH band extraction (DWT applied on FIR Filtered data). 
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Fig. 8  Nature of the Power Spectrum on the HL band extraction (DWT applied on FIR Filtered data). 
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Fig. 9  Nature of the Power Spectrum on the HH band extraction (DWT applied on FIR Filtered data). 
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Table. 1 Comparison of the obtained results in terms of standard frequency range. 

Average of Power Spectrum Density 

 LL Band LH Band HL Band HH Band 

 Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta Delta Theta Alpha Beta 

 
<4  

Hz 

4-7  

Hz 

7-13 

 Hz 

13-39  

Hz 

<4  

Hz 

4-7 

 Hz 

7-13 

Hz 

13-39 

Hz 

<4 

 Hz 

4-7  

Hz 

7-13  

Hz 

13-39  

Hz 

<4  

Hz 

4-7  

Hz 

7-13 

Hz 

13-39 

Hz 

Subject 

1 
0.2938 0.0052 0.0063 0.0014 0 0 0 0 0.0027 6.4104×10-5 2.165×10-4 5.1783×10-4 0 0 0 0 

Subject 

2 
1.3423 0.0202 0.0119 0.0338 0 0 0 0 0.0125 2.2947×10-4 4.0281×10-4 0.0048 0 0 0 0 

Subject 

3 
0.0378 9.5107×10-4 0.0031 0.0144 0 0 0 0 1.7709×10-4 9.4×10-6 2.607×10-4 0.0032 0 0 0 0 

Subject 

4 
0.1065 0.0014 0.0033 0.0298 0 0 0 0 8.2712×10-4 6.6508×10-6 3.4812×10-4 0.0061 0 0 0 0 

Subject 

5 
0.0620 8.2423×10-4 9.5388×10-4 0.0131 0 0 0 0 5.7026×10-4 5.1563×10-6 1.3142×10-4 0.0033 0 0 0 0 

Subject 

6 
0.5924 0.0106 0.128 0.1172 0 0 0 0 0.0041 7.0151×10-5 0.0011 0.0469 0 0 0 0 

Subject 

7 
0.1164 0.0021 0.0013 0.1261 0 0 0 0 0.0011 2.6121×10-5 3.7625×10-5 0.0249 0 0 0 0 

Subject 

8 
0.0212 5.1983×10-5 0.0041 0.0660 0 0 0 0 2.6403×10-4 4.6514×10-6 1.6448×10-4 0.0258 0 0 0 0 

Subject 

9 
0.1166 0.0021 0.0024 0.0094 0 0 0 0 9.8804×10-4 2.0336×10-5 1.2705×10-4 0.0027 0 0 0 0 

Subject 

10 
0.1398 0.0020 0.0024 0.0226 0 0 0 0 0.0011 1.2751×10-5 3.0029×10-4 0.0104 0 0 0 0 

 

“Beta waves” “Active, busy thinking, active processing, active concentration, arousal and cognition” 

“Alpha waves” “Calm relaxed yet alert state” 

“Theta waves” “Deep meditation /relaxation, REM sleep” 

“Delta waves” “Deep dreamless sleep, loss of body awareness” 



 18 

The use of DWT played a major role in more sophisticated feature extraction, when applied on data 

filtered by FIR filter. Power spectrum density (periodogram) helped in endorsing the outcome of the 

experiment. The experimental results of the propounded methodology show that the beta band 

frequencies have a quite different performance. When the lower part of the beta band (< 21Hz) is 

increased, it can be observed that, there is an increase in the unresponsiveness probability, but when 

there is an increase in the higher part of beta (> 21Hz) probability of awareness has increased. By 

looking into this kind of behavior of the beta band, it is acceptable to split the beta band into two for 

beta band power analysis. The components of the high-frequency range are suitable for the detection of 

awareness. It can also be stated that awareness detection has limitations if there is a presence of artifacts. 

The seizure characteristic behavior of delta and theta waves from Fig.6 shows that the variation in 

amplitude is found between 0 to 35 Hz for LL bands, the alpha and beta waves’ behavior from Fig.6 

shows the variation in amplitude is between 20 to 120 Hz for LL bands leading to the reassertion of 

epilepsy. Similarly, when observed from Fig.8, the seizure characteristics have the variation in 

amplitude from 0 to 40 Hz in the case of delta and theta waves for HL bands. The seizure characteristics 

have a variation in the amplitude from 40 to 120 Hz in case of alpha and beta waves for HL bands, 

leading to reassertion of epilepsy. Here ten epileptic subjects’ data is taken for the study and LL, HL 

bands of DWT with power spectrum analysis, all ten cases are identified as epileptic. 

5. Conclusion 

The methodology proposed here has led to convincing results. Openly available EEG data were used to 

reassert the included subjects as epileptic. The usage of the linear impulse FIR filter with DWT led to 

an effective classification and recognition of the used data. Four EEG wave patterns, namely Delta, 

Theta, Alpha, and Beta waves, were addressed based on the combination of the signal power spectrum 

with DWT. The methodology starts with filtering the data using an FIR filter for selecting the data of 

interest and the Haar wavelet transform pairs up input values, storing the difference and passing the 

sum, which is repeated recursively, pairing up the sums to prove the next scale, which leads to 2n-1 

differences and a final sum considering LL and HL band frequencies. The LH and HH bands of DWT 

made an excellent contribution to the obtained promising results. The computation of the average of 

DWT applied on the power spectrum is used to build the frequency vector to study the behavioral pattern 

of epilepsy. 

DWT confirms that is a versatile tool to analyze signals that are not statistically predictable, especially 

in the region of discontinuities, a feature that is typical in EEG data. Finally, the decision is made by 

comparing the average power spectrum and the maximum power spectrum. Hence, from the results 

presented here, one can conclude that the combination of DWT and power spectrum leads towards 

achieving more accuracy in EEG data analysis and classification. Our future work will be on analyzing 

the EEG signals from the occipital lobe to judge the visual effects on the patient during epilepsy. 
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