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In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic flu-
ids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction
between two concentric cylinders under the combined influences of electrokinetic and pressure forcings.
The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic
flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary con-
dition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and
pressure gradient forcings on the fluid velocity distribution are also discussed.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction In order to ascertain whether the proposed slip models are reli-
With the evolution of diagnostic tools that capture flow charac-
teristics at the microscale there has been growing evidence of wall
slip in experiments using both Newtonian and non-Newtonian flu-
ids [1]. Simultaneously, molecular dynamics has also helped ques-
tion the veracity of the no-slip law and, nowadays, the wall slip
velocity phenomenon in some fluid flows is accepted [2], especially
for viscoelastic fluids. In particular, the works of Denn [1] and Lau-
ga et al. [2] provide insights on what has already been done regard-
ing slip velocity measurements and theoretical approaches for
Newtonian and non-Newtonian fluids. Kazatchkov and Hatzikiria-
kos [3] and Hatzikiriakos [4] provide novel physical models that
are able to capture the slippery characteristics of certain viscoelas-
tic fluids. All these works concern pressure-driven flows.

For electro-osmotic driven flows the existence of wall slip has
been more readily accepted. When an electrolyte solution flows
in channels made from dielectric materials, a thin electric double
layer (EDL) is spontaneously formed in the vicinity of the wall,
where the imbalance of positive and negative ions can be used
by an applied electric potential to induce flow along the channel.
This layer is usually very small in such a way that the bulk flow
can be modeled accurately considering the linear Navier [5] slip
boundary condition at the wall [6–11].
able, analytical solutions and numerical simulations are important
tools. Additionally, the analytical solutions can be of major impor-
tance in the verification of numerical codes. These two facts, to-
gether with the urge of understanding the electro-osmotic flow
and the slip phenomenon typical in viscoelastic fluid flows, are
the main motives for this work. On what concerns analytical solu-
tions for viscoelastic fluids with slip boundary conditions, we can
distinguish two cases: pressure-driven viscoelastic fluid motion;
viscoelastic fluid motion driven by a combination of electro-osmo-
tic and pressure forcings.

For Newtonian fluids, Ngoma and Erchiqui [12] investigated
numerically the effects of heat flux and boundary slip on electroki-
netic flows. Soong et al. [11] analyzed pressure-driven electroki-
netic flows in hydrophobic microchannels with emphasis on the
slip effects under coupling of interfacial electric and fluid slippage
phenomena while Jamaati et al. [13] studied the pressure-driven
electrokinetic slip-flow in planar microchannels. For non-Newto-
nian fluids only analytical solutions under no-slip boundary condi-
tions could be found. Zhao and Yang [14] reported a theoretical
analysis of electro-osmotic mobility of non-Newtonian fluids and
Afonso et al. [15,16] presented an analytical solution for the mixed
electro-osmotic/pressure driven flow of viscoelastic fluids in
microchannels and for the case of electro-osmotic flow under
symmetric and asymmetric zeta potential, respectively. All these
analytical solutions were derived for simple channel flows.

For an annular geometry the literature is rich in analytical solu-
tions for the pressure driven case [17–22] with applications to the
oil and gas industries. For the electro-osmotic flow through an
annulus, the applications to real life are becoming important in
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biological systems as in electrophoretic separation of proteins and
for blending chemical and biological fluids [26]. Regarding analyt-
ical studies of such flows we could only find the works of Tsao and
Kang et al. [23,24] where the electroosmotic flow of a Newtonian
fluid through an annulus was studied for high and low zeta poten-
tials, the work of Goswami and Chakraborty [25] where the
authors present semi-analytical solutions for electroosmotic flows
of Newtonian fluids with interfacial slip in microchannels of com-
plex cross-sectional shape, including an annular geometry, Jian
et al. [26] who analyzed the behavior of time periodic electro-
osmosis in a cylindrical microannulus, and more recently, Shamsh-
iri et al. [27], who studied electroviscous and thermal effects on the
electro-osmotic flow of power-law fluids through an annulus. Ana-
lytical solutions for the viscoelastic annular flow case under the
influence of both electro-osmotic and pressure driven forcings
could not be found in the literature. Given this limitation, in this
work we present a semi-analytical solution for the pure axial flow
of the Linear and Exponential PTT models [28,29] that is valid for
both no-slip and slip boundary conditions.

Although this flow is known to be of interest for industry, we
could not find any experimental data. Therefore, we derived a
general solution that can cope with various degrees of slip and
different classes of fluids. Also, the solution can be easily adapted
to other viscoelastic models.

The remaining of this paper presents the relevant set of govern-
ing equations, followed by their solutions. A discussion of the
effects of the various relevant dimensionless parameters upon
the flow characteristics closes this work.

2. Governing equations

The flow of interest is governed by the continuity equation,

r � u ¼ 0 ð1Þ

and by the general Cauchy momentum equation,

q
@u
@t
þ qr � uu ¼ �rpþr � sþ qeE ð2Þ

where u is the velocity vector, p is the pressure, q is the density and
qeE represents the electrical force per unit volume acting upon the
ions in fluid. This force depends on E, the applied external electric
field, and on qe, the net electric charge density. This charge density
distribution is a consequence of the distribution of the spontane-
ously formed electric double layers, which are assumed here not
to be affected by the imposed electric field. The deviatoric stress
tensor, s, describes the fluid rheological behavior here given by
the simplified Phan-Thien-Tanner (sPTT) model [28,29],

f ðtrsÞsþ k
@s
@t
þ u � rs� ½ðruÞT � sþ s � ru�

� �

¼ gðruþ ðruÞTÞ ð3Þ
where g is the polymer viscosity coefficient, k is the relaxation time
and f ðtrsÞ is a function depending on the trace of the stress tensor
specifying the various versions of this class of models [28,29],

f ðtrsÞ ¼
1þ ek

g skk linear

exp ek
g skk

� �
exponential

8<
: ð4Þ

As for the boundary conditions, the no-slip boundary condition at
the wall is expressed as u ¼ 0, whereas the linear Navier slip law
[5], is given by

uslip ¼ �Lsrz ð5Þ

where L is the slip coefficient and srz is the wall shear stress. For the
inner cylinder wall the plus sign is considered, while for the outer
cylinder wall the minus sign is used.
3. Semi-analytical solution

We assume the flow between the two concentric cylinders is fully
developed, with the streamwise velocity component in the z direc-
tion (the direction of the axes of the cylinders) only depending on
the radial coordinate, r. As shown in Fig. 1 the outer cylinder has a
radius R, and the radius of the inner cylinder is given by aR with
0 < a < 1. The gap between the two cylinders is d ¼ Rð1� aÞ. We
further assume that there is no rotation, that the flow is axisymmet-
ric and it is fully developed. For such conditions, continuity, momen-
tum and the constitutive equations can be further simplified.

The axial momentum equation in cylindrical coordinates is gi-
ven by,

1
r

dðrsrzÞ
dr

¼ �qeEz þ p;z ð6Þ

where p;z is the constant pressure gradient in the z direction, srz is
the non-zero shear stress and Ez � �dU=dz with U ¼ wþ /, where
/ is the applied streamwise potential and w is the equilibrium/in-
duced potential across the cylinders’ gap, associated with the
interaction between the ions of the fluid and the dielectric wall.
The charge density, qe, is related to the electric potential by
qe ¼ ��j2wðrÞ assuming the Debye-Hückel approximation (at room
temperature this limits the potential at the wall to values much
smaller than 26 mV), and the induced electric field is given by the
solution of the following differential equation [23],

1
r

d
dr

r
dw
dr

� �
¼ j2w ð7Þ

where j2 is the Debye-Hückel parameter. For the boundary condi-
tions wðaRÞ ¼ fi and wðRÞ ¼ fo, the solution of Eq. (7) is given by
[23],

wðrÞ ¼ I0ðjrÞ½foK0ðajRÞ � fiK0ðjRÞ� þ K0ðjrÞ½fiI0ðjRÞ � foI0ðajRÞ�
I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ

ð8Þ
where I0ð:Þ and K0ð:Þ are the modified Bessel functions of first and
second kind, respectively.

The induced electric potential is now easily computed by
qe ¼ ��j2wðrÞ with wðrÞ given by Eq. (8), where � is the dielectric
constant of the fluid.

Integration of Eq. (6) results in the following expression for the
shear stress,

srz ¼
rp;z
2
þ �jEz

K1ðjrÞ½�fiI0ðjRÞ þ foI0ðjaRÞ�
I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ þ

�j2Ezr
2

�
0F1 2; jr

2

� �2
h i

½�fiK0ðjRÞ þ foK0ðjaRÞ�
I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ þ c1

r
ð9Þ

where 0F1 2; jr
2

� �2
� �

is the confluent hypergeometric limit function,
which is defined as [30,31]

0F1ð2; zÞ ¼
X1
k¼0

zk

k!ðkþ 1Þ! ð10Þ

and c1 is the constant of integration that can be determined assum-
ing that srz ¼ 0 for r ¼ bR with a < b < 1,

c1 ¼ �
ðbRÞ2p;z

2
� �jEzbR

K1ðjbRÞð�fiI0ðjRÞ þ foI0ðjaRÞÞ
I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ

� �j
2EzðbRÞ2

2

0F1 2; jbR
2

� �2
h i

ð�fiK0ðjRÞ þ foK0ðjaRÞÞ
I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ ð11Þ

This implies that b has to be determined as part of the solution.
For the pure axial annular flow the shear stress component is gi-

ven by,

f ðszzÞsrz ¼ g
du
dr

ð12Þ
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Fig. 1. Schematic of the electro-osmotic annular slip flow.
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and the normal stress distribution can be determined once the
shear component is known using

f ðszzÞszz ¼ 2ksrz
du
dr

ð13Þ

which leads to

szz ¼
2k
g

s2
rz ð14Þ

since srr ¼ 0. More details are given in the work of Pinho and Oli-
veira [20].

3.1. Linear and Exponential PTT models

Combining Eqs. (12) and (14), the velocity gradient for the Lin-
ear and Exponential PTT models can be written as,

du
dr
¼ srz

g
þ 2ek2

g3 s3
rz ð15Þ

and

du
dr
¼ srz

g
exp

2ek2

g2 s2
rz

 !
ð16Þ

respectively.
FðrÞ ¼
I0ðjRÞf4fi�j2EzK0ðjrÞ þ j½jp;zðr2 � 2b2R2 lnðrÞÞK0ðajRÞ þ 4fi�j2EzbRK1ðbjRÞ lnðrÞ�g

4gj2½I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ�

�
I0ðajRÞf4fo�j2EzK0ðjrÞ þ j½jp;zðr2 � 2b2R2 lnðrÞÞK0ðjRÞ þ 4f0�j2EzbRK1ðbjRÞ lnðrÞ�g

4gj2½I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ�

�
�j2Ez½fiK0ðjRÞ � foK0ðajRÞ� �4þ 4I0ðjrÞ � 2ðbjRÞ2 0F1 2; bjR

2

� �2
h i

lnðrÞ
n o

4gj2½I0ðjRÞK0ðajRÞ � I0ðajRÞK0ðjRÞ� ð21Þ
The slip boundary conditions (Eq. (5)) applied to the inner and
outer cylinders are,

uðaRÞ ¼ LisrzðaRÞ ð17Þ
uðRÞ ¼ �LosrzðRÞ ð18Þ

where the shear stress distribution srzðrÞ is given by Eqs. (9) and
(11) which can be combined in the form,
srzðrÞ¼
r�ðbRÞ2

r

h i
p;z

2

þ�jEz
ð�fiI0ðjRÞþ foI0ðjaRÞÞ

I0ðjRÞK0ðajRÞ� I0ðajRÞK0ðjRÞ K1ðjrÞ�bR
r

K1ðjbRÞ
� 	

þ�j
2Ez

2
�fiK0ðjRÞþfoK0ðjaRÞ

I0ðjRÞK0ðajRÞ� I0ðajRÞK0ðjRÞ

� r 0F1 2;
jr
2

� �2
� 	

� ðbRÞ2

r

" #
0F1 2;

jbR
2

� �2
" #( )

ð19Þ
3.1.1. Linear PTT model
Upon integration of Eq. (15) and using the boundary condition

uðaRÞ, for the Linear viscoelastic model we obtain the following
velocity profile,

uðrÞ ¼ FðrÞ � FðaRÞ þ 2ek2

g3 GðrÞ þ uðaRÞ ð20Þ

with,
and GðrÞ is given by

GðrÞ ¼
Z r

aR
s3

rzdr ð22Þ

which is an integral function that depends on the radial variation of
the shear stress.
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3.1.2. Exponential PTT model
For the Exponential viscoelastic model, the integration of Eq.

(16) results in the following velocity profile,

uðrÞ ¼
Z r

aR

srz

g
exp

2ek2

g2 s2
rz

 !
dr þ uðaRÞ ð23Þ

which contains an integral that must be solved numerically.

3.1.3. Dimensionless solutions
For ease of understanding the above two velocity profiles are

written below in a dimensionless form. For the Linear PTT model
this is given by,

uðrÞ
ush
¼ uðrÞ¼ FðrÞ�FðaRÞþ2eDe2

j
j2 GðrÞþuðaRÞ

FðrÞ¼�I0ð�jRÞ½4K0ðj rÞþCð2b2R2 lnðrÞ� r2ÞK0ðaj RÞþ4jbRK1ðbj RÞ lnðrÞ�
4ðI0ð�jRÞK0ða�jRÞ� I0ða�jRÞK0ð�jRÞÞ

þ I0ða�jRÞ½4RfK0ðj rÞþCð2b2R2 lnðrÞ� r2ÞK0ð�jRÞþ4RfjbRK1ðb�j RÞ lnðrÞ�
4ðI0ð�jRÞK0ða�jRÞ� I0ða�jRÞK0ð�jRÞÞ

þ
½K0ð�jRÞ�RfK0ða�jRÞ� �4þ4I0ðj rÞ�2ðbjRÞ2 0F1 2; b�jR

2

� �2
� 	

lnðrÞ

 �

4½I0ð�jRÞK0ða�jRÞ� I0ða�jRÞK0ð�jRÞ�
ð24Þ

where

GðrÞ ¼
Z r

aR
s3

rzdr ð25Þ

For the Exponential PTT model the dimensionless velocity pro-
file is given as,

uðrÞ ¼
Z r

aR
srz exp

2eDe2
j

j2 s2
rz

 !
dr þ uðaRÞ ð26Þ

where uðaRÞ ¼ LisrzðaRÞ (with the dimensionless slip coefficient
Li ¼ Lig=d and the dimensionless shear stress srz ¼ srz=ðgush=dÞ),
Dej ¼ kush

n ¼ kjush is the Deborah number based on the EDL thick-
ness and on the Helmholtz-Smoluchowski electro-osmotic velocity,
ush ¼ � �fiEz

g , the parameter C ¼ � d2

�fi

p;z
Ez

represents the ratio of pres-
sure to electro-osmotic driving forces, Rf ¼ fo=fi denotes the ratio
of the zeta potentials of the two walls, j ¼ jd; R ¼ R

d and r ¼ r
d. Note

also that R ¼ 1
1�a. For both solutions, the normalized shear stress is

given by the same general expression as follows

srzð�rÞ¼
srz

gush=d
¼

r�ðbRÞ
2

r

� 	
C

2
�j

�I0ð�jRÞþRfI0ðjaRÞ
I0ð�jRÞK0ða�jRÞ� I0ða�jRÞK0ð�jRÞ

� K1ðj rÞ�bR
r
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" #

�j2

2
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; ð27Þ
Fig. 2. Velocity profiles for the pure electro-osmotic flow of the Linear and Exponential
PTT fluids for eDe2

j ¼ f0;0:25;1g; j ¼ 40, a ¼ 0:5; Rf ¼ 1 and Li ¼ Lo ¼ 0.
3.1.4. Determination of b
With the help of the slip boundary condition at the outer cylin-

der, uðRÞ ¼ �LosrzðRÞ where Lo ¼ Log=d, we can obtain b by
solving,

HlðbÞ � FðRÞ � FðaRÞ þ 2eDe2
j

j2 GðRÞ þ uðaRÞ � uðRÞ ¼ 0 ð28Þ

and

HeðbÞ �
Z R

aR
srz exp

2eDe2
j

j2 s2
rz

 !
dr þ uðaRÞ � uðRÞ ¼ 0 ð29Þ

for the Linear and Exponential PTT models, respectively.
To solve numerically Eqs. (28) and (29) we search for a root of b
in the range �a;1½. This can be performed by using an iterative pro-
cedure to find the numerical solution of the transcendental Eqs.
(28) and (29). Once b is known the dimensionless velocity profiles
can be obtained from Eqs. (20) and (23) for the Linear and Expo-
nential PTT models, respectively, by numerically solving the inte-
grals in Eqs. (25) and (26). Depending on the dimensionless
parameters, one or multiple b values can be found. However, in
all cases the same velocity and shear stress profiles are obtained
with any b selected.
4. Results and discussion

The solutions obtained in the previous section will now be ana-
lyzed first in the absence of slip and then in the presence of slip.

4.1. No-slip velocity at walls

In Figs. 2 and 3 we show dimensionless velocity profiles for the
pure electro-osmotic flow case (C ¼ 0). As expected, the increase in
eDe2

j leads to an increase in the bulk velocity, due to the increase in
the shear thinning leading to an increase in fluidity. The Exponen-
tial PTT model shows a higher flow rate when compared to the Lin-
ear model since the exponential function promotes a more intense
shear thinning for the same shear rate. The difference between the
two models also increases with eDe2

j, with both models approach-
ing a Newtonian behavior at low eDe2

j.
For small j a quasi-parabolic velocity profile is observed (see

Fig. 3), while for high j a plug like profile is obtained (see Fig. 2).
For small j the electric double layer thickness becomes of the or-
der of magnitude of the cylinder gap (d) and the region of excess
charge is distributed over the entire gap. For high j the Debye layer
is confined to a small region near the walls, resulting in a plug like
flow (Fig. 2).

In terms of the velocity profile skewness, Figs. 2 and 3 show that
slightly higher velocities are obtained near the inner cylinder. This
happens because of the restrictions imposed on the flow by the
wall tangent stresses. Since the outer cylinder has a larger radius,
the curvature effect is smaller when compared to the inner cylin-
der (smaller radius), resulting in slightly smaller velocities.

Fig. 2 also shows that viscoelasticity influences the level of
skewness. In order to illustrate the influence of eDe2

j on the radial
location of the null shear stress, b, Fig. 4 plots the variation of b
with eDe2

j for the Linear and Exponential PTT models for j ¼ 20,
C ¼ 0; Rf ¼ 1 and a ¼ 0:5. We found that the value of b decreases
with the increase in eDe2

j, meaning that the maximum velocity
location is moving toward the inner cylinder. This happens because



Fig. 3. Velocity profiles for the pure electro-osmotic flow of the Linear PTT model
for eDe2

j ¼ f0;0:25;1g, j ¼ 10; a ¼ 0:5; Rf ¼ 1 and Li ¼ Lo ¼ 0.

Fig. 4. Variation of b with eDe2
j for the Linear and Exponential PTT models for

Rf ¼ 1, j ¼ 20; C ¼ 0; a ¼ 0:5 and Li ¼ Lo ¼ 0.

Fig. 6. Velocity profiles for the mixed pressure-electro-osmotic driven flow of the
Linear and Exponential PTT models for eDe2

j ¼ f0;0:25g; j ¼ 40,
a ¼ 0:5; Rf ¼ 1; Li ¼ Lo ¼ 0 and a favorable pressure gradient, C ¼ �1.
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as eDe2
j increases, we obtain a stronger shear thinning behavior

that enhances the friction force unbalance between the inner and
outer cylinders. Also, since the exponential PTT model leads to a
stronger shear thinning effect, we obtain smaller values of b, when
compared with the linear PTT model (see Fig. 4). In order to inves-
tigate the mixed influence of pressure and electro-osmotic forcings
we used two different values for the dimensionless parameter C.
For C ¼ 1 (adverse pressure gradient) Fig. 5 shows that near the
walls the electric potential forcing prevails while far from the walls
the adverse pressure gradient effect is visible. The Exponential PTT
model shows again a higher bulk velocity, because the stronger
shear thinning effect results in a higher fluidity.
Fig. 5. Velocity profiles for the mixed pressure-electro-osmotic driven flow of the
Linear and Exponential PTT models for eDe2

j ¼ f0;0:25g; j ¼ 40, a ¼ 0:5; Rf ¼ 1;
Li ¼ Lo ¼ 0 and an adverse pressure gradient, C ¼ 1.
This non-monotonic velocity profile results in three different ra-
dial positions ðrÞ where the velocity gradient, du

dr , is null, and, be-
cause of that, three solutions of Eq. (28) are possible (Eq. (12)
shows that srz ¼ 0 when du

dr ¼ 0). Any of these three solutions for
b can be used leading to the same solution for the velocity profile.

For C ¼ �1 (Fig. 6) we only have one location of null velocity gra-
dient and the velocity profile is again qualitatively similar to a pres-
sure driven parabolic profile because both pressure gradient and the
electro-osmotic forcing are favorable contributions to the flow.

Fig. 7 shows the variation of the normalized flow rate (Q) with
C for eDe2

j ¼ 0:5 and 1. The dimensionless flow rate was computed
numerically with high accuracy using Simpson’s 3/8 method and
104 equidistant radial intervals. The flow rate is calculated using
Q ¼ ð1=½R2ð1� a2Þ�Þ

R R
aR 2r uðrÞdr. As expected, the normalized flow

rate decreases with the increase in C (i.e. moving from a favorable
to an adverse pressure gradient), with smaller flow rate obtained
for eDe2

j ¼ 0:5 (smaller fluidity when compared to eDe2
j ¼ 1, be-

cause of the less intense shear thinning). Note that zero net flow
occurs for a specific value of the adverse pressure gradient
(C > 0, not shown) when it compensates the flow driven by elec-
tro-osmosis.
4.2. Slip velocity at walls

When there is slip at the walls the flow rate driven by electro-
osmosis increases significantly with the slip coefficient (see Fig. 8).
Since the shear stress is different at the inner and outer walls, for
the same slip coefficient and Rf ¼ 1 we obtain a higher slip velocity
Fig. 7. Variation of the normalized flow rate (Q) with the dimensionless parameter
C for the Linear PTT model at eDe2

j ¼ f0:5;1g; j ¼ 20, a ¼ 0:5; Rf ¼ 1 and
Li ¼ Lo ¼ 0.
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Fig. 8. Effect of the slip velocity coefficient L ¼ Lgd ðLi ¼ Lo ¼ LÞ on the velocity
profiles for eDe2

j ¼ 1, j ¼ 40; a ¼ 0:5; Rf ¼ 1 and C ¼ 0 (Linear PTT model).

Fig. 9. Variation of b with the normalized slip velocity coefficient
ðL ¼ Lgd ; Li ¼ Lo ¼ LÞ for the Linear PTT model (eDe2

j ¼ 1; j ¼ 20, a ¼ 0:5; Rf ¼ 1
and C ¼ 0).

Fig. 10. Effect of different slip velocities at the inner and outer walls on the velocity
profile (Li ¼ 0, Lo variable), for eDe2

j ¼ 1; j ¼ 20; a ¼ 0:5, Rf ¼ 1 and C ¼ 0 (Linear
PTT model).
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at the inner wall than at the outer wall, but still the skewness of
the velocity profiles shown is very small.

Fig. 9 plots the variation of b with the slip coefficient L for a
constant eDe2

j=1, showing that b decreases with L. This means that
increasing the slip velocity moves the maximum velocity location
toward the inner cylinder, akin to what happened with the in-
crease in eDe2

j for the no-slip case. This happens because the max-
imum velocity moves toward the less restrictive wall which in this
case is the inner cylinder. As a simple example, we can imagine the
flow between parallel plates, with full slip at one of the walls. The
velocity profile would then be a half parabola, with maximum
velocity at the slippery wall. The local wall shear stress is higher
at the inner cylinder (for the no-slip case), and, based on the slip
velocity model, Eq. (5), this promotes a higher slip velocity, there-
fore, a less restrive inner wall.

We also analyzed different velocity profiles assuming different
slip velocities at the inner and outer cylinders. For ease of under-
standing we assume a no-slip velocity at the inner wall and differ-
ent slip velocities at the outer wall (Fig. 10). As shown in Fig. 10, an
increase in the flow rate is obtained, due to the friction decrease at
the outer wall. We can also observe that for a small slip coefficient
a more symmetric velocity profile is obtained, since the presence of
slip velocity at the outer cylinder decreases the shear force to val-
ues similar to the ones obtained at the inner cylinder wall.

5. Conclusions

Semi-analytical solutions for the pressure driven/electro-osmo-
tic annular flow of viscoelastic fluids modeled by the Linear and
Exponential PTT models were presented with and without the
assumption of slip velocity at the walls. We found that for a con-
stant pressure gradient the Exponential PTT model shows a higher
flow rate when compared to the Linear model. The presence of slip
velocity leads to an increase in the flow rate and to an intensified
skewness of the velocity profiles.
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