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Abstract: With the rapid growth and development of cities, Intelligent Traffic Management and
Control (ITMC) is becoming a fundamental component to address the challenges of modern urban
traffic management, where a wide range of daily problems need to be addressed in a prompt and
expedited manner. Issues such as unpredictable traffic dynamics, resource constraints, and abnormal
events pose difficulties to city managers. ITMC aims to increase the efficiency of traffic management
by minimizing the odds of traffic problems, by providing real-time traffic state forecasts to better
schedule the intersection signal controls. Reliable implementations of ITMC improve the safety of
inhabitants and the quality of life, leading to economic growth. In recent years, researchers have
proposed different solutions to address specific problems concerning traffic management, ranging
from image-processing and deep-learning techniques to forecasting the traffic state and deriving
policies to control intersection signals. This review article studies the primary public datasets helpful
in developing models to address the identified problems, complemented with a deep analysis of the
works related to traffic state forecast and intersection-signal-control models. Our analysis found that
deep-learning-based approaches for short-term traffic state forecast and multi-intersection signal
control showed reasonable results, but lacked robustness for unusual scenarios, particularly during
oversaturated situations, which can be resolved by explicitly addressing these cases, potentially
leading to significant improvements of the systems overall. However, there is arguably a long path
until these models can be used safely and effectively in real-world scenarios.

Keywords: intelligent traffic management; traffic forecasting; traffic signal control; image processing;
deep learning; machine vision

1. Introduction

Urban transportation is considered the lifeblood of the world’s economy, with a rapid
increase of all sorts of vehicles and a stably increasing population in need of mobility,
posing challenges to cities, with one of the major problems being the increase of traffic and
the associated issues. According to the World Health Organization (https://www.who.
int/publications/i/item/9789241565684, Last accessed on 16 November 2021), each year,
1.35 million people are killed and 20 million are wounded on roadways around the world.
Road crash injuries are estimated to be the eighth leading cause of death globally, with an
estimated cost among the fatal and wounded victims of approximately USD 1.8 trillion from
2015–2030, equivalent to a yearly tax of 0.12% on global GDP (Chen et al. [1]). Furthermore,
according to INRIX (https://inrix.com/press-releases/2019-traffic-scorecard-us/, Last
accessed on 16 November 2021), traffic congestion cost the U.S. economy nearly USD
88 billion in 2019 alone.

Intelligent Traffic Management and Control (ITMC) systems have emerged as a vital
element of traffic management solutions, with the research community developing mech-
anisms to increase their accuracy, efficiency, and effectiveness. Traffic state forecast and
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intersection signal control are two main components that ITMC incorporates. Commonly,
two genres of methods can be found, with the first component based on statistical methods
and data-driven approaches, enabling the formulation hypotheses and the derivation of
assumptions in a macroscopic and microscopic perspective for traffic flow. However, these
approaches cannot handle unstable traffic conditions and complex road settings (Elhenawy
and Rakha [2]). To overcome the nonlinearity of traffic, data-driven approaches, such
a Support Vector Machines (SVMs), K-Nearest Neighbors (KNNs), Bayesian methods,
and Neural Networks (NNs), enable one to overcome the limitations of statistical meth-
ods with promising results (Huang et al. [3]). However, for a model to achieve a good
performance, a large amount of time series data is required, with the efficiency largely de-
pending on how much a model can capture the spatial–temporal features of the traffic states.
Moreover, corrupted or missing data pose difficulties for models, limiting the capacity to
provide a useful and reliable forecasting result. Recently, deep-learning-based methods
have addressed some of these limitations due to their ability to process large amounts of
data efficiently and to capture hidden or unknown traffic dynamics (Bao et al. [4]).

On the other hand, efficient intersection traffic signal control, particularly in oversatu-
rated conditions, requires actions to be taken based on the current traffic dynamic variables
of the corresponding and neighboring intersections by the proper implementation of the
policies. The most widely used method to tackle this problem is the FT controllers, which
use historical data to determine the appropriate timing of traffic signals. However, this
approach cannot meet the current traffic stochastic demands and handle unexpected traffic
situations (Osorio and Wang [5]). Due to the limitations of the Fixed Time (FT) controllers,
Webster’s method was introduced, where inductive detectors are employed to observe
the actual traffic conditions and efficiently extend or terminate the green signal time by
measuring the gap between vehicles. However, accumulative information is neglected,
reducing the overall performance (Eriskin et al. [6]).

The Sydney Coordinated Adaptive Traffic System (SCAT) (Sims and Dobinson [7]) and
Split, Cycle, and Offset Optimization Technique (SCOOT) (Hunt et al. [8]) adopt adaptive
systems to suppress the drawbacks of the previous methods by gathering the data of the
traffic flow in real-time at each intersection to control the timing of traffic lights effectively.
The SCAT systems count vehicles at each stop line to gather traffic information, and the
SCOOT applies a set of advanced detectors located upstream of the stop line. Using these
detectors, the SCOOT provides a higher resolution of the current traffic conditions, such
as traffic flow and the number of cars in the queue before they reach the stop line. The
SCAT and SCOOT both use centralized control schemes, with systems being run locally,
and the coordination between intersections is achieved by communication among the
neighbors. For example, when an intersection releases several vehicles, it informs the
next intersection about the time and number of vehicles to expect at a particular time.
However, the performance of such methods heavily depends on the detector’s position and
reliability. Recently, deep-learning models have been applied to self-adaptive traffic signal
control, exhibiting substantially better performance in terms of accuracy and robustness
(Bouktif et al. [9]).

The success of image-processing and the associated deep-learning technologies in
ITMC in comparison with statistical methods can be realized from Figure 1, not only in
terms of the quantity of articles published, but also in the quality of the forums in which
they are published. In 2020, in the Scopus database, out of 483 published articles, 87
were based on deep-learning or image-processing methods, and they showed much better
performances compared to state-of-the-art methods.

This review focuses on image-processing and deep-learning-based approaches
to ITMC. Although there is a considerable number of relevant articles on intelligent
transportation/traffic management and control (Nagy et al. [10], Pasquale et al. [11],
Mirchandani et al. [12]), to the best of the authors’ knowledge, there are a limited num-
ber of works on ITMC based on image-processing and deep-learning-based. Within the
literature, the new emerging image-processing and deep-learning techniques are at an
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early stage of development, but with an increasing number of relevant implementations
among the research community. In the year 2011, there were in total 246 documents
published on the Scopus database, whereas in 2020, that amounted to almost double,
reaching 483, as summarized in Figure 1. Therefore, this study is valuable both for
machine-learning and ITMC researchers and decision-makers, who could identify the
potential advantages of ITMC in their practice.

Figure 1. Number of published documents on ITMC in (1977–2021) found in the Scopus database illustrated both as a
whole and as image-processing or deep-learning-based approaches (the dots represent the documents published in the year
2021 until July 2021).

The structure of this article as follows: Section 2 presents the methodologies used
to identify and select the documents to be analyzed. Section 3 indicates different traffic
state prediction/forecasting approaches and models with their corresponding structure,
limitations, and performances. Section 4 is devoted to intersection-traffic-signal-control
methods/policies, with a primary focus on their limitations and performances. Both in
Sections 3 and 4, particular emphasis is given to image-processing and deep-learning-based
approaches, including a brief overview of commonly employed methods. In Section 5,
the developed search of this review is described and complemented with significant
research challenges found in the literature. Finally, Section 6 provides insights regarding
the objectives drawn and points out the main conclusions.

2. Methodology of the Systematic Review

This section describes the research methodology used to locate, gather, and appraise
the state-of-the-art works under study. The main requirement was to sort out the important
recent works on intelligent traffic-management-and-control methods/systems based on
image-processing and deep-learning approaches. The following complementary questions
were considered:

• Which task of ITMC was addressed?
• Which dataset was used? Was it tested on different datasets?
• Which architecture/optimizer was utilized (developed or adapted)?
• What metrics were used for evaluation?
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• Is the approach adopted or developed able to achieve real-time performance?
• For intersection-signaling schemes, what type of simulation environments (micro-

scopic or macroscopic) were utilized? How were the policies evaluated?

2.1. Selection Criteria

The selection of the articles followed these criteria: (i) The studies should focus
on intelligent traffic-management-and-control methods/systems based on the following
approaches: image-processing and deep-learning techniques. The studies must identify
problems, potential solutions, novelties, and limitations from which recommendations
can be established. (ii) The studies should be peer-reviewed studies (research articles
and literature reviews), best practices manuals (existing guidelines for ITMC), or policies.
(iii) The research studies should include quantitative or qualitative research methods. (iv)
All studies should be in English.

2.2. Databases and Search Steps

This literature review was conducted from March to July 2021 using Scopus, Sci-
ence Direct, and Google Scholar. The authors extended the search to Google Scholar to
include policies and best practices manuals. The search was performed with the follow-
ing keywords in various combinations: “intelligent transportation”, “intelligent traffic
management and control”, “image processing and deep learning-based intelligent traffic
management and control”, “short-term traffic forecasting”, “image processing and deep
learning-based short-term traffic forecasting”, “intersection traffic signal control”, “image
processing and deep learning-based intersection traffic signal control”.

In the first step, we selected studies addressing the keywords: “intelligent transporta-
tion”, “intelligent traffic management and control”, “short-term traffic forecasting”, and
“intersection traffic signal control” in various combinations. As a refinement step, we ex-
cluded duplicated articles and focused on image-processing and deep-learning approaches.
The remaining articles were analyzed based on their titles and abstracts, with 332 articles
retrieved. The 144 fully fledged research articles and reviews were sorted out to carry out
in-depth studies through a complete reading of each document. We assessed the articles
through the criteria that they should contain one of the following aspects: (1) research with
actual users through qualitative or quantitative methods and the main method proposed
and results obtained should be fully described; (2) specific guidelines or recommendations
relating to the architecture, optimization, and metrics; (3) a review of existing literature
regarding ITMC, as well as available policies that could contribute to the signaling schemes.
In the final step, data from each document were organized in terms of type of study,
primary focus, datasets used, adopted performance metrics, and limitations. Figure 2
illustrates these processes according to a PRISMA diagram.
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Figure 2. Adopted articles’ selection process on different databases illustrated according to the PRISMA diagram.

3. Traffic State Prediction

Traffic state prediction aims to forecast future traffic variables such as flow or speed in
the road network based on historical or observed traffic data and other supporting informa-
tion relevant to the demand. Most of the models used for forecasts found in the literature
deal with parametric or nonparametric approaches. The most popular parametric ap-
proaches are the Autoregressive Integrated Moving Average (ARIMA) models. Among the
nonparametric techniques, various models have been proposed, such as NNs, SVMs for
regression, and KNNs. Figure 3 represents the basic building blocks of an NN-based traffic
state prediction model.

Figure 3. General block diagram of an NN-based traffic state prediction model (adapted from
Do et al. [13]).
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3.1. Autoregressive Integrated Moving Average

One of the most used and classical models for time series forecast is ARIMA (Box et al. [14]),
which is based on the principle that future time series values can be generated from a linear
function of past observations and white noise terms. The main advantage of ARIMA is its
flexibility in following data patterns and higher forecast accuracy in the short term (Irhami
and Farizal [15]). However, it requires noise-free datasets for model construction and has
limitations in capturing nonlinear features.

3.2. Support Vector Machines

Contrary to ARIMA, SVMs can handle nonlinear and high-dimensional problems.
An SVM-based classifier tries to maximize the hyperplane separation between two classes
by solving a linearly constrained quadratic programming problem. It is robust to overfitting
while providing high generalization performance (Li and Xu [16] Mingheng et al. [17]).
However, the SVM models perform better in forecasting medium-duration incident cases
than high-duration incident cases (Yu et al. [18]).

3.3. K-Nearest Neighbors

KNN is a data-driven model, being extremely sensitive to the data quality. Never-
theless, KNN is able to forecast traffic state by exploring the correlation among the data
as instance-based learning, avoiding searching in all historical data. For the short-term
traffic state prediction under special events, KNN has the potentiality to find the most
similar historical patterns and ignore other dissimilar ones of the datasets. However,
in common with most other traditional machine-learning approaches, KNN faces the curse
of dimensionality problem in network-wide traffic prediction (Yu et al. [19]).

3.4. Neural Networks

Within the literature, NN models used for traffic state forecast explore the use of Mul-
tilayer Feedforward Neural Networks (MLFNNs), Radial Basis Function Neural Networks
(RBFNNs), Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs),
Deep Belief Networks (DBNs), Wavelet Neural Networks (WNN)s, and Fuzzy Neural
Networks (FNNs).

3.4.1. Multilayer Feedforward Neural Networks

The MLFNN is a simple feedforward NN consisting of a layer of input units, one
or more hidden units, and one layer of output units. The most pioneering contribution
of short-term traffic forecasting using MLFNNs can be found in the works of Smith and
Demetsky [20], Gilmore and Abe [21], Florio and Mussone [22], and Dougherty and
Cobbett [23].

Smith and Demetsky proposed a simple MLFNN for short-term volume prediction
with one hidden layer, trained using real-world data (open data at VDOT https://www.
virginiaroads.org/datasets/traffic-volume/explore, Last accessed on 16 November 2021),
which exhibited a lower performance compared with the nearest-neighbor model. Gilmore
and Abe improved the accuracy by employing two hidden layers, taking into considera-
tion training and simulation time to increase the accuracy of the works led by Florio and
Mussone, with the use of three hidden layers and preprocessed training data to mitigate sig-
nificant training time problems and increase the accuracy. Dougherty and Cobbett trained
an MLFNN with one hidden layer to forecast short-term traffic flow, speed, and occupancy
space. The results showed that speed forecast was much less successful, although flow
and occupancy forecasts exhibited promising results. Capturing both spatial and temporal
features of traffic states and the usage of a correction mechanism can mitigate the problems
as identified by Polson and Sokolov [24] and Huang et al. [3].

Although the accuracy was not very promising, attempts were also made to model
and forecast network-wide traffic using MLFNNs (Sun et al. [25], Elhenawy and Rakha [2]).
Sun et al. combined Graphical Lasso (GL) with an NN for a multilink prediction model.

https://www.virginiaroads.org/datasets/traffic-volume/explore
https://www.virginiaroads.org/datasets/traffic-volume/explore
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Elhenawy and Rakha proposed a much more accurate and robust data-driven approach
by considering current traffic state data, weather conditions, visibility levels, and seasonal
predictors. Moreover, their work was a milestone for the identification of traffic problems
up to 2 h in advance, when compared to Kumar et al. [26], whose work was only able to
extend the time horizon to a maximum of 15 min.

MLFNN-optimization strategies were also found during the studies; for example,
Vlahogianni et al. [27] proposed a genetic-algorithm-based, structural-optimization strategy
to help in both the proper data representation with temporal and spatial features, as well
as inappropriate structure selection. Table 1 summarizes the works using MLFNNs and
their focus, limitations, and performances.

Table 1. Summary of the works found using MLFNNs.

Article Focus Limitation(s) Performance(s)

Dougherty and Cobbett,
1997 [23]

Developed a technique of
stepwise reduction of the
network size by elasticity
testing

Occupancy and flow forecasts
showed some promise,
but not better than naive
predictors; speed forecast was
much less successful

RMSE: around 0.22 for 15 min
flow and occupancy
prediction

Florio and Mussone, 1996 [22]
Employed with up to three
hidden layers and various
input parameters

Filtered data, major amplitude
errors in density and flow
forecasting

For speed (RMSE: 0.032, MAE:
0.024); for density (RMSE:
0.012, MAE: 0.007); for flow
(RMSE: 0.032, MAE: 0.024)

Gilmore and Abe, 1995 [21]
Employed with two hidden
layers, trained by a
backpropagation technique

Superior forecasting accuracy
only for the next 5 min, large
training and simulation time

Average accuracy: 85%

Smith and Demetsky,
1994 [20]

Built and tested using real
data

Model was not portable,
underperformed compared to
KNN

Average percentage errors:
7–12)%

Sun et al., 2012 [25]

Several three-layer NNs with
different structures, employed
the Graphical Lasso (GL)
technique

Relatively lower estimation
accuracy

RMSE: around 50–170, MARE:
around 7–26)% for 31 road
links

Kumar et al., 2013 [26]
Increasing the ability of
modeling traffic states in
heterogeneous traffic

Datasets presented for
uninterrupted traffic only;
weather conditions, seasonal
variation, and extreme
conditions were not
considered

For 5 min (MAE: 0.628, RMSE:
0.8586, SD: 0.857, r: 0.998); for
15 min (MAE: 1.28, RMSE:
2.92, SD: 2.87, r: 0.998)

Huang et al., 2013 [3]
Data first processed by a
clustering method, introduced
a correction mechanism

Relatively high MSE MSE: around (9–10)%

Vlahogianni et al., 2005 [27]
Introduced GA to optimize
the structure and to learn the
parameters

Less robust MAE: 6–14, MRPE: 8–22,
r: 0.74–0.95

Polson and Sokolov, 2017 [24]
Introduced a deep NN more
capable of capturing the
nonlinearities

Model interpretability MSE: 7.7–8.0, R2: 0.83–0.85

Elhenawy and Rakha, 2017 [2] Introduced the discriminative
pretraining mechanism Not fully network-wide

MAPEs of 2.8% and 8% in
predicting speed and flow,
respectively
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Due to their capabilities of modeling nonlinear functions with a simple architecture,
MLFNNs have been extensively used in traffic state prediction. However, these models
have some limitations in the exploration of more complex data correlations.

3.4.2. Radial Basis Function Neural Networks

Radial Basis Function Neural Network (RBFNN) models use Radial Basis Functions
(RBFs) as the activation functions, being composed of one input layer, one hidden layer,
and one linear output layer. Park et al. [28] used an RBFNN for short-term freeway traffic
volume prediction, with results topping around 64.81% and 91.39%, with forecast traffic
volumes being in the 10% and 20% error range, respectively. The prediction accuracy
was improved by combining fuzzy C-means with an RBFNN and using a Generalized
Regression Neural Network (GRNN) following the work of Park [29], Kuang et al. [30],
and Buliali et al. [31]. On top of the GRNN, Buliali et al. used a Leave-One-Out Cross-
Validation (LOOCV) method to determine the suitable smoothing factor in order to to
avoid overfitting, achieving an RMSE of 16.4. Furthermore, Xiaobin [32] explored the use
of Particle Swarm Optimization (PSO) to appropriately select the training parameters of
an RBFNN, leading to a significant increase in prediction accuracy with a MAPE of 3.37%.
Moreover, both the historical data of the current intersection and adjacent intersections
were found to have a significant effect on the performance (Zhu et al. [33]). Table 2 indicates
the works found and their primary focus, limitations, and performances.

Table 2. Summary of the works found using RBFNNs.

Article Focus Limitation(s) Performance(s)

Amin et al., 1998 [34]

Centers set using K-means clustering,
widths based on the distance from the
training data to centers, and weights
using the least mean squares algorithm

Required more stability,
validation, and verification

Good prediction accuracy
with less training time

Park et al., 1998 [28]
Centers were chosen arbitrarily; widths
were fixed to a specific value; sped up
the learning process

Results were discouraging for
real-time implementation

MAPE: (8.82 and 11.9)% (for
2 sites)

Park, 2002 [29] Employed K-means clustering, fuzzy
clustering, and self-organizing maps

Tested with normal traffic
volume cases

MAPE: 7.23%, Variance of
APE: 38.53

Xiaobin, 2009 [32] Introduced Particle Swarm
Optimization (PSO)

Prediction was not
network-wide MAPE: 3.37%

Kuang et al., 2010 [30]
Used a Generalized Regression Neural
Network (GRNN) to find the minimum
prediction error

Small datasets MRE: 7.61%

Zhu et al., 2014 [33]
Input data consisted of the historical
data of the current intersection and also
adjacent intersections

Prediction was not
network-wide

MAPE: 0.13–0.18, MAD:
13.2–15.1, RMSE: 16.4–17.6

Buliali et al., 2016 [31] Leave-One-Out Cross-Validation
(LOOCV) to find the smoothing factor

Prediction was not
network-wide Average MAPE: 3.88%

The performance of an RBFNN depends on the selection of centers and widths.
The simplicity of the K-means clustering algorithm, width calculation, and the least mean
squares algorithm for weight training make the method faster and efficient (Amin et al. [34]).
However, the performance of the RBFNNs depends on the choice of the RBFs’ parameters.

3.5. Wavelet Neural Networks

A Wavelet Neural Network (WNN) is essentially an MLFNN model where an additional
wavelet function is applied to the hidden layers instead of the traditional sigmoid or tanh
activation functions. It takes advantage of the multiscale decomposition of the wavelet
transform and the self-learning capability of NNs to represent complex patterns. Ge and
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Wang [35] proposed a WNN-based short-time traffic flow prediction model that increased
the accuracy and facilitated the convergence time, primarily due to the use of small training
datasets. To further reduce the running time, Lin et al. [36] employed the use of a KNN to
preselect the optimal training datasets for the WNN. Li and Sheng [37] and Yang and Hu [38]
placed particular emphasis on the improvement of the prediction accuracy. Li and Sheng
proposed a modified adaptive particle swarm optimization algorithm based on cloud theory
that exhibited better performance in comparison to other baselines. Yang and Hu combined an
Improved Genetic Algorithm (IGA) with a clustering search strategy and a WNN (IGA-WNN),
boosting the prediction accuracy and better handling nonlinear cases. Table 3 indicates the
works found using WNNs and their focus, limitations, and performances.

Table 3. Summary of the works found using WNNs.

Article Focus Limitation(s) Performance(s)

Ge and Wang, 2011 [35]
WNN for the improvement of the
prediction accuracy and convergence
speed

Dataset size: 21 only Average error of 0.0092

Lin et al., 2013 [36] Proposed a KNN to form a training
set as a preprocessing step Relatively lower performance MAPE: 10.70%

Li and Sheng, 2015 [37] Adopted an adaptive PSO algorithm Dataset size: 460 only Prediction error: 0.245

Yang and Hu, 2016 [38]
Combined an Improved Genetic
Algorithm (IGA) and WNN
(IGA-WNN)

Small datasets MAE: 11.986, MRE: 0.212

Similar to RBFNNs, WNNs require less training effort and the obtained models have
a better representation ability than MLFNNs. A significant drawback of the WNN is the
limited input dimensions. Constructing a WNN requires a large computational effort in
the input decomposition, in particular with the higher dimensionality of the input vector.

3.6. Time-Delay Neural Networks

Time-Delay Neural Network (TDNN) models are generally defined as multilayer NNs
where the time-shifting approach is used to capture the temporal dynamics of time series data
by encoding on delayed inputs or states. Lingras and Mountford [39] and Zhong et al. [40]
applied a Genetic Algorithm (GA) in the design of a TDNN for short-term traffic forecasting
aimed to handle large coverage areas, obtaining 10% average errors. To improve the accuracy,
Wang et al. [41] integrated spatial and temporal autocorrelations of road traffic networks using
a Space–time-Delay Neural Network (STDNN) using a low learning rate, achieving a MAPE
of 13.7. Khandani and Mikhael [42] included a pretransformed layer with a TDNN using
Discrete Cosine Transform (DCT), combined with a mixed transform strategy, to improve the
model learning process and increase accuracy significantly. Table 4 summarizes the works
found using TDNNs and their primary focus, limitations, and performances.

TDNNs are a simple way to represent correlations between past and present values
in a feedforward model, requiring lower computational effort when compared to other
models. However, longer a training time and difficulties in capturing temporal dynamics
are some of the significant drawbacks of TDNNs.

3.7. Recurrent Neural Networks

The Recurrent Neural Network (RNN) models are powerful and robust because of
their internal memory and ability to remember the input they receive, which allows them
to predict future events. Hence, they are helpful in modeling sequence data such as time
series. In the literature, a good amount of works on traffic state prediction were found
based on the standard RNN, Long Short-Term Memory (LSTM), and the Gated Recurrent
Unit (GRU), which are briefly described in the following sections.



Sensors 2021, 21, 7705 10 of 36

Table 4. Summary of the works found using TDNNs.

Article Focus Limitation(s) Performance(s)

Lingras and Mountford,
2001 [39] Modeled a TDNN using a GA Higher errors for a low

volume of traffic Average errors: (3–4)%

Zhong et al., 2005 [40]
Modeled a TDNN using a GA
and compared with weighted
regression models

Less accurate compared to
regression models Average errors: less than 10%

Wang et al., 2016 [41]

Applied a Space–Time-Delay
Neural Network (STDNN) to
capture the autocorrelation
locally and dynamically

Trade-off between model
interpretability and training
data

MAPE: 0.0401 and R2: 0.9734

Khandani and Mikhael,
2019 [42]

Applied a shallow TDNN
with pretransformed layers Higher training time 5% improvement in accuracy

3.7.1. Standard RNNs

Unlike traditional NNs, RNNs are designed by feeding the output from previous steps
into the input of the current state cell. They are particularly suitable for predicting future
scenarios utilizing the sequential inner characteristics of the data. Ulbricht [43] pioneered
the use of RNNs for traffic forecasting, using a multi-recurrent NN, and compared the pro-
posed model with conventional statistical methods. The proposed multi-recurrent NN ex-
hibited improved performance. In order to improve the accuracy, in particular for datasets
characterized by instability, dynamic fluctuations, and unpredictability, Yun et al. [44],
Dia [45], and Ishak et al. [46] proposed a time-delayed recurrent model, achieving a MAPE
of around (4–6)%. Zhang [47] employed autocorrelation and cross-correlation analysis to
construct more adequate models, and with careful parameters, optimization improved
the overall accuracy. Bohan and Yun [48] applied LSTM, a GRU, and a Bidirectional RNN
on the same datasets (GPS data), showing the feasibility of recurrent neural networks
to achieve adequate traffic flow forecasting. Table 5 summarizes the works found using
RNNs, their focus, limitations, and performances.

One major drawback of the standard RNNs is the exploding and gradient vanishing
problems, which cause difficulties in training the models.

Table 5. Summary of the works found using RNN.

Article Focus Limitation(s) Performance(s)

Ulbricht, 1994 [43] Suggested various types of feedback
connections Low accuracy RMSE: around 107–152

Yun et al., 1998 [44] Proposed an Elman network incorporating
the time delay in the input layer

Unexpected events were not
considered, small dataset

MAPE: 4.4% and 5.8% for
highway and urban respectively

Zhang, 2000 [47] Applied a Jordan network to predict traffic Small datasets, did not consider
unpredictable events MSE: around 3%

Dia, 2001 [45] Used PCA Small datasets, higher error for
more than 5 min predictions MSE: (6–16)%

Ishak et al., 2003 [46] Implemented and tested an Elman network,
a partial RNN, and a TDNN Lacked robustness RMSE: around (8–20)%

Bohan and Yun, 2019 [48] Applied a BRNN, LSTM, and GRU for
prediction Less and low-quality data MAE of BRNN: around 3%,

RMSE of BRNN: around 5%

3.7.2. Long Short-Term Memory NNs

The Long Short-Term Memory (LSTM) model was proposed to overcome the gradient
vanishing problem in traditional RNNs, which prevents the Vanilla RNN from captur-
ing long-term dependencies (Hochreiter et al. [49]). The LSTM model employs a gating
mechanism that allows deciding when and how to update its memory state. In the work
of Ma et al. [50], an LSTM was applied to automatically determine the optimal time lags
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and overcome the backpropagation error decay problem. However, they considered only
the temporal dependencies to be captured, resulting in relatively high errors and less
robustness. Khan et al. [51] addressed incomplete data by utilizing a masking and im-
putation scheme, achieving a MAPE of 2.10% for annual daily forecasting. Moreover,
Jia et al. [52] combined rainfall data in addition to speed data as the input and further
improved the robustness and accuracy. Zhao et al. [53] took into consideration the spa-
tiotemporal correlation in traffic using a 2D network, effectively improving both robustness
and accuracy. Lu et al. [54] further improved the performance of LSTM by introducing
cascading Temporal-aware Convolutional Context (TCC) blocks and a Loss-Switch Mecha-
nism (LSM) to counteract non-Gaussian disturbances effectively. Table 6 summarizes the
works found using LSTMs and their limitations and performance.

Table 6. Summary of the works found using LSTM.

Article Focus Limitation(s) Performance(s)

Ma et al., 2015 [50]
Applied a three-layer LSTM, flexible
and effective capturing of temporal
dependency

Did not consider both spatial
and temporal information

MAPE: 4.07%, MSE: 5.94
considering both speed and
volume data as the input

Jia, et al., 2017 [52] Incorporated rainfall information Only temporal information
was considered MAPE: 5.89%

Zhao et al., 2017 [53]

Considered spatial correlations in
addition to temporal correlation,
confirmed robustness in capturing
longer time dependency

Designed only for traffic
volume prediction

MRE: around (6–18)% up to
60 min of prediction

Khan et al., 2019 [51]
Applied an RNN, GRU, and LSTM
for prediction, masking, and
imputation for missing value issues

Lower accuracy for hourly
prediction

RMSE of LSTM: 274, 824 and
MAPE of LSTM: 18.91%,
2.10% for hourly and annual
daily, respectively

Lu et al., 2021 [54]
Captured more distinguishable
temporal features and effectively
counteracted noise

Applied for isolated points
only

RMSE: 21.71–45.25 MAPE:
(7.45–12.09)% on the TDAD
dataset; RMSE: 16.62–44.40
MAPE: (6.56–12.93)% on the
PeMS dataset

3.7.3. Gated Recurrent Unit NNs

The Gated Recurrent Unit (GRU), a variation of the LSTM model, was introduced
by Cho et al. [55]. Although the performances of LSTM and the GRU are similar in many
applications, GRU networks contain fewer parameters and are faster to train. Fu et al. [56]
were one of the first to apply a GRU on the PeMS [57] datasets for traffic forecasting,
showing slightly better performance and faster convergence than LSTM. To improve
the accuracy, Zhao et al. [58] proposed a data fusion method to fuse the information of
two different datasets and applied a GRU for travel time prediction. Bartlett et al. [59]
considered the computational cost and network structure optimization and proposed
three recurrent neural network models, with the GRU model outperforming the others,
achieving an RMSE of 9.26%. To further enhance the accuracy and robustness, Pu et al. [60]
integrated a decay mechanism as extra gates of the GRU model to handle the missing value
problem. Model transferability and reproducibility can be improved by considering both
temporal and local features in traffic flow. An attention-based GRU model was proposed by
Khodabandelou et al. [61], achieving an MAE of 1.26 for a 1 h data sampling rate. Table 7
indicates works found using GRUs and their focus, limitations, and performances.
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Table 7. Summary of the works found using GRU.

Article Focus Limitation(s) Performance(s)

Fu et al., 2016 [56] Created a unique model for each of
the traffic flow series Relatively low accuracy MAE: 17.21, MSE: 668.9

Zhao et al., 2018 [58] Showed that a GRU can achieve
better accuracy with data fusion

Higher prediction error
during rainy days MAPE: 4.0%, RMSE: 30.01

Bartlett et al., 2019 [59] Applied an RNN, LSTM, and GRU on
a real dataset, developed STATS

Trade-off between accuracy
and speed RMSE of GRU: 9.26%

Pu et al., 2020 [60]
Integrated a decay mechanism to
GRU, mitigated negative impact of
wet or icy road conditions

Relatively low accuracy and
interpretability

MSE: 0.0102, MAE: 0.0783,
MAPE: 14.61% with 20%
missing data

Khodabandelou et al.,
2021 [61]

Proposed an attention-based GRU
considering model transferability and
reproducibility

Able to predict only speed;
prediction was not
network-wide

MAE: 1.26, MAPE: 3.0%,
RMSE: 1.41 for a 1 h sampling
rate

3.8. Convolutional Neural Networks

A Convolutional Neural Network (CNN) contains layers such as convolution, max
pooling, and fully connected layers apart from the input and output layers. The convolution
layers in CNNs are connected locally through sliding filters, unlike traditional feedforward
NNs, in which one layer is fully connected to the next layer and so on, enabling the ex-
traction of relevant features. Ma et al. [62] proposed a CNN-based network-wide speed
prediction model that can convert spatiotemporal traffic dynamics into the image space,
outperforming other algorithms with an average accuracy improvement of around 42.91%.
Zang et al. [63] further improved the results with the introduction of a three-channel CNN.
Although they could slightly improve the training process and accuracy, the robustness
was still a concern. In the work of Yu et al. [64], a Spatiotemporal Recurrent Convolutional
Network (SRCN) was proposed that explores the advantages of DCNNs and LSTM. To im-
prove the scalability and accuracy, Fouladgar et al. [65] considered a decentralized method
where each node can accurately predict in real time based on the neighboring station’s
state utilizing a regularized euclidean loss function. Table 8 summarizes the works found
using CNNs and their focus, limitations, and performances.

Table 8. Summary of the works found using CNNs.

Article Focus Limitation(s) Performance(s)

Ma et al., 2017 [62]
Transformed network to
gray-scale images and employed
a CNN to predict traffic speed

Relatively slow training rate MSE: 22.8–38.8 depending on
the datasets

Zang et al., 2017 [63]
Employed different channels,
including red, green, and blue for
color images

Relatively less robust, low
training efficiency

MAPE: 0.1768, RMSE: 6.4905
for long-term prediction

Yu et al., 2017 [64] Able to capture both temporal
and spatial features

Higher error for a relatively
long time prediction

MAE: 2.37–3.97,
MAPE: (5.56–9.73)%, RMSE:
4.32–7.45 on PeMSD7

Fouladgar et al., 2017 [65]
Proposed a decentralized method,
introduced a regularized
euclidean loss function

Relatively high prediction
error in the case of congestion RMSE: (4–5)%

3.9. Deep Belief Networks

Deep Belief Networks (DBN) are multiple layers of restricted Boltzmann machines
(RBMs) with nondirectional connections between the layers and are able to learn a probabil-
ity distribution over the input data. Hong et al. [66] proposed a multitask grouping neural
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network with a regression output layer at the top and a DBN on the bottom that achieved
around 91.7% accuracy in traffic flow forecasting. Tan et al. [67] introduced two DBNs,
one having Gaussian visible units and hidden binary units and the remaining units being
binary, with results showing an improvement in the accuracy, but less robust nonetheless.
Chen et al. [68] combined a DBN with Gaussian–Bernoulli restricted Boltzmann machines
and a BPNN to improve the accuracy further, but robustness was still a concern. To en-
hance the prediction accuracy and robustness, Koesdwiady et al. [69] correlated weather
parameters and traffic flow by employing a decision-level data fusion scheme. In the work
of Bao et al. [4], the weather condition was also used, and the employed Support Vector
Regression (SVR) to derive an improved DBN, which showed a good improvement both in
robustness and accuracy. Table 9 summarizes the works found using DBNs and their focus,
limitations, and performances.

Table 9. Summary of the works found using DBNs.

Article Focus Limitation(s) Performance(s)

Hong et al., 2014 [66]
Proposed a DBN at the bottom
and a multitask regression
output layer at the top

Prediction was not
network-wide

Achieved nearly 5%
improvements with an
accuracy of 91.7%

Koesdwiady et al., 2016 [69] Employed weather
information Less robust Average MAE: 0.0405 and

RMSE: 0.0603

Tan et al., 2016 [67]
Used a DBN with Gaussian
visible and Binary hidden
units (G-B DBN)

Poor performances in evening
peak hours

MAPE: 8.48%, RMSE: 6.3 for
30 min prediction time

Chen et al., 2020 [68]
Used Gaussian–Bernoulli
restricted Boltzmann
machines to build a DBN

Considered data from a single
route, less robust

MAE: around (2–12)% during
off-peak and peak hours

Bao et al., 2021 [4]
Improved robustness by
incorporating weather
conditions

Relatively high computation
time MAPE: around 9%

3.10. Fuzzy Neural Networks

Fuzzy Neural Networks (FNNs) combine the merits of fuzzy systems and NNs. They
can learn membership functions and appropriate fuzzy rules by engaging the adaptive
approximation ability of NNs. Additionally, FNN models have better interpretability
compared to NN-based models. Yin et al. [70] proposed an online-training-based FNN
where the fuzzy approach was used to cluster the data and used an NN to specify the input–
output relationships. The results showed good performance, in particular for less traffic
fluctuation. Quek et al. [71] introduced a Pseudo-Outer-Product FNN using the Truth-
Value-Restriction method (POPFNN-TVR), but it was less capable of counteracting noisy
data. Zhao [72] combined an Interval Type-2 Fuzzy Neural Network (IT2FNN) and self-
organizing learning algorithm that somehow failed to achieve performance improvement.
However, Li [73] was successful in improving the accuracy by introducing Dynamic Fuzzy
Neural Networks (D-FNNs) for traffic flow prediction. Still, the model showed a lack
of robustness and a relatively slow learning process. Tang et al. [74] mainly aimed at
improving the learning ability by suggesting an FNN model with both unsupervised and
supervised learning processes, by employing a K-means method and a Gaussian fuzzy
membership function; on the other hand, a weighted recursive least squares estimator
was used in the supervised learning process. They not only improved the learning ability,
but also achieved a 5% improvement in accuracy. In the work of An et al. [75], the focus
was given to robustness by proposing a Fuzzy-based Convolutional Neural Network (F-
CNN) method to incorporate uncertain traffic accident information, achieving a superior
performance compared to other state-of-the-art works. Table 10 summarizes the works
found using FNNs with their limitations and performances.
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Table 10. Summary of the works found using FNNs.

Article Focus Limitation(s) Performance(s)

Yin et al., 2002 [70]

Modeled with a gate network using a
fuzzy-set-based approach and an
expert network using an NN,
adopted an online training method

Performance dropped in the
case of traffic state fluctuation Average RMSE: 2.73

Quek et al., 2006 [71] Used a Truth-Value-Restriction
method (POPFNN-TVR)

Networks became unstable
and predicted outputs
unreliable with the increase of
the noise level

R2 Score: around (0.60–0.84)%

Zhao, 2012 [72] Modeled using interval type-2 fuzzy
sets

Prediction was not
network-wide

RMSE of occupy rate:
0.138–0.178

Li, 2016 [73]
Used a five-layered dynamic FNN;
the network structure was generated
during the training process

Prediction error was higher
under suboptimal conditions Normalized RMSE: 0.2683

Tang et al., 2017 [74]
Suggested an FNN based on the
Takagi–Sugeno fuzzy inference
system

Did not consider nonrecurrent
events

MAE: 2.47–3.72, MAPE:
(5.3–8.8)%, RMSE: 3.37–5.4

An et al., 2019 [75] Applied an F-CNN with uncertain
traffic accident information

Relatively less prediction
accuracy during congestion

MAE: 9.96, MSE: 293.91,
RMSE: 17.14

3.11. Other NNs
3.11.1. Autoencoders

To solve the problem of the fuzziness and uncertainty of traffic states in a signalized
intersection, Stacked Autoencoder (SAE) models are commonly employed. Lv et al. [76]
and Yang et al. [77] are two of the pioneers who applied the SAE model to traffic forecasting.
They used SAEs to learn generic traffic flow features and trained them in a greedy layerwise
fashion. Although the accuracy was promising, the models lacked robustness. Xiang and
Chen [78] proposed a denoising SAE model consisting of K-means clustering and deep
autoencoder networks to improve the robustness and accuracy, reaching a 91.5% and 88%
accuracy in simulation and empirical data, respectively (7.1% better than other decision-tree
models). Table 11 indicates the works found using AEs with a focus on their limitations
and performance.

Table 11. Summary of the works found using AEs.

Article Focus Limitation(s) Performance(s)

Lv et al., 2014 [76] Developed an SAE model with up to four
hidden layers

Di not considered nonrecurrent
events

MAE: 122.8, MRE: 6.21%,
RMSE: 183.9

Yang et al., 2016 [77]
Taguchi method for structure
optimization and Levenberg–Marquardt
algorithm for fine-tuning

Low performance for data with
a highly smooth distribution MAPE: 0.092–0.211

3.11.2. Modular Neural Networks

Real-time information can predict link travel times and is suitable for to be employed
in Modular Neural Networks (MNNs). Generally, unsupervised clustering techniques
and MNNs are used to classify and predict link travel times, respectively. In the work of
Park et al. [79], it was found that the MNN could give the best overall results compared
to other relevant models. Ishak and Alecsandru [80] proposed multimodal techniques
to improve prediction performance, but the results showed a lack of robustness. Vla-
hogianni et al. [81] suggested an MNN consisting of temporal genetically optimized struc-
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tures of MLPs and showed a good improvement of accuracy with an MSE of 8.21%. Table 12
indicates the works found using MNNs and their focus, limitations, and performances.

Table 12. Summary of the works found using MNNs.

Article Focus Limitation(s) Performance(s)

Ishak and Alecsandru,
2004 [80]

Proposed a model with different
MLFNN modules acting as local
expert networks and a gating
network for combing the results

Relatively small datasets, less
robust

Highest reduction of the
RMSE: 14 mph, average
improvement of the AARE:
(6–8.2)%

Vlahogianni et al., 2007 [81] Proposed temporal genetically
optimized structures of the MLP

Significantly time-consuming
training MSE: 8.21%

3.11.3. Self-Organizing Neural Networks

These traffic forecasting models are based on Self-Organizing map Neural Networks
(SONNs) and Self-Organizing Fuzzy Neural Networks (SOFNNs). Tung and Quek [82]
combined the fuzzy approach with a self-organizing neural network and proposed the
Generic Self-organizing Fuzzy Neural Network (GenSoFNN) algorithm, which showed
encouraging performance, obtaining an MSE of 0.244. Boto-Giralda et al. [83] proposed a
SONN model based on a stationary wavelet denoising process and a fuzzy ARTMAP. Ll and
Huang [84] proposed a traffic forecasting model using Autoregressive (AR) methods based
on a Self-Organizing Map (SOM) neural network, significantly improving the prediction
accuracy, yielding considerably better performance than other methods. Table 13 presents
the works found using SONNs and their focus, limitations, and performances.

Table 13. Summary of the works found using SONNs.

Article Focus Limitation(s) Performance(s)

Tung and Quek, 2002 [82]

Proposed the GenSoFNN with
built-in mechanisms to identify
and prune redundant and
obsolete rules

The accuracy of the predictions
decreased as the time interval
increased

Normalized MSE: 0.244

Boto-Giralda et al., 2010 [83]
Based on ARTMAP, capable of
performing unsupervised
learning tasks

Relatively less training datasets Average MAPE: 6.9 and
RMSE: 58.43%

3.11.4. Bayesian Neural Networks

When the Bayesian Combined Predictor (BCP) uses an artificial neural network, it
is called a BNN. Such a design intends to combine the strengths of neural networks and
stochastic modeling. BNN models can generate a complete posterior distribution and
produce probabilistic guarantees of the predictions (Petridis et al. [85]). Chan et al. [86]
proposed an Adaptive Particle Swarm Optimization (APSO) utilizing Bayesian regular-
ization to minimize the overfitting problem, showing relevant efficiency improvements in
traffic forecasting. To improve the accuracy, Gu et al. [87] proposed an Improved Bayesian
Combination Model with Deep Learning (IBCM-DL) to increase not only the accuracy,
but also the stability. AlKheder et al. [88] focused on evaluating the impacts of adjacent
intersections in terms of the traffic volume and using a BCNN; the authors were able
to show improvements in both model coherency and accuracy with an average MSE of
0.003468 during weekdays. Table 14 presents the works found using BNNs and their focus,
limitations, and performances.
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Table 14. Summary of the works found using BNNs.

Article Focus Limitation(s) Performance(s)

Chan et al., 2012 [86]

Bayesian regularization to minimize
overfitting, data preprocessed using
an exponential smoothing
technique, model trained by the
Levenberg–Marquardt algorithm

Relatively small datasets MAE: around 15–25, RMSE:
around 16–30

Gu et al., 2019 [87]
Proposed an Improved Bayesian
Combination Model with Deep
Learning (IBCM-DL)

Did not consider nonrecurrent
events

MAE: 7.41, MAPE: 12.44%,
VAPE: 13.94%

AlKheder et al., 2021 [88] Provided a coherent and accurate
model for adjacent intersections

Lower performance during
weekends

Average MSE: 0.003468,
Regression (R): 0.98113 during
weekdays

3.11.5. Resource Allocating Networks

A Resource Allocating Network (RAN) allocates new units and adjusts the parameters
of existing units in the learning process. If the network performs poorly on a presented
pattern, a new unit is allocated to better represent the pattern, with network parameters
being updated only when the results are satisfactory on the presented pattern. Although the
RAN is mainly designed for mobile network management, it can also be applied in road
traffic forecasting. Chen and Grant-Muller [89] investigated the potential of dynamic neural
networks to forecast motorway traffic in normal and abnormal conditions, highlighting
the importance of RANs. Bouyahia et al. [90] used the Markov Random Field (MRF) to
model and predict the spread of traffic congestion and the Markov Decision Process (MDP)
to allocate traffic resources, showing good improvement in accuracy. To further improve
the performance, Cui et al. [91] used a RAN in road traffic prediction by employing a
controller of the network slice that periodically collected the information to predict future
road traffic and applied the Bayesian Attractor Model (BAM) to estimate the required
resources. Table 15 presents the works found using RANs and their focus, limitations,
and performances.

Table 15. Summary of the works found using RANs.

Article Focus Limitation(s) Performance(s)

Chen and Grant-Muller,
2001 [89]

Gaussian basis as activation
functions, adopted the sequential
learning method

Small datasets, less robust PAE: approximately 9.5%

Bouyahia et al., 2019 [90] Used MDP to automatically allocate
traffic resources Relatively less robust

Algorithm accuracy, r:
(82.3–88.5)% depending on the
population size

3.11.6. Generative Adversarial Networks

First introduced by Goodfellow et al. [92], Generative Adversarial Networks (GAN)
are composed of two NNs, competing against each other in order to generate new synthetic
instances of data that can pass for real data. As a GAN can learn the joint distribution of
the data and more effectively address the blurry prediction issue, it can be used to learn
the distribution of future traffic flows conditioned on previous traffic flows and the most
likely sample from the distribution as the prediction result. Liang et al. [93] proposed a
deep Generative Adversarial Architecture (GAA) for network-wide prediction consisting of
two LSTMs, and the experimental results showed much better performance compared to a
BNN. To further increase the accuracy, Zhang et al. [94] proposed TrafficGAN employing
both the CNN and LSTM models, which achieved an MAE of 1.76 during weekdays for a
30 min prediction horizon. In the work of Liang Zhang et al. [95], a Self-Attention Generative
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Adversarial Network (SATP-GAN) was proposed that used Reinforcement Learning (RL),
showing an improvement of 6.5% over baseline methods. Different approaches of integrat-
ing rules as inductive biases into deep-learning-based prediction models were evaluated by
Li et al. [96], confirming the usefulness of GANs in achieving better performance. Table 16
presents the works found using GANs with their focus, limitations, and performances.

Table 16. Summary of the works found using GANs.

Article Focus Limitation(s) Performance(s)

Liang et al., 2018 [93]

One LSTM acted as the
generative network and the
other as the discriminative
network; two NNs trained
simultaneously using BP

Traffic-flow phenomena such
as breakdown and capacity
drop cannot be caught

MAPE: 4.68% and 5.95% for
density and flow prediction,
respectively

Zhang et al., 2021 [94]

Proposed a CNN and LSTM
embedded network-scale
deep-traffic-prediction model
(TrafficGAN)

Designed for one-step
prediction only

MAE: 1.76, MRE: 9.72%,
RMSE: 2.12% during
weekdays (30 min prediction)

Liang Zhang et al., 2021 [95]
Proposed a Self-Attention
Generative Adversarial
Network (SATP-GAN)

Considered one intersection
only

MAE: around 20, RMSE:
around 30 (6.5%
improvement)

Li et al., 2021 [96]
Proposed a novel approach for
integrating rules as inductive
biases into DL models

Did not consider rule
priorities and trajectory
uncertainty

Mean ADE (meters): 2.53,
mean FDE (meters): 5.74,
mean MaxDist (meters): 5.99

3.12. Hybrid Schemes

Hybrid approaches in short-term traffic flow forecasting have been also commonly
employed; in fact, most recent works are based on different hybrid approaches due to their
higher performances when compared to other methods.

3.12.1. ARIMA, BPNNs, and GARCH

In these approaches, first, the linear features of time series are captured by an ARIMA
model. For nonlinear features, a BPNN is then employed. To overcome the BPNN’s dis-
advantages of slow convergence and to avoid falling into local minima, the Simulated
Annealing (SA) algorithm is used (Yang et al. [97]). The joint ARIMA and Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) modeling approach can im-
prove short-term ridership forecasting accounting for dynamic volatility, providing not
only the expected value, but also, the prediction interval can be obtained (Lin et al. [98],
Ding et al. [99]).

3.12.2. KNN-LSTM

Generally, in KNN-LSTM schemes, the KNN is used to capture spatial features and
LSTM to model the temporal variability of traffic flow. A two-layer LSTM network can be
applied to predict traffic flow, and the final prediction results are obtained by result-level fu-
sion with the rank-exponent weighting method. It exhibits competitive performance when
compared with well-known prediction models (Luo et al. [100]). Li et al. [101] introduced a
Diffusion Convolutional Recurrent Neural Network (DCRNN), achieving an MAE of 2.07
for a 1 h prediction horizon. Yu et al. [102] proposed a Spatiotemporal Recurrent Convo-
lutional Network (SRCN) combining DCNN and LSTM, which showed superior results
both in long- and short-term forecasting. Allström et al. [103] combined both parametric
and nonparametric approaches in an ensemble Kalman filter, obtaining a MAPE of 6.1 for
a 30 min prediction horizon. Kolidakis et al. [104] combined Singular Spectrum Analysis
(SSA) with Artificial Neural Networks (ANNs) to provide proactive decisions to mitigate
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the economic and environmental impacts of traffic congestion. Table 17 indicates the works
found using hybrid schemes and their primary focus, limitations, and performances.

Table 17. Summary of the reference works on hybrid schemes.

Article Focus Limitation(s) Performance(s)

Allström et al., 2016 [103]

Combined parametric and
nonparametric prediction
techniques in an ensemble
Kalman filter

Relatively less robust;
prediction was not
network-wide

MAPE: 5.7 and 6.1 for 15 and
30 min horizon, respectively

Li et al., 2017 [101]

Introduced the DCRNN, captured
spatiotemporal dependency using
bidirectional random walks and
an encoder–decoder architecture

Did not consider an evolving
graph structure

For 1 h prediction MAE: 2.07,
RMSE: 4.74, MAPE: 4.9% on
PEMS-BAY

Yu et al., 2017 [102] Proposed the SRCN combining
the DCNN and LSTM

Relatively less robust, did not
consider nonrecurrent events MAPE: 12.7

Kolidakis et al., 2019 [104] Combined Singular Spectrum
Analysis (SSA) with the ANN

Relatively less robust, data
preprocessing not explored

RMSE: 0.2642, MAE: 0.1752,
R2: 0.9645

4. Traffic Signal Control

In this section, different intersection-traffic-signal-control systems and policies are
discussed. In the literature, several strategies and policies were found during our studies,
such as fixed-time traffic signal control, i.e., Webster’s method, the SCAT, the SCOOT,
Urban Traffic Optimization by Integrated Automation (UTOPIA), ImFlow, MaxPressure, the
Generalized Proportional Allocation (GPA), and P0. Various machine-learning algorithms
and controllers were also identified, such as Q-learning, neural networks, neuro-fuzzy
methods, hybrid deep Q-networks, Deep RL, and Boosted GAs. In a multi-agent deep-
reinforcement-learning system, traffic light duration is controlled by analyzing independent
and shared rewards based on a given objective, for example waiting time and number
of waiting vehicles. Figure 4 depicts the main blocks of a common deep-learning-based
intersection-traffic-signal-control model.

Figure 4. Main blocks of a common deep-reinforcement-learning-based traffic-signal-control model
(adapted from Hussain et al. [105]).

4.1. Fixed-Time Traffic Signal Control

Repeated signal cycles with the same phase structure have been used in fixed-time
signal-control methods, which are commonly employed in real-world scenarios, mainly
due to their low cost of implementation. By analyzing past traffic data, these methods have
their signal parameters calibrated, including phase sequences, cycle lengths, green splits,
and offsets (for signal coordination). TRANSYT (Hale [106]) is the most popular of these
control methods. Because traffic demand usually varies over time, the Time-Of-Day (TOD)
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mode is often used, which consists of a collection of distinct signal plans for different times
of the day, such as peaks and off-peaks (Zheng et al. [107]). On the other hand, robust signal
optimization is used to deal with traffic flow uncertainty, i.e., a scenario-based technique
is used in order to ensure the performance of fixed-signal systems (Zhang et al. [108]).
For undersaturated and oversaturated demands, the unifying goals of these methods are
to minimize vehicle delay and maximize intersection capacity, i.e., vehicle throughput.
The signal time now includes queue lengths as well. For example, Jang et al. [109] devised a
signal-optimization approach for the equalization of queue growth rates across connections
in oversaturated road networks. Osorio and Wang [5] proposed a probabilistic network
model to analytically approximate the stationary aggregate joint queue-length distribution
of subnetworks. Hence, the developed model could be used to control traffic in cities.
Furthermore, spill-backs for signal timings have been considered in recent studies, which
have focused on the effects of delay variability. In addition to lowering vehicle delay,
signal optimization also aims to minimize delay variability and spill-back likelihood
(Mohajerpoor et al. [110]).

Webster’s Method

The design of fixed-time (FT) splits under known (historical) constant demand rules
by Webster, 1958 [111], and Webster and Cobbe, 1966 [112], has been extensively used in
the last 50 years. It is efficient as long as traffic conditions are undersaturated, but fails
when queues form in network links due to increasing demand. Kouvelas et al. [113] em-
ployed Webster’s procedure within a Traffic-responsive Urban Control (TUC) for real-time
operation, and the test implementation showed an average increase of speed by 11.3% com-
pared to Traffic-Actuated Signal plan Selection (TASS) in relatively unsaturated conditions.
Aiming at designing traffic signal timing at oversaturated intersections, Eriskin et al. [6]
proposed an elimination pairing system and compared the proposal with Webster’s method.
The results showed the inefficiency of Webster’s method to handle oversaturated traffic.
Ali et al. [114] combined fuzzy logic and the Webster optimum cycle formula, showing
an increase of the average waiting time by (18–34)% relative to MaxPressure and fixed-
time, respectively. Considering intersection delay, fuel consumption levels, and emissions,
Calle-Laguna et al. [115] applied Webster’s method to estimate the optimum cycle length
and eventually found an overestimation of the method. Table 18 presents the works found
using Webster’s method and their primary focus, limitations, and performances.

Table 18. Summary of the works found based on the Webster’s method.

Article Focus Limitation(s) Performance(s)

Kouvelas et al., 2011 [113]

Simulated Traffic-responsive
Urban Control (TUC)
strategies with Webster’s
method

Good performance for
undersaturated conditions
only

Increased the mean speed by
11.3%

Eriskin et al., 2017 [6]
EPS used for solving the green
times in oversaturated
intersections

Field tests were not performed 75.6% improvement of
optimum cycle length

Ali et al., 2020 [114]
Combined fuzzy logic and
Webster’s optimum cycle
formula

Field tests were not performed
Performance enhancement in
the average waiting time by
about (18–34)%

Calle-Laguna et al., 2019 [115]

Proposed a new model in
determining optimum cycle
lengths considering vehicle
fuel consumption and
emission levels

Weaker explanatory models
for fuel consumption

Model prediction power for
delays (R2): 0.78, difference
between the delay and
fuel-optimum cycle lengths:
11%
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4.2. Sydney Coordinated Adaptive Traffic System

The Sydney Coordinated Adaptive Traffic System (SCAT) is unique, consisting entirely
of computers and being adaptive to traffic demand, with its communication networks
providing effective, yet flexible management of the system. The SCAT not only reduces
delay, but also improves flow and decreases congestion, leading to a reduction of accidents
and petroleum resource use, with the significant benefits of the decrease of air pollution
and improving residential amenities (Sims and Dobinson [7]).

4.3. Split, Cycle, and Offset Optimization Technique

The Split, Cycle and Offset Optimization Technique (SCOOT) was designed for gen-
eral applications within computerized urban traffic control systems, responsible for the
coordination of the adjustment of the signal timings. An online computer with algorithms
calculates and implements the timing predictions from vehicle detectors that are analyzed
to minimize congestion. It was found that the SCOOT reduces vehicle delay by an average
of 12% when compared to up-to-date optimized FT plans (Hunt et al. [8]). Bretherton [116]
and Hansen et al. [117] implemented the SCOOT in different simulation environments to
investigate its feasibility for real-time operations. Although the simulation results showed
an average delay time reduction by (12–30)%, a performance deterioration was observed
with the increased network space. Table 19 presents these works and their focus, limitations,
and performances.

Table 19. Works found on the SCOOT.

Article Focus Limitation(s) Performance(s)

Bretherton, 1990 [116] Tested and evaluated using the
floating car survey technique

Performance deteriorated
when signals were widely
spaced and flows were low

Reduction of delay by 12%

Hansen et al., 2000 [117] Implemented in the CORSIM
Simulation Environment

Considered only one small
network

Reduction in delay and
number of stops by (20–30)%

4.4. Urban Traffic Optimization by Integrated Automation

Urban Traffic Optimization by Integrated Automation (UTOPIA) aims to respond
to fluctuations in traffic patterns by adjusting signal timing following traffic demand
to reduce traffic congestion, delays, and travel time. Absolute priority assignment is
used to select public vehicles and private traffic optimization in all traffic conditions.
A deeper analysis demonstrated that the system is capable of handling traffic in heavy
traffic conditions, i.e., at peak hours, with gains arising over 35% (Mauro and Di [118]).
Wahlstedt [119] and Pavelski et al. [120] simulated UTOPIA using the VISSIM platform to
evaluate its potentiality for real-time implementation. The simulation results demonstrated
the performance of UTOPIA in the reduction of the average delay time and queue length.
Table 20 indicates these works and their focus, limitations, and performances.

Table 20. Some reference works using UTOPIA.

Article Focus Limitation(s) Performance(s)

Wahlstedt, 2013 [119] Implemented and tested in
VISSIM simulator

Field tests were not
performed; extra delay for
congested conditions

Average delay per bus was
reduced by (14–21)%

Pavleski et al., 2017 [120] Implemented and evaluated
in the VISSIM simulator

Not compared with other
baselines

Delay: 67 s, QLen: 55.4 m for
traffic flow (veh/h) of 5110
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4.5. ImFlow

ImFlow is a self-optimizing signal system with distributed intelligence and a structure
similar to UTOPIA. The optimization is performed in two steps: (i) stage-based optimiza-
tion at the network/route level based on a cost function with user-defined weights; (ii)
signal-group-based optimization at the intersection level based on logical rules; a simula-
tion proved an average reduction of the delay per bus by (26–35)% (Wahlstedt [119]).

4.6. MaxPressure/BackPressure Traffic Signal Control

The problems with infrastructure and the cost of centralized approaches motivate the
emergence of decentralized control, i.e., a local traffic controller at a given intersection that
only requires information from adjacent links; therefore, the required communication in-
frastructure is minimal. A decentralized algorithm for traffic signal control is MaxPressure
(MP), sometimes called BackPressure, which Tassiulas and Ephremides initially devel-
oped in 1990 [121], although it was first adopted in urban traffic networks by Varaiya in
2013 [122]. The MP traffic controller, which requires the measurement of queue length, has
the advantages of: (i) simple computation; (ii) no need for traffic demand knowledge; (iii)
and not requiring the use of a fixed cycle time; instead, time-step-based policies are the
actuating method. Le et al. [123] adapted a BackPressure scheme to study its stabilizing
efficiency in any traffic demands, and the simulation showed an average reduction of
travel time by 20.3%. To increase MP’s accuracy, particularly in high-congestion situations,
Gregoire et al. [124] proposed taking into account the queue capacities for the computation
of the normalized pressures. Zaidi et al. [125] proposed a multicommodity BackPressure
algorithm that showed significant improvement over a Fixed Schedule (FC) controller and
a single-commodity backpressure controller in terms of queue length and travel times.
Levin and Boyles [126] studied reservation-based intersection-control schemes using MP
and P0, in particular for autonomous vehicles to improve throughput. Results on the down-
town Austin network showed significant performance improvement over other baselines,
although they failed to prove it to be actually throughput-optimal. Table 21 indicates these
works and their primary focus, limitations, and performances.

Table 21. Summary of the works found related to MP.

Article Focus Limitation(s) Performance(s)

Le et al., 2015 [123] Adopted a fixed-cycle-time
policy with provable stability

Avoided nonconstant
switching times, finite link
travel time, and link capacity

Average travel time reduction
by 20.3%

Gregoire et al., 2014 [124]

Proposed a solution to the
nonwork conservation and
congestion propagation
situations of MP

Performance deterioration for
very high arrival rates

Max. QLen: around 2500 s
(28.5% reduction than FC)

Zaidi et al., 2016 [125]
Proposed multicommodity
and adaptive routing
algorithms

Implementation requires
communication from every
vehicle to the traffic controller

Superior performance in
terms of travel time, queue
length, and trips completed

Levin and Boyles, 2017 [126]
Adapted pressure-based
policies for reservations in
dynamic traffic assignments

Not throughput-optimal
Average travel time
(veh/min): 7.46 when
demand was 100%

4.7. Generalized Proportional Allocation Policies

Generalized Proportional Allocation (GPA) policies are decentralized and fully scal-
able, as they rely on local feedback information only. They do not require any global
information about the network topology, the exogenous inflows, or the routing, which
makes them robust (Nilsson and Como [127]). Moreover, they consider the overhead time
while switching between services (Nilsson and Como [128]). Although GPA is yet to be
implemented in real time, Nilsson and Como simulated GPA using the SUMO platform to
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evaluate its potentiality for real-time operation. The simulation demonstrated a significant
improvement in robustness, scalability, and performance relative to other state-of-the-art
works. Table 22 presents these works and their focus, limitations, and performances.

Table 22. Summary of the works found related to GPA.

Article Focus Limitation(s) Performance(s)

Nilsson and Como, 2019 [129] Validation and performance
evaluation using SUMO Less robust Around 7% reduction of total

travel time

Nilsson and Como, 2020 [130] Improvement of the robustness of
GPA Relatively less stable Improved robustness

4.8. P0 Policy

The P0 policy, first introduced by Smith [131], considers both route costs and stage
pressure as a function of flows and green time. When the network is in free-flow conditions,
it provides a highly accurate approximation of the maximum throughput. However,
under cost imbalance conditions, i.e., when congestion appears, it has some difficulties in
approximating the maximum throughput (Cantelmo et al. [132], Smith et al. [133]).

4.9. Machine-Learning Approaches for Traffic Signal Control
4.9.1. Q-Learning Controller

Many existing traffic-control systems need a predefined model of the traffic environ-
ment to achieve optimal performances. In Q-learning, no prespecified environment model
is required, and the relationship among actions, states, and the environment is learned by
interaction with the environment. One of the advantages of reinforcement learning is that
such algorithms are truly adaptive. They can respond to dynamic sensory inputs from the
environment and a dynamically changing environment through ongoing learning and adap-
tation. Since the one-step Q-learning algorithm updates the Q-estimates at short intervals
in conjunction with each action, it is adaptable to inline real-time learning. Furthermore, Q-
learning is an off-policy algorithm because it gains valuable experience while exploring ac-
tions that may later be nonoptimal. Abdulhai et al. [134] were some of the first to introduce
Q-learning in heavily congested intersection traffic signal control, showing encouraging
results. Wiring et al. [135] proposed an adaptive optimization algorithm based on RL and
compared it against nonadaptive controllers, and better performance was observed mainly
for heavy traffic using the Green Light District (GLD) simulator. To maximize throughput,
Wunderlich et al. [136] proposed a Longest-Queue-First Maximal-Weight-Matching (LQF-
MWM) algorithm utilizing the arbitrary assignment of high priority that outperformed
other baselines in high-load conditions. A five-intersection traffic network was studied by
Arel et al. [137] using a multi-agent RL approach, where an autonomous intelligent agent
governed each intersection, with experimental results demonstrating the advantages of
multi-agent-RL-based control over LQF. Another method to enhance the performance was
suggested by Prashanth et al. [138], which, by incorporating multiple timescale stochastic
approximation in a policy gradient actor–critic algorithm, obtained better performance
than standard Q-learning approaches. In the work of Abdoos et al. [139,140], a relatively
large network was modeled using multi-agent systems, exploring Q-learning and holonic
Q-learning approaches to control signals. Experimental results demonstrated the superior
performance of holonic Q-learning in preventing oversaturation, reducing average delay,
and increasing throughput. Information sharing among signal controllers was explored by
Aziz et al. [141] by proposing an R-Markov Average-Reward-Technique-based RL (RMART)
algorithm that not only outperformed in overcrowded conditions, but also significantly
reduced emissions. Genders and Razavi [142] used an asynchronous n-step Q-learning
algorithm with two NN hidden layers as the agents, showing a reduction of the total mean
delay by 40% without compromising throughput. Table 23 presents these works and their
focus, limitations, and performances.



Sensors 2021, 21, 7705 23 of 36

Table 23. Summary of the works found related to the Q-learning controller.

Article Focus Limitation(s) Performance(s)

Wiering et al., 2004 [135]
Focused on minimizing
average traveling, or waiting,
times using RL

Implementation suffers from
saturation and oscillation

Around 25% reduction in
waiting time

Abdulhai et al., 2003 [134]
Introduced Q-learning to find
the optimal control of heavily
congested traffic

Considered only one isolated
two-phase signal

Reduction of delays by
(38–44)%

Wunderlich et al., 2008 [136]

Utilized a Maximal Weight
Matching algorithm
(LQF-MWM) to minimize the
queue sizes

Reduction of delays to a entity
resulted in a significant
increase in delays to others

Outperformed other models,
in particular at high traffic
loads

Arel et al., 2010 [137]
Compared MARL with LQF
in isolated and
multi-intersection networks

Considered smaller traffic
networks

Reduction of average delay
(veh/s): around 21.9% for a
high arrival rate

Prashanth et al., 2011 [138]
Proposed a Policy Gradient
Actor–Critic algorithm
(PG-AC-TLC)

Implementation problem on
larger road networks

Around 40% reduction in
average junction waiting time

Abdoos et al., 2011 [139],
2013 [140]

Modeled relatively large and
nonregular traffic network
based on Q-learning

Action space with relatively
fewer parameters

Reduction of average delay by
(11.7–43.7)%

Aziz et al., 2018 [141]
Applied RMART leveraging
information sharing among
signal controllers

Algorithm complexity and
evaluation

Queue length reduction: 36%,
average delay reduction: 22%
for high congestion

Genders and Razavi,
2019 [142]

Applied RL with function
approximation to train, used
asynchronous n-step
Q-learning algorithm for the
agent

Used a very simple function
approximator, yielding lower
delays for vehicles in left-turn
lanes

Reduced mean total delay by
up 40% without
compromising throughput

The challenge for all Q-Learning Controllers (QLC) is managing a considerable amount
of state-action space. Q-learning without enough training examples has difficulties con-
verging to the optimal point. However, Q-learning is a beneficial method since it includes
an online-learning scheme to adapt to new situations.

4.9.2. Neural Network Controller

Artificial Neural Network (ANN) models have been widely used in traffic signal con-
trol because of their nonlinear mapping, self-adapting, self-organizing, and self-learning
capabilities compared to the traditional methods. They are suitable for modeling the
nonlinear characteristics of traffic states. To address the changing traffic patterns, Hua
and Faghri [143] proposed a multilayer NN-based traffic-signal-control approach for an
isolated intersection that paved the way for future research using ANNs. To improve the
timing of traffic signals at intersections, Spall and Chin [144] used an ANN that showed
approximately 10% improvement in the mean wait time. Saito and Fan [145] focused
on finding optimal signal timing by presenting a feasibility testing platform named the
Optimal Traffic Signal Control System (OTSCS), applied to the Optimal Traffic Signal
Timing Model (OTSTM) based on an ANN, which reduces the time to reach the optimal
solution. Kim et al. [146] studied the applicability of ANNs for the cycle-length design
of Adaptive Traffic Control Systems (ATCSs), reducing by 8.3% the cycle length in satu-
rated traffic conditions. Intersection traffic signal control solely based on video images
instead of conventional traffic parameters, such as delays and queue lengths, was proposed
by Jeon et al. [147], achieving a 23% delay time reduction compared with other base-
lines. To further enhance the performance, Bernas et al. [148] proposed a neuro-evolution
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strategy, which, compared with other decentralized baselines, showed a superior reduc-
tion of delay time. Table 24 summarizes these works, presenting their focus, limitations,
and performances.

Table 24. Summary of the works found using ANNs.

Article Focus Limitation(s) Performance(s)

Hua and Faghri, 1995 [143]
Proposed a multilayered NN
architecture for traffic signal
control

Missing an evaluation, as well
as a comparison with other
baselines

For 800 VPH: reduction of
average delay and number of
stops by 65.25% and 45.8%,
respectively

Spall and Chin, 1997 [144]

Presented a System-wide
Traffic Adaptive Control
(S-TRAC) method based on an
ANN

Simulated with less volume of
traffic, missing comparison
with other baselines

Approximately 10%
improvement of mean wait
time

Saito and Fan, 2000 [145]

Developed the OTSCS
software, combined heuristic
optimal signal timing with
ANN

Considered only two-phase
signalized intersections, less
training data

Reduction of optimal delays
by 49.65%

Kim et al., 2008 [146]
Proposed an ANN model able
to deal with various
saturation levels

Relatively low and simulated
datasets

Around 8.3% reduction of
cycle length for traffic over
6000 VPH

Jeon et al., 2018 [147]
Used only video images of an
intersection to represent its
traffic state

Applicable to a single
independent intersection only

Average delay was reduced by
more than 23%

Bernas et al., 2019 [148]
Proposed a decentralized
system that evaluated
priorities

Less efficient vehicle location
detection approach

Average delay reduced by
(4–40)% compared with other
baselines

4.9.3. Hybrid Approaches

• Neuro-Fuzzy-Based Systems

As a neural network can learn and self-adapt, a fuzzy system deals efficiently with the
uncertainty and inaccuracies of real systems by using if–then rules, a hybrid approach
consisting of both the neural network and fuzzy logic, generally providing excellent results.
Mir and Hassan [149] proposed a neuro-fuzzy-based approach where a Fuzzy Logic System
(FLS) was used for model training and an NN was used for the calculation of the green
light time, proving the potentiality of an efficient traffic signal control. Dong et al. [150]
combined an NN and FLS to derive an Adaptive Fuzzy Neural Network (AFNN) algorithm
that reduced the delay time by 8.45% with a 24.04% increase in average fuel economy.
To further enhance the performance taking into account the traffic conditions on both the
current lane and the adjacent lane, Mittal and Chawla [151] proposed a hybrid neuro-
fuzzy-based adaptive system that, in comparison with FLS- and FT-based systems, reduced
the intersection waiting time by (22.6–46.37)%. Table 25 presents these works with their
primary focus, limitations, and performances.
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Table 25. Summary of the works found combining NNs and FLS.

Article Focus Limitation(s) Performance(s)

Mir and Hassan, 2018 [149]

Combined FLS and an NN
where FLS was used for
training and the NN for green
light control

Less training datasets
Demonstrated the potentiality
of the approach in signal
control

Dong et al., 2019 [150]
Proposed an AFNN where
waiting vehicles were detected
using Vehicle to X (V2X)

Relatively small training
datasets

Average delay time reduced
by 8.45% and fuel economy
increased by 24.04%

Mittal and Chawla, 2020 [151]

Combined an NN and FLS
considering traffic conditions
on the current and adjacent
lane

Applicable to a single
independent intersection only

Reduction of average waiting
time by (22.6–46.37)%

• Deep Reinforcement Learning

The efficiency and accuracy of traffic signal control systems can be enhanced by fusing
Deep Learning (DL) and Reinforcement Learning (RL). This type of approach can deal
with large amounts of data processing, systematic perception, and expression, which is
crucial to the coordinated control of arterial intersections (Chen et al. [152]). Luo et al. [153]
combined DL and RL by utilizing the MDP and CNN, which reduced the queue length by
42.5% relative to DQN. Considering knowledge sharing among the agents, Li et al. [154]
proposed the Knowledge-Sharing Deep Deterministic Policy Gradient (KS-DDPG) algo-
rithm, which showed significant efficiency in controlling large-scale networks and coping
with fluctuations in traffic flow. The inability of DRL algorithms to meet the demands
of coordination among the agents inspired Wang et al. [155] to propose a Cooperative
Group-Based Multi-agent reinforcement learning-ATSC (CGB-MATSC) framework that
demonstrated a significant reduction of average waiting time by 42.08% relative to FT.
Kekuda et al. [156] proposed an n-step State, Action, Reward, State, and Action (SARSA)
algorithm to increase the implementability in low-cost real-time systems and compared it
with LQF; it showed a 5.5% reduction of the average queue length. Table 26 indicates these
works and their focus, limitations, and performances.

Table 26. Summary of the works found using DRL.

Article Focus Limitation(s) Performance(s)

Luo et al., 2020 [153]

Modeled as a Markov
Decision Process (MDP);
a CNN was used to map the
states to the rewards

Converged slightly more
slowly

Reduction of the queue length
by 42.5% compared to the
DQN

Li et al., 2021 [154]

Proposed the
knowledge-sharing deep
deterministic policy gradient
algorithm

Limited overall
communication efficiency

Average reduction of the
queue length by 28.9%,
intersection delay by 35.1%,
and number of stops by 21.0%
compared with the MP

Wang et al., 2021 [155]

Introduced Cooperative
Group-Based Multi-agent
reinforcement learning-ATSC
(CGB-MATSC)

Less scalable with high
training costs

Reduction of the average
waiting time by 42.08%
relative to FT

Kekuda et al., 2021 [156]
Proposed a low-cost real-time
system using an n-step
SARSA algorithm

Considered a risk-insensitive
approach

Reduction of the queue length
by 5.5% relative to LQF
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• Combination of QL, NNs, and FL

Methods combining Q-learning, BP neural networks, and the fuzzy controller have shown
promising efficient traffic signal control performance. In such approaches, QL and BPNNs
are used to determine the optimal switching time of a particular phase and the fuzzy
controller to select the optimal phase sequence (Zhao et al. [157]).

• Hybrid Deep Q-Networks

A hybrid deep Q-network combines both discrete and continuous DRL approaches to con-
trol traffic signals and simultaneously decide the proper phase and its associated duration.
This type of framework can reduce the average queue length and travel time by a significant
amount. Pálos and Huszák [158] investigated and evaluated DQN, double-DQN, dueling
DQN, and double-dueling DQN approaches for traffic signal control based on six objective
functions, such as waiting time minimization and average speed maximization, outper-
forming double-dueling DQN in all aspects. Bouktif et al. [9] customized a Parameterized
Deep Q-Network (P-DQN) architecture, and the evaluation results using Simulation of
Urban Mobility (SUMO) showed that it surpassed other benchmarks, achieving a reduction
of the travel time by 5.78%. In the work of Dampage et al. [159], YOLOv3-tiny was retained
and combined with OpenCV, and the traffic density was measured, which drives the
signaling schemes using a trained DQN. For a multi-intersection scenario, it achieved an
increase of the average speed by 18% compared with a static traffic light system. Table 27
summarizes these works concerning their primary focus, limitations, and performances.

Table 27. Summary of the works found using hybrid DQNs.

Article Focus Limitation(s) Performance(s)

Pálos and Huszák, 2020 [158]
Examined the DQN,
double-DQN, dueling DQN,
and double-dueling DQN

Considered a single
intersection environment only

Reduction of the waiting time
by 34.2% and 5.11% relative to
the DQN and double-DQN,
respectively

Dampage et al., 2020 [159]

Proposed a
retrainedYOLOv3-tiny,
OpenCV, and DQN-based
coordinated system, signaling
schemes based on traffic
density

Not robust; performance
deteriorated with high
congestion

For multi-intersection
scenarios, 18% increase of the
average speed compared to a
static traffic light system

Bouktif et al., 2021 [9]
Customized a Parameterized
Deep Q-Network (P-DQN)
architecture

Considered a single
intersection environment only

Reduced the average queue
length and travel time by
22.20% and 5.78%,
respectively

• Boosted Genetic Algorithm

Traffic control optimizations combining Machine Learning (ML) and Genetic Algorithms
(GA) are also efficient. In the work of Mao et al. [160], the Extreme-Gradient Decision-Tree
(XGBT) and Genetic Algorithm (GA) were combined to reduce the total travel time by
almost half when used under incident conditions.

5. Discussion

A systematic literature search was performed in the Science Direct, Scopus, and Google
Scholar databases with the following keywords in various combinations: “intelligent
transportation”, “intelligent traffic management and control”, “image processing and deep
learning-based intelligent traffic management and control”, “short-term traffic forecasting”,
“image processing and deep learning-based short-term traffic forecasting”, “intersection
traffic signal control”, “image processing and deep learning-based intersection traffic signal
control”. One-hundred forty-four fully fledged research articles were finally selected based
on the following inclusion criteria: most relevant, most cited, and most recent. For traffic
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state forecasting, in terms of performances, the GAN-based methods and also hybrid
approaches showed better performance on state-of-the-art datasets, i.e., PeMS (Li et al. [154],
Zhang et al. [95]). For intersection signal control, DRL- and DQN-based approaches showed
much better efficiency and robustness (Wang et al. [155], Bouktif et al. [9]) relative to other
baselines. However, no model is self-sufficient to address all the problems, and hence,
plenty of scope for improvement exists. A comparative analysis followed by a very brief
summary of the fundamental research challenges is presented in the following sections.

5.1. Why Deep Learning?

Traffic states are generally affected by long-term and short-term traffic features. As an
example, during the weekdays, traffic flow will always show a rapid increment and
decrement in the morning and evening, respectively, referred to as long-term features,
because it is affected by society’s behaviors. There might be uncertain fluctuations due
to adverse weather, traffic accidents, and other nonrecurrent events, which are called
short-term features. For a model to capture these features, a considerable amount of data
must be processed efficiently.

Moreover, the corrupted or missing value problem is common in time series data,
which is difficult to address by traditional machine-learning approaches. Additionally,
the traffic states of the intersections are interrelated with their adjacent counterparts.
An efficient intersection traffic signal control demands perceiving of the environments
correctly, to take actions accordingly in a coordinated manner. Traditional machine-learning
approaches have limitations in handling these demands. Deep-learning-based methods,
on the contrary, have a much better ability to overcome these problems efficiently.

5.2. Comparative Analysis

One way to find out whether a method in ITMC is efficient or not is to analyze the
number of documents published in recent times based on those techniques. In recent years,
mainly from 2019, researchers have been applying the LSTM, GRU, CNN, GAN, DBN,
FNN, BNN, RAN, and TDNN approaches in traffic state prediction and for intersection
signal control. The approaches of RL, GPA, Hybrid, ANN, and Webster’s method have
been deployed. For traffic state prediction, out of the 71 studied articles, 39.2% of the
works published between 2019 and 2021 were based on RNNs (LSTM and GRU more
precisely). On the other hand, for intersection traffic signal control, 42.9% of the works out
of 73 utilized reinforcement learning-based methods (DQN and DRL) within the same time
horizon, as is depicted in Figure 5.

Figure 5. Comparisons among different methods in terms of occurrence between the years 2019 and
2021: the graph on the left is traffic state prediction, and the one on the right is intersection traffic
signal control.

However, the best way to judge the suitability of a method is to analyze it in terms of
its performance. CNN-based traffic state prediction methods trained on datasets without
any missing values revealed superior performance compared to other baselines. This is
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because CNN-based models can capture the spatiotemporal features more efficiently than
other models. For example, a SRCN-based forecasting model achieved an RMSE of 4.32
on the PeMSD7 dataset (Yu et al. [64]). One major problem with this kind of method is
robustness. With the arrival of nonrecurrent events such as congestion, their performance
deteriorates. To achieve higher robustness, LSTM-based methods with an effective mecha-
nism to counteract non-Gaussian disturbances showed much better performance relative
to other methods, for example, in the work of Lu et al. [54].

On the contrary, a considerable amount of time series data is required for good
performance, and it is challenging to find datasets without any missing value problems.
The GAN-based approaches overcome these problems by providing new artificial data
of the same quality as the training data. Furthermore, the CNN and LSTM embedded
GAN-based methods have shown the best performance so far, by achieving an RMSE of
2.12 for prediction over a long time horizon (Zhang et al. [94]).

Multi-agent deep-reinforcement-learning-based methods are expected to be dominant
over other state-of-the-art methods for intersection traffic signal control. Traffic states are
highly unpredictable, and the states of an intersection depend on others. Hence, coordina-
tion among the different intersections is essential. Multi-agent deep-reinforcement-learning-
based methods possess the provision to cope with this. For example, the knowledge-sharing
deep deterministic policy gradient algorithm showed an average reduction of the queue
length and intersection delay by 28.9% and 35.1%, respectively, relative to the MaxPressure
(MP) method (Li et al. [154]).

5.3. Research Challenges
5.3.1. Need for Better Datasets

Most of the works studied in the literature used personally collected datasets, as
quality fully publicly available datasets are scarce. Nonetheless, PeMS from the Caltrans
Performance Measurement System was mainly used by the researchers (Li et al. [101],
Lu et al. [54]). The publicly available datasets found during our study are indicated in
Table 28.

Table 28. List of the publicly available datasets found during this study.

Name Description

Caltrans Performance Measurement System
(PeMS) https://pems.dot.ca.gov/ (accessed on
16 November 2021)

Collected in real time from over 39,000
individual detectors in California and
providing over 10 years of data for historical
analysis

Open Data (VDOT)
https://www.virginiaroads.org/datasets/
VDOT::traffic-volume/about (accessed on 16
November 2021)

Consists of ADT and AAWDT volumes with
vehicle classification data for most recent years
from the Virginia Department of
Transportation

(pNEUMA) https://open-traffic.epfl.ch/
(accessed on 16 November 2021)

Urban datasets of naturalistic trajectories of
half a million vehicles in the downtown area of
Athens, Greece

(IDOT) http://www.travelmidwest.com/
(accessed on 16 November 2021)

Traffic flow data from the Illinois Department
of Transportation containing averaged speed,
flow, and occupancy

(TDAD)
http://www.its.washington.edu/tdad/
(accessed on 16 November 2021)

Traffic Data Acquisition and Distribution
system of the Washington State Department of
Transportation

5.3.2. Reduction of Computational Complexity

Most state-of-the-art models, in particular DL, typically require millions of parameters
and billions of operations to produce human-level accuracy. The memory and computa-
tional requirements, in particular the deployment of low-power embedded platforms with

https://pems.dot.ca.gov/
https://www.virginiaroads.org/datasets/VDOT::traffic-volume/about
https://www.virginiaroads.org/datasets/VDOT::traffic-volume/about
https://open-traffic.epfl.ch/
http://www.travelmidwest.com/
http://www.its.washington.edu/tdad/
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lower power budgets, are challenging (Maghazeh et al. [161]). Cloud-based infrastructures
are a viable solution to this problem. However, privacy implications, the consumption of a
significant amount of power, latency, and scalability are significant drawbacks that need to
be addressed (Duan [162]).

5.3.3. Model Interpretability

Deep NNs have been found to be very efficient in handling the complex nature of
traffic. However, the complexity of the models often makes the understanding of the
prediction results difficult, and issues arise about these models’ accuracy. The combination
of FLS and NNs provides better model interpretability (Tang et al. [74]). However, with the
increase in traffic complexity, they fail to provide optimal outputs. Hence, there are plenty
of opportunities to enhance the models’ interpretability.

5.3.4. Finding the Best Evaluation Methodologies

Different algorithms search for different trends and patterns. One algorithm may
not be the best suited across all datasets. To find the best solution, it is necessary to
evaluate them. Hence, evaluating how well a model generalizes to new and unseen
data is very important. During this study, it was found that the F1-score, true positive
rate, Mean Absolute Percent Error (MAPE), Mean Absolute Error (MAE), Root-Mean-
Squared Error (RMSE), variance score, and R2 value are often used as traffic forecasting
model performance indicators. However, the Average Displacement Error (ADE), Final
Displacement Error (FDE), and Maximum Distance (MaxDist) were also found to be used
in some recent works.

On the other hand, modern researchers use the average waiting time, queue length,
travel time, intersection delay, and fuel economy for intersection traffic signal control.
Figure 6 depicts the typically used evaluation metrics in different scenarios based on
the studied works. Problems related to probability prediction, the Receiver Operating
Characteristic (ROC), and the Area Under the Curve (AOC) are most suitable. While for
class labels prediction, evaluation metrics should be selected based on the importance of
the classes. For example, if all classes are equally important, “accuracy” can be used as an
evaluation metric; otherwise, the F1-score, F2-score, and Matthews Correlation Coefficient
(MCC) were found to be convenient. However, which one would be most suited to a
particular problem or whether it is necessary to find new evaluation techniques needs to
be addressed further.

Figure 6. Selection process of the best evaluation metrics for different perspectives.

To evaluate the intersection signal control methods/strategies, powerful simulation
environments are utilized by researchers. These simulation tools are helpful for testing
and assessing different dynamic transportation issues that are challenging to solve in
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the real world. On top of that, simulation environments can replace actual experiments
with trustworthy representations of the subject matter in a controllable computer program
and allow researchers to compare algorithms and reproduce experiments. In most of the
recent works, for example, in Nilsson and Como [130], Bouktif et al. [9], and Li et al. [154],
the researchers employed the SUMO environment to evaluate their proposed methods.
Table 29 indicates the simulation environments found during this study.

Table 29. Simulation environments found during this study.

Name Description

(SUMO)
https://sumo.dlr.de/docs/index.html
(accessed on 16 November 2021)

Simulation of Urban Mobility

(PTV VISSIM) https://www.ptvgroup.com/
en/solutions/products/ptv-vissim/ (accessed
on 16 November 2021)

Planung Transport Verkehr Vision Traffic Suite

(Aimsun) https://www.aimsun.com/
(accessed on 16 November 2021)

Advanced Interactive Microscopic Simulator
for Urban and Non-Urban Networks

(MATSim) https://www.matsim.org/
(accessed on 16 November 2021) Multi-Agent Transport Simulation

(TRANSIMS) https:
//code.google.com/archive/p/transims/
(accessed on 16 November 2021)

Transportation Analysis and
Simulation System

5.3.5. Environmental Challenges

GPUs are often used to train and test NNs to deliver the highest arithmetic perfor-
mance for 32 bit floating-point NN inference. However, operating at 200+ W, their use
is becoming prohibitively expensive in terms of energy footprint. Research showed that
the carbon footprint of NNs using GPUs is about five-times the lifetime emissions of an
average car (Strubell et al. [163]).

6. Conclusions

Forecasting traffic and intersection signal control are vitally important for an efficient,
ITMC system. For forecasting, the data-driven approaches are gaining popularity because
of their higher prediction power and accuracy. However, missing or imbalanced datasets
impose difficulties in finding the optimal models. GANs can overcome these difficulties by
generating new artificial data that approximate the same unknown distribution as found
in the limited training data examples. For intersection signal control, multi-agent deep
reinforcement learning and deep Q-networks can be explored in more detail to efficiently
control multi-intersection traffic. In summary, with the advancement of image-processing
and deep-learning technologies, ITMC research opens a new horizon to enable researchers
to address more complex problems in a manageable ways. Therefore, this review aimed
to identify the state-of-the-art methods used in ITMC and systematically presented their
structure, overall performances, and limitations.
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