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The outcome of cell-based therapies can benefit from carefully designed cell carriers. Amultifunctional injectable
vehicle for the co-delivery of humanmesenchymal stem cells (hMSCs) and osteoinductive peptides is proposed,
to specifically direct hMSCs osteogenic differentiation. The osteogenic growth peptide (OGP) inspired the design
of two peptides, where the bioactive portion of OGP was flanked by a protease-sensitive linker, or its scrambled
sequence, to provide faster and slower release rates, respectively. Peptides were fully characterized and chemi-
cally grafted to alginate. Both OGP analogs released bioactive fragments in vitro, at different kinetics, which stim-
ulated hMSCs proliferation and osteogenesis. hMSCs-ladenOGP–alginate hydrogelswere tested at an ectopic site
in a xenograft mouse model. After 4 weeks, OGP–alginate hydrogels were more degraded and colonized by
vascularized connective tissue than the control (without OGP). hMSCs were able to proliferate, migrate outward
the hydrogels, produce endogenous extracellular matrix and mineralize it. Moreover, OGP-groups stimulated
hMSCs osteogenesis, as compared with the control. Overall, the ability of the proposed platform to direct the
fate of transplanted hMSCs in loco was demonstrated, and OGP-releasing hydrogels emerged as a potentially
useful system to promote bone regeneration.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Hydrogels show great potential as cell vehicles for minimally inva-
sive bone regeneration therapies. These materials form highly hydro-
philic 3D networks that recreate some features of native extracellular
matrices (ECM), providing adequate cellular microenvironments
where the exchange of nutrients, oxygen and metabolites with the
extracellular milieu is facilitated. Compared to direct bolus injection
at the injury site, often associated with poor cell survival, the pre-
entrapment of cells in a hydrogel delivery vehiclemay improve viability
by providing physical protection, biochemical and biomechanical
survival signals, and scaffolding [1,2]. It also helps localizing cells to
the targeted area, increasing the chance of post-transplantation cell
retention and engraftment, and affording a template for new tissue
formation [1,2]. Hydrogels can be further decorated with specific cell-
instructive cues aimed at directing the phenotype of entrapped cells.
Therapeutic approaches aiming at driving mesenchymal stem cells
(MSCs) fate in a controlled manner, namely by promoting their
23; 4150-180 Porto, Portugal.
differentiation into bone-forming cells through the co-delivery of
osteoinductive compounds, are promising for bone healing applications
[1,2].

Strategies involving the use of small compounds, such as peptides,
can be advantageous as compared to more complex biomolecules, by
leading to less expensive, more stable and easily tunable biomaterial
formulations [2,3]. Up to now, different types of osteoinductive peptides
have been proposed [4]. In this study,we evaluated thepotential of OGP,
a naturally occurring tetradeca-peptide identical to the C-terminus of
histone H4 (residues 89–102, ALKRQGRTLYGFGG), which is present in
plasma at micromolar concentrations [5–8]. The physiologically active
form of OGP, which corresponds to its C-terminal pentapeptide
sequence YGFGG (OGP10–14), is generated from full-length OGP by
proteolytic cleavage [5]. This fragment directly interacts with cell mem-
brane receptors, activating the MAP kinase, Src and RhoA signaling
pathways [9–11]. Upon intravenous administration, synthetic OGP and
OGP10–14 were shown to promote increased bone mass and fracture
healing in vivo [12,13]. In vitro, OGP peptides were shown to increase
the proliferation of osteoblastic-like cells and MSC and accelerate
osteogenesis [14,15]. In pursuit for superior osteoinductive compounds
for bone regeneration therapies, OGP has provided a useful basis for en-
gineering additional OGP analogs with enhanced bioactivity, stability
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and bioavailability. This includes the design of different peptide se-
quences to be used in free soluble forms [8], as well as more complex
systems with physically or chemically immobilized OGP for local ad-
ministration [16–18]. In this context, the aim of this study was to devel-
op protease-responsive delivery systems for OGP analogs, which could
simultaneously act as injectable hMSCs vehicles, for minimally invasive
healing of small bone defects. Among the numerous proteases that can
be selected to trigger enzyme-activated drug release, those belonging to
the metalloproteinase (MMP) family are particularly attractive. MMPs
actively participate in ECM remodeling and degradation, having a key
role in wound healing and tissue regeneration, and some are constitu-
tively expressed by both naïve and differentiated hMSCs [19,20]. Here,
different OGP analogs were designed, by flanking the YGFGG N-
terminus with the MMP-substrate PVGLIG or its scrambled sequence
GIVGPL [20]. Both were chemically grafted to alginate, a natural poly-
saccharide with the ability to form hydrogels in situ, which has been
extensively used as a delivery vehicle for entrapped cells [21–23]. We
hypothesized that in the presence of specific MMPs, in particular
MMP-2 [20,24], the bioactive YGFGG fragment would be released
from the hydrogel upon enzymatic cleavage of the PVGLIG sequence,
while it would remain mostly immobilized when using the scrambled
linker. Once implanted, such systems may, thus, provide localized OGP
delivery for variable time periods, remaining in close proximity to the
targeted host cells at the injury site. If OGP-functionalized hydrogels
are simultaneously used as hMSCs carriers, the released peptides
might act on the transplanted cells and specifically guide their differen-
tiation along the osteoblastic lineage. In this study, the designed OGP
analogs andOGP–alginate conjugateswerefirstly characterized at different
levels, and then used for the preparation of OGP-alginate hydrogels.
The in vivo performance of hMSCs-laden hydrogels was evaluated after 4-
weeks of implantation at an ectopic site in a xenograft mouse model.

2. Materials and methods

2.1. Peptides

2.1.1. Synthesis and characterization of OGP analogs
Different OGP-based oligopeptide sequences, hereafter designated

by OGP1, OGP2 and OGP3 (full sequences and additional information
are depicted in Table 1) were synthesized by solid-phase peptide syn-
thesis (SPPS) using the Fmoc/tBu protection scheme [25]. The polymeric
support selected, Fmoc-Gly-Wang resin (1 mmol/g, Iris Biotech),
was an hydroxymethylated resin pre-loaded with the Fmoc-protected
C-terminal amino acid; itwasfirst deprotected by a 20% solution of piper-
idine (Sigma–Aldrich) N,N-dimethylformamide (DMF, Sigma–Aldrich).
After washing with DMF and dichloromethane (DCM, Sigma–Aldrich),
the next Fmoc-protected amino acid (Fmoc-AA-OH, Novabiochem or
Bachem) was coupled to the Gly-Wang resin by means of DIPCDI
(Fluka) coupling reagent. Then, the Fmoc protecting group was removed
again with 20% piperidine in DMF and, after resin washing with DMF and
Table 1
Different peptide sequences used and their characteristics.a

Name Amino acid sequence Mw
g/mol

Purity
%

Grafted
amount
mg/g Alg

OGP1 GGGYGFGG 671 90 11.4
OGP2 GGPVG↓LIGGYGFGG 1207 92 20.5
FRET–OGP2 (Abz)-GGPVG↓LIGGYGFGG-Q-(EDDnp) 1662 ≥95 n.a.
OGP3 GGGIVGPLGYGFGG 1207 99 31.0
FRET–OGP3 (Abz)-GGGIVGPLGYGFGG-Q-(EDDnp) 1662 ≥95 n.a.
RGD GGGGRGDSP 759 96 15.9

a Alg—alginate; Abz—ortho-aminobenzoyl; EDDnp—N-(2,4-dinitrophenyl)-
ethylenediamine; F—phenylalanine; FRET—fluorescence resonance energy transfer; G—
glycine; I—isoleucine; L—leucine; n.a.—not applicable; P—proline; V—valine; Y—tyrosine. In
MMP-sensitive sequences the cleavage site is indicated by an arrow (G↓L). In all OGP analogs
the bioactive YGFGG fragment is underlined.
DCM, the following Fmoc-AA-OHwas coupled to the peptidyl-resin as be-
fore. This processwas repeated in the C→Ndirection until the full amino
acid sequence was assembled. Peptide cleavage from the resin occurred
in acidic conditions using trifluoroacetic acid (TFA, Sigma–Aldrich),
triisopropylsilane (TIS, Sigma–Aldrich) and H2O (95:2.5:2.5) cocktail
[25,26]. Liquid chromatography–mass spectroscopy (LC–MS) was used
to check the molecular weight of the synthesized peptides. Samples
were prepared in methanol and all data were collected in positive ion
mode, in a LCQ-Deca XP LC–MS system from ThermoFinnigan, equipped
with both a diode-array detector (DAD) detector and an electrospray
ionization-ion trap mass spectrometer (ESI/IT MS). A high pressure LC
(HPLC) method was established for the quantification of the peptides
purity on a LaChrom Elite system (Hitachi–Merck) equipped with a qua-
ternary pump a thermostatted (Peltier) automated sampler and a DAD. A
Purospher Star RP-C18 column (particle size 5 μm, 4.6mm i.d. × 150mm
length) was used for the separations. The solvents used for the analysis
were: solvent A (0.05% TFA in water) and solvent B (HPLC-grade acetoni-
trile). Themobile phase consisted of a linear gradient of 0 to 100% of B inA
in 30 min. The flow rate was set at 1 mL/min and the analytes were de-
tected at 220 nm. When necessary (if purity b90%), peptides were puri-
fied by preparative reverse phase LC at medium pressure (RP-MPLC).
The elution conditions consisted of a linear gradient from 20% to 30% of
acetonitrile in water. The effluent was monitored at an absorbance of
220 nm, absorbing peaks were collected, peptides were lyophilized and
analyzed by HPLC and LC–MS. Assessment of the peptides' purity by
HPLC was based on the calculation of the relative % of the peptide's
peak area as compared to the sum of the areas of all detected peaks.
FRET peptides, kindly provided by Drª Maria Aparecido (UNIFESP,
Brazil), were used for some assays. These incorporated an ortho-
aminobenzoyl (Abz) fluorescent group and an N-(2,4-dinitrophenyl)-
ethylenediamine (EDDnp) quenching group at each side, as donor/
acceptor pair, and also a Q residue as a requirement for SPPS
(Table 1). FRET-peptides were synthesized using the Fmoc-procedure
in an automated solid-phase peptide synthesizer (PSSM 8 system
from Shimadzu-Tokyo, Japan), as described elsewhere [27]. Peptides
were purified by semi-preparative HPLC, and their molecular weight
and purity were checked by amino acid analysis and matrix-assisted
laser desorption/ionization-time of flight (MALDI–TOF) MS, using a
Microflex-LT mass spectrometer (Bruker-Daltonics, Billerica, MA,
USA). The concentration of the FRET substrates was obtained by colori-
metric determination of the EDDnp group (ε = 17300 M−1 cm−1 at
365 nm), using peptide solutions at 1 mg/mL in DMF:Water (1:1).

2.1.2. Enzymatic cleavage of free OGP analogs
Peptide solutionswere prepared at 828 μM inDulbecco's phosphate-

buffered saline (DPBS) containing calcium and magnesium (Invitrogen,
Carlsbad, CA). Recombinant active humanMMP-2 (Calbiochem, 25 nM)
was added to each peptide solution. In control samples, the same vol-
ume of DPBS was added instead of the enzyme. After 24 h of incubation
at 37 °C, MMP-2 was removed by ultrafiltration (Amicon Centrifugal
Filter, MWCO 10 kDa, Millipore) for 2–5 min at 14,000 ×g, and the fil-
trates were recovered for analyses. The extent of peptide cleavage was
estimated using the fluorescamine assay [28]. Briefly, each solution
was placed (50 μL) into the wells of a 96 black-well plate and reacted
with 7 μL of 21.6 mM fluorescamine (Sigma). Fluorescence was mea-
sured with an excitation wavelength of 400 nm and an emission wave-
length of 460 nm in a microplate reader (SynergyTM Mx, Biotek). All
measurements were made using at least n = 3 replicates, and are re-
ported in relative fluorescence units (RFUs). The molar masses of intact
and digested peptides (t = 24 h) were determined by LC–MS analysis.
The kinetics of peptide cleavage by MMP-2 was analyzed using FRET
peptides. These were incubated in DPBS and fetal bovine serum (FBS;
Gibco; 10% v/v in DPBS), with orwithoutMMP-2 (10 nM). Each solution
was placed in triplicate (50 μL) into the wells of a 96 black-well plate
maintained on ice, and the peptides were added to a final concentration
of 5 μM. The plate was then placed in a thermostatized (37 °C)



160 F.R. Maia et al. / Journal of Controlled Release 189 (2014) 158–168
microplate reader and fluorescence was continuously measured
(Ex = 320 nm, Em = 420 nm) along the first hour of incubation, and
then again after 48 h at 37 °C. All measurements were made using at
least n = 3 replicates.

2.1.3. Effect of peptides on hMSCs proliferation and osteogenic differentiation
Human mesenchymal stem cells (hMSCs) were purchased from

Lonza (PT-2501; Lot No. 6F4392; Age: 19, Male) and routinely cultured
in basal medium (BM) consisting on low-glucose Dulbecco's Modified
Eagle Medium (DMEM) with glutamax (Gibco), supplemented with
1% v/v Penicillin/Streptomycin (Gibco) and 10% v/v FBS (MSC-qualified,
Gibco). Cultures were maintained at 37 °C under a humidified atmo-
sphere of 5% v/v CO2 in air, with the culture medium changed twice a
week, and were trypsinized at 70% confluency. For these studies,
hMSCs (P5) were seeded at 3000 cells/cm2 in 24-well tissue culture
polystyrene (TCPS) plates. Cell proliferation was analyzed using the
tritiated thymidine (3H-TdR) incorporation assay. Stock solutions
of free peptides were sterilized by filtration (0.2 μm) and then
added at a final concentration of 10−5 M or 10−12 M to culture me-
dium without FBS. The control consisted on culture media with
0.5% v/v FBS. 3H-TdRwas added to thedifferentmedia at afinal concen-
tration of 1 × 10−3 Ci/mmol, and cells were incubated for 24 h prior to
analysis. Cells were detached and treated with trichloroacetic acid
(5% v/v, 10 min) to precipitate nucleic acids. The precipitates were
then dissolved with NaOH (1 M) and scintillation liquid (PerkinElmer)
was added. After 1 h of incubation in the dark, samples were analyzed
in a scintillation counter (MicroBeta Trilux, PerkinElmer). For analysis
of osteogenic differentiation, hMSCs were cultured for 7 days under
basal and osteoinductive conditions in 24-well TCPS plates. The os-
teogenic medium (OM) consisted of low glucose DMEM supple-
mented FBS (10% v/v, pre-selected batch, PAA), dexamethasone
(Sigma, 100 nM), β-glycerophosphate (Sigma, 10 mM) and 2-phospho-
L-ascorbic acid (Sigma, 0.05mM). Free peptideswere added at afinal con-
centration of 10−5 M or 10−12 M to both media. Medium was renewed
every 4 days and fresh peptides were added each time. At day 7, cell
monolayers were stained for alkaline phosphatase (ALP) activity. After
fixation with 4% v/v paraformaldehyde (PFA) in PBS for 20 min, cells
were incubated for 30 min in Naphthol AS-MX phosphate/Fast Violet B
salt at 37 °C in the dark. After washing, stained monolayers were air-
dried and observed under an inverted microscope (Axiovert 200 M,
Zeiss). In order to quantify ALP activity, cells were lysed and incubated
with the chromogenic substrate p-nitrophenol phosphate (2 mM in
0.2 M bicarbonate buffer, pH 10; 0.05% v/v Triton X-100 and 4 mM
MgCl2; 1 h at 37 °C). Absorbance was read at 405 nm in a microplate
reader (Biotek SynergyMX), and converted into product concentrations
using a calibration curve built with serially diluted p-nitrophenol stan-
dards. ALP activity was normalized to total protein content, calculated
using the bicinchoninic acid assay (BCA Total Protein assay, Pierce),
and expressed as nmol/min/mg protein.

2.2. Peptide-alginate hydrogels

2.2.1. Synthesis of peptide–alginate conjugates
PRONOVA ultrapure sodium alginates LVG and VLFG (hereafter des-

ignated as high molecular weight, HMW and low molecular weight,
LMW; respectively) with a high guluronic acid content (68% and 67%,
respectively) were purchased from FMC Biopolymers. Their molecular
weights, measured by TripleSEC as described in [22], were 1.5 ×
105 Da (HMW) and 2.5 × 104 Da (LMW). The HMW alginate was par-
tially oxidized with sodium periodate [29,30]. Aqueous carbodiimide
chemistry was used to connect peptide N-terminal amino groups to algi-
nate carboxyl groups via a peptide bond [31]. Briefly, LMW and HMW al-
ginate solutions at 1wt.% inMES buffer (0.1M, 0.3MNaCl, pH 6.5, Sigma)
were prepared and stirred ON at RT. N-hydroxy-sulfosuccinimide (sulfo-
NHS, Pierce) and 1-ethyl-(dimethylaminopropyl)-carbodiimide (EDC,
Sigma, 27.4 mg/g alginate) at a molar ratio of 1:2 were sequentially
added to the solution, followedbypeptides. OGPanalogswere conjugated
to LMW alginate, and cell-adhesion RGD peptides (GenScript, USA) were
conjugated toHMWalginate. Alginate samples thatwere subjected to the
same procedure but without the addition of peptides were used as con-
trols (hereafter designated H0 and L0). Themodified alginateswere pu-
rified by dialysis (MWCO 3500 membrane, Spectrumlabs) against
distilled water and saline, filtered (0.2 μm), freeze-dried and stored at
−20 °C until used. The grafting efficiency was obtained using the BCA
assay [20]. Absorbance readings were converted into peptide concen-
trations using a calibration curve built with serially diluted peptide so-
lutions in 1 wt.% of L0 or H0 alginate. Grafted amounts (mg peptide
per gram of alginate) for the different peptides are depicted in Table 1.

2.2.2. Preparation of peptide–alginate hydrogels: films and cell-laden 3D
matrices

Hydrogel-precursor solutions with a previously optimized bimodal
molecular weight composition [20,32] were prepared by combining
HMW alginate (modified with RGD) and LMW alginate (modified
with OGP analogs) at a 1:1 volume ratio and a final polymer concentra-
tion of 2 wt.%. For adjusting the final amount of each peptide (150 μM
RGD, 190 μMOGP analogs) unmodified and peptide-modified alginates
were combined at different ratios and dissolved ON in NaCl (Sigma,
0.9 wt.%). Alginate hydrogel films (OGP/RGD–Alg and RGD–Alg) were
prepared by spin-coating, as described in the next section. To obtain
cell-laden hydrogels for in vivo studies, hMSCs were added to an algi-
nate solution (15 × 106 cells/mL) with CaCO3 (Fluka, Ca2+/COO−

molar ratio = 0.288) and δ-gluconolactone (GDL, Sigma, Ca2+/GDL
molar ratio= 0.125), and themixturewas loaded (85 μL) into a QGelTM

3D disc caster and allowed to crosslink (20 min, RT) as previously de-
scribed [33]. Prior to use, alginate and GDL solutions were sterilized by
filtration (0.2 μm), while CaCO3 was sterilized by dry heat (160 °C,
120 min). Hydrogels were then prepared under aseptic conditions
(laminar flow hood). To analyze the release of OGP from alginate
hydrogels, OGP–Alg hydrogel discs were incubated in DPBS with or
without MMP-2 (60 nM) and incubated at 37 °C. The extent of MMP2-
triggered peptide cleavage (OGP release) was estimated at 0, 24 and
72 h using the fluorescamine assay, as described for the free peptides.

2.2.3. hMSCs proliferation on peptide-alginate hydrogels
To prepare alginate films, 100 μL of 1.5 wt.% peptide–alginate solu-

tions (with the same composition of the gel precursor solutions de-
scribed in Section 2.2.1) were deposited onto round plastic coverslips
(13 mm), which had been previously treated with positively-charged
poly-D-lysine (30 min in 0.1 mg/mL solution, followed washing and
drying) to improve surface-adhesion and retention of negatively-
charged alginate films. Samples were spun for 1 min at 9000 rpm (SCS
Cookson Electronics Spincoatermodel G3P-8) to ensure a homogeneous
distribution of the polymer. Films were then crosslinked with calcium
(0.1 M CaCl2, 0.01 wt.% NaN3, 10 min). Coverslips were transferred
to pHEMA-treated 24-well cell culture plates, washed twice with
sterile distilled water and culture medium, and seeded with hMSCs at
20000 cells/cm2. At each time point, 3H-TdR was added to the medium
(1 × 10−3 Ci/mmol) and cells were incubated for 24 h prior to analysis.
At 24 h, 48 h and 72 h, cells were recovered and analyzed as described
above.

2.3. In vivo studies with hMSCs-laden peptide–alginate hydrogels

2.3.1. Subcutaneous implantation in immunodeficient mice
All animal experiments were conducted following the protocols ap-

proved by the Ethics Committee of the Portuguese Official Authority on
Animal Welfare and Experimentation (DGV). Severe combined immu-
nodeficient (SCID) male mice (CB17/Icr-Prkdc scid/Crl, C17SSMA04S,
Charles River, Spain) with 6-week of age were used as recipients.
Animals were housed at 22 °C with a 12 h light/dark cycle and had
ad libitum access to water and food. Analgesics (Butorfanol) were



Table 2
Overview of primer pairs used for qRT–PCR.a

Gene name Ref. sequence Sequence of primers Length
(bp)

GAPDH NM_002046 F: 5′-AGCCACATCGCTCAGACAC-3′ 66
R: 5′-GCCCAATACGACCAAATCC-3′

ALP BC021289 F: 5′-AGAACCCCAAAGGCTTCTTC-3′ 74
R: 5′-CTTGGCTTTTCCTTCATGGT-3′

Runx2 NM_001024630.2 F: 5′-GTGCCTAGGCGCATTTCA-3′ 78
R: 5′-GCTCTTCTTACTGAGAGTGGAAGG-3′

OCN NM_199173.4 F: 5′-AGAGTCCAGCAAAGGTGCAG-3′ 171
R: 5′-TCAGCCAACTCGTCACAGTC-3′

VEGF165 AB021221.1 F: 5′-GCTGCACCCATGGCAGAA -3′ 204
R: 5′-CTCCAGGCCCTCGTCATTG-3′

a ALP—alkaline phosphatase; F—forward primer; GAPDH—glyceraldehyde 3-phosphate
dehydrogenase; OCN—osteocalcin; Runx2—runt-related transcription factor 2; VEGF165—
vascular endothelial growth factor 165; R—reverse primer.
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administrated 30 min prior to surgery. The animals were anesthetized
by inhalation of isoflurane, which was continuously delivered over the
course of surgery. The dorsal surgical sites were shaved and sterilized.
Single incisions were made and subcutaneous pockets were created for
the insertion of hMSCs-laden hydrogel discs (8.5 mm diameter, 1.5 mm
height). Three groups were tested: OGP2/RGD–Alg, OGP3/RGD–Alg
and RGD–Alg (control), and one of each was placed in each mouse
(n = 8 mice, 3 discs per mouse). After implantation, incisions were
closed with sutures and analgesics were administrated (0.05 mg
Buprenorphine HCl per kg). Animals were routinely monitored for
general appearance, activity, and healing of the implant sites, and
were euthanized after 4 weeks for implant retrieval. No mice were
lost during the study.

2.3.2. Histology
After explantation, collected samples that included the entire hydro-

gel discs and some adjacent tissueswere fixed in PFA (4 wt.%,ON at 4 °C)
and paraffin embedded. Three-micrometer cross-sections were obtain-
ed from 2 to 3 standardized transversal planes using a Thermo Scientific
HM550 microtome.

2.3.2.1. Histochemical staining. For analysis of alginate degradation/host
tissue invasion, sections were stained with Safranin-O/Light-Green
(Sigma, hematoxylin was used as counterstain), and glass slides (n = 4
mice, 2 slides permouse)were digitalized using a scanner (NanoZoomer
2.0, Hamamatsu). In each, the total area of the implanted disc was
first delineated and then images were analyzed and processed using
MeVisLab software (Fraunhofer MEVIS, Bremen, Germany), in order to
quantify the partial areas of residual alginate (% orange area) vs. invasion
tissue (% blue/green area). Results are presented as average % of host tis-
sue area. Collagen depositionwas detected using theMasson's trichrome
staining (Sigma, hematoxylin was used as counterstain), and calcium-
rich regions (mineralization) were detected using the alizarin red
staining (Sigma). Images were obtained using a Zeiss Axiovert 200 M
inverted microscope.

2.3.2.2. Immunolabeling. Expression of collagen type I (COL1) was
probed after antigen recovery with 10 mM Tris/1 mM EDTA (pH 9) for
35 min at 95–98 °C. Sections were incubated with rabbit anti-collagen
I primary antibody (ab21285 Abcam, 1:200, ON at 4 °C), and then
with Alexa Fluor 594-labeled goat anti-rabbit IgG (Invitrogen-Molecular
Probes, 1:1000, 1 h at RT) secondary antibody. For proliferating human/
mice cell detection, masked epitopes were exposed by treatment with
sodium citrate (10 mM, pH 6, 35 min at 95–98 °C). Sections were incu-
batedwithmouse anti-humannuclei (MAB4383-3E1.3Millipore, 1:400,
ON at 4 °C) and rabbit anti-Ki67 (ab15580 Abcam, 1:50) primary
antibodies. This was followed by incubationwithmouse-on-mouse bio-
tinylated anti-mouse IgG (MOM Kit Vector, 1:1000, 10 min at RT), and
finally with Alexa Fluor 555-streptavidin (Invitrogen-Molecular Probes,
1:500, 30 min at RT) and Alexa Fluor 488-labeled goat anti-rabbit IgG
(Invitrogen-Molecular Probes, 1:1000, 30 min at RT), respectively. All
sections were mounted in Fluoroshield™ with DAPI (Sigma). Control
sections for each immunolabeling excluded primary antibody staining.
From each disc, 4 whole-section images were obtained using Mosaix-
reconstruction (inverted microscope, Axiovert 200 M, Zeiss). In each
image, the total amounts of HuNu+ (human) and HuNu− (mouse)
and Ki67+ (proliferating) cells per unit area were counted. Results
are presented as average percentages of HuNu+ Ki67+ (proliferative,
human) and HuNu− Ki67+ (proliferative, mouse) cells.

2.3.3. qRT–PCR analysis of hMSCs gene expression
Total RNAwas extracted from hMSCs recovered from 3Dmatrices

(n = 3) using the RNeasy Mini Kit (Qiagen), as recommended by the
manufacturer. Subsequently, 0.25 μg of the total RNAwere used for ran-
dom hexamers first strand synthesis to generate single-stranded cDNA
using the SuperScript First-strand synthesis system for q Real–Time PCR
(qRT–PCR) (Invitrogen). RNA quantification was performed by using a
NanoDrop 1000 spectrophotometer. After the cDNA synthesis reaction,
qRT–PCRwas carried out in a total volume of 20 μL of amixture contain-
ing 1 μL of cDNA (100 ng of total RNA), 0.25 μMof each forward and re-
verse primers, and 1× iQ SYBR Green Supermix (Bio-Rad). qRT–PCR
experiments were run using an iQ5 (Bio-Rad) under the following con-
ditions: 95 °C for 3 min, followed by 30 cycles at 94 °C for 30 s, 60 °C for
45 s, and 72 °C for 30 s, and the last step at 55°C for 10 s. All reactions
were performed in duplicate. After completion of the PCR cycling, melt-
ing curves, obtained by increasing the temperature from 60 to 96 °C in
increments of 0.5 °C, were examined to ascertain specificity of the
PCR products. The housekeeping gene glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) was used as the endogenous assay control. Rel-
ative quantification of gene amplification by qRT–PCR was performed
using the cycle threshold (Ct) values and relative expression levels
were calculated as follows: 2−(Ct gene of interest−Ct GAPDHgene). The expres-
sion value for each target gene was normalized to the GAPDH value at
each time point. The sequence and length of the primer pairs used is in-
dicated in Table 2. For all primers used, the tool NCBI/Primer Blast was
used to confirm specificity for human genes only and later corroborated
by the absence of bands when tested in mouse cells.

2.4. Statistics

Statistical analyses were performed using GraphPad Prism 5.0 soft-
ware version 5.0a. The non-parametric Mann–Whitney test was used
to compare two groups, whereas comparison between more than two
groupswasperformedusing theKruskal–Wallis test followed byDunn's
comparison test. The critical level of statistical significance chosenwas p
b 0.05.

3. Results and discussion

3.1. Enzymatic cleavage of free and alginate-conjugated OGP analogs

Different OGP analogs were designed and synthesized by Fmoc/tBu
SPPS, where the target bioactive fragment YGFGG was either flanked
by a poly-G sequence (in OGP1), the MMP-cleavable substrate PVGLIG
(in OGP2) [24], or the PVGLIG-scrambled sequence GIVGPL (in OGP3).
Their molecular weight and purity were assessed by LC–MS and HPLC,
respectively (Table 1). Mass spectra were acquired in the positive
mode, and in all cases the base peaks at m/z 1207.67 and 1207.60, re-
spectively, were consistent with the peptide's molecular ion M+. Base
peaks were always significantly more intense than remaining peaks,
revealing that the target peptides were obtained as the major synthesis
product (purity ≥ 90%, Table 1).

OGP2 and OGP3 were incubated with MMP-2, and enzymatic cleav-
age was analyzed by reacting fluorescamine with the peptide's primary
amines to form fluorescentmoieties [28]. The emitted fluorescence was
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measured at the moment of incubation and after 24 h, to estimate the
accumulation of N-amino termini in excess over that of the intact sub-
strate, which in turn represents the extent of enzymatic cleavage. As
predicted, no significant hydrolysis was detected in DPBS, and the
OGP2 peptide was more efficiently cleaved by MMP-2 than OGP3,
with a statistically significant 4-fold increase in RFU in relation to
time 0 (p = 0.0286), and a 2 fold-increase in relation to OGP3 in
MMP-2 (p = 0.0286).

Both the intact peptides and their fragments, obtained after enzy-
matic digestion, were analyzed by LC–MS (Fig. 1). In both cases, only
one major peak, corresponding to the original peptides (MW =
Fig. 1. LC–MS analysis of OGP-like peptides after 24 h of incubation with MMP-2.
(A) OGP2: three peaks were chromatographically separated whose mass spectra were
consistent with extensive MMP-2-mediated cleavage at the expected site, yielding frag-
ments GGPVG (a, m/z [MH]+ = 386.18, m/z [M2H]+ = 771.07] and LIGGYGFGG (b, m/z
[MH]+ = 840.27); some unspecific cleavage at G↓Y to produce GGPVGLIGG (c, m/z
[MH]+ = 726.33) was also observed. (B) OGP3: three peaks were chromatographically
separated whose mass spectra were consistent with minor and unspecific cleavage of
the parent peptide, which remained as the major component of the incubation mixture
after 24 h (f, m/z [MH]+ =1207.40, m/z [MH2]2+ = 604.20); fragments detected as
minor components were YGFGG (d, m/z [MH]+ = 500.13, m/z [M2H]+ = 998.87) and
GGGIVGPLG (e, m/z [MH]+ =726.33), arising from unspecific cleavage at G↓Y.
1207.34), was present at the moment of incubation; also, when pep-
tides were incubated in DPBS without enzyme, their integrity was
fully maintained, demonstrating their hydrolytic stability (data not
shown). After 24 h of incubation with MMP-2, and in the case of
OGP2, the original sequence was present in only minute amounts in
the recovered sample, whereas two major fragments were detected
with retention times of 9.70 and 14.06 min whose mass spectra were
respectively compatible with sequences GGPVG and LIGGYGFGG
(Fig. 1A), as expected fromMMP-2-mediated cleavage at the predicted
scissile bond (G↓L, see Table 1). Some unspecific cleavage seemed to
have also occurred at G↓Y, as suggested by the minor peak co-eluting
with the remainder of the original OGP-2 sequence at 14.85 min, and
whose mass spectrum was compatible with fragment GGPVGLIGG
(Fig. 1A). In what concerns OGP3, the presence of the original peptide
sequence in considerable amounts could be confirmed by the fact that
the major component of the recovered sample, with a retention time
of 15.02 min, presented a mass spectrum whose base-peak matched
OGP-3 molecular ion at m/z 1207.40 (Fig. 1B); still, minor peaks were
eluted at 13.44 and 12.38 min (Fig. 1B), whose mass spectra were
respectively compatible with fragments GGGIVGPLG (m/z [MH]+ =
726.33) and YGFGG (m/z [MH]+ = 500.13). Again, this is consistent
with unspecific cleavage of OGP3 between G and Y (see Table 1). Ac-
cording to Turk et al. [34], the scissile bond at GY might in fact exhibit
some susceptibility to MMP-2 digestion, although much lower than
that of GL in PVGLIG. Interestingly, this unspecific G↓Y cleavage will
also result in the release of YGFGG (OGP10–14).

Peptide cleavage kinetics was further analyzed using FRET-peptides.
These exhibit internal fluorescence quenching when intact, but emit
fluorescence once cleaved [35], providing a useful tool to monitor pep-
tide digestion in real-time. The increase in emitted fluorescence (RFUs)
along the first hour of incubation is presented in Fig. 2A and B. In
both cases, no hydrolysis occurred in DPBS without MMP-2, and both
peptides were cleaved in FBS, even in the absence of added MMP-2.
However, while cleavage of OGP2 increased in the presence of
MMP-2, this was not observed with OGP3. The fluorescence emitted
by the two FRET–OGP analogs when incubated in DPBSwith or without
MMP-2 wasmeasured again after 48 h of incubation (Fig. 2C). In accor-
dancewith the previous results obtained using the fluorescamine assay,
some cleavage of OGP3 occurred in the presence of MMP-2, but OGP2
was cleaved to a much higher extent.

The two OGP analogs were cleaved in the presence of FBS, suggest-
ing that both may be hydrolyzed to some extent by indeterminate
serum proteases. Under in vitro (cell cultures) and in vivo conditions,
this feature may account for unspecific OGP release from both peptides.
Similar observations have been previously reported by Chau et al.
[36–38], whodesigned twodextran–peptide–methotrexate (MTX) con-
jugates for tumor targeting, where the peptide linkers corresponded to
the same sequences used in this study (PVGLIG and GIVGPL) [36–38].
In vitro, GIVGPL–dextran conjugates were only minimally hydrolyzed
by MMP-2, and PVGLIG–dextran conjugates released the drug in the
presence of MMP-2, but remained intact in all the serum-containing
conditions [38]. However, in vivo, in amore complex proteolytic scenar-
io [37], drug release also took place via cleavage by lysosomal enzymes,
whichwere able to degrade both peptide linkers, leading to nonspecific
drug (MTX) release. This probably accounted for the tumor-inhibiting
ability of MTX–GIVGPL–dextran conjugate, despite its lack of sensitivity
towards MMPs [37].

As shown in Fig. 3, OGP2 retained the susceptibility to MMP-2-
cleavage in alginate-conjugated form (OGP2–Alg). Similarly to that
observed with the free peptides, OGP3–Alg was also cleaved to some
extent, but at a slower rate.

Overall, this part of the study provided proof-of-concept on the cor-
rect design of protease sensitive OGP2–Alg conjugates, in the sense that,
as expected, these were sensitive to MMP-2 mediated cleavage. Yet,
both OGP–Alg may be useful platforms for the delivery of OGP10–14-
like fragments.
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3.2. Effect of free and alginate-conjugated OGP analogs in hMSCs: in vitro
screening studies

To assess the bioactivity of OGP analogs, hMSCs were cultured in the
presence of free peptides (added to serum-free culture medium) or
OGP–Alg conjugates (used as culture substrates in the form of hydrogel
films), and cell proliferation was analyzed by the 3H-TdR assay. Cells
were cultured in serum-free conditions to measure the direct action of
OGP analogs on hMSCs proliferation without masking effects from
serum-OGP. As soluble peptides, the classical forms of OGP and
OGP10–14 have been shown to regulate the proliferation of osteoblastic
and stromal cells in a biphasic-dependent manner, indicative of an
autocrine/paracrine mode of action [7,14]. As depicted in Fig. 4, we
were also able to demonstrate that all the OGP analogs tested in this
study enhanced hMSCs proliferation after 24 h in relation to the control
(culture medium with 0.5% v/v FBS).

The effect of OGP-Alg conjugates was analyzed using OGP-releasing
(OGP2) vs. non-releasing (OGP1) formulations, to evaluate the impor-
tance of OGP availability on its bioactivity. The tested hydrogels also
contained RGD to promote cell adhesion to the films, and RGD–Alg
was used as a control. As depicted in Fig. 4, no significant differences
were observed between the different groups after 24 h. However, after
Fig. 2. FRET analysis of OGP analog cleavage. Kinetics of (A) FRET–OGP2 and (B) FRET–
OGP3 cleavage along 1 h of incubation in DPBS or FBS, with or without MMP-2 (10 nM).
Samples were maintained in the microplate reader at 37 °C and the emitted fluorescence
was monitored in real time. Results are presented as fold change in relation to time 0, as
mean ± SD (n = 3). The extent of enzymatic cleavage after 48 h of incubation (37 °C)
in DPBSwith and withoutMMP-2 is depicted for (C) FRET–OGP2 and FRET–OGP3. Results
are presented as fold change in relation to the control (without MMP-2) as mean ±
SD (n = 3). Symbols denote statistically significant differences in relation to (*) DPBS
(p = 0.05) and (δ) FRET–OGP3 48 h (p = 0.05).
48 h, both OGP analogs enhanced hMSCs proliferation in relation to
the control. This effect was even more pronounced after 72 h for
OGP2–Alg, but it was no longer observed with OGP1–Alg, suggesting
that the availability of the active fragment, which increases upon re-
lease, may be important for its bioactivity. This is consistent with previ-
ous studies demonstrating the low impact of surface-immobilized
OGP10–14 on pre-osteoblastic MC3T3-E1 cell proliferation [17].

To evaluate the effect of OGP analogs on hMSCs differentiation only
free peptides were used, as the stability of alginate hydrogel films was
lost after 7 days in culture, compromising the ALP assay. After 1 week
of culture in BM, ALP activity was increased in the presence of OGP, ex-
ceptwhenOGP2was used at 10−5M. In OM, ALP activity increased dra-
matically in the presence of OGP2, especially when present at 10−12 M,
a concentration that has been defined as being within the optimal
effective range in previous studies, and which typically lies between
10−13 M and 10−8 M [7,14,39].

3.3. In vivo studies with hMSCs-laden OGP–alginate hydrogels

After confirming that both OGP2 and OGP3 analogs release bioactive
YGFGG-like fragments, the in vivo performance of alginate hydrogels as
depots for local co-delivery of OGP and hMSCs was evaluated. The ade-
quacy of this type of hydrogels for hMSCs entrapment has been previ-
ously demonstrated in vitro, namely in terms of their ability to
preserve cell viability and support osteogenic differentiation [30,40,
41], and also in vivo [22]. For this first set of studies, implants were per-
formed at an ectopic site instead of a bone defect, to mitigate the effect
of osteoinductive signals intrinsically present at the bone compartment,
and to more specifically evaluate the direct impact of OGP analogs on
hMSCs. Both OGP-releasing analogs were tested (OGP2/RGD–Alg and
OGP3/RGD–Alg hydrogels) and RGD–Alg hydrogels were used as a con-
trol. Given the previous in vitro results, both OGP-hydrogels were ex-
pected to locally release a bioactive portion of OGP, via proteolytic
cleavage of the peptide linkers, albeit at different rate: a faster release
from OGP2–Alg, which incorporates the MMP-sensitive PVGLIG linker,
was anticipated.

3.3.1. Hydrogel degradation, host tissue invasion and vascularization
The degradation pattern of implanted cell-laden hydrogels was first

characterized, as it is a relevant determinant of their in vivo perfor-
mance. Ideally, it should take place within a balanced time frame. It
should not prevent cell release, or impede the invasion of host tissue,
but should allow the deposition of new ECM before the complete
disintegration/dissolution of the hydrogels. As depicted in Figs. 5, 4
weeks after implantation it was still possible to localize a high density
Fig. 3. OGP release from OGP–Alg hydrogels. The fluorescamine assay was used to deter-
mine the amount of free amine groups present in the supernatant, which increases as
the peptides are cleaved, releasing OGP-like fragments. Results are presented as fold
change in relation to t= 0 asmean values± SD (n= 3). Symbols denote statistically sig-
nificant differences in relation to (*)w/oMMP2 (p= 0.0383) and (δ) OGP3 (p= 0.0383).



Fig. 4. Effect of free and Alg-conjugated OGP analogs on hMSCs behavior. (A, B) Cell
proliferation upon exposure for 24 h to (A) free or (B) Alg-conjugated OGP analogs,
assessed by the 3H-TdR assay. (C) Expression of ALP activity by hMSCs after 7 days
of culture in the presence of free OGP analogs (10−5 M or 10−12 M) added to BM or
OM. Cells cultured in the absence of peptides were used as controls. Symbols denote sta-
tistically significant differences in relation to: (*) no peptide within BM or OM group
(** p b 0.02; *** p b 0.005); and (δ) OGP2 (10−5 M). (D) ALP staining of control and
OGP2 (10−12 M)-treated hMSCs cultures in TCPS under OM (scale bar = 100 μm).

Fig. 5. In vivo degradation and host tissue invasion of peptide–Alg hydrogels. (A) Images of
Safranin-O/Fast green-stained paraffin-sections of hMSCs-laden Alg hydrogels (Alg in
orange-red, connective tissue in blue-green) at day 0 (scale bar: 100 μm), or after 28
days of implantation within the different hydrogels (scale bar: 1 mm). (B) Lower magni-
fication images of the explanted hMSCs-laden Alg hydrogels. (C) Quantitative analysis of
host tissue invasion (% of blue area per disc) at day 28. Alginate fragmentation/host tissue
invasionwasmore significant inOGP groups. Data is presented asmean±SD (n=4mice,
2 sections per mice), * denotes statistical significant differences in relation to control (p=
0.0104). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

164 F.R. Maia et al. / Journal of Controlled Release 189 (2014) 158–168
of hMSCs inside the peptide–alginate carriers. Hydrogel fragmentation
and host tissue invasion (blue-green) were detected in all samples,
but weremore significant in OGP groups, probably because the stiffness
(G', elastic component of the shear moduli) of these hydrogels was
slightly lower than that of the control hydrogels, as determined by
oscillatory shear rheometry (supplementary data). Increased implant
degradation in the presence of immobilized OGP peptides has been re-
ported in previous studies, where these were used as covalent
crosslinkers for amino acid-based poly (ester urea) materials [42]. In
that case, the higher degradation was explained by the additional free
volume in the polymer plugs imparted by the OGP crosslinker and in-
creased swelling due to the presence of peptides [42]. The pattern of
connective tissue (blue-green) deposition by host cells did not evidence
the classical fibrous capsule formation, with organized fibers around a
non-degradable implant, and instead resembled a reorganization of
the matrix as the material is degraded, which would be anticipated
and is beneficial in a regeneration scenario. We observed a similar
outcome in a previous study where alginate hydrogels were implanted
in the same animal model [22]. The progressive degradation of the hy-
drogel matrices is expected to result in the release of hMSCs over time
(Section 3.3.2), and in the diminution of their 3D confinement, which



Fig. 6. Implant vascularization and VEGF165 expression by transplanted hMSCs.
(A) Perfused blood vessels (black arrows) at the implant site were identified by
MT-staining (erythrocytes in red; * Alg in pale blue; host tissue in green/blue; the dashed
line represents host tissue/Alg interface, the OGP3 group is presented as an example; scale
bar: 10 μm). (B) Quantitative analysis of the average number of vessels at the implant site.
Data is presented as mean ± SD (n = 4 mice, 6 sections per mice). (C) Expression of
VEGF165 mRNA by transplanted hMSCs analyzed by qRT–PCR (n = 3 mice). Results
were normalized internally with GAPDH. Symbols denote statistically significant differ-
ences in relation to (*) RGD–Alg (p = 0.004) and (δ) OGP2/RGD–Alg (p = 0.0359). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 7. Expression of collagen type 1 at the implant site. (A) Representative images of COL1
(in red) expression on tissue sections from the different groups at day 28 (scale bar: 10 μm).
(B) Quantification of % of COL1+cells relative to the total number of cells. Data is presented
asmean± SD (n= 4mice, 4 sections per mice), * denotes statistical differences in relation
to the control (p = 0.0019). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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will be important for prolonged viability. In the future studies, further
optimizations of the current system may be envisaged, for example,
via inclusion of the protease-sensitive peptides as crosslinkingmoieties,
which would allow cells to remodel their pericellular area and create
additional space to migrate, proliferate and synthesize new ECM [22].

Perfused blood vessels were detected at the implant site in all
groups, located mainly within the newly formed tissue but also within
the hydrogels (Fig. 6A, where the OGP3 group is depicted as an exam-
ple). Neo-vascularization was enhanced in OGP3/RGD–Alg, compared
to the other groups tested (Fig. 6). It is well accepted that proper vascu-
larization is a prerequisite for the survival of transplanted cells and new
tissue formation. Also, it is well established that there is a key interplay
between angiogenesis and osteogenesis [21]. So, an osteoinductive
compound capable of also stimulating neo-vessel formation would
certainly represent a promising therapeutic agent for bone regenera-
tion. Interestingly, an effect of OGP on implant vascularization has
been recently reported [42], but the underlying mechanisms remained
unclear and, to our knowledge, the authors have not further investigat-
ed this phenomenon. In another study, Bocci et al. demonstrated the
lack of mitogenic and pro-adhesive activity of OGP on microvascular
endothelial cell cultures [43]. Here, we investigated whether the level
of neo-vascularization correlated with the secretion of proangiogenic
factors by transplanted hMSCs [44], and examined the expression of
vascular endothelial growth factor 165 (VEGF165), which represents
one of themost potent endothelial cell mitogens. Unexpectedly, our re-
sults revealed higher VEGF165 mRNA expression in the OGP2/RGD–Alg
group, as compared to the other groups,which also exhibited higher an-
giogenic potential in a chick embryo chorioallantoic membrane (CAM)
assay (supplementary data). So, most probably, the OGP3/RGD–Algma-
trices are more vascularized simply because their faster degradation fa-
cilitated the ingrowth of neo-vessels.

3.3.2. ECM production and cell proliferation at the implant site
ECM deposition (COL1) at the implant site was detected in all the

formulations (Fig. 7). OGP groups, especially OGP3/RGD–Alg, stained
more intensely for COL1 than the control, and the new collagenous ma-
trix appeared more uniformly distributed throughout the implant area.
Within the hydrogels, COL1 was detected intracellularly and in the
pericellular space, indicating that transplanted hMSCs were able to
produce and secrete their own ECM.

To evaluate the effect of OGP on cell proliferation, transplanted
hMSCs were distinguished from mouse cells by immunolabeling using
a human nuclei-specific antibody (HuNu). Although the in vitro studies
with hMSCs cultures demonstrated a mitogenic effect for all the tested
OGP analogs in their soluble form and as OGP–Alg hydrogel films, we
have not been able to demonstrate any significant outcome of OGP2
or OGP3 on cell proliferation in vivo, at least after 4 weeks of implanta-
tion (Fig. 8). A few proliferating cells (Ki67+), both from human
(HuNu+ hMSCs) and mouse (HuNu− cells) origins, have been detect-
edwithin the hydrogel and adjacent host tissue, but therewas no statis-
tically significant difference between groups in terms of % of



Fig. 8. Proliferative vs. non-proliferative human and mouse cells at the implant site.
(A) Double immunolabeling with anti-HuNu (red) and Ki67 antibodies (green). Nuclei
were counter-stained with DAPI (blue), scale bar represents 5 μm: (left) HuNu+ Ki67−
non-proliferative hMSCs; (center) HuNu+ Ki67+ proliferative hMSCs; and (right)
HuNu− Ki67+ proliferative mice cells (B) percentage of proliferative hMSCs (HuNu+
Ki67+) in relation to total hMSCs (HuNu+). (C) Percentage of proliferative mice cells
(HuNu− Ki67+) in relation to total mice cells (HuNu−). Data is presented as mean ±
SD (n= 4 mice, 4 sections per mice). (D) HuNu+ cells (arrows) were also detected out-
side, integrated in the host tissue. The dashed line represents tissue/alginate interface.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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proliferating cells, even if mean values were slightly higher in OGP3
group. This may be in part related with the follow-up time frame. Possi-
bly, OGP analogs may increase cell proliferation in an early stage in the
regenerative process but, after 4 weeks of implantation, hMSCs were
probably already transiting from a proliferative to a maturation phase,
Fig. 9. Osteogenic differentiation of transplanted hMSCs. (A) qRT–PCR analysis of Runx2,
ALP andOCNmRNAexpression. Data is presented asmean±SD (n=3mice), (*) denotes
statistical significant differences (p = 0.038) relative to RGD–Alg control. Results were
normalized internallywith GAPDH. (B)Histological analysis of collagenousmatrix deposi-
tion (Masson's trichrome staining; blue color indicates collagen deposition, * repre-
sents alginate) and matrix mineralization (alizarin red staining; red color indicates
calcium deposition, * represents alginate), which were detected in all groups (image at
the center, OGP2; higher magnification images at the bottom, all formulations). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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which seems to correlatewith our data on hMSCs expression of lineage-
specific genes (see below). A transitory effect of surface-immobilized
OGP and OGP10–14 on cell proliferation has been previously shown in
osteoblastic MC3T3-E1 cultures, where a positive outcome was ob-
served at day 3, but was no longer seen at day 7 when cells were pre-
sumably in a more mature state [17].

Noteworthy, the human–nuclei specific labeling allowed us to con-
firm that transplanted hMSCs were located not only inside the alginate
matrix, but also outside, integrated in the host tissue (Fig. 8D), demon-
strating that the hydrogels effectively acted as cell-delivery systems.

3.3.3. Osteogenic differentiation of transplanted hMSCs
Differentiation of transplanted hMSCs was analyzed by quantifying

mRNA expression of Runx2, ALP and OCN osteogenic markers (Fig. 9).
In what concerns the expression of Runx2 and OCN, a key osteoblast
transcription factor and its target gene, respectively, we found higher
levels of OCN expression in OGP groups, with a concomitant decrease
in Runx2 expression, which is consistent with published results on the
temporal mRNA expression of these two bone-specific markers during
the development of the osteoblast phenotype in MC3T3-E1 cultures
[45]. The expression of ALP mRNA was also detected in all samples,
being higher in OGP2/RGD–Alg than in the other groups. Taken togeth-
er, these results demonstrated that hMSCs within OGP-releasing
hydrogels were in a more mature stage of osteoblastic differentiation,
as compared to the control, suggesting that the immobilized OGP pep-
tides retained their bioactivity. Osteogenic differentiation of
transplanted hMSCs in all groups was also confirmed at the protein
level by histological analysis (Fig. 9B and C), which showed that
hMSCs were able to produce and deposit an endogenous collagenous
matrix (Masson's trichrome staining) at their pericellular space, and
were also able to mineralize it (alizarin red staining). An effect of OGP
on OCN expression has been previously demonstrated in other in vivo
experimental settings, namely during healing of femoral fractures in
rats [12]. After parental administration of OGP for 1 week, systemic
and local mRNA expression of different growth factors were examined
after 1, 2, 3 and 4 weeks [12]. Local expression of OCN increased earlier
in the OGP-treated group, and its systemic expression remained
increased throughout the 4-week period [12].

One recognized limitation of this study is that all groups have been
implanted in the same animal. Thus, circulating peptides released
from OGP-hydrogels may have had a systemic effect, affecting also the
response observed in the control group. Even so, overall, the most
promising results were obtained with the OGP groups, confirming our
initial hypothesis on the significance of OGP/hMSCs co-delivery sys-
tems. Differences between the two OGP analogs may be related with
their different release kinetics and/or the potency of the released bioac-
tive fragment (LIGGYGFGG in OGP2 and YGFGG in OGP3).

This and other open questions should be addressed in future exper-
iments. In particular, it will be essential to test the proposed system
using clinically relevant models, such as critical-sized bone defects or
bone fractures, where the effect of locally delivered OGPmay be poten-
tiated by the adjuvant action of osteoinductive stimuli, naturally present
in the bone compartment.

4. Conclusions

This study provided proof-of-concept on the correct design of
OGP–Alg conjugateswith protease-sensitive linkers, and demonstrated
their usefulness as a platform for the in situ co-delivery of synthetic OGP
analogs and hMSCs. Two different peptides were tested and both
showed interesting effects.While in vitroOGP2 presented better results
probably due to increased bioavailability, a positive in vivo outcomewas
obtained with both OGP analogs. Importantly, we demonstrated that
the local co-delivery of bioactive OGP analogs and hMSCs from inject-
able hydrogels promoted the osteogenic differentiation of transplanted
hMSCs in an ectopic setting. This novel strategy might provide a useful
alternative for minimally invasive healing of small bone defects.
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