
MAESTROS: Multi-Agent Simulation
of Rework in Open Source Software

Thiago R. P. M. Rúbio, Henrique Lopes Cardoso
and Eugénio da Costa Oliveira

Abstract Rework Management in software development is a challenging and com-

plex issue. Defined as the effort spent to re-do some work, rework implies big costs

given the fact that the time spent on rework does not count to the improvement of the

project. Predicting and controlling rework causes is a valuable asset for companies,

which maintain closed policies on choosing team members and assigning activities

to developers. However, a trending growth in development consists in Open Source

Software (OSS) projects. This is a totally new and diverse environment, in the sense

that not only the projects but also their resources, e.g., developers change dynam-

ically. There is no guarantee that developers will follow the same methodologies

and quality policies as in a traditional and closed project. In such world, identify-

ing rework causes is a necessary step to reduce project costs and to help project

managers to better define their strategies. We observed that in real OSS projects

there are no fixed team, but instead, developers assume some kind of auction in

which the activities are assigned to the most interested and less-cost developer. This

lead us to think that a more complex auctioning mechanism should not only model

the task allocation problem, but also consider some other factors related to rework

causes. By doing this, we could optimise the task allocation, improving the develop-

ment of the project and reducing rework. In this paper we presented MAESTROS,

a Multi-Agent System that implements an auction mechanism for simulating task

allocation in OSS. Experiments were conducted to measure costs and rework with

different project characteristics. We analysed the impact of introducing a Q-learning

reinforcement algorithm on reducing costs and rework. Our findings correspond to

T.R.P.M. Rúbio (✉) ⋅ H.L. Cardoso ⋅ E. da Costa Oliveira

LIACC / DEI, Faculdade de Engenharia, Universidade Do Porto,

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

e-mail: reis.thiago@fe.up.pt

H.L. Cardoso

e-mail: hlc@fe.up.pt

E. da Costa Oliveira

e-mail: eco@fe.up.pt

© Springer International Publishing Switzerland 2016

P. Novais et al. (eds.), Intelligent Distributed Computing IV,

Studies in Computational Intelligence 616,

DOI 10.1007/978-3-319-25017-5_6

61



62 T.R.P.M. Rúbio et al.

a reduction of 31 % in costs and 11 % in rework when compared with the simple

approach. Improvements to MAESTROS include real projects data analysis and a

real-time mechanism to support Project Management decisions.

1 Introduction

Software development is facing a big change. Traditionally, software development

companies have closed policies on choosing developer teams and rigorous control

over the task allocation between them. In the last few years we have seen a massive

adoption of Open Source Software (OSS) [1], based on free code in which any other

developer can contribute by free will. Open source developers could be anywhere in

the world, have learnt different techniques and ways of working. There is no guar-

antee that they will follow the same strategies and quality policies when compared

with a traditional and closed project.

Resolving problems that were not solved consistently or bugs created by devel-

oper mistakes is called Rework, an additional and not planned work represented by

the effort cost (in time and money) spent in order to resolve a problem with a require-

ment that was previously considered solved. Rework occur in both closed and open

projects, but closed projects have many ways to early identify and control rework

causes that open projects do not. To be able to manage rework in OSS is a neces-

sary and important step to reduce project costs and to help project managers to better

define their strategies to software improvement [2].

When considering open projects, a big problem is how to identify the main causes

of rework. Developers introduce rework due to lack of specification, missing veri-

fications or even unplanned new properties. In the literature, rework is considered

a manifestation of the lack of communication between developers and a cause of

stressed or uncommitted personnel [3]. Finding rework causes could help us to dis-

cover how developer’s behaviours affect projects.

We observed that frequently activities are assigned to developers that are inter-

ested. There are no fixed team and the assignment of the activities rely only on devel-

oper’s cost (mostly in time or even monetary) of development. Actually, this situation

resembles a simple auction mechanism in which the activities are allocated to the less

costly developers. A more appropriate mechanism would consider also other impact-

ing factors such as developer experience and its past results on achieving activities

completion with success. This motivates our work: we aimed at simulating this task

allocation process using a MAS in order to understand, analyse and propose some

optimisation that could help to reduce rework.

In this paper we present a multi-agent system for simulating the task allocation

process in open source software. We seek the best opportunities: low development

cost with minimum rework. We have evaluated the performance of our model in

terms of the number of re-incident activities and their rework cost together with

project final cost. Results show that our approach can get close-to-budget projects



MAESTROS: Multi-Agent Simulation of Rework in Open Source Software 63

final cost, even with some rework present. Further developments of our system could

be a good ally to project managers.

The rest of this paper is structured as follows: In Sect. 2 we present the Rework

problem in Open Source Software. Section 3 discusses the project management

process workflow. In Sect. 4 we describe the architectural design of our system.

Section 5 presents the experimental evaluation of the model. We discuss the find-

ings of this work and point lines of future research in Sect. 6.

2 Related Work

Open Source Software (OSS) is a trend in software development. Since late 1990,

an uncountable number of projects have grown in this environment proving it can be

successful and profitable [4]. Research interest in OSS is much diversified [5]. The

open nature of the software creates a great difficulty in managing resources, plan-

ning and delivering projects. As mentioned by Raja et al. [6], resource allocation

and budgeting in OSS is even a harder challenge. The cost of the development is an

important factor for the success of a project, making the search for reducing rework

an important matter. In Sect. 1, we introduced rework as the effort and consequently

monetary cost of trying to fix something that was already considered a solved prob-

lem. Rework is, in fact, a big problem in software engineering, consuming big part of

the project budget (40 % up to 70 %) [7]. Rework could be explained by human prob-

lems in project management like communication, formation and work conditions

[3, 7] and the Industry believes that great part of rework could be early identified

and avoided, but until now not much attention has been paid in studying rework.

Previous works have characterised the relation between rework and developers

actions regarding their expertise and work profiles. Rbio et al. [8] divided develop-

ers into members and volunteers, in which the first are recognised by Project Owners

because of their knowledge on some specific project or are permanent members of

a development team. Volunteers, on the other hand are developers that might con-

tribute spontaneously by their interest on the project. Members are usually have a

lower probability of generating rework (about 10 %), while volunteers have a higher

chance (30 %). By other side, the development cost of a member is known to be

more than volunteers work [8, 9]. The other actor interested in this process is the

Project Manager (PM). Although Project Managers work under different methodolo-

gies, their basic task is to distribute projects activities and manage the assignment of

tasks to the available developers [10].

In traditional development the tasks are imposed, opposing to more flexible

methodologies, where developers are able to discuss or vote their willingness for

working in some task [11]. As referred in Sect. 1, process of task assignment in OSS

is somewhere between this two: the Project Manager tries to choose the developer

that best fits to some activity by its reputation, cost and availability [12].

Each actor in this system has its own decisions: developers must decide whether

they are interested on developing a specific activity, determine how their assigned



64 T.R.P.M. Rúbio et al.

tasks will be accomplished, and even decide on which bids to propose. On the other

hand, managers also make decisions in their effort on trying to reduce reworks and

costs, while maximising the number of activities successfully concluded. This under-

lying autonomy of the actors involved lead us to an agent-based approach. Each soft-

ware agent represents one actor in the process, behaving accordingly to its own goals.

In multi-agent systems the autonomous entities (agents) can decide whether or not

to accomplish some task and can deal with self and community goals [13].

The importance of mapping developers as agents relies on their free will to con-

tribute to projects and the relationships built from their interactions. In fact, although

many investigations about open source deal with some properties of OSS, like the

actors roles in [14], very few discussions in the literature model the development

process in this environment as a multi-agent system [15, 16].

Simulation is a good approach in this case, where the difficulty of gathering and

analysing data on-line with real open source projects is high. Since the platforms

restrain the access to data and most projects decisions are private, analysing the task

allocation in real-time is hard and complex. The simulation, in the other side, needs

to represent well the behaviours and the mechanisms used by agents to coordinate

their actions. Once the abstracted characteristics represent significantly the behav-

iour of the actors, a multi-agent simulation could be used to investigate the impact of

changing various characteristics of the project, for instance, how would PM behave

when the number of available developers grow or even how to automate the negoti-

ations about costs where the agents represent the interests of the real developers.

We do not intend to create a new method for optimising task allocation, but rather

applying automated scheduling and negotiation intelligent techniques to help on the

improvement of the decisions taken by project managers in open source projects.

our investigation contributes by creating a first attempt to model the task assignment

process in OSS with a MAS. Moreover, using learning strategies could lead to reduce

the rework on this kind of projects.

As an introductory work, this opens opportunities to future works in this area and

widens the applicability of MAS to a growing and rich environment.

3 Model Conceptualisation

The OSS development process described on the previous sections give us an insight

about how to model actors and their behaviours. Transcribing agents goals, actions

and decisions could help us to create a simulation model that represent how task

assignment work on OSS projects [15].

Rubio et al. [8], analysed real data from big real open source projects such as

Apache projects.
1

For simplicity, we are going to consider only the types of devel-

opers described in their work: members and volunteers. Regardless of its type, a

developer can finish its tasks successfully or not. When the conclusion of an activity

1
Apache Software Foundation—http://www.apache.org/.



MAESTROS: Multi-Agent Simulation of Rework in Open Source Software 65

fails, the Project Manager must reassign it causing an increase of cost, the so-called

rework. When the current set of activities is successfully concluded, the Project

Manager reports it to the Project Owner (PO), the person that knows the next mile-

stones on the project or new set of activities to deliver to the development team. We

characterise three main agents in the OSS environment: (1) Project Manager (PM),

(2) Developer and (3) Project Owner. Developers are also divided into two sub-

groups: (a) Members and (b) Volunteers.

The Project Manager has the knowledge about a set of activities and the estimated

cost for completing each one of them. The Project Manager must gather information

about the interested developers and assign the activities to the best opportunities,

considering risk, cost and other factors. Similar to an auction protocol, the PM wants

to “sell” the activities to developers, who “bid” with the cost of development.

PM is, then, responsible to select the best developer for each activity. The com-

plete process is represented in Fig. 1 and starts with the PM checking if there are

to-do activities and selects one of them (based on priority or cost, for example). The

information about the activity is spread among the developers who are not currently

working and in case they are interested on developing such activity, they must send

a proposal (cost of work) to the PM. For members this is mandatory and they must

always present proposals. Volunteers could refuse to work on some activities. The

PM evaluates the proposals received and if there are none, the activity goes back to

the to-do list and the process starts again. On the other hand, if there are proposals,

the PM awards the winner and sends the refusing message to the other bidders. At

this time the winner developer starts the development process. This developer will

not participate in other auctions until current work is done. The PM repeats the cycle

with other activities until there are no more activities or available developers. Finally,

when the developer finishes its work, it becomes available again by notifying the PM,

who is responsible to check whether the activity was successfully completed or not.

In case the developer has failed, the activity is put back into the to-do list. When the

developers work is well done, the activity is put in the completed list. The process

finishes when all the activities are completed.

In order to simulate this environment and analyse how the assignment process

could be optimised in terms of the rework introduced and process completion, we

Fig. 1 Task assignment process



66 T.R.P.M. Rúbio et al.

have proposed a multi-agent simulation. We analyse the problem contemplating the

decisions taken by the Process Manager and propose the use of a reinforcement learn-

ing algorithm in order to reduce rework. When compared to a simple approach that

only consider the available bids, the Q-Learning approach uses a more complex rea-

soning mechanism, by considering also the experience and past results from devel-

opers. Section 4 presents our model characteristics and architecture.

4 MAESTROS Architecture

We have analysed how Project Managers can distribute project tasks between avail-

able developers. As explained, work in on-line real projects is a complex mat-

ter. In order to study how the behaviours of the agents and how project manager

decisions affect project results, we have created a simulation system that implements

the process described on Sect. 3. Although there are many agent-based simulation

platforms available, we wanted to create a flexible system that allows us to expand

our work in the future, connecting the simulation with the real on-line project. Thus,

we have constructed MAESTROS (Multi AgEnt Simulation of Rework on Open

Source Software).

Developed in Java, MAESTROS use JADE
2

multi-agent framework [17] in its

core. JADE allows us to define agent behaviours that map actors reactions in different

steps of the task assignment process.

We assume that the development cost of an activity is directly proportional to the

time in which a developer is working on it. Basically, this simplifies the modelling

of the inner development process of one activity into a time-frame cost problem.

In our system, the cost of an activity is the portion of the time the developer will

be occupied working on it. We do not simulate the working process described by

one activity like coding generation or other kind of documentation by developers.

Although this may seem a simplistic model, the focus here is whether the choices

made could be optimised in order to reduce rework.

MAESTROS consists in three main parts: (1) Communication layer; (2) Negoti-

ation mechanism and (3) Decision strategy. Regarding to the Communication layer,

MAESTROS agents communicate through messages, sending messages with the

desired content and the semantics of the information. For this, JADE We have used

FIPA ACL messages [18], native on JADE platform. ACL messages uses standard-

ised performatives, a special field on the message that contextualises the required

action.

In the Negotiation Mechanism we model how the task allocation occurs. As

explained, our model is a very simple auction mechanism. The Contract Net Pro-

tocol [19] is a good strategy that fits just our needs. The algorithm consists on one

round of bidding in order to select the winner that will get the item or service auc-

tioned. Activities could be seen as the services the Project Manager wants to sell

2
http://jade.tilab.com/.



MAESTROS: Multi-Agent Simulation of Rework in Open Source Software 67

Fig. 2 Communication on

the assignment process cycle

and developers are the buyers that bid (make a proposal) in terms of working cost of

an activity. In fact, the Project Manager just needs one round to decide who will be

responsible for executing the activity, assuring the Contract Net as a good strategy

to MAESTROS.

Our implementation of the protocol follows Fig. 2, starting when the Project Man-

ager identifies a to-do activity and want it to be developed. He makes an announce-

ment, sending a message with the performative CFP (Call For Proposals) and the

receivers (available developers) may answer with a PROPOSE message containing

the cost for the work. After evaluating the proposals, the winner developer is notified

with a ACCEPT-PROPOSAL message and the auction losers receive a REJECT-

PROPOSAL. Here we see clearly the establishment of a contract between the PM

and the winner of the auction and it starts working in order to get the activity done.

Finally, when the task is done developers send the result of the job with the activity

concluded with an INFORM message to the Project Manager. When all activities are

finished, the PM sends an INFORM with the completed set of activities and waits

for receiving more. The Project Owner, in turn, answers with another INFORM con-

taining a new set of activities to re-start the development cycle.

Finally, we have to discuss the strategies for deciding the winners in the auction

mechanism. The final cost of a project summing up the rework cases could exceed

the total budget if the Project Manager does not take this into account. Thus, the rea-

soning process of deciding which proposal is the best at a specific time could follow

many strategies, from choosing the cheapest one to personal choices based on pre-

vious experience. Many development teams consider only the cost of development

as decision criteria. This is not a good decision because most of the time, cheap bids

have higher probability of rework and reassigned activities could even imply higher

costs in the future. We call this the simple case. In the other hand, more complex

strategies could be developed, considering many other factors to compose a deci-

sion. In this case, a more advanced technique is required. Since we are dealing with

agents, we decided to improve the criteria used by the PM and give it some learn-

ing mechanism in order to observe past results and try to predict the best opportu-

nity to follow. We have opted to use the Q-Learning [20], a reinforcement learning

algorithm that tries to find and select an optimal policy function for choosing spe-

cific actions given the current state. This function represents the rules that the agent



68 T.R.P.M. Rúbio et al.

will follow when giving some state-action pair. After constructing the function, the

optimal path is given by selecting the action with the highest value in each state. We

take advantage from Q-learning strength since it does not need a previous model of

the environment.

Qt+1(st , at ) = Qt (st , at )
⏟⏞⏞⏟⏞⏞⏟

old value

+ 𝛼

⏟⏟⏟

learning rate

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

learnt value
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Rt+1
⏟⏟⏟

reward

+ 𝛾

⏟⏟⏟

discount factor

maxa Qt (st+1 , a)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

estimate of optimal future value

−Qt (st , at )
⏟⏞⏞⏟⏞⏞⏟

old value

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(1)

The algorithm works following Eq. (1), where the function calculates the Quality

(Q) of a state-action combination. Our Q-learning states are defined as the current

states of the project, regarding all the process of selecting developers and the result

of their work impacting project cost and rework. The reward of choosing a developer

is given by the difference between the budget and project’s total cost at that given

time, weighted by the probability of rework, seen in Eq. (2).

R(t) = (Budget(t) − FinalCost(t)) × (1 − rework) (2)

The learning rate 𝛼 determines to what extent the newly acquired information will

override the old information. A factor of 0 would make the agent not learn anything,

while a factor of 1 would make it consider only the most recent information. On

the other hand, the discount factor 𝛾 determines the importance of future rewards.

A factor of 0 will make the agent or short-sighted, only considering current results,

while a factor near 1 will make it strive for a long-term high reward.

We have conducted a set of experiments to compare the simple case without opti-

misation and others trying to find the optimal values of these parameters. Varying

𝛼 and 𝛾 from 0.1 to 1.0 we analysed the influence on the number of members and

volunteers chosen and on costs. Due to space limitations we only reference here

the achieved optimal values of 𝛼 = 0.3 and 𝛾 = 0.7. Our conclusions were that

with these values, the number of auctions was closer to the number of activities and

mean numbers of selected members and volunteers were approximately equal. On

the other hand, this configuration leaded us to minimal rework and final project costs.

In all our experiments reported in Sect. 5 we use this optimal parameter values for 𝛼

and 𝛾 .

4.1 Rework Visualisation

MAESTROS we have the opportunity to inspect all living agents in the environment

and see their properties, together with the complete control of the communication

flow between agents, given by JADE platform. In contrast, JADE is not a simulation

tool and facing the lack of graphical visualisation is a limitation. We have developed

then a graphical interface for analysing projects characteristics during simulations



MAESTROS: Multi-Agent Simulation of Rework in Open Source Software 69

Fig. 3 MAESTROS Status chart (left) and Costs chart (right)

using JFreeCharts. This module allows us to visualise project’s states during devel-

opment. In Fig. 3 we see two important charts presented on MAESTROS visualisa-

tion module: Activity Status Chart and the Costs Chart. The Activity Status Chart

shows how activities states change over the time and how rework manifestations,

shown when the number of to-do activities increases, indicating that some activities

re-entered on the stack for development, indicating clear rework cases. Meanwhile,

the Costs Chart shows how costs evolve in terms of budget, estimated cost of the

project, rework and final cost. The estimated cost is an important metric since it can

be defined as the sum of all activities estimated costs and interpreted as a measure

of the optimal minimum cost of the project.

5 Simulation Experiments

We wanted to test MAESTROS capabilities on simulating the OSS environment and

verify our model. For that, we have designed two experimental scenarios: (1) Task

assignment performance; (2) Impact of project characteristics (activities, budget and

developers).

First Scenario—Analysing task assignment
We have designed a default workload that consists on simulating the development

of a simple set of activities many times. In a project consisting on 5 activities and 10

available developers (5 members and 5 volunteers) on the environment, the project

manager should lead the development trying to keep the final cost closer to the esti-

mated cost and trying not to overpass the budget. The budget is set as 200 % of the

estimated cost and to be more realistic, activities have a variable estimated cost (sim-

ulating different degrees of difficulty on the tasks) which is randomly set between

predetermined values of 5 and 15. Members are allowed to bid between 8 and 15

with 0.1 rework probability (lower) and volunteers bid between 1 and 15 with a 0.3

rework probability (higher), according to literature.

The experiment consists on running the simulation 100 consecutive times and

check if the learning mechanism really helps to reduce project’s final cost while

trying to get lower rework cost. Once each run is independent, the estimated cost,



70 T.R.P.M. Rúbio et al.

Fig. 4 Performance over

100 runs

final cost and number of auctions may be different. In each run, MAESTROS assigns

tasks to developers and records all costs.

The results of the simulation are condensed in Fig. 4. We have overlapped the

graphical information of choosing members or volunteers with the project cost

results. The shadowed area correspond to the percentage of developers that won the

auctions through project development. It seems that at first Project Managers actions

were more erratic, leading to a higher final cost that extrapolated both budget and

estimated cost. We could see clearly that through the runs the final cost seemed to

decrease under the budget and get closer to the optimal cost.

We have no doubt that MAESTROS was able to reduce the rework on this experi-

ment. Comparing the first and the last runs on Table 1 we see the reduction on costs:

final cost was reduced in 31 % and rework cost in 47 %. The winner bid also decreased

a 29 %. Comparatively, the number of winner members was reduced in 57 % facing

an increasing of 75 % on the number of volunteer winners. The number of auctions

seemed to be more stable, suffering a small increase of 9 %.

Second Scenario—Different project characteristics
In the second scenario our experiments were focused on verifying how the system

performed with different projects characteristics. We have setup and experimented

different workloads. In each experiment, focusing in just one property we have varied

Table 1 Performance Improvements

1st run 100th run Improv. (%)

Final Cost 107.00 74.00 −31
Rework Cost 57.00 30.00 −47
Mean Bid 14.00 10.00 −29
Members 7.00 3.00 −57
Volunteers 4.00 7.00 75
#Auctions 11.00 12.00 9



MAESTROS: Multi-Agent Simulation of Rework in Open Source Software 71

its values to check the outcomes after 100 runs. The analysed properties were: (1)
Number of Activities: Varying from projects with 1 simple activity and ending with

100 activities; (2) Budget: Fixing lower project budgets starting from 200 % and end-

ing with only the estimated cost; We have followed the same characteristics described

on the first scenario for the costs range of activities and bids, as also used the same

probabilities of rework.

The results from running the system 100 times with different number of activities

show that this is an important factor that influences projects costs. As seen in Fig. 5,

MAESTROS managed to get the final cost under the budget and rework rate very

stable, despite the increasing project final cost. When analysing the budget we wanted

to see if the learning mechanism in MAESTROS could give us better final costs,

trying not to exceed it and looking for the optimal value (estimated cost). In Fig. 6

we see that a broader margin to rework has lead to higher costs, almost 250 % over

the estimated, but reducing the budget leaded to decreasing rework and the final cost.

Results indicate that at best, MAESTROS achieved a rework cost of approximately

11 % of the final cost.

Fig. 5 Varying activities

number

Fig. 6 Varying the budget



72 T.R.P.M. Rúbio et al.

6 Conclusions and Future Work

MAESTROS is the first multi-agent approach that study how rework affects Open

Source Software projects. This mechanism for activity assignment proved to reduce

rework and final projects costs and could be used as an auxiliary tool in real on-line

OSS platforms. Our experiments show that multi-agent systems are a good tool to

model and simulate a software engineering environment, namely the Open Source

Software. MAESTROS has its importance related to the lack of tools and simulations

about rework on software development and could help to improve management deci-

sions in this kind of management.

One of MAESTROS most important contributions is that it could help to reduce

rework in real projects if the system parameters are fine-tuned with real projects

characteristics. MAESTROS could reduce the final cost to a near optimal value (esti-

mated cost of the project) and in comparison to the literature, where the value of 20 %

is accepted as a usual rework cost, in MAESTROS we have managed to achieve a

rework cost on the order or 11 % of the final cost in average.

We envisage to expand MAESTROS capabilities by providing access to real

world projects data from known OSS development environments. We aim to create

a good database about open source projects and development teams characteristics

and costs. Other future works may include the expansion to model developers work,

namely code generation and documentation of activities.

Acknowledgments This work has been funded through a IBRASIL Grant. IBRASIL is a Full Doc-

torate programme selected under Erasmus Mundus, Action 2 STRAND 1, Lot 16 and coordinated

by University of Lille.

References

1. Gaff, B.M., Ploussios, G.J.: Open source software. Computer 45(6), 9–11 (2012)

2. Software risk management. Springer, Berlin (1989)

3. Chua, B.B., Verner, J.: Examining requirements change rework effort: a study. arXiv preprint

arXiv:1007.5126 (2010)

4. Sen, R., Singh, S.S., Borle, S.: Open source software success: measures and analysis. Decis.

Support Syst. 52(2), 364–372 (2012)

5. Raymond, E.: The cathedral and the bazaar. Knowl. Technol. Policy 12(3), 23–49 (1999)

6. Raja, U., Tretter, M.J.: Defining and evaluating a measure of open source project survivability.

IEEE Trans. Softw. Eng. 38(1), 163–174 (2012)

7. Zahra, S., Nazir, A., Khalid, A., Raana, A., Majeed, M.N.: Performing inquisitive study of pm

traits desirable for project progress. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6(2) 41 (2014)

8. Rúbio, T.R., Gulo, C.A.: Characterizing developers rework on github open source projects.

In: Proceedings of the 10th Doctoral Symposium in Informatics Engineering, FEUP Edicoes

- Faculty of Engineering, University of Porto

9. Robles, G., González-Barahona, J.M., Cervigón, C., Capiluppi, A., Izquierdo-Cortázar, D.:

Estimating development effort in free/open source software projects by mining software repos-

itories: a case study of openstack. In: Proceedings of the 11th Working Conference on Mining

Software Repositories, pp. 222–231. ACM (2014)



MAESTROS: Multi-Agent Simulation of Rework in Open Source Software 73

10. Crowston, K., Li, Q., Wei, K., Eseryel, U.Y., Howison, J.: Self-organization of teams for

free/libre open source software development. Inf. Softw. Technol. 49(6), 564–575 (2007)

11. Larman, C.: Agile and iterative development: a manager’s guide. Addison-Wesley Professional,

Boston (2004)

12. Warsta, J., Abrahamsson, P.: Is open source software development essentially an agile method.

In: Proceedings of the 3rd Workshop on Open Source Software Engineering, Citeseer, pp.

143–147 (2003)

13. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev.

10(02), 115–152 (1995)

14. Feller, J., Fitzgerald, B.: A framework analysis of the open source software development par-

adigm. In: Proceedings of the twenty first international conference on Information systems,

Association for Information Systems, pp. 58–69 (2000)

15. Koch, S.: Free/open source software development. IGI Global, Hershey (2005)

16. Madey, G., Freeh, V., Tynan, R.: Agent-based modeling of open source using swarm. In: Pro-

ceedings of the AMCIS 2002, p. 201 (2002)

17. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jadea java agent development framework.

In: Multi-Agent Programming, pp. 125–147. Springer, New York (2005)

18. Fipa, A.: Fipa acl message structure specification. Foundation for Intelligent Physical Agents.

http://www.fipa.org/specs/fipa00061/SC00061G.html (2002). Accessed 30 Jun 2004

19. Smith, R.: The contract net protocol: Highlevel communication and control in a distributed

problem solver. IEEE Trans. Comput. C 29, 12 (1980)

20. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)


	352666_1_En_BookFrontmatter_PrintPDF
	352666_1_En_1_PartFrontmatter_PrintPDF
	352666_1_En_1_Chapter_PrintPDF
	352666_1_En_2_Chapter_PrintPDF
	352666_1_En_2_PartFrontmatter_PrintPDF
	352666_1_En_3_Chapter_PrintPDF
	352666_1_En_4_Chapter_PrintPDF
	352666_1_En_5_Chapter_PrintPDF
	352666_1_En_6_Chapter_PrintPDF
	352666_1_En_7_Chapter_PrintPDF
	352666_1_En_8_Chapter_PrintPDF
	352666_1_En_9_Chapter_PrintPDF
	352666_1_En_10_Chapter_PrintPDF
	352666_1_En_3_PartFrontmatter_PrintPDF
	352666_1_En_11_Chapter_PrintPDF
	352666_1_En_12_Chapter_PrintPDF
	352666_1_En_13_Chapter_PrintPDF
	352666_1_En_14_Chapter_PrintPDF
	352666_1_En_4_PartFrontmatter_PrintPDF
	352666_1_En_15_Chapter_PrintPDF
	352666_1_En_16_Chapter_PrintPDF
	352666_1_En_17_Chapter_PrintPDF
	352666_1_En_5_PartFrontmatter_PrintPDF
	352666_1_En_18_Chapter_PrintPDF
	352666_1_En_19_Chapter_PrintPDF
	352666_1_En_20_Chapter_PrintPDF
	352666_1_En_21_Chapter_PrintPDF
	352666_1_En_6_PartFrontmatter_PrintPDF
	352666_1_En_22_Chapter_PrintPDF
	352666_1_En_23_Chapter_PrintPDF
	352666_1_En_24_Chapter_PrintPDF
	352666_1_En_25_Chapter_PrintPDF
	352666_1_En_7_PartFrontmatter_PrintPDF
	352666_1_En_26_Chapter_PrintPDF
	352666_1_En_27_Chapter_PrintPDF
	352666_1_En_28_Chapter_PrintPDF
	352666_1_En_29_Chapter_PrintPDF
	352666_1_En_8_PartFrontmatter_PrintPDF
	352666_1_En_30_Chapter_PrintPDF
	352666_1_En_31_Chapter_PrintPDF
	352666_1_En_32_Chapter_PrintPDF
	352666_1_En_9_PartFrontmatter_PrintPDF
	352666_1_En_33_Chapter_PrintPDF
	352666_1_En_34_Chapter_PrintPDF
	352666_1_En_35_Chapter_PrintPDF
	352666_1_En_36_Chapter_PrintPDF
	352666_1_En_10_PartFrontmatter_PrintPDF
	352666_1_En_37_Chapter_PrintPDF
	352666_1_En_38_Chapter_PrintPDF
	352666_1_En_39_Chapter_PrintPDF
	352666_1_En_40_Chapter_PrintPDF
	352666_1_En_41_Chapter_PrintPDF
	352666_1_En_42_Chapter_PrintPDF
	352666_1_En_11_PartFrontmatter_PrintPDF
	352666_1_En_43_Chapter_PrintPDF
	352666_1_En_44_Chapter_PrintPDF
	352666_1_En_45_Chapter_PrintPDF
	352666_1_En_46_Chapter_PrintPDF
	352666_1_En_47_Chapter_PrintPDF
	352666_1_En_48_Chapter_PrintPDF

