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Abstract: This paper presents a dynamic and kinematic model and a trajectory
controller for an omni-directional mobile robot. The parameters of the controller
are optimizated based on trajectory following simulations, with the mobile robot
model, take into account aspects like time and errors of position and orientation
of the robot. Simulation and real results of trajectory following are presented.
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1. INTRODUCTION

Omni-directional mobile robots have the abi-
lity to move simultaneously and independently
in translation and rotation (Pin and Killough,
1994). However, non-linearities, like motor dy-
namic constraints, and others characteristics like
friction, inertia moment and mass of the robot,
should be modelled, because can greatly affect
the robot behaviour. Hence, dynamic modelling
of mobile robots is very important to design of
controllers, as in (Liu et al., 2003)(Watanabe,
1998)(Fraga et al., 2005)(Kalmár-Nagy et al.,
2002), mainly when the robots need to follow
trajectories at higher velocity, with sudden change
in its direction and orientation.

The suggested controller presents interesting fea-
tures to follows the path correctly, how the possi-
bility to define different linear velocities and an-
gular positions to the robot during the trajectory
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following. A trajectory can be approximated with
line segments. A line segment has two distinct
endpoints. We use in this paper the name of a line
segment with endpoints A and B as "line segment
AB". Hence, we can define linear velocities and
angular position to the robot in each endpoint
of the line segment, moreover we can adjust its
velocities and angular position to the long of the
line segment. Another feature of the controller is
low computational time, which is essential in real
time applications.

The optimization of the parameters of the con-
troller is based on robot model. Due to values of
time and errors of position and orientation of the
robot, in trajectory following simulations with the
robot model, we can calculate the best parameters
to the controller.

We focus attention on a omni-directional mo-
bile robot with four motors, as shown in Fig.1,
built for the 5dpo Robotic Soccer team from
the Department of Electrical and Computer En-
gineering at the University of Porto at Porto,
Portugal(Moreira et al., 1999). The organization



of the paper is as follows. In section 2, the omni-
directional mobile robot model is developed. The
controller for trajectory following is presented in
section 3. In section 4, the optimization of the
controller parameters, simulation results and real
results are presented. Finally, the conclusion is
drawn in section 5.

2. THE OMNI-DIRECTIONAL MOBILE
ROBOT MODEL

The omni-directional mobile robot model is deve-
loped based on the dynamics, kinematics and DC
motors of the robot.

Fig. 1. Mobile robot.

Fig. 2. Geometric parameters and coordinate
frames.

The World frame (X,Y, θ), the robot’s body frame
and the geometric parameters is shown in Fig. 2.
The following symbols, in SI unit system, are used
to modelling:

• b [m] → distance between the point P(center
of chassis) and robot’s wheels

• M [kg] → robot mass
• r [m] → wheel radius
• l → motor reduction
• J [kg.m2] → robot inertia moment
• Bv, Bvn [N/(m/s)] → viscous friction re-

lated to V and Vn velocities
• Bw [N/(rad/s)] → viscous friction related to

W velocity
• Cv, Cvn [N ] → coulomb friction related to

V and Vn velocities

• Cw [N.m] → coulomb friction related to W
velocity

• V, Vn [m/s] → linear velocities of the robot
• W [rad/s] → angular velocity of the robot
• θ [rad] → orientation angle of the robot
• Fv, Fvn [N ] → traction forces of the robot
• Γ [N.m] → rotation torque of the robot
• v1, v2, v3, v4 [m/s] → wheels linear velocities
• f1, f2, f3, f4 [N ] → wheels traction forces
• T1, T2, T3, T4 [N.m] → wheels rotation torque

2.1 Robot Dynamics

By Newton’s law of motion and the robot’s body
frame, in Fig. 2, we have

Fv(t) = M
dV (t)

dt
+ BvV (t) + Cvsgn(V (t)) (1)

Fvn(t) = M
dV n(t)

dt
+ BvnVn(t) + Cvnsgn(Vn(t))

(2)

Γ(t) = J
dW (t)

dt
+ BwW (t) + Cwsgn(W (t)) (3)

where,

sgn(α) =







1, α > 0,
0, α = 0,
−1, α < 0.

The relationships between the robot’s traction
forces and the wheel’s traction forces are,

Fv(t) = f4(t) − f2(t) (4)

Fvn(t) = f1(t) − f3(t) (5)

Γ(t) = (f1(t) + f2(t) + f3(t) + f4(t))b (6)

The wheel’s traction force(f) and the wheel’s
torque(T ), for of each DC motor, is as follow:

f(t) =
T (t)

r
(7)

T (t) = l.Kt.ia(t) (8)

where ia(t) is the armature current and Kt is
motor torque constant. The dynamics of each
DC motor can be described using the following
equations,

u(t) = La
dia(t)

dt
+ Raia(t) + Kvwm(t) (9)

T (t) = Ktia(t) (10)

where La is the armature inductance, Ra is the
armature resistance, u(t) is the applied armature
voltage, wm(t) is the rotor angular velocity in
rad/sec, kv is the emf constant.



2.2 Robot Kinematics

By geometric parameters of the robot and the
robot’s body frame, in Fig. 2, is possible to derive
the motion equations,

dx(t)

dt
= V (t)cos(θ(t)) − V n(t)sen(θ(t))

dy(t)

dt
= V (t)sen(θ(t)) + V n(t)cos(θ(t))

dθ(t)

dt
= W (t)

(11)

The relationships between wheel’s linear velocities
(v1, v2, v3 and v4) and robot velocities (V ,V n and
W ) are,

v1(t) = Vn(t) + bW (t)
v2(t) = −V (t) + bW (t)
v3(t) = −Vn(t) + bW (t)
v4(t) = V (t) + bW (t)

(12)

Where x(t) and y(t) is the localization of the point
P , and θ(t) the orientation angle of the robot.

3. LINE SEGMENT CONTROLLER

The proposed controller adjusts the position and
orientation of the robot to follow a line segment,
defined in the plane XY , as shown in Fig.3. From
a line segment and the position of the robot,
we can define the velocity vectors to the robot.
The velocity vectors, robot position(P ) and a line
segment(AB) are shown in Fig.3.

Fig. 3. Schematic of the controller.

The robot position is P (xr, yr) and θ is the
orientation angle of the robot in the plane XY .
The velocity vectors V and V n are perpendicular,
and represent the linear velocities of the robot.
The angular velocity of the robot is W . The angle
ϕ is the difference between the line segment angle
(α) and the robot angle (θ):

ϕ = α − θ. (13)

The velocity vector vr is the desired linear velocity
to robot, called too reference velocity. The velocity
vr can receive different values in both points(A
and B) of the line segment, hence the robot
can follow trajectories with different reference
velocities. The reference velocity to the long of
the line segment is:

vr = vr1(1 − d) + vr2d. (14)

Where vr1 is the reference velocity of the point
A and vr2 is the reference velocity of the point
B, of the line segment AB. The variable d is the
projection from robot position(P (xr, yr)) to line
segment AB, it is normalized to length of the line
segment. The vector velocities of the controller,
are as follow:

vc = esk1, (15)

va =

{

0 , v2
r − v2

c < 0,
√

v2
r − v2

c , v2
r − v2

c > 0.
(16)

With the vector va parallel to AB(va || AB) and
the vector vc perpendicular to AB(vc ⊥ AB). The
distance between the robot and the line segment
is es, and k1 is a gain. We can calculate the vector
velocities V and Vn, using a rotation matrix:

[

V
V n

]

=

[

cos(ϕ) −sen(ϕ)
sen(ϕ) cos(ϕ)

] [

va

vc

]

.

The robot angular velocity(W ) is calculated based
on robot angular position(θ) and desired angular
positions(φ) in both points(A and B) of the line
segment. For all line segment, the angular velocity
W is calculated with a similar variation used in
equation 14, in function of d. Therefore, when is
defined the line segment AB, we define the desired
angular positions(φ1 and φ2) in each point of
the line segment. The controller to robot angular
position is defined as follow:

W = eθk2. (17)

with:

eθ = θref − θ, (18)

θref = φ1(1 − d) + φ2d. (19)

where k2 is a gain, eθ is the error between de-
sired angular position(θref ) and robot angular
position(θ).

4. OPTIMIZATION OF THE CONTROLLER

After define the controller structure, we need to
choose the appropriate values to gain k1 and gain
k2. A cost function (C) was created to measure



the performance of trajectory following. The cost
function is described as follow:

C(k1, k2) = EdPd + EaPa + (Tr − Ti)Pt.

Where:

Ed →֒ Mean square error(MSE) related to es, for
all trajectory following;

Ea →֒ Mean square error related to eθ, for all
trajectory following;

Ti →֒ ideal time to follow the trajectory;
Tr →֒ robot time to follow the trajectory;
Pd, Pa, Pt →֒ gain related to errors.

We used the robot model, described in section 2,
to define k1 and k2 gains. Trajectory following
simulations, see Fig. 4, with different values of the
k1 and k2, make possible obtain the values of the
cost function. The objective is found the values of
the k1 and k2 that result the minimum value of
the cost function.

Through real experiments with the robot, we
know that gains (k1 and k2) above of 15 can cause
oscillation in trajectory following. Hence, we used
values between 0 and 20, with resolution of 0.5
in trajectory following simulations. The trajectory
following simulations were made for 3 values of
the linear velocity vr: 1, 0.7 e 0.4 [m/s]. So,
it computed 1600 simulations for each velocity,
resulting in 4800 total simulations. Without the
robot model, it will be impossible. Furthermore,
the total simulation time for each velocity(1600
simulations) is about 10 seconds, therefore we did
not need to use minimization algorithms.

The trajectory used in the simulations has special
features, as sudden change of direction and orien-
tation to the robot, in order to test the controller
in hard condition. The Fig. 4 shows the trajec-
tory used in the simulations, with the points(x,y).
The Fig. 5 shows values of the desired angular
positions(φ) for each point(xi,yi), i=1, ...13 of the
trajectory.

0 0.5 1 1.5 2 2.5 3

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

X[m]

Y
[m

]

Fig. 4. Trajectory to calculate the cost function.

The cost functions for 3 linear velocities vr and
the gains (k1 and k2) are shown in Figs. 6, 7 and
8. The minimum values of the cost function(C)
and correspondents gains are shown in table 1.

0 2 4 6 8 10 12 14
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

i

T
et

a[
ra

d]

Fig. 5. Angular positions(φ) of the trajectory.

vr[m/s] C k1 k2 Pd Pa Pt

1 5.57 8 12.5 1000 10 1

0.7 3.87 7 10.5 1000 10 1

0.4 1.21 7.5 9 1000 10 0.5

mean≈ - 7.5 10.5 - - -

Table 1. Minimum values of the cost
function.
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Fig. 6. Cost function, vr = 1 m/s.
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Fig. 7. Cost function, vr = 0.7 m/s.

The values of the gains Pd, Pa and Pt were defined
in order to be even the values of the errors Ed,
Ea and (Tr − Ti). Currently we use the mean
of the gains values, shown in table 1. We tested
this values in robot trajectory following for the
linear velocities vr = 0.4, 0.7, 1[m/s]. It had a
good performance so, the use of different gains
for different linear velocities is not necessary. Real
and simulated results with gain k1 = 7.5, gain
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Fig. 8. Cost function, vr = 0.4 m/s.

k2 = 10.5 and linear velocity vr = 1[m/s] are
shown if Figs. 9, 10 and 11.

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

X[m]

Y
[m

]

Simulation
Robot
Trajectory

Fig. 9. Simulated and real trajectory.
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Fig. 10. X(m), Y (m), θ(rad).

The procedure to define the gains k1 and k2

was repeated with a trajectory like "8", see Fig.
12, this trajectory has a different feature than
first one, in Fig. 4. The robot does not need to
do sudden change of direction and orientation.
The table 2 shows the minimum values of the
cost function(C) and correspondents gains. In this
simulations we kept the same gains to Pd, Pa and
Pt, to get a comparison. The results for the gain k2

were equal in both procedures. The results for the
gain k1 were not equal, the gain diminished with
the reduction of the linear velocity vr. It happened
due to characteristics of the trajectory "8", this
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Fig. 11. V (m/s), V n(m/s),W (rad/s).

trajectory is more soft than the first trajectory,
consequently the error Ed diminished too.

Finally, we tested the gains k1 and k2 obtained
with the first trajectory, in the robot to follow
the trajectory "8", the robot had a satisfactory
performance. We decided to use the bigger gains
(k1 = 7.5 and k2 = 10.5), because in robotic soc-
cer application the mobile robot needs to execute
trajectories quickly and with a perfect position to
the objective, for example, positioning to the ball,
or to the goal, or to avoid dynamic obstacles.

vr[m/s] C k1 k2 Pd Pa Pt

1 2.84 9 12.5 1000 10 1

0.7 0.72 5 10.5 1000 10 1

0.4 0.22 3 9 1000 10 0.5

mean≈ - 5.5 10.5 - - -

Table 2. Minimum values of the cost
function, trajectory "8".

0 0.5 1 1.5 2 2.5 3

−0.4

−0.2

0

0.2

0.4

0.6

X[m]

Y
[m

]

Simulation
Robot
Trajectory

Fig. 12. Simulated and real trajectory.
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Fig. 13. X(m), Y (m), θ(rad).
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Fig. 14. V (m/s), V n(m/s),W (rad/s).

5. CONCLUSION

The main purpose of this paper was the optimiza-
tion of the parameters of the controller for trajec-
tory following. Dynamic and kinematic models of
a omni-directional mobile robot were presented, as
well as their importance on the controller design,
due to the possibility of getting more information
through the simulations than using only the robot.
The proposed controller presents important fea-
tures, as the possibility of defining different trans-
lation velocities and angular positions to the robot
during the trajectory following. Besides, it does
not demand a high computational time, which is
essential in real time applications and applications
of high velocity.
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