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Abstract— This paper discusses the current Brazilian electricity 
market, brings out some dilemmas that should be examined in 
order to implement a more market-oriented approach, and 
describes a new market design to overcome these issues. The 
proposed market design is based on virtual reservoirs and aims 
at enhancing the flexibility to enable market participants to 
comply with their contracts, while still ensuring the efficient use 
of the water and maintaining the current level of the security of 
supply. In addition, to simulate the behavior of the market 
participants in this new framework, an Agent-Based Model - 
ABM where agents use reinforcement Q-Learning - is developed 
and applied to a case study that includes a centralized dispatch 
as currently exists in Brazil. The results obtained so far show 
that this new design is suitable to allow hydros managing their 
commercial contract commitments with extra flexibility. 

Index Terms - Electricity market design, hydro power 
generation, Brazilian electricity market, virtual r eservoir model, 
agent-based simulation. 

I. INTRODUCTION 

The electricity sector in several countries has been 
changing in order to ensure fair competition, higher efficiency, 
declining prices and reliability of operation. The Brazilian 
electricity market is characterized by having a continental 
interconnected transmission system, a large and growing 
demand, a total installed generation capacity around 137 GW 
[1], from which around 70% comes from hydropower plants 
with multiple owners coexisting in hydro cascades. This 
electricity market has gone through two large institutional and 
regulatory reforms in the last twenty years, and nowadays it 
contains some aspects that distinguish it from other markets.  

In this market two contracting environments coexist: the 
ACR - Regulated Contracting Environment (based on a single 
buyer model), encompassing around 70% of the market, and 
the ACL - Free Contracting Environment (competition in the 
retail market), responsible for 30% of the demand. In the ACR, 
prices are determined by national public auctions conducted 
by the government while the ACL prices are freely negotiated. 

The total amount of energy that can be traded in the 
market by each power plant is called “physical guarantee”. 
This amount can be interpreted as a certificate assigned by the 
Ministry of Mines and Energy and it represents the maximum 
energy generation that can be provided almost continuously 
over the years. Through a process called “seasonalization”, 
once a year market participants are allowed to monthly 
distribute the annual amount of energy coming from their 
physical guarantee and bilateral contracts. 

Power plants are dispatched by the system operator (ONS) 
in a centralized way to optimize the hydrothermal system and 
to ensure the efficient operation of the hydro cascades. Since 
generators are not allowed to decide their own generation in 
order to comply with their contracts (there is not a bid based 
market), and the ISO decides their outputs without considering 
their commercial commitments, there is a mechanism known 
as MRE – Mechanism for Energy Reallocation. Shortly, 
aiming to offset this centralized dispatch, the MRE reallocates 
energy, transferring the surplus generated from those that 
produce beyond their monthly allocated physical guarantee to 
those that produce below. Finally, all contracts must be 
registered at the market operator (CCEE), who also measures 
the energy produced/consumed by each market participant and 
automatically uses the MRE rules in the settlement process of 
the Brazilian short-term market (MCP). 

The above market design poses several problems to market 
agents as detailed in the next sections. The recognition of 
these problems is the main focus of the research reported in 
this work in which we propose a new market design based on 
virtual reservoirs. This design aims at enhancing the flexibility 
of market agents to comply with their commercial 
commitments while not destroying the optimized operation of 
the entire system. According with these ideas, this paper is 
organized as follows. After this Introduction, Section II details 
the dilemmas and problems associated with the current market 
structure in Brazil, Section III details the proposed virtual 
reservoir based design, Section IV describes the implemented 
ABM simulation approach, Section V presents the results 
obtained so far and Section VI outlines the main conclusions. 



II. PROBLEMS AND DILEMMAS  

In the current Brazilian market design, the conciliation 
between commercial commitments and the physical dispatch 
is not smooth: there is a lack of “trading opportunities” to 
encourage hydro companies to comply with their contracts 
(namely related with the unique annual “window” of the 
seasonalization process) and there is no flexibility for hydros 
to better address their exposition risk according to their own 
risk perception and market strategy (since the MRE 
mechanism is automatically activated). Moreover, the 
Brazilian short-term market just corresponds to a mechanism 
to settle differences rather than a true market given that there 
is not a bid based dispatch. On the other hand, neither the 
short-term price (PLD) nor the dispatch schedules are 
determined by the market given that they are both a result of 
the application of a chain of software models that are operated 
by the Brazilian ISO. 

If a more market-oriented approach is to be adopted, 
several dilemmas have to be faced: 

1) Efficiency of the use of energy resources - putting into 
perspective the dichotomy between a centralised 
dispatch (based on a cost hierarchy) and a decentralised 
one (based on a market approach), as discussed in [2], 
it becomes clear how important it is to coordinate the 
use of water stored in the reservoirs to safeguard the 
efficiency of using the energy resources, i.e. to take 
advantage of the all potential energy stored in the 
cascades. A decentralised dispatch, e.g. a scheme of 
bids in a pool market, can essentially correspond to a 
short term process and the inter-temporal features of 
river chain operations will not be fully represented, if a 
pure single-period market clearing mechanism is 
adopted. Likewise, the presence of several owners in 
the hydro cascades, as is the case in Brazil, endorses a 
market design based on a centralised dispatch; 

2) Security of supply - for the time being, the PLD has an 
average value of 37.72 €/MWh, which is close to the 
hydro average bid price in public national auctions 
(38.16 €/MWh) [3]. Nevertheless, the PLD standard 
deviation of the entire set of data is around 55.36 
€/MWh. With an average of 37.72 €/MWh, considering 
the hypothesis of a Brazilian electricity market entirely 
based on a short-term mechanism, this price fluctuation 
brings a huge risk to the business. Thereby, it is 
recognised the need for a capacity mechanism. 
Nowadays, this concern is addressed via both the 
contracting scheme where the demand must be fully 
contracted ex-ante and contracts physically backed, and 
the ISO dispatch, either through the mechanism of risk 
aversion embedded in the software package, or using a 
dispatch out of the merit order authorised by the entity 
that monitors the supply adequacy in the country; 

3) Flexibility to comply with bilateral contracts - if in one 
hand a market design having an ISO central dispatch is 
to be kept, on the other hand the mechanism to share 
the short-term risk exposition (MRE) is automatically 
performed. This imposes a kind of “strait jacket” on 
hydros, especially regarding their risk perception and 

commercial commitments. Every time there is a water 
shortage, the PLD increases, there are more dispatched 
thermal stations and less hydro. Depending on the 
amount of dispatched thermal units, hydros can be 
displaced in such a way that MRE will not have the 
extra energy to be shared among its participants. In this 
case, the MRE is not able to cover the risk of 
generators that have to buy electricity in the short-term 
market to fill the energy committed in their contracts. 

In this context, reference [4] states the most consistent path 
to deal with these problems: to structure the market design 
such that risks are allocated to those who take decisions and 
who hold the responsibility for putting them into force. 

III.  A MARKET DESIGN BASED ON VIRTUAL RESERVOIR 

In order to overcome the described problems, a new 
market design is conceived partially bearing in mind the 
proposal of the Revitalization Committee of the Brazilian 
Electricity Sector [5]. This market design is based on the 
concept of energy right accounts conceived as virtual 
reservoirs and it aims at enhancing the flexibility to enable 
market participants to uphold their contracts, while still 
ensuring the efficient use of the energy resources and 
maintaining the current level of the security of supply. In this 
new market, each hydro is modeled as an agent that has a 
virtual reservoir representing how much energy is virtually 
stored in his hydro plant. 

For each accounting period, each account is fed by the 
corresponding fraction of the total natural affluent energy that 
flowed to the hydro cascade where the station is located. The 
ISO continues defining the amount of generation assigned to 
each power plant, which means that it maintains its 
responsibility as it currently happens in Brazil: it defines the 
physical dispatch as a way to optimize the use of the 
resources, dispatching the hydro and thermal units. 
Nonetheless, a hydro short-term market is established based 
on bids for the total demand to be supplied by hydros. In this 
market, hydros will have the opportunity to withstand their 
bilateral commercial commitments whereas they try to have 
successful bids. The result of this market is a virtual dispatch 
conceived for financial settlement purposes. To do that, hydro 
agents can offer bids considering: 

• a price between zero and a regulatory ceiling price; and  
• a quantity available within the balance of his account.  

Then, the final short-term price is calculated as a weighted 
average considering the most expensive successful hydro price 
bid and the variable cost of the last non-hydro resource 
dispatched by the ISO. 

In this new market design two worlds would then coexist: 
the real one, associated with the power system considering 
physical effects, and where the dispatch is performed by the 
ISO in a centralized way; and the virtual one, related to the 
settlement system. This virtual mechanism has only 
commercial effects and hydro agents participate in the 
mentioned short-term market. Both worlds simultaneously 
operate, and the link between them is the total affluent natural 
energy that flowed along the hydro cascades during the 



accounting period. Thus, the settlement process will be done 
considering the successful quantity bid by each hydro 
participant, and the exposed position will be valued by the 
new final short-term price, which comes from the combination 
of thermal costs based on the ISO dispatch and the short-term 
price arising from the hydro short-term market.  

IV.  SIMULATION OF THE NEW MARKET RULES 

To simulate the behavior of the hydropower plants in this 
market design, an Agent-Based Model - ABM is adopted with 
the reinforcement Q-Learning. According to [6], among the 
modeling alternatives for bidding strategy analysis in the 
electricity short-term markets, ABM is highlighted because it 
allows designing complex electricity market as collections of 
rule-based agents interacting with one another dynamically 
and intelligently, simulating human beings’ behavior to build 
optimal bidding strategies. Generally, the ABM procedure can 
be described as follows [7]: (1) define the research questions 
to be addressed; (2) construct a model comprising an initial 
population of agents; (3) specify the initial model state by 
defining the agents attributes and the structural and 
institutional framework of the electricity market within which 
the agents operate; (4) have the model evolve over time 
without further intervention; (5) analyze simulation results and 
evaluate the regularities observed in the results. 

Considering the proposed virtual reservoir market design, 
the ABM research question is as follows: will agents be able 
to uphold their ex-ante bilateral contracts? Agents represent 
hydro companies that prepare their bids depending on the 
amount available to honor their contracts, the level of their 
(virtual) reservoir, and month of the year, which is associated 
with the water inflows into the hydro cascade. Their goal is to 
avoid negative exposures in case of end up providing through 
their successful bids an amount of energy lower than the 
contracted. Agents learn how to act optimally using the Q-
learning algorithm, which focuses on the impacts of rewards 
and punishments on their choices to seek their goal. 

An agent using Q-learning is a goal-oriented learner that, 
for a giving Markov decision process, continually interacts 
with his environment, receives feedback from it, and searches 
for the most profitable action considering the past experience. 
In other words, at each time step t the agent is in some state st, 
chooses any action at that is available in state st, receives a 
corresponding reward rt, and moves into a new state st+1. 
Thus, in Q-learning it is imperative to carefully structure the 
set of states S = {s1, s2, … , sn}, actions A = {a1, a2, … , an} 
and rewards rt(st, at). Lastly, the capability of learning to act 
optimally in Markovian domains by experiencing the 
consequences of actions is given by an value function Q(st, at). 
This function provides the expected utility of taking a given 
action in a given state [8], and it is given by (1). 

Q(st, at) ← Q(st, at) + α.{ rt(st, at) + γ.maxaQ(st+1, a) - Q(st, at)} (1) 

So, for each admissible pair (s, a), the value function is 
defined as the Q value. The parameter α is the learning rate, 
which reflects the degree to which recently learned 
information will override the old one (α equal to 0 will make 
the agent not learn, while equal to 1 will induce the agent to 
consider only the most recent information), and the parameter 

γ entitles the discount factor that determines the importance of 
future reinforcements (γ equal to 0 will make the agent 
myopic by only considering current rewards, while values 
closer to 1 turn distant rewards more important). Additionally, 
the expression maxaQ(st+1, a) represents the best the agent 
thinks it can do in state st+1. 

In addition, in order to adequately balance the capacity not 
to converge to local optima and the acceleration of the 
learning process, a Simulated Annealing (SA) mechanism is 
included into the developed algorithm as detailed in [9]. An 
overview of the entire algorithm is present in Figure 1. 

 

Figure 1.  Overview of the developed algorithm. 

In brief, the algorithm gets from the ISO physical dispatch 
procedure the total demand to be supplied by non-hydros (Qnh) 
and by hydros (Qh), and the variable cost of the last non-hydro 
dispatched unit (PLDnh). It also requires information about ex-
ante bilateral contracts (qCEt) for each account period t, i.e. 
the amount of energy that must be endured in the hydro short-
term market by the bids. Other input data are as follows: the 
natural affluent energy that flowed in period t to the hydro 
cascade (NAEt), from which a fraction is allocated to each 
hydro giving their physical guarantee (PG); the reservoir 
capacity (RC), and the virtual reservoir level or energy right 
account (ERAt) in its initial stage. 

The hydro short-term market takes place considering Qh, 
and bids can be done once respected the following constraints: 
the quantity bid (qBID) is limited by the ERA balance in each 
period t, and the price bid (pBID) is limited by a maximum 
regulatory price (pBID_uplimt). The bids are sorted 
considering the pBIDs, the successful bids are then identified, 
and the ERA updated. The clearing price rule is adopted to 
define the final price of the hydro short-term market (PLDh), 
and the final short-term price (PLDfinal) is determined by (2). 

PLDfinal = (PLDh.Qh + PLDnh.Qnh)/(Qh + Qnh) (2) 

The Q-learning is then structured bearing in mind the 
purpose of the simulation: an analysis over the hydros’ 
flexibility to comply with bilateral contracts. So, the state 
space is divided in three: state s1, when the amount available 
into the ERA is higher than the ex-ante contract (qCEt); state 
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s2, when ERA balance is equal or lower that qCEt; and state 
s3, if the qCEt is equal to zero. Moreover, it is possible to offer 
twelve different bids (actions), each one formed by a pair 
(qBID, pBID). The action space is formed by qBIDs equal to 
zero, 100% of the ERA, or 100% of the qCE, depending on 
the state. The pBID can be 100%, 75%, 50%, 25% or 0% of 
the maximum allowed price bid for the account period 
(pBID_uplimt). Both the state and action space are illustrated 
in Table I, which corresponds to the Q-learning matrix. 

TABLE I.  ILLSTRATION OF THE Q-LEARNING MATRIX  

S
ta

te
s ERA > qCE s1             

ERA ≤ qCE s2             

qCE = 0 s3             

    a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 
pBID  (% of the 
pBID_uplimt)  = 

0   
% 

100
% 

100
% 

75 
% 

50  
% 

25  
% 

0    
% 

100
% 

75  
% 

50   
% 

25  
% 

0    
% 

 qBID  =  0 100% . ERA 100% . qCE 
   Actions  

Some of the actions are just allowed for a specific state 
(white cells in Table I), and the reward is given by the 
difference between the successful quantity bid (qBIDsuct) and 
the amount committed through contracts for that period 
(qCEt), as shown in (3). 

reward = qBIDsuct - qCEt (3) 

V. RESULTS 

A case study that includes four hydro power plants with 
the characteristics in Table II was designed to test the 
aforementioned flexibility. In this example, these hydros 
compete to (virtually) supply a variable load Qh aiming to 
achieve their goal: have successful bid to avoid having to buy 
energy in the short-term market to complete their contracts. In 
Brazil the market operator compares every month the 
commercial commitments with the produced/consumed 
energy in order to set the exposed position of each market 
player. Accordingly, the current version of the simulated 
hydro short-term market also operates in monthly basis. 

TABLE II.  CHARACTERISTIC OF THE HYDROS 

Hydro H1 H2 H3 H4 

Physical guarantee (PG) 125 100 50 225 
Reservoir capacity (RC) 500 400 200 900 

ERA in t =1 0 0 0 0 
 

The simulation of the system considers three different 
weather patterns (year with high, medium and low water 
inflows) and market conditions (level of ex-ante contract – 
qCE equal to 100%, 50% and 0% of the physical guarantee). 
Furthermore, two types of seasonalization are performed on 
the bilateral contracts: flat seasonalization (FLAT_seaso), 
where the annual energy committed through the ex-ante 
contracts are distributed in equal monthly amounts; and a 
seasonalization according to the NAE (NAE_seaso), in which 
the annual amount of the contracted energy is allocated 
considering weights determined by the natural affluent energy 
that flowed to the hydro cascade. 

With the aim of covering all conditions described above, 
18 scenarios were run. The algorithm converges in average 
after simulating 2,500 years and considering a tolerance of 
0.5% on the values that are included in the Q-learning matrix 
built in each iteration regarding the matrix of the previous one. 
Table III details the scenarios, and shows the optimal bidding 
strategy obtained for the three states and for each hydro. 

TABLE III.  THE OPTIMAL BIDDING STRATEGY 

Scenarios Best action policy 

W
at

er
 

flo
w

 

se
as

o qCE 
level 

nº 

State  s1 State  s2 State  s3 

Hydro Hydro Hydro 

1 2 3 4 1 2 3 4 1 2 3 4 

hi
gh

 F
L

A
T

 100% 1 a12 a12 a12 a12 a3 a3 a5 a6 - - - - 

50% 2 a12 a12 a12 a12 a6 a7 a6 a6 - - - - 

0% 3 - - - - - - - - a1 a1 a1 a1 

N
A

E
 100% 4 a12 a12 a12 a12 - - - - a1 a1 a1 a1 

50% 5 a12 a12 a12 a12 - - - - a1 a1 a1 a1 

0% 6 - - - - - - - - a1 a1 a1 a1 

m
ed

iu
m

 

F
L

A
T

 100% 7 a12 a12 a12 a12 a3 a5 a4 a4 - - - - 

50% 8 a12 a12 a12 a12 a5 a3 a3 a3 - - - - 

0% 9 - - - - - - - - a1 a1 a1 a1 
N

A
E

 100% 10 a12 a12 a12 a12 a7 a7 a3 a3 a1 a1 a1 a1 

50% 11 a12 a12 a12 a12 - - - - a1 a1 a1 a1 

0% 12 - - - - - - - - a1 a1 a1 a1 

lo
w

 F
L

A
T

 100% 13 a12 a12 a12 a12 a7 a7 a7 a7 - - - - 

50% 14 a12 a12 a12 a12 a4 a7 a4 a3 - - - - 

0% 15 - - - - - - - - a1 a1 a1 a1 

N
A

E
 100% 16 a12 a12 a12 a12 a7 a7 a7 a4 a1 a1 a1 a1 

50% 17 a12 a12 a12 a12 - - - - a1 a1 a1 a1 

0% 18 - - - - - - - - a1 a1 a1 a1 

A. High water flow scenarios 

In all FLAT_seaso scenarios, ERA lower than qCE occurs 
during dry months (June, July and August). When this 
happens it is not possible to withstand all the energy 
committed by contracts (state s2). Nevertheless the chosen 
action adopts the strategy of using all the available energy in 
the virtual reservoir to mitigate the punishment (actions from 
a3 to a7). In wet months (state s1), the best action is a12, i.e. 
to bid a quantity equal to qCE at zero price. 

Regarding NAE_seaso scenarios (no. 4, 5 and 6), no 
episode registered an ERA lower than qCE (state s2) even 
when hydros are entirely committed, i.e. their physical 
guarantee is 100% committed through bilateral contracts. In 
dry months qCE can be at zero (state s3) since NAE is equal 
to zero and consequently the seasonalized qCE is also equal to 
zero. In scenarios no. 4 and 5, the best strategy when qCE is 
different from zero is to offer 100% of the qCE at a price 
equal to zero (action a12). It can be noted that choosing a12, 
there will be no negative financial exposition. Additionally, 
due the available water typical of the good hydrological year, 
the chosen price bid is zero. If there is an attempt to push price 
closer to the ceiling price (i.e. to choose a pBID different from 
zero), owing to the competition in the short-term market there 
will be a risk of not being (virtually) dispatched to uphold the 
ex-ante contract. Among these scenarios, no. 4 is the one that 
better illustrates the flexibility to comply with contracts given 



that hydros are 100% committed. For this scenario, Figure 2 
shows that qBIDs (dots) are always equal to qCE values given 
in the lines for all hydros (i = 1, 2, 3 and 4). 

 
Figure 2.  Quantity bids versus ex-ante contracts in scenario no. 4. 

B. Medium water flow scenarios 

As with the high water flow scenarios, in the medium 
water scenarios the same pattern of bidding strategy also 
occurs. However, some changes are noticed. In FLAT_seaso 
scenarios, once there is no so much water flows as in the 
equivalent previous scenarios, the best actions have higher 
price bids. So, when the level of bilateral contracts are not so 
high (e.g. at 50%), by comparing actions from scenario no. 2 
(a6, a7, a6 and a6) and from scenario no. 8 (a5, a3, a3 and a3) 
during dry months (state s2), we can notice that as inflows 
begin to decrease, prices tend to rise. This was the expected 
result as resources become scarce. 

Focusing on NAE_seaso scenarios, by analyzing scenarios 
no. 4 and no. 10 we can conclude that state s2 started to occur 
because we are considering medium water flow scenarios. 
This means that there were months in which the energy 
available in the virtual reservoir (ERA) was lower than the 
amount needed to comply with the contracts (qCE). 

C. Low water flow scenarios 

Lastly, the worst scenario occurs when the hydrological 
year is bad, the seasonalization process is performed in its flat 
mode, and the energy from hydros is fully committed through 
bilateral contracts (scenario no. 13). In this case the best bid 
strategies are: a12 for state s1 and a7 for state s2 (there are no 
events in state s3). Figure 3 presents the qCE x qBID results 
for scenario no. 13 (FLAT_seaso). As it can be observed, qCE 
cannot be kept during all months by qBIDs because there is 
not enough energy available in the ERA at several periods 
along the year. 

 
Figure 3.  Quantity bids versus ex-ante contracts in scenario no. 13. 

VI.  CONCLUSION 

The reported results indicate that under several different 
scenarios agents are capable to act on their own in order to 
seek the best strategist to sustain their bilateral contracts. And 
they are allowed to that through the hydro bid based market. 
Notably, this market design contains a greater degree of 
freedom than the rules of the seasonalization of the physical 
guarantee (and its annual “window” for the monthly 
allocation) and the MRE (where energies are automatically 
shared). By replacing the MRE and the seasonalization process 
by the virtual reservoir model maintains the current levels of 
efficiency and security remain the same, but there is an 
increase in the level of flexibility regarding the commercial 
behavior of the agents. This is because the management of 
(virtual) reservoirs is under the responsibility of each hydro, 
which could (virtually) save water according to their own risk 
perception, while the operation of the physical system is not 
affected, ensuring the efficiency of the hydro cascade and 
maintaining the current level of the security of supply. 

Other advantages of this market design can be noted as 
follows. First, it promotes an increased transparency related 
with computational models used by the ISO to run the 
centralised dispatch. Once the codes associated with this 
software package are under intellectual property rights, 
inconsistencies in these algorithms have a huge impact within 
the entire sector. A mix of centralized dispatch and market 
based on bids can, therefore, increase confidence of the 
electricity market. Second, with both the physical and virtual 
dispatch operating in parallel, it can be possible to promote a 
monitoring of the ISO performance based on comparisons of 
decisions, namely the ISO decisions versus agents decisions. 

Moreover, as future improvements in the algorithm extra 
bids will be implemented aiming at allowing the agents to 
manage their reservoirs in order to optimize the leftover stored 
energy. That is, apart from the management of their bilateral 
contracts, agents would be allowed to get extra profit in the 
short-term market when there is more energy into the reservoir 
than the need to comply with the bilateral ex-ante contracts. 
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