
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

3D Reconstruction of Civil
Infrastructures from UAV Lidar point

clouds

Leonardo Gomes Ribeiro

MESTRADO INTEGRADO EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Supervisor at INESC TEC: Dr. Marcelo Roberto Petry

Supervisor at FEUP: Prof. Dr. António Paulo Moreira

July 27, 2021

© Leonardo Gomes Ribeiro, 2021

Abstract

Nowadays, infrastructures for transportation, communication, energy, industrial production and
social purpose are presented as pillars of society, being essential for its proper functioning. Cou-
pled with this great importance within society, there is a need to ensure the safety and durability
of these assets. Thus, reliable techniques should be used to assess their condition.

With technological advances and the development of new methods of data acquisition, some
tasks related to civil construction, currently performed by human beings, such as inspection and
quality control, become inefficient due to their time and cost. In this context, 3D reconstruction of
infrastructures appears as a possible solution, presenting itself as a first step for the monitoring of
infrastructures, as well as a tool for semi or completely automated inspection processes.

For the development of this thesis, a light detection and ranging (LIDAR) sensor coupled
to a unmanned aerial vehicle (UAV) was used. With this equipment, it became possible to au-
tonomously fly over real infrastructures, extracting data from all its surfaces, regardless of the
difficulties that could arise to reach such regions from the ground. The data is extracted in the
form of point clouds with respective intensities, filtered and used in meshing and texturing algo-
rithms, resulting in a virtual three-dimensional representation of the target infrastructure. With
these representations, it is possible to evaluate the evolution of the infrastructure during its con-
struction or repair, as well as to evaluate the temporal evolution of certain defects present in the
construction, by comparing models for the same scenario obtained from data extracted on different
occasions. This approach allows the process of monitoring infrastructures to be carried out more
efficiently, with lower costs and ensuring the safety of workers.

i

Resumo

Atualmente, as infraestruturas de transporte, comunicação, energia, produção industrial e finali-
dade social apresentam-se como pilares da sociedade, sendo essenciais para o seu bom funciona-
mento. Aliada a essa grande importância na sociedade, existe a necessidade de garantir a segurança
e a durabilidade desses ativos. Assim, técnicas confiáveis devem ser utilizadas para avaliar as suas
condições.

Com o avanço tecnológico e o desenvolvimento de novos métodos de aquisição de dados,
algumas tarefas relacionadas com a construção civil, atualmente realizadas por seres humanos,
como a inspeção e o controlo de qualidade, tornam-se ineficientes pelo seu tempo e custo. Neste
contexto, a reconstrução 3D de infraestruturas surge como uma possível solução, apresentando-se
como o primeiro passo para a monitorização de infraestruturas, bem como uma ferramenta para
inspeções semi ou totalmente automatizadas.

Para o desenvolvimento desta tese, foi utilizado um sensor LIDAR acoplado a um UAV. Com
este equipamento tornou-se possível sobrevoar de forma autónoma infraestruturas reais, extraindo
dados de todas as suas superfícies, independentemente das dificuldades que possam surgir para
chegar a tais regiões a partir do solo. Os dados são extraídos na forma de nuvens de pontos com
respectivas intensidades, filtrados e utilizados em algoritmos de malha e texturização, resultando
em uma representação tridimensional virtual da infraestrutura alvo. Com estas representações é
possível avaliar a evolução da infraestrutura durante a sua construção ou reparação, bem como
avaliar a evolução temporal de determinados defeitos presentes na construção. Para realizar as
avaliações, será feita a comparação entre modelos, do um mesmo cenário, obtidos a partir de
dados extraídos em diferentes ocasiões. Esta abordagem permite que o processo de monitorização
de infraestruturas seja realizado de forma mais eficiente, com custos mais baixos e garantindo a
segurança dos trabalhadores.

ii

Acknowledgments

Since I am Portuguese, as well as my family and friends, I will write my acknowledgments in my
native language.

Em primeiro lugar, e como não poderia deixar de ser, agradeço a toda a minha família, em
especial aos meus pais, irmã e avós, por todo o apoio que me deram em todas as etapas da minha
vida. Deixo também um agradecimento muito especial à minha namorada e aos meus amigos
por tornarem estes últimos anos nos incríveis anos que foram. Agradeço-lhes também por toda
a ajuda e motivação que me deram, ajuda essa que foi fundamental em todas as situações mais
complicadas desta caminhada.

Agradeço aos meus orientadores, Dr. Marcelo Roberto Petry e Professor António Paulo Mor-
eira, por toda a ajuda e conselhos que me deram durante a realização do projeto. Sem eles, este
projeto não teria alcançado os resultados apresentados. Deixo também o meu agradecimento a
ambos os proprietários das infraestruturas escolhidas para extração dos datasets, mais precisa-
mente à Sogrape SA pela autorização na realização de levantamentos aéreos com recurso a um
drone na Quinta do Seixo e a possibilidade da divulgação dos mesmos, bem como ao proprietário
da moradia, pois sem as suas disponibilidades seria difícil apresentar resultados tão interessantes.
Agradeço ainda a todos os professores que tive, pois foi graças a eles que consegui adquirir grande
parte dos conhecimentos necessários para a realização deste trabalho.

Leonardo Ribeiro

iii

Contents

Abstract i

Resumo ii

Acknowledgment iii

1 Introduction 1
1.1 Problem . 1
1.2 Context . 1
1.3 Motivation . 2
1.4 Goals . 3
1.5 Thesis Outline . 3

2 Literature Review 4
2.1 Digital Twins . 4

2.1.1 Constitution of a Digital Twin . 5
2.1.2 Application on Construction . 6

2.2 3D Reconstruction . 7
2.2.1 Point Cloud Acquisition . 7
2.2.2 Noise removal . 9
2.2.3 Surface Reconstruction . 10
2.2.4 Texturization . 11

2.3 Robots for Building Construction and Maintenance 12
2.3.1 Types of Robots . 12
2.3.2 Different Scenarios . 15

3 Proposed Approach 17
3.1 Data Acquisition . 18

3.1.1 Hardware . 18
3.1.2 Autonomous Navigation . 23

3.2 Data Processing . 25
3.2.1 Odometry Calculation . 25
3.2.2 Point Cloud Registration . 28
3.2.3 Field of View filter . 30
3.2.4 Normal Estimation . 31
3.2.5 Saving the Final Cloud . 32
3.2.6 Statistical Filter . 33
3.2.7 Surface Generation . 33
3.2.8 Texturization . 34

iv

CONTENTS v

3.2.9 Mesh Alignment . 34
3.2.10 Mesh Comparison . 35

4 Results 36
4.1 Datasets . 36
4.2 Data Processing . 38

4.2.1 Registration . 38
4.2.2 Point Cloud Noise Removal . 38

4.3 Surface Reconstruction . 39
4.3.1 Depth Influence . 40
4.3.2 Statistic Filter Influence . 42

4.4 Texturization . 43
4.5 Final 3D Models . 45

4.5.1 House . 45
4.5.2 Quinta do Seixo building . 46

4.6 3D Model Comparison . 47
4.7 UAV Mission Creation . 47

5 Conclusion 50
5.1 Limitations of the system . 51
5.2 Comparison with Photogrammetry . 52
5.3 Future Work . 52

A Hardware used and Connections 54

References 57

List of Figures

3.1 On-Board Hardware . 19
3.2 Estimated flight time based on the payload weight 19
3.3 Ouster OS1 . 21
3.4 LIDAR Outputs . 22
3.5 UAV and respective Payload . 23
3.6 3D Reconstruction Process . 26
3.7 ROS nodes connections . 29
3.8 Field of View . 31

4.1 House - Dataset A . 37
4.2 Quinta do Seixo - Dataset B . 37
4.3 Cloud Registration . 39
4.4 FoV Filter - Top View . 39
4.5 FoV Filter - Front View . 40
4.6 Point Clouds used on Reconstruction . 41
4.7 Reconstruction Depth - House . 41
4.8 Reconstruction Depth - Quinta do Seixo . 42
4.9 Roughness from High Depths . 42
4.10 Statistic Filter Impact on Reconstruction . 43
4.11 House Meshes . 44
4.12 Quinta do Seixo Meshes . 44
4.13 Meshes vs Reality - House . 46
4.14 Meshes vs Reality - Quinta do Seixo . 47
4.15 Meshes Comparison . 48
4.16 Mission Trajectory . 49

vi

List of Tables

4.1 Datasets Characteristics . 37
4.2 FoV Point Clouds Constitution . 40
4.3 Generated Meshes characteristics . 43
4.4 Reconstruction and Texturization Times . 45

A.1 Components . 54
A.2 Power Connections . 54
A.3 Logical Connections . 55

vii

Abbreviations and Symbols

AI Artificial Intelligence
API Application Programming Interface
BIM Building Information Modeling
CDT Construction Digital Twin
CUDA Compute Unified Device Architecture
DoF Degrees of Freedom
DT Digital Twin
FoV Field of View
GNSS Global Navigation Satellite System
ICP Iterative Closest Point
IMU Inertial Measurement Unit
IoT Internet of Things
IP Internet Protocol
LCF Local Consistency Factor
LIDAR Light Detection and Ranging
MT Maximum Flight Time
OSDK Onboard Software Development Kit
PCA Principal Component Analysis
PCL Point Cloud Library
PLM Product Lifecycle Management
PW Payload Weight
RATIM Robot-Aided Tunnel Inspection and Maintenance
RFID Radio Frequency Identification
ROS Robot Operating System
RTK Real-Time Kinematic
SLAM Simultaneous Localization and Mapping
SRC Spectral Residual Clustering
SSD Solid State Drives
TCP Transmission Control Protocol
TSDF Truncated Signed Distance Field
TTL Transistor-Transistor Logic
UART Universal Asynchronous Receiver/Transmitter
UAV Unmanned Aerial Vehicle
UMV Unmanned Marine Vehicle
USV Unmanned Surface Vehicle
UUV Unmanned Underwater Vehicle

viii

Chapter 1

Introduction

1.1 Problem

In the area of civil construction, when a project is created information about its final state will have

to be acquired in order for its construction or maintenance to be carried out successfully. Since

these tasks tend to take quite a long time to be concluded, it is important that the customers and

the engineers responsible for the work can monitor its evolution. Thus, it is necessary to have a

data acquisition process that occurs in parallel to the work. In order to perform the data acqui-

sition, human beings will be in charge of assessing the state of the work, obtaining information

regarding the significant advances developed, problems that may have occurred, or other relevant

information. These workers could either be employees hired specifically to carry out this task or

simply technical staff who suspend their duties for that purpose. This process, therefore, calls

for reducing the number of workers to perform their duties, which will lead to an increase in the

number of hours required to complete the work, or for increasing the number of workers, leading

to increased costs. In addition, the data acquisition process will have to be executed in a signifi-

cantly recurring manner so that the information obtained and the information actually existing are

as similar as possible.

Given the nature of the places where the buildings are located, as well as the characteristics

that they present, the work of acquiring data presents itself as a task of extreme risk for the human

being who performs it, a risk that is aggravated due to the need of countless repetitions throughout

the process in question.

1.2 Context

To work efficiently, society depends on a set of critical infrastructures of transport, communica-

tion, energy and industrial production, as well as buildings of social purpose. The infrastructures

present themselves as the core of the multiple economic activities, which is why they always must

be in good condition. In order to guarantee these conditions, it is necessary that the infrastructures

are constantly monitored, so that any failure is detected and subsequently repaired as quickly as

1

2 Introduction

possible. In addition to the infrastructures already built, where the monitoring process substan-

tially consists of detecting and preventing failures, the monitoring process is also applicable to

infrastructures under construction. The construction of infrastructures is usually a project charac-

terized by being time-consuming and requiring a lot of resources. Thus, the appearance of a failure

could compromise the entire work, leading to very significant losses. The monitoring process is

also useful to measure the quantities already used, since some contractors are paid according to

these measures.

For both cases, the constant need for monitoring, combined with its strict inspection crite-

ria, ensures the quality of the infrastructure and, consequently, its proper functioning. However,

given the requirement of the process, as well as its constant need, ensuring good conditions for an

infrastructure is a very expensive task.

1.3 Motivation

As a way to ensure the security and durability of assets, there is a necessity to develop reliable

methods that will evaluate the state of the building during construction or maintenance processes.

Traditionally, those tasks were performed mostly by human beings, making it more expensive,

dangerous for the worker, and with several limitations regarding the ability of the worker to main-

tain quality of work overtime. In this sense, and as a way to solve this problem, robotics for

infrastructures is a technological key to revolutionize Portugal’s and Europe’s economies in the

civil construction sector, leading a new era of intelligent resource management. Robotics presents

itself as the next step in the evolution of this area, providing numerous benefits compared to tra-

ditional methods, such as being able to operate in dangerous environments, continuously (without

the need to rest) and at a lower cost. Robotics also brings an improvement in terms of quality of

work, since they can evaluate the scenes more carefully without being influenced by distractions.

Since the construction or maintenance process of an infrastructure is characterized by being

time-consuming, it is important to extract information from the infrastructure regarding its current

state, allowing it to be monitored without the need to travel to the location. This need motivates

the creation of a virtual representation of the infrastructure, which is updated according to the

evolution of the real infrastructure.

One of the most recurrent techniques for creating virtual models from real infrastructures

is photogrammetry, which consists of using local images as a starting point for the creation of

the three-dimensional model. The fact that this approach is well defined in the state of the art

motivated the use of a different approach for acquiring the data. Beyond this fact, the evolution

of technology led to the improvement of the quality of 3D sensors such as LIDAR. With this

improvement these sensors are becoming more accurate, which was also an aspect that motivates

their use on the realization of this thesis.

1.4 Goals 3

1.4 Goals

This dissertation focuses on the development of methodologies to create a three-dimensional rep-

resentation of civil infrastructure assets. These digital representations are going to be built from

data acquired by an UAV equipped with a LIDAR. In each mission, the UAV will navigate through

the structure autonomously, acquiring point clouds. To achieve this main goal, a set of secondary

objective will have to be fulfilled, namely:

• Understand and define the steps to be used for three-dimensional reconstruction;

• Development of a robotic operating system (ROS)[1] node capable of receiving, transform-

ing and merging different point clouds into a single registered point cloud;

• Development of an algorithm capable of generating a three-dimensional representation from

a point cloud;

• Perform the comparison between meshes in order to detect differences between them;

• Development of a node capable of creating and sending a mission to the UAV, so that it

performs it autonomously.

1.5 Thesis Outline

The document is divided into five chapters, these being the introduction, the literature review, the

proposed approach, the results obtained and the conclusion.

In chapter one, the theme of the dissertation is presented, contextualizing the reasons that

aroused the interest in this project, and the objectives intended with its development are mentioned.

In chapter two, a study is made regarding the state of development in which technologies, such

as digital twins (DTs), 3D reconstruction, and the application of robots in civil construction, are.

In each of these sub-chapters, the information is based on studies developed in the different areas.

In chapter three all the process used to develop this thesis is explained. The chapter starts

by explaining all the methods used and developed for the acquisition of the data, and it ends

presenting the developed system, which is capable of transforming a set of point clouds into a 3D

model.

In chapter four the results of the different stages of the developed system are presented. In this

chapter it is also explained the reasons for the obtained results.

In chapter five a conclusion is made, making a comparison of the method developed with

different approaches of this problem. In this chapter the future work is also presented.

Chapter 2

Literature Review

In this Chapter it is presented a literature review on DTs, 3D reconstruction methodologies, and

the presence of robots in the construction sector. In the first Section (2.1), a review of the state

of the art on DTs is made, explaining their advances and utilization. In Section 2.2 the process of

creating a 3D model is explained based on methods developed by different researchers. Finally,

in Section 2.3 an overview of the application of robots to perform infrastructure inspections and

maintenance is presented.

2.1 Digital Twins

In 2002, the concept of DTs was introduced as a tool for product lifecycle management (PLM)

course called "Conceptual Ideal for PLM". This term, with the development of technology, has

evolved to become a powerful tool for decision-making that is now fundamentally associated with

the industrial revolution 4.0 [2].

A DT consists of a virtual copy of an asset, product, or physical process, and its main objective

is to improve the characteristics of its physical twin. The development of the IoT is a major pioneer

of this technology, as it allows the DT to, continuously, receive data from the sensors present in

the physical component [3]. This data is processed in the DT and depending on the contained

information, it can return information to the physical unit, which may interact with the real world

through the physical twin actuators, thus creating a continuous cycle of information changes.

Another aspect that favors the DT concept is the significant increase in the amount of information

available that is associated with any product, usually called "Big Data". This significant increase

in the amount of data allows the DT to simulate, in the environment where its physical twin is, the

various possible scenarios, making it able to make the best decision [4]. In this way, a DT provides

a system with the ability to improve autonomously.

In addition to simulation, a DT may be able to develop and verify the behavior of real equip-

ment, being able to detect problems in the early stages of development, or even predict problems

that may happen. One of the areas where this concept is gaining more and more importance is

civil construction.

4

2.1 Digital Twins 5

2.1.1 Constitution of a Digital Twin

The concept of DT, despite being arousing a lot of interest on the part of researchers, does not yet

have a universal conceptual composition. However, in general, a DT is made up of domains in the

areas of sensing, data connection, and learning mechanisms [3].

2.1.1.1 Sensorization

The vast majority of authors consider sensing as an essential domain of a DT, being the source

of real-time data [4, 5]. Some authors point to the digital model as a great sensor used to predict

behaviors of the associated physical system. In construction assets cyber-physical systems, RFID

tags and scanners are used, all being interconnected to facilitate communication between the real

world and the virtual model.

Starting from the data extracted by the sensors, and having a previously defined meaning and

structure, the environment can be monitored, being possible to activate certain actuators when

values obtained exceed limits. From the operator’s point of view, the monitored values can be

expressed through graphs, tables, 3D models, or simulations.

It is common knowledge that a DT should be capable of encompassing the entire life cycle

of his physical twin, varying the form of implementation taking into account the application area.

Through the analysis of these cycles, DTs of future generations will have greater knowledge,

leading to better decision-making. In construction, there could be improvements regarding the

costs of construction development and security [3].

2.1.1.2 Data Connection

Studies related to smart cities, consider that building information modeling (BIM) should become

a starting point for DT, providing information related to the 3D model of the desired construction.

BIM is a process that involves the creation of a 3D model and allows the control of documentation,

coordination, and simulation during the life cycle of a project, making it possible to help the

stakeholder to understand the format that the structure will have even before of this being built

[6]. Although it was initially introduced with a collaboration improvement tool, it ended up being

involved in the entire infrastructure life cycle.

The inclusion of IoT is also pointed out as an aspect that will play a crucial role in monitoring,

being responsible for creating the bridge between the physical and the digital component. This

technology can also be used to monitor the way the product is used by the customer, presenting

itself as a benefit for both parties involved [3].

2.1.1.3 Learning Process

The DT credibility is related to how it makes decisions based on the information it receives. To

improve this interaction, some mechanisms can be applied. The ability to simulate the real envi-

ronment is an essential aspect of this improvement, where the quality of the simulation influences

6 Literature Review

the learning depth, based on the rigor required for the model [3]. For example, the simulation of a

nuclear power plant must be more accurate, representing with more detail the reality, than a nor-

mal water tank, given the nature of the infrastructure and their respective liabilities. An important

aspect to take into account, in this approach, is the quality of the sensors present in the physical

twin, as significant errors can compromise the learning process.

While simulations improve the ability to make decisions according to events that have oc-

curred, forecasting is also a crucial aspect of a DT, giving it the ability to predict events even

before they happen. "Big Data" presents itself as a driver in this field, supplying large amounts of

data to Machine Learning and Data Mining algorithms, which will extract and analyze information

patterns making it able to predict future situations taking into account past events.

2.1.2 Application on Construction

The emergence of tools such as BIM has brought a major change in the way construction in-

formation is created and stored. Although, with the large increase in the amount of information

available and the interconnection between various devices through the IoT, BIM does not become

compatible with all this information, getting limited to only a small part of the entire surrounding

context. Therefore, there is a need to move from using BIM to construction digital twin (CDT).

This DT has different features responsible for allowing the realization of specific services, which

are present during all building life-cycle, being constituted by different tools that vary along the

stages [3].

Currently, the sensing of construction sites is carried out by human beings, who are responsible

for managing updates and documentation. This approach compromises the DT’s ability to simulate

and predict the behavior of the environment, as all information received will be out of date and

may contain errors. To solve this problem, it is necessary to increase the quality of data obtained

by sensing the locations and guarantee a periodic flow of information between the location and

the virtual model. For DT to be able to analyze the real world in great detail, it needs large

amounts of information, making it difficult to guarantee the continuous flow of information and

the maintenance of the various sensors necessary for the acquisition of such data. In this sense,

there is a need to apply automation to monitoring. The use of 3D scanners in UAVs is an example

where it is possible to obtain large amounts of information in a relatively short time. With these

technologies it will be possible to improve the logistics of the site, increase its security and reduce

costs in the long run.

The management of construction sites is largely based on task planning, keeping costs to

values previously defined and giving better use to materials. In addition, construction sites are

characterized as one of the most dangerous workplaces. Thus, a CDT will have to be able to

carry out the entire management process of the site, updating the schedule of tasks and costs,

taking into account the changes that arise in the environment, as well as ensuring the safety of

workers, collecting data regarding the number of operators present, their respective location and

the condition in which they are.

2.2 3D Reconstruction 7

Based on the current level of development in this area, Boje et al. [3] proposed an approach

where a CDT is divided into 3 generations. The authors consider that the creation of a CDT must

be progressive and continues throughout the life cycle of the building. In the first generation, the

CDT will have the ability to sense the environment through the sensors of its physical twin and

analyze the data. The CDT is designed as an improved version of BIM, being able to predict and

optimize scenarios, as well as being able to acquire information for the next stages of the life cycle.

In the second generation, the knowledge base is created by enhancing monitoring platforms where

all the IoT integrated devices are represented. Then, intelligence is achieved using some rules

and AI algorithms. The capacity of the actuators is no longer limited to embedded emergency

procedures, but also covers security, energy consumption, problem details, and recommendations

for complex situations, which require verification and authentication. Finally, in the third gener-

ation, the DT is able to analyze information through Machine Learning mechanisms, becoming

self-reliant, self-updatable, and self-learning. The actuation over the environment becomes au-

tonomous but requires human supervision.

2.2 3D Reconstruction

3D reconstruction is the process of creating a digital representation of a real object, based on

its shapes and appearance. To accomplish that, a set of tasks must be done, starting from the

acquisition and prepossessing of the point cloud associated with the object, from that, the points

are connected in a way that a mesh is created, and finally, is given some texture to the mesh, so

that the final model can be, as much similar, to the real object, as possible.

2.2.1 Point Cloud Acquisition

A point cloud is a set of points in the space defined by a coordinate system that may represent

the shape of a physical object. Its acquisition is a very important step when creating a 3D model

since point clouds are the core of all the processes that will be done to achieve the final result, so

more accurate point clouds will create better models. Thus, is very important to start by defining

in which way the point cloud will be acquired. According to R. Khilar et al. [7] it is possible

to divide the techniques used to extract this type of information into Passive or Active. Passive

techniques use images to record the radiance reflected by the surface of different objects. These

images are then used to build 3D models of the objects analyzed. These methods are characterized

by having great accuracy when the environment is controlled, otherwise, the light reflection may

generate some noise in the image. Active techniques, on the other hand, use sensors that emit

energy, such as lasers, lights or ultrasounds, onto the object as a way to measure the distance to it,

an example of these sensors are LIDARs.

8 Literature Review

2.2.1.1 Photogrammetry-based methods

Photogrammetry is an image-based 3D reconstruction method defined as “the art, science, and

technology of obtaining reliable information about physical objects and the environment, through

processes of recording, measuring, and interpreting imagery and digital representations of energy

patterns derived from non-contact sensor systems” [8]. Being an embracing subject, it has different

areas of application such as engineering, medicine, architecture, archaeology, topography, among

others. Medicine benefits from this method for example when analyzing MRI and CT data [9].

In engineering, more precisely in the robotic industry, this method is used for 3D environment

detection, grasping, and welding. Some approaches use a light source, as well as a camera, to

increase the accuracy. This technique performs inefficiently in environments exposed to solar light.

Another alternative is stereo-photogrammetry. This concept was developed based on binocular

vision, which consists of perceiving depth by overlapping the field of view from each eye. The

two cameras are used to simulate the human eyes [10]. Given its wide use, photogrammetry turns

out to be an area in constant evolution, with several studies on the subject.

The basic algorithms on stereo matching techniques are not very complex but are computation-

ally exhaustive. Sah and Jotwani proposed a "parallel implementation of the fast stereo matching

algorithm based on correlation of multi-resolution images using CUDA" [11, p. 47]. This im-

plementation presents a faster performance than most of the software implementations and other

optimized methods in the same area [12, 13, 14, 15]. This improvement enables the usage of stereo

matching in real-time.

Ivanavičius et al. developed a stereo matching algorithm called Cyclops2, which "produces a

disparity image, provided two rectified grayscale images" [16, p. 1]. For matching, the authors use

the minimization of a weight function obtained from the absolute difference in pixels intensity.

Masson [17] proposed a method that uses RGB images from monocular cameras. The author

starts by trying to find features, which are patterns in the picture that have different properties

relative to his local neighbors. From that point, a matching between features from different images

is performed, and the posture of the images is estimated, having them as a reference. The point

cloud is generated based on a template matching method.

Bici et al. [18] proposed a method where photogrammetry is used on the reconstruction of an-

cient statues, which are known for having metal reflective surfaces. For that, the authors proposed

a photogrammetry workflow capable of overcoming some of the main issues associated with re-

flective surfaces. As a way to validate the developed method, the authors used a 3D scanner over

the same surface and compared both results.

2.2.1.2 LIDAR-based methods

With technology improvements, LIDARs are becoming more affordable and with more capabili-

ties. As a direct effect, they are becoming more popular in the field of 3D reconstruction. LIDAR

has two ways of measuring distances. The first is time of flight, were the sensor emits laser beams

into the objects around it, those beams, as soon as they hit the objects, are reflected to the sensor,

2.2 3D Reconstruction 9

and based on the speed of light and the time passed between the emission and the reception, is cal-

culated the distance to the object and creates a point, that represents the surface of the object. The

second way for measuring distances is the phase shift, were instead of a pulsed source the sensor

emits a continuous source with power modulated at constant frequency, which means that the in-

put can be seen as a sine wave relating laser power (y-axis) with time (x-axis). Thus, knowing the

phase difference in radians, the distance can be obtained1. Similarly, with photogrammetry-based

methods, LIDAR-based methods have a wide area of applications, which is why several studies

based on this technology have been carried out. Yi et al. [19] developed a method capable of

creating a 3D model of an urban building based on a raw point cloud extracted directly from a

LIDAR.

Besides the 3D reconstruction purpose, LIDAR information can be used in other areas. In the

robotic industry, through point clouds, it is possible to obtain additional information that will help

robots to perform their functions, such as the distance to objects or people, or to create a map of

the world around it. Zhang and Singh [20] proposed a method that uses a 2-axis LIDAR with 6

degrees of freedom (DoF) to calculate, in real-time, the odometry and map the area surrounding a

robot. For the odometry calculation, an algorithm estimates the velocity of the robot based on the

LIDAR data. For mapping the environment, a second algorithm is responsible for performing the

matching and registration of the point clouds.

As a way to improve both the LIDAR base and photogrammetry-based method to create a

point cloud, Li et al. [21] proposed a method that uses both the point cloud generated from the

images and the point cloud generated by a LIDAR. The system can be divided into two stages. In

the first one, LIDAR measurements are used to improve the density of point cloud extracted from

the images, and in the second phase, LIDAR measurements, from areas where the depth can not

be estimated using only images, are added to the final point cloud.

2.2.2 Noise removal

LIDAR sensors data may contain noise, usually presented in the point cloud as points which are

not related to the object in the analysis. These points are called outliers and can compromise all

the reconstruction processes, once that the reconstruction algorithms will assume them as part of

the object and will use them to create the mesh. To remove those undesired points is crucial to

apply some algorithm to the point cloud so that the maximum number of outliers can be removed.

For that, Zhang et al. [22] proposed an outlier removal approach that does not have parameters

and is based on density. The authors used a local consistency factor (LCF) to find points with

similar local density. With this metric, the point cloud is filtered and parameters for density-

based clustering are estimated. Unlike other density-based methods, the parameter estimation is

calculated autonomously. Then, to enhance the outlier detection, the distance based on the fusion

of spatial and color information is obtained. The outlier elimination with this method can reduce

forward complexity.

1https://seminex.com/lidar/

https://seminex.com/lidar/

10 Literature Review

Bastos et al. [23] proposed a method where the input data is reduced into a smaller set so

that further optimizations can be executed quickly. To perform the reduction, only geometric

operations are used, making it fast and deterministic. With this method, only the true outliers are

removed in a way that the optimal solution is kept intact.

2.2.3 Surface Reconstruction

A mesh is a 3D surface that defines how the points of the point cloud will be connected. After this

process, it will be possible to get a digital representation of the desired object.

Kazhdan et al. [24] proposed a Poisson method that consists of creating an indicator function

X that can solve the reconstruction problem. The function defines as ones the point presented

inside the model, and zeros the points found outside. The authors then obtained the reconstructed

surface by extracting an isosurface. The gradient of the X function is always zero until it gets close

enough to the surface where it gets the surface normal value, which enables the association of the

oriented points to the gradient of the function X. This relation permits reducing the problem of

finding the X function to invert his gradient. Thus, the function X that best approaches the field,

defined by the oriented points, must be found. Applying it to a divergence operator, the problem

turns into a Poisson problem. To discretize an adaptive octree is used. With this, it is possible

to define the level of detail. Higher values generate models with more quality but will require a

bigger computational capacity.

Wongwaen et al. [25] proposed an algorithm that starts by creating a cube around the point

cloud and dividing it into small equal cubes. Inside each cube, there are some points of the cloud.

The connection of these points creates a local mesh, named by the authors as sub mesh. To

accomplish that task, it is necessary to create an initial triangle, starting by selecting two points in

line, then, from the rest of the points, selecting the third one. With the first triangle formed, the

rest of the algorithm continues, by associating another point to each edge of the triangle, creating

new triangles. This process continues until there are no more points available. Once the process is

finished, it is necessary to merge all the different sub meshes into a global mesh, for that, triangles

between sub meshes frontiers are created.

Zavodny et al. [26] proposed a method capable of triangulating data acquired with a LIDAR by

identifying building surfaces and applying triangulations for each individually. Since the algorithm

uses input point sets for each surface individually, two planar regions will not make a close mesh.

For that, the authors start by getting together regions’ edges. Then, to reduce the complexity of

the triangulation, some points from the cloud are removed, leaving only the minimum necessary

number of points. With all the points removed, a concave triangulation is performed.

Roldão et al. [27] proposed an algorithm capable of performing a 3D reconstruction from

depth sensors. The input data must be sampled by a voxel grid [28]. The number of points pre-

sented in each voxel, their mean, and covariance, are stored in some variables. These variables

are a rich and compact way to represent the points inside each voxel. Fitting the data acquired

on a planar surface for each voxel will lead the reconstruction to become noisier because the data

have an heterogeneous density and some voxels may end up with a very reduced number of points.

2.2 3D Reconstruction 11

To solve the problem, the authors used an adaptive neighborhood to perform approximations of

the surface. This neighborhood is defined at the vertex location. Being K the level of the neigh-

borhood, there will be 2K3 voxels in it. For a given neighborhood is then measured the number

of points, the statistical mean, and his covariance. Those statistics are then used, according to

some restrictions, on a principal component analysis (PCA) so the local planar surface could be

estimated. To reconstruct a surface maintaining a high density and level of detail, from areas with

originally low density, an optimal neighborhood-level must be computed for each vertex. Then, a

truncated signed distance field (TSDF) is performed for every vertex of the voxel grid present in

the optimal neighborhood. After the TSDF computation, the mesh is extracted from the gradient

field using marching cubes [29].

For urban building reconstructions, Yi et al. [19] proposed a method that uses raw LIDAR

data to create, autonomously, 3D models of urban buildings. Their approach focuses on modeling

the main body of the buildings, as a consequence, some details such as windows are ignored.

The authors start by detecting the points related to the ground, which will be removed from the

cloud. Then, some clusters are generated spatially separated from each other. Every cluster can

be regarded as a building if the number of points presented in it is bigger than a defined threshold,

and if the height of the cluster is larger than another threshold, defined based on the ground height.

Having the buildings separated, the next step consists in slicing the building in a set of blocks

piled up, when the upwards direction is obtained by calculating a perpendicular vector to the

normal of the facades, the local apexes of a histogram, created from the feature points projected

on the upward direction, are extracted and consequently, the different planes of the building are

separated. For each block, characterized by having the same shapes of the contours over the

upward direction, the authors slice the data in a series of 2D sectional points parallel to the ground.

The spectral residual clustering (SRC) algorithm is used to decompose the contour into primitive

elements. Over the primitive elements, the constrained fitting will be applied for obtaining the

accurate contour. With the contours extracted and the 3D models created, from the blocks with

modeling operations, the final 3D model is obtained by applying the union Boolean over each 3D

model.

2.2.4 Texturization

To recover the details of the objects, texture, and color must be given to the surfaces obtained in

the previous process. This process is called texturization. This step requires the 3D model, some

images of the target objects, and their respective poses. Knowing the position and orientation, it is

necessary to find the relationship between the surfaces of the model and the pixels of the images.

Thus, for each image, a relationship is created between the texture of the surfaces present in the

images and the texture of the model’s surfaces. Since adjacent surfaces may not be present in the

same image, it is necessary to perform a color treatment. Waechter et al. [30] apply the Poisson

Editing method, which compares the textures of the faces and if there are differences in lighting,

a smooth transition between them will be created.

12 Literature Review

Zavodny et al. [26] propose a method capable of generating texture for triangulations. For

each point in the initial cloud point, it annotated its location and color. For each surface, the

authors generate an oriented bounding box which is filled with "texture using a hybrid technique

that begins by splatting point onto the texture with a small radius" [26, p. 4]. In each image, all

empty pixels are filled with the average value of their neighbors. To save space, just one dimension

of the texture is fixed, and based on the bounding box ratio the other dimension is automatically

obtained. This approach improves the consistency of the texture generated.

2.3 Robots for Building Construction and Maintenance

Increasingly, inspections and maintenance of different infrastructures are beginning to be carried

out by robots, either autonomously or manually controlled. This phenomenon arises from the ad-

vancement of technology, allowing the creation of robots with robust locomotion, greater capacity

for data acquisition, with more accurate sensors at a lower price. Inspections can be executed

using various types of robots, from land to air. In this way, it is possible to cover all kinds of sce-

narios, from simple infrastructure constructions to the maintenance of places where there has been

an accident. Thus, inspections carried out by robots have both safety and economic benefits. With

regard to safety, this is ensured by the fact that the operator does not have to go to the inspection

area, eliminating potential accidents. Inspections with robots are also cheaper, making it possible

to be executed more frequently, which is also a very positive aspect when it comes to safety. In

economic terms, the use of robots allows the time of each inspection to be reduced, either because

it is not necessary to build structures that allow manual inspection, such as scaffolding, or because

in many circumstances it is not necessary to interrupt the normal operation of some actives, such

as nuclear power plants or bridges.

As explained by Lattanzi and Miller [31], the biggest obstacle to this area is the diversity of

the environment in which the robots have to operate, taking into account that the structures are

not uniform and are usually found outdoors. The exposure of the robots to different atmospheric

conditions and the possibility of inspecting dirty places or with poor lighting conditions represents

another challenge, because it may affect the performance of robots sensors and consequently the

robot itself. In this way, there is no vehicle capable of performing all types of tasks, but instead, a

large set of robots specified to perform certain tasks.

2.3.1 Types of Robots

There are several models of robots, each of them specialized in performing different tasks. They

can be distinguished from each other in many possible ways, such as their locomotion, the type of

trajectory they perform, and the type of sensors they have. In inspections, robots are chosen taking

into account essentially the target mission. So locomotion, as the ability that the robot has in

reaching certain areas of a structure, is an essential characteristic when making that choice. Some

critical aspects to take into account are the different formats of the infrastructures, the robustness

necessary for the mission, the degree of stability of the movement, and the load present on the

2.3 Robots for Building Construction and Maintenance 13

robot. The types of locomotion can be divided into three major areas according to the environment:

terrestrial, aquatic, and aerial.

2.3.1.1 Terrestrial

This mechanism is, mainly, used when the situation requires planar movement, representing the

best option since robots are more stable and balanced, but can also be used outdoors, where the

surfaces are irregular. Normally, this type of robots can have either wheels, continuous tracks, or

legs. Yu et al. [32] developed a robot with differential wheels configuration, capable of being at

a constant distance from the wall. The robot is also equipped with a camera that is mounted on

a device responsible to reduce the vibration, so the images taken from the wall would have less

noise. Some authors like Choset [33], based on this mechanism, affix a manipulator on the top

of the robot, giving more degrees of freedom to the robot, making it possible to reach areas that

otherwise would not be reachable.

Ground-based robots are associated with higher payloads, which means more sensors can be

carried by them. They are also stable, due to the fact they are in contact with a surface, and

controllable platform for inspection [31]. In comparison with other mechanisms, they are less

mobile, having more difficulty reaching certain points. Once they use the floor to move, depending

on the inspection scene, it may be required to close the traffic to execute the inspection.

A variation to this type of locomotion is Crawling or Climbing. The big difference is that the

robot will no longer have wheels, and will be in direct contact with the surface, allowing it to

reach areas of difficult access in infrastructure. Normally these robots are able to walk on surfaces

parallel to the floor, as well as perpendicular surfaces. This mechanism has some limitations in

terms of the load it can carry, as well as the fact that it has more difficulty in avoiding obstacles.

Some examples, as well as their respective uses, are presented by Schmidt and Berns [34]

2.3.1.2 Aquatic

The term unmanned marine vehicle (UMV) comprises two types of water vehicles. The unmanned

surface vehicle (USV) travels at the level of the water surface, being boats an example of this type

of vehicle. The unmanned underwater vehicles (UUVs) are vehicles that move underwater and

normally use low transmission rate modems to communicate with the surface. Since UMVs are

robots that move in the water, they become subject to currents or waves, which can remove them

from the route. In addition, a large part of the sensors used in robots is not waterproof, which adds

another difficulty when using these vehicles.

With regard to inspections, UMVs are mainly used for the inspection of bridges or infrastruc-

tures under the water. Murphy et al. describes a mission where three UMVs are used to map

the wreckage of a collapsed bridge. One of the UMVs is equipped with an "acoustic camera for

subsurface inspection and a three video cameras for viewing above the waterline" [35, p. 84].

The second is normally used for bridge inspections and is equipped with a video camera. Finally,

14 Literature Review

the third is used for environmental research, it is therefore equipped with a side-scan sonar for

mapping debris fields.

2.3.1.3 Aerial

UAVs are vehicles that move through the air, commonly known as drones. There are several

models for this type of vehicles, where the two main ones are, those with multiple engines such

as the Tricopter, Quadcopter, Hexacopter, and Octocopter characterized by having the ability to

move in all directions, and those with fixed-wing, characterized by having a flight time significative

superior to those previously mentioned. The vast majority of these vehicles are not designed to

carry out inspections, however, due to their great flexibility to be modified and their low prices,

UAVs have been used for this purpose.

To analyze the feasibility of performing infrastructure inspections with UAVs, Khan et al.

[36] developed a set of tests where a UAV equipped with an automated multispectral scanning

system was used. The authors conclude that it brought several benefits mainly in the detection of

deterioration of the infrastructures. Another advantage found was the fact that it was not necessary

to close the traffic.

To perform inspections on historical buildings, Kaamin et al. [37] used a UAV equipped with

a camera capable of quickly mapping different areas. The UAV used starts at ground level and

moves vertically up to the top of the building, where it reverses the direction of movement and

returns to the floor. This process is repeated until the building is scanned. While performing the

trajectory, images and videos are captured. These data are subsequently analyzed, accomplishing

the inspection.

Inspections with these vehicles can be performed autonomously or via a remote control used by

an operator. Teleoperated control is currently the most used method because it gives the operator

more freedom to decide what to inspect. The biggest limitation in this method is the fact that the

inspection is carried out by an operator, which makes it always more susceptible to some errors.

Autonomous navigation, on the other hand, presents itself as an alternative in which the vehicle

navigates by itself based on the data acquired by its sensors. This approach makes mission results

much more reliable since robots are not subject to distractions or fatigue. Although these methods

bring several advantages, the environment where the inspections are performed presents itself as

a great challenge, because a big part of the inspections are done outdoors and it is characterized

by presenting several external factors, such as weather conditions, that can influence the drone’s

behavior as well as compromise the entire mission.

In order to make data from UAVs more reliable, several studies have been done. To improve

vehicle stabilization during inspections, Metni and Hamel [38] developed a control system based

on computer vision that limits the flight orientation to keep the objects in the range of the camera.

The control system also limits the orientation of the UAV to stabilize it over the target.

2.3 Robots for Building Construction and Maintenance 15

2.3.2 Different Scenarios

There are different types of scenarios where an inspection can take place, and given the different

natures of the places in question, different approaches must be implemented to ensure the highest

degree of reliability of the inspection in progress.

2.3.2.1 Bridges

Bridges are very delicate structures because, due to their shape, they may require care on their land

side, as well as on their submerged supports. Sophisticated inspections, which may require traffic

disruption, are therefore required as well as specialized teams to perform underwater inspections.

Given these characteristics, the use of robots to carry out such tasks has advantages.

One of the first approaches used was the snooper truck. This is a vehicle equipped with a

long robotic arm capable of reaching the bottom of a bridge. Based on this vehicle, several ap-

proaches were developed, all of them used cameras to detect failures. Despite being widely used,

these mechanisms have some limitations related to their cost and traffic disruption. Recently, with

the development of UAVs, given their flexibility and mobility, it has presented itself as a viable

alternative to the inspection of these infrastructures [36].

2.3.2.2 Power Lines

Society increasingly depends on electricity in its normal functioning, and allied to this need, the

importance of maintaining the proper functioning of power lines increases, as they are one of the

main forms of energy transport. Given the importance associated with these infrastructures (a fail-

ure can cause great economic losses and energy failures for consumers), they always need to be in

good condition, and it is very important to carry out periodic inspections and maintenance. These

inspections are traditionally performed by humans, either through the ground or using helicopters

(far more expensive). Since many power lines are found in places with difficult access, inspections

from the ground become less efficient and more time-consuming.

Recently, UAVs have been used for this type of task, as they have characteristics that make

them very appealing for this type of task, such as their small size and ease of reaching places

with difficult access from the ground. Some approaches try to improve the ability of UAVs to

perform these types of tasks, making them more reliable. Azevedo et al. [39] developed an

algorithm capable of detecting and modulating power lines in real time. Santo et al. [40] develop

a method that uses camera images on a UAV to detect power lines. This approach takes advantage

of characteristics of lines such as their parallel lines as a way to improve their performance.

2.3.2.3 Tunnels

Since the tunnels are underground infrastructures, the inspectors face very uncomfortable and dan-

gerous environments, given the lack of lighting, the dirtiness of the environment, and the possible

16 Literature Review

presence of harmful gases for their health. To mitigate this problem, robotics technology presents

itself as a necessity.

Despite the need to conduct inspections autonomously, most of the approaches initially devel-

oped consisted of fully or partially teleoperated robots, which required the presence of an operator

on the site itself. In addition, sometimes the data acquired contains error or is not sufficient, which

demand the intervention of the operator, making him move to the place.

With the objective of making the whole process autonomous, from the detection to the fault

repression, some robots were developed, such as the robot-aided tunnel inspection and mainte-

nance (RATIM) [41]. This vehicle has a mobile platform where there is a manipulator equipped

with repair tools as well as sensors for fault detection.

2.3.2.4 Vertical Structures

In vertical structures, inspections are carried out using platforms such as scaffolding that allow

workers to reach such heights. This method becomes time-consuming and expensive. Then it

becomes necessary to use robots to solve these problems.

The robot is required to be able to move on the surface, being able to analyze it regardless

of its height. The climbing robots are designed exactly to move along vertical surfaces, being

characterized by the type of adhesion they create with the same, this aspect is something that must

be taken into account because different types of surfaces will require different adhesions [34].

Another type of robot capable of carrying out this type of inspection is the UAV, which has

the ability to move in the air which allows them to analyze the surfaces without having to make

effective contact with them. These robots are presented as being more flexible and maneuvering,

making them a very interesting option.

Chapter 3

Proposed Approach

To solve the problem presented in Section 1.1, an autonomous system capable of assisting human

inspectors in the task of updating the data related to the infrastructures must be used. Thus, the

goal of this dissertation is to develop a system capable of extracting information related to the

state of the infrastructure, namely its geometric structure and the details that its surface presents.

For that, a robot equipped with a set of sensors, whose objective will be to navigate around the

infrastructure, extracting points to create a cloud of points from the construction environment will

be used. The data will then be analyzed and used by meshing and texturing algorithms, building, at

the end, a 3D model of the current state of the infrastructure. This process can be repeated several

times, making it possible to obtain several 3D models, representative of the various construction

phases, throughout the entire process. These models will then be compared, making it possible to

find differences between them.

With the presentation of different vehicles made on Section 2.3.1, it can be concluded that

UAVs are quite versatile, and for that reason, a UAV quadcopter was used. This type of vehicles,

as mentioned in Section 2.3.1.3, are capable of moving through the air, making it easy to analyze

a structure with large dimensions. In addition, they present good mobility, since they can move

in any direction, making it a good option to analyze surfaces while avoiding obstacles and some

irregularities on the surface itself. Another important aspect is the fact that combined with these

advantages, UAVs have a significantly lower price than other vehicles designed for the same pur-

poses. Despite this, UAVs have some disadvantages, namely their flight time, which is the time

they can handle in the air without having to change their batteries. The limitation in terms of

payload weight is also a disadvantage. However, given the evolution of technology, these disad-

vantages are becoming smaller as both the capacity of your batteries and the capacity to carry a

payload, are getting bigger. Taking into account these factors, it is possible to conclude that the

advantages of using this vehicle outweigh its disadvantages, having therefore been chosen for this

dissertation.

The sensor used to obtain the data from the structure in analysis will be a LIDAR. This sensor,

as mentioned in the Section 2.2.1.2, is capable of extracting clouds of points taking into account

the environment in which it finds itself. In addition to this sensor, an algorithm capable of creating

17

18 Proposed Approach

a single point cloud from several point sets obtained while the sensor moves will be used.

In this chapter, the work developed will be presented, explaining in detail, all methods devel-

oped and used. The chapter will be divided according to the subtasks used to guide the develop-

ment of the project. It starts by presenting all the work related to acquisition of the data, and then

it will explain the process of converting the raw point clouds into three-dimensional representation

of the real scene.

3.1 Data Acquisition

The main objective of this dissertation is to create a three-dimensional model of a real infrastruc-

ture. For this, it is necessary, in the first instance, to carry out the data collection. To collect

the data needed for the reconstruction process, a LIDAR sensor was used. The reconstruction

pipeline is capable of operating independently of the transport system where it is inserted, but

since the scenarios targeted by the dissertation are characterized by walls with some meters of

height (buildings with two or more floors) and sometimes difficult access, it became necessary to

use a vehicle capable of operating in these circumstances, so it was decided to use a UAV due to

its ease of reaching higher altitudes and since it is a small vehicle.

3.1.1 Hardware

For the realization of this project it was decided to use a commercial UAV instead of building on

from scratch. Due to technological advances, the number of manufacturers that develop UAVs

increased, making it cheaper to buy one of these vehicles than to build one from scratch.

The UAV was used to perform the flight, however in this dissertation it was also intended to

develop a ROS node1 capable of creating an autonomous mission and later upload it to the vehicle.

Thus, it was decided to equip the UAV with an on-board computer. The computer was also used

to save the point clouds and images from the sensor. The computer has to be light and small,

and needs to have an adapter that allows the exchange of information between the vehicle and the

computer. All the on-board devices used, and a schema of their connection is presented on figure

3.1.

3.1.1.1 UAV and Accessories

The UAV used in this dissertation is a Matrice 300 RTK developed by DJI [42]. This vehicle

presents itself as a medium-sized UAV (810 × 670 × 430mm) and has a weight of 6.3 kg con-

sidering its two TB60 batteries. These batteries allow the UAV to fly for 55 minutes considering

no payload is attached. From the moment the weight of the payload increases, the flight time

decreases, being reduced to 31 minutes when the payload is maximum.

According to the information provided by the manufacturer, it is possible to derive an equation

describing the relationship between the payload weight in kg (PW) and the UAV Maximum flight

1http://wiki.ros.org/rosnode

http://wiki.ros.org/rosnode

3.1 Data Acquisition 19

Figure 3.1: On-Board Hardware

time in minutes (MT), equation 3.1. It is important to note that this estimation does not consider

the energy consumed by the payload, only his weight. Figure 3.2 presents the curve created from

the equation.

MT = 2.988×PW 2 −16.778PW +54.581 (3.1)

Figure 3.2: Estimated flight time based on the payload weight 2

2https://www.dji.com/pt/matrice-300

https://www.dji.com/pt/matrice-300

20 Proposed Approach

The batteries are charged in the DJI Matrice 300 BS60 Intelligent Battery Station. The station

has a capacity for 8 TB60 batteries and 4 WB37 batteries, but only 2 TB60 batteries and 1 WB37

can be charged simultaneously. The WB37 batteries are used by the remote control and the global

navigation satellite system (GNSS) base station.

The UAV has a GNSS sensor capable of acquiring its geographic coordinates, but since the

error of this system is about 2 meters, and the autonomous flight of the UAV depends on the

coordinates of different points, this margin of error may be sufficient for compromise the mission

and consequently the reconstruction of the models. Thus, when flying, there is a need to connect

the vehicle to a base station to make its positioning more accurate. In the project, the D-RTK 2

Mobile Station3 was used, which, as the name implies, allows to improve the accuracy of the UAV

using an real-time kinematic (RTK) system. The GNSS base station, estimates the GNSS system

location error and sends corrections that enable centimeter-level positioning data for improved

relative accuracy, after the correction the deviations are approximately 1cm (horizontal) and 2cm

(vertical).

The UAV can also be equipped with a gimbal and a camera. For this thesis, this equipment was

only used on the acquisition of images and videos, which had the ultimate objective of evaluating

the quality of the reconstructed models.

3.1.1.2 On-board Computer

An on-board computer was used to execute the nodes responsible for controlling the UAV and

recording the point clouds. This computer, as it is placed on the vehicle, needs to have very

small dimensions and weight. In view of these restrictions, it was decided to use a Manifold

2-C. This computer weighs approximately 205g, has dimensions of 91 x 61 x 35 mm, an Intel

Core i7-8550U processor, 8GB of memory and a 256GB SSD. In terms of power consumption, it

consumes between 5 and 60W.

The operating system used is Ubuntu 16.04, as it is a lightweight operating system that is

compatible with ROS. For the Ubuntu version used, the compatible ROS version is Kinetic. Those

software versions were used, taking into account the fact that the ROS package developed by the

manufacturer is designed and tested with this version of the Framework.

3.1.1.3 LIDAR

As explained in Section 2.2.1.2, LIDAR is a technology in growth in the 3D reconstruction area

since it has the capability of performing the measurement and creation of point clouds regardless

of the lighting conditions of the scene. Having this in mind, for the acquisition of point clouds,

a LIDAR sensor has been used, more precisely, an OUSTER OS14 with 64 beams, figure 3.3. In

terms of characteristics, the sensor presents a very light model, with around 455g.

3https://www.dji.com/pt/d-rtk-2
4https://ouster.com/products/os1-lidar-sensor/

https://www.dji.com/pt/d-rtk-2
https://ouster.com/products/os1-lidar-sensor/

3.1 Data Acquisition 21

The sensor, being mechanical, has a tendency to reach high temperatures. To minimize this

situation, it must be associated with a heat sink or a magnetic surface. This association will

consequently lead to an increase in the total weight of the set to 985g.

In terms of data capture, it has a vertical resolution of 64 beams and can have a horizontal

resolution of up to 2048 points. It has a maximum range of 120m and a vertical field of view

(FoV) of approximately 45º. Its rotation frequency is configurable and can take the values of 10

or 20 hz. In this way, it is possible to capture a total of 1310720 points per second.

Figure 3.3: Ouster OS1

Another aspect that led to the use of this sensor is its ability to be integrated into a project

in ROS. The manufacturer provides a ROS driver through which it is possible to establish com-

munication between the sensor and the computer, configure the sensor, read information from the

sensor and interact with other ROS packages. For its use, it is necessary to establish a TCP/IP

communication between the sensor and a computer and execute the node from the package. This

node will cause the sensor to start publishing point clouds on the topic /os_cloud_node/points,

through messages in the format "sensor_msgs/PointCloud2". The node has several configurable

parameters, such as horizontal resolution and frequency, parameters that allow defining the way

messages are sent and the type of information they contain.

Besides all the previously explained features, this particular LIDAR also has the capability

of generating ambient images, intensity images, and range images in real time, making them

correlated and synchronised. To generate these images, the sensor has an optical system capable

of collecting ambient imagery in almost any light conditions. The sensor captures data in the near

infrared, giving the images a natural look. This feature is used by the texturization process to give

texture to the generated mesh.

In figure 3.4 it is possible to see all the outputs of the LIDAR. The first three pictures corre-

spond to the images sent by the sensor and the final picture to the cloud point also generated by

the sensor.

22 Proposed Approach

(a) Ambient Image

(b) Intensity Image

(c) Range Image

(d) Point Cloud

Figure 3.4: LIDAR Outputs

3.1 Data Acquisition 23

3.1.1.4 Hubs and Adapter

Given the reduced dimension of the on-board computer, upon its creation some decisions were

taken by the manufacturer, one of them being the reduction of the number of ports where periph-

erals can be connected. The computer only has 2 USB ports, which is not enough to make all the

connection needed, making it necessary to connect to one of them an USB hub, powered by the

USB port itself. With this extra hub, the number of USB ports available increased from 2 to 5.

In terms of energy, the principal on-board devices (computer and LIDAR) were powered from

the UAV batteries. To make the distribution of energy between the devices possible it was neces-

sary to use a Power Distribution Unit. This unit receives the energy from the UAV batteries and

splits it to 5 XT30 Female ports with 15 amperes each.

To establish the interface between the Computer and the vehicle it was necessary to use the

adapter onboard software development kit (OSDK) expansion Module. All the components used,

as well as all the existing connections (power and logical) are presented in the Tables A.1, A.2 and

A.3.

3.1.1.5 Hardware Structure

As the necessary payload to be attached to the UAV corresponds to several components, all with

reduced dimensions, a support was designed to accommodate all of them together, thus making

the process of placing and removing the payload from the UAV fast, figure 3.5.

(a) Payload (b) UAV

Figure 3.5: UAV and respective Payload

3.1.2 Autonomous Navigation

The UAV is compatible with ROS and once the Framework has been used in other parts of this

project, it was also used to carry out the creation of its mission. To this end, a node for creating and

uploading the mission to the vehicle was created. In the development of this node some classes,

made available by the manufacturer, were used to perform the autonomous control of the aircraft.

The UAV used is capable of carrying out different types of missions such as remote-controlled

missions, missions defined through offsets and missions defined by waypoints. This last example

24 Proposed Approach

was the type of mission implemented and performed during the acquisition of the data. This type

of mission consists of a trajectory defined by a set of waypoints through which the vehicle will

have to traverse. Each waypoint is defined with its geographic coordinates (latitude and longitude)

and its height. Thus, to create a mission it is necessary to define some parameters, such as the

waypoints, the type of trajectory used between waypoints, the UAV orientation, and the UAV’s

speed.

• Waypoints

The waypoints are defined using tools such as Google My Maps5, where it is possible to

select points on the world map. After choosing the points, they are exported as a .kml file.

This format is very similar to a .xml file, so, in order to extract the needed values, a function

based on an xml parser was developed. Since Google My Maps does not have a vertical

component, the height of all points had to be estimated and entered manually in the .kml

file.

• Path

For the definition of the trajectory, it is possible to configure the UAV to perform different

types of paths, such as straight or curved. For the autonomous missions, and as a way of

being able to predict the path that the vehicle will take when traveling, it was decided to

configure the UAV to navigate only in straight movements, always using straight lines to

travel between waypoints.

• Orientation

Another very important aspect in the configuration of the mission is to define the orientation

that the vehicle must have while traveling. This parameter is very important in the flights

performed because the point cloud processing algorithm will only consider the points that

are within a given field of view. Thus, it is necessary that the UAV moves around the target

infrastructure, always with its front pointing towards the faces of the infrastructure. For

this purpose, it was necessary to define a point of interest, towards which the UAV should

always be oriented, regardless of the part of the mission in which it finds itself. This point

of interest is also defined in My Maps, and is also represented in the .kml file.

Although the point of interest is defined by a set of geographical coordinates, for the vehicle

to consider it as a point of interest, the point has to be defined relatively to the home point

(point on the floor where the UAV is before starting its mission), so it must be represented by

a pair(x, y), where the component x corresponds to the displacement to geographic North

and the component y to the displacement to geographic East. This transformation had to

be performed due to limitations imposed by the API provided by the manufacturer. To

perform the conversion between the difference of geographic coordinates and a distance in

meters, equations 3.2 and 3.3 were used [43]. La corresponds to the Latitude and Lo to the

5https://www.google.com/maps/d/u/0/

https://www.google.com/maps/d/u/0/

3.2 Data Processing 25

Longitude. The numbers associated to this variables define the points used, 1 is used for the

Point of Interest and 2 for the home point.

∆x = (La1 −La2)× (
π

180
×6367449−559.822× cos(2× La1 +La2

2
)

+1.175× cos(4× La1 +La2

2
))

(3.2)

∆y = (Lo1 −Lo2)×
π

180
×6367449× cos(

La1 +La2

2
) (3.3)

• Velocity

Regarding the velocity, the UAV presents 2 different types of speeds, the cruise speed and

the maximum speed. Cruise speed is the speed that the vehicle displays when there is no

interaction by the operator with the remote control. The maximum speed is the maximum

value that the sum between the cruise speed and the speed generated by the remote control

can have. As an example, a maximum speed of 10 m/s and cruise speed of 5 m/s means that

the UAV will move autonomously at 5 m/s, being able to increase its speed up to 10 m/s if

the operator so wishes.

It should be noted that at any time during the mission, the operator can suspend or end the

mission, as well as force the UAV to move to a specific location. This happens because the

commands sent by the remote control always override the autonomous control.

3.2 Data Processing

This Section is focused on creating a 3D model of a building or infrastructure, using as a starting

point the raw point cloud acquired from the real building using a LIDAR scanner. To accomplish

this goal, a set of different sub tasks have been performed. Those sub tasks are interconnected

according to figure 3.6, which is a schema of the system developed.

3.2.1 Odometry Calculation

Like the vast majority of sensors, the LIDAR used produces raw data, which will need some

processing and context so that relevant information can be extracted for the continuation of the

project. In this case, all the point clouds received contain points that in reality did not exist or that

were detected with wrong distances (noise), and in addition, each of the point clouds has its own

reference, making it impossible to represent the real environment.

To circumvent the problem of the registration of the point clouds, it was decided to use a si-

multaneous localization and mapping (SLAM) algorithm. Some different approaches have been

26 Proposed Approach

Figure 3.6: 3D Reconstruction Process

tried, such as Google Cartographer [44], LeGO-LOAM [45] and A-LOAM6. The first algorithm

required a software version that was not compatible with the on-board computer, and was eventu-

ally excluded for that reason. The LeGO-LOAM algorithm is "lightweight and ground-optimized

LOAM (LeGO-LOAM) for pose estimation of UGVs incomplex environments" [45, p. 4759].

The main characteristic of this method is the fact that it is ground-optimized, which means it uses

6https://github.com/HKUST-Aerial-Robotics/A-LOAM

https://github.com/HKUST-Aerial-Robotics/A-LOAM

3.2 Data Processing 27

a ground plane to perform segmentation and optimization. Due to this limitation LeGO-LOAM

was also excluded. The A-LOAM algorithm, which is an advanced modification of the LOAM

algorithm [46], presented very interesting results. This algorithm was developed to interact with

LIDAR’s data and uses the Eigen and Ceres Solver libraries to make the code structure simpler.

This algorithm, in comparison with the LeGO-LOAM, is not limited to the ground, being able to

work properly while the LIDAR sensor moves freely in the 3D space. In the context of the project

developed, as the data received through the sensor uses the ROS, it is interesting that the SLAM

algorithm, to be used, also has this interface. In the case of A-LOAM, this requirement is met.

Some parameters of this algorithm can be defined by the user. Among them, those who stand

out are the minimum range and dimensions of the voxels.

• The minimum range corresponds to the minimum distance, from which the algorithm will

start to consider the points. This parameter can have a great influence in relatively tight

areas, such as the interior of a building, where most of the points captured are located at

closer distances. On the other hand, in a larger outdoors environment, the points will al-

ready be found over greater distances. If at any time, the distance between all the points

presented in the point cloud received by the algorithm and the sensor is smaller than the

defined "minimum range", the algorithm will stop receiving information, becoming disori-

ented and compromising the rest of the project.

• With voxels it is possible to represent a point cloud in a more compact way. These are cubic

representations of the environment where the points are found. Its value is obtained taking

into account all the points that are inside it. The parameters "dimensions of the voxels"

allow to define the size of each cube, making these cubes bigger or smaller depending on the

scenario. This approach is used to simplify the required computational capacity, reducing

the number of points to be processed and making the algorithm faster.

Once the algorithm is executed, it starts publishing its outputs in different topics, according to

the type of information generated. The topic used for the development of this thesis were:

• /laser_cloud_map: a three-dimensional map from the visited scene, which is updated as

the algorithm processes the clouds. The map is a point cloud composed of a set of points

obtained after the reduction of the input point clouds into voxels. Due to this reduction, the

map has a very low density of points which can lead to a 3D model with very little detail,

losing important parts of the scenario.

• /velodyne_cloud_registered: input point cloud already transformed according to the sce-

nario. For the reconstruction process this information allowed the algorithm to create very

detailed three-dimensional meshes given that the point clouds generated present have almost

the same density as the cloud extract from the LIDAR sensor. Due to limitations of the al-

gorithm itself, in this topic, the point clouds published lose their intensity property, making

it impossible to perform the texturization.

28 Proposed Approach

• /aft_mapped_to_init_high_frec: Once calculated the transformation for the input point cloud,

the algorithm generates a "nav_msgs::Odometry" 7 message and publishes it on this topic.

The message is constituted by a vector that defines the translation and a quaternion which

defines the rotation.

Due to the limitations imposed by the different topics, the A-LOAM algorithm is used to gen-

erate a transformation for each point cloud it receives. Figure 3.7 represents the final connection

model, where the LIDAR node publishes into topic /os_cloud/points, then A-loam algorithm cal-

culates the transformation for the cloud and publishes it to the topic /aft_mapped_to_init_high_frec.

The developed node receives the information presented on those topics and uses it to continue the

registration process.

3.2.2 Point Cloud Registration

Having the point clouds being published from the LIDAR in one topic and the information related

to their transformation, published by A-LOAM, in another topic, the synchronization between

both must be done in order to associate the information. To this end, it was developed a node that

integrated features of the package message_filters8 (a package developed for ROS). In this case,

the Policy-Based Synchronizer functionality was used, more specifically the ApproximateTime

Policy class. Through this it is possible to choose up to 10 topics, even with different types of

messages, and synchronize their messages. In this way, whenever messages are received in the

various types, only one callback function will be called and will have as input parameters the data

received in all the topics.

Once the association between the odometry value and the respective point cloud is completed,

it is necessary to rotate and translate it so that all clouds are aligned according to the real scenario,

and are represented in the same reference. To this end, the class "pcl::fromROSMsg"9 from the

point cloud library (PCL) library [47] was used. This class allows the conversion of the mes-

sages sent by LIDAR into point cloud specific variables, manipulable by functions of the PCL

library. With the cloud in a variable, to perform its transformation it was only necessary to call

the function "pcl::transformPointCloud"10. This function requires, as parameters, a point cloud

and a homogeneous transformation matrix. For the calculation of the matrix, a function was de-

veloped. The function receives as input parameters the messages sent by A-loam, which contains

a translation vector, defined by the xt, yt and zt values, and a quaternion defined with its w, x, y

and z values (q = (w,x,y,z)). The translation vector is used to perform a translation on the point

cloud and the quaternion is used to rotate the point cloud. Equation 3.4 contains the homogeneous

7http://docs.ros.org/en/kinetic/api/nav_msgs/html/msg/Odometry.html
8http://wiki.ros.org/message_filters
9https://pointclouds.org/documentation/ros_2conversions_8h_source.html

10https://pointclouds.org/documentation/group__common.html

http://docs.ros.org/en/kinetic/api/nav_msgs/html/msg/Odometry.html
http://wiki.ros.org/message_filters
https://pointclouds.org/documentation/ros_2conversions_8h_source.html
https://pointclouds.org/documentation/group__common.html

3.2 Data Processing 29

Figure 3.7: ROS nodes connections

30 Proposed Approach

transformation matrix used [48].

H =


2× (w2 + x2)−1 2× (x× y−w× z) 2× (x× z+w× y) xt

2× (x× y+w× z) 2× (w2 + y2)−1 2× (y× z−w× x) yt

2× (x× z−w× y) 2× (y× z+w× x) 2× (w2 + z2)−1 zt

0 0 0 1

 (3.4)

3.2.3 Field of View filter

The LIDAR used is capable of generating point clouds with points in all directions, more precisely

in 360º. This happens because the beams of light rotate around a central axis.

A positive aspect that makes this capability almost mandatory is the fact that the A-LOAM

algorithm needs points to be able to create the map, namely it needs points to detect common

features among the clouds in order to estimate the transformation. Since the sensor has a wider

viewing angle it is expected to create point clouds containing information about the all scenario

around it, improving the final result of the algorithm. Another very positive aspect is the ability

to acquire point clouds from an indoor environment without having to rotate the sensor. An ex-

ample could be the use of a LIDAR inside a warehouse, as it will be able to generate points in all

directions of the warehouse from a central point.

Despite presenting some positive features, it also generates a large amount of data. This is a

very important aspect as point clouds can contain millions of points, leading to quite large sizes.

Another negative aspect is associated with obtaining point clouds of objects from outdoors. In

this type of acquisitions, the main objective is to be able to extract only the points associated

with the surface of that infrastructure, however, and given that the vast majority of infrastructures

are not completely isolated, when creating the point cloud, it will contain points related to other

infrastructures of no interest, leading to an increase in the size of the cloud.

To take advantage of the best that can be acquired with the sensor and taking into account

limitations in terms of memory and further processing, it was decided to develop a function that,

given a point cloud, is responsible for removing all points that are outside a given Field of View.

This function is based on the class pcl::FrustumCulling11, and in order to work properly, it needs

to have aligned with the point cloud it receives. Since the point cloud was transformed by the

homogeneous transformation, this same transformation is used on the alignment.

With this approach, the SLAM algorithm runs with the complete cloud, maximizing the quality

of the registration. Cloud filtering is performed only after the point cloud transformation has

been calculated and applied. It should be noted that the filter is always applied from the front

of the LIDAR, thus, as an example, a 60º filter corresponds to 30º clockwise and another 30º

counterclockwise.

Figure 3.8 represents the applied filter, where the green line represents the region with valid

points, and the blue dot represents the LIDAR sensor.

11https://pointclouds.org/documentation/classpcl_1_1_frustum_culling.html

https://pointclouds.org/documentation/classpcl_1_1_frustum_culling.html

3.2 Data Processing 31

Figure 3.8: Field of View

Since the project was developed with the intention of processing clouds obtained from the

exterior, this set of processes allows to create a point cloud oriented, lighter and with only the

useful part of the environment.

3.2.4 Normal Estimation

So far, point clouds are made up of points characterized by their X, Y, Z coordinates and their

intensity. All of these values came from the sensor and, in the registration operation, the values of

X, Y and Z underwent changes. However, for most surface reconstruction algorithms, each point

must contain information about the normal vector of the surface to which the point will belong,

making it possible to encode the local orientation of surfaces.

To perform the estimation, PCL library provides 2 classes capable of making this estimation.

Both classes consider the "problem of determining the normal to a point on the surface is ap-

proximated by the problem of estimating the normal of a plane tangent to the surface, which in

turn becomes a least-square plane fitting estimation problem" [49, p. 45]. The class used was

"pcl::NormalEstimationOMP"12, which differs from the other one by the fact it can use threads,

making the process much quicker. Some arguments of this class can be defined according to the

user needs, being them:

• Number of Threads: This value, as the name implies, allows the user to define the number of

threads to be used to calculate the normals. The higher the number, the faster the algorithm.

It should be noted that the maximum number of threads is limited to the number of threads

the computer can create. In the project 8 threads were used;

12https://pointclouds.org/documentation/classpcl_1_1_normal_estimation_o_m_p.html

https://pointclouds.org/documentation/classpcl_1_1_normal_estimation_o_m_p.html

32 Proposed Approach

• Point Cloud: The variable that holds the points, for which the algorithm will be executed,

estimating their normals. In the project, this variable keeps the cloud received from LIDAR

after undergoing orientation;

• Neighborhood radius: Value that defines the size of an imaginary circle that will be defined

around each point in order to consider the nearest neighbors for the calculation of normals,

the points that are within the circle;

• View Point: It is a point characterized by values in X, Y and Z, and works as a point of

view, making all the calculated normals point in their direction. To estimate the coordinates

of this point, a cloud centroid was firstly calculated, based on the average of all the cloud’s

constituent points. The method works well when the cloud has a homogeneous distribution

of its points and when they are distributed around the sensor, however, not all clouds will

have a 360º Field of View, much less be homogeneous, so this approach ends up showing

unsatisfactory results. In a second approach, odometry data is used, more specifically the

values of the translation of the cloud. After the orientation process, the central point of the

cloud coincides with the value of the translation performed, being this point a good estimate

for the Point of View.

Once the parameters were provided, it was still necessary to remove all points with coordinates

(0,0,0) from the point cloud because the class used can not estimate normals for these points and

ends up returning an error. Following the requirements of the class, the normal vectors were

estimated, passing the points of the clouds to be characterized not only by their coordinates and

intensity value, but also by their normal vector.

3.2.5 Saving the Final Cloud

After the filtering and registration process for each point cloud is finished, the processed point

cloud is added to the final point cloud. This point cloud contains all previously processed point

clouds, which means that whenever the processing of a point cloud is finished, all its remaining

points are added to the final point cloud. Since this method is iterative the increase in the number

of point clouds will lead to a final point cloud with more points and, consequently, with a higher

density, which is a very important aspect for the reconstruction of surfaces.

Once the final point cloud contains all the desired points from the scene, it must be saved onto

a file so that later can be visualized on a proper software such as MeshLab [50]. For this, a ROS

Service was developed, and whenever it is called, the function responsible for saving the cloud to

a file is executed.

Due to limitations imposed by ROS, it is impossible to send a message with more than 1GB

of information to a topic. Since the size of the final cloud can easily exceed this value it was

decided that the cloud must be saved in the same node. Thus, the service callback function is

responsible for saving the cloud in a .pcd format file. Since the process of writing large amounts

of information in memory is time consuming, this function is executed in a different thread from

3.2 Data Processing 33

the rest of the node, because, otherwise, the node would be blocked in this task, failing to receive

the clouds from the LIDAR, ending the SLAM algorithm to exhibit unpredictable behavior.

3.2.6 Statistical Filter

Despite all the processing done to each cloud, individually, after the process of creating the final

cloud there are some badly framed points in the general panorama, outliers. These points arise due

to small errors resulting from odometry, as they always have a margin of error. These points, when

inserted in the reconstruction algorithm, will influence the entire process, leaving the construction

of the mesh compromised due to the appearance of surfaces that do not correspond to the scene.

In order to minimize the problem, a statistical filter was applied to the point cloud before it

was used by the reconstruction algorithm, "pcl::StatisticalOutlierRemoval"13. The class has some

configurable arguments such as the number of neighbors to consider and the standard deviation

multiplier. The multiplier allows the user to decide how many times the deviation value of each

point must be, taking into account the overall value, so that this same point is still considered

valid. In the project, it was considered that the neighborhood was made up of 50 points and that

the standard deviation of each point could not be greater than the global value (multiplier equal to

1).

This process could have been carried out immediately on the point clouds obtained from the

sensor, however, as they were not yet transformed and had a density much lower than the final

cloud, it was decided to perform the statistical filtration only at this stage of the process.

3.2.7 Surface Generation

After processing the point clouds, the phase of converting the clouds into meshes, creating surfaces

from the points is performed. For this step, a Poisson reconstruction [24] based algorithm was

used, more specifically the class "pcl::Poisson"14 from PCL library. As a Poisson based algorithm,

this class requires that all points used have a normal vector, hence the estimation of normals when

processing clouds.

During the execution of the algorithm an octree is formed from the analyzed points. The depth

of the tree is configurable apriori, and the greater its value, the greater the computational capacity

required, which consequently leads the model to have a higher number of surfaces and detail. As

the number of surfaces increases, the size of the model also increases, requiring more space to store

the result. In addition, with higher depths, points become more influential in the reconstruction

process. This behavior can leave original smooth surfaces to become rough, because points on

the same region of the scenario present small changes between their coordinates (noise from the

clouds orientation process, which has been quite reduced, but not completely eliminated). Taking

into account these small details, a trade-off between the quality of the final reconstruction, the size

of the model and the processing time of the algorithm must be made.

13https://pointclouds.org/documentation/classpcl_1_1_statistical_outlier_removal_
3_01pcl_1_1_p_c_l_point_cloud2_01_4.html

14https://pointclouds.org/documentation/classpcl_1_1_poisson.html

https://pointclouds.org/documentation/classpcl_1_1_statistical_outlier_removal_3_01pcl_1_1_p_c_l_point_cloud2_01_4.html
https://pointclouds.org/documentation/classpcl_1_1_statistical_outlier_removal_3_01pcl_1_1_p_c_l_point_cloud2_01_4.html
https://pointclouds.org/documentation/classpcl_1_1_poisson.html

34 Proposed Approach

3.2.8 Texturization

The mesh created by the reconstruction algorithm presents itself as a 3D model of the scene,

however, despite already containing some characteristics of the real object, the model still presents

low detailed surfaces, lacking a fundamental characteristic which is the texture. Without this

characteristic present in the model it is harder for humans to recognize parts of the infrastructure

that are more subtle, such as window frames, windows, doors, among others.

Texturing, as the name implies, consists of imbuing texture on the model already built, thus

managing to create a final model, where details initially discarded by the 3D reconstruction can be

recovered, culminating in a final representation closer to the real scene. Peachey defines Texturing

as "an effective method of simulating surface detail at relatively low cost" [51, p. 279].

In the work developed, the texturing process consists of associating color to the various regions

of the model. Firstly an association between points of the point cloud and the surfaces of the mesh

were done, taking into account their respective positions on the global referential. In order to do

that, a kd tree was built, creating a search index on the point cloud. Those indexes were then used

to associate the points with the meshes regions. Since for the same region of the mesh there are

lots of points, to colourize the meshes the average intensity value of the closest 5 points was used.

It should be noted that only the information present in LIDAR was used to carry out this process,

and taking into account that the intensity provided by the sensor is a value that varies between 0

and 255, the final model will present a color scheme limited to greyscale.

3.2.9 Mesh Alignment

One of the objectives of the dissertation is to be able to detect changes that may arise in infras-

tructures, and given that data from the same scenario can be collected in different moments, it is

necessary to perform the alignment between the data sets, using its common parts as a reference.

Once aligned, the data becomes comparable.

In this thesis the alignment was performed through the iterative closest point (ICP) algorithm.

The algorithm is able to align different sets of data, minimizing the distance between the two.

Considering two point clouds, the algorithm starts by going through all the points present in one

of them and calculates, for each one, the shortest distance to the second cloud. Then, based on

the values obtained, a transformation is generated and applied to one of the clouds, bringing them

closer. The process is repeated until some condition is met.

This alignment algorithm was applied on the generated meshes because their number of ver-

tices are significantly smaller than the number of points in the original point cloud, making the

process faster. For that, instead of using the points of point clouds, the algorithm uses the vertices

of meshes.

Despite having a smaller set of data to be aligned, the meshes still have a large amount of in-

formation, so it is necessary to provide the algorithm with a good initial estimate of the orientation

of both models, minimizing the processing time and preventing the method from converging to a

3.2 Data Processing 35

local minimum. To generate this initial estimation the CloudCompare15 tool was used. It is an

open source tool that offers several functions for the manipulation of point clouds and meshes.

The specific function used requires 4 common points in each mesh to be selected, then it generates

a transformation to one of the meshes so that the points in both models coincide.

3.2.10 Mesh Comparison

In order to make the differences between the already aligned models notorious, it was decided to

create a heat map using the distance between the input models. A heat map is a technique that

allows the visualization of the magnitude of data through colors. In this section, the heat map

corresponds to a point cloud, where its points have colours according to the distance between the

models. This heat map is generated by a function from CloudCompare which receives as input

data a point cloud and a mesh, and for each point it calculates the distance to the closest surface.

Since the objective is to detect differences between two meshes, the most detailed of them is the

one converted into a point cloud. This new point cloud should be quite dense in order to contain

all the information presented on the mesh, and consequently for the heat map to have information

about all regions of the mesh, making it possible to detect small differences present in the models.

If the most detailed mesh is dense enough (have a high number of vertices), it is not necessary to

generate a point cloud, and instead the vertices of the mesh will be used as input.

Having obtained the distances for all points, it is possible to view that the resulting point cloud

contains its points with a color scheme proportional to the calculated distance value. Thus, using

this heat map, it is possible to detect inconsistencies between the models, by simply detecting on

the map regions with colors different from the standard.

15https://www.danielgm.net/cc/

https://www.danielgm.net/cc/

Chapter 4

Results

This chapter presents the results obtained during the process of creating the 3D model presented

in Section 3.2. This process, as presented above, is constituted by three phases: data process-

ing, surface reconstruction and texturing. It is also going to present some results of the similarities

between meshes. Beyond the 3D model process, this chapter will also present the result of the mis-

sion creation node. For the execution of the developed algorithms, a computer with the following

characteristics was used:

• Processor: Intel Core i7-8550U

• Memory: 8GB 64 bit, DDR4 2400 MHz

• Operating System: Ubuntu 16.04

The results obtained from the algorithm are point clouds or three-dimensional models, and

given the existing limitations for presenting this type of results in the document in question, the

results presented consist of images extracted from these models. The evaluation of the results will

be made using the comparison between images, because it is not trivial to carry out a quantitative

evaluation between the 3D model and the scenario from the dataset. Thus, the images of the three-

dimensional models will be accompanied by images of the real scenario, obtained when acquiring

their datasets, allowing a qualitative assessment to be executed.

4.1 Datasets

To avoid having to perform missions whenever it is necessary to access the data from the LIDAR,

ROS [1] has a package called ROS Bags1, which allows the user to record in a file all messages

that have been sent to the topics, chronologically. In this way, the creation of a bag when acquiring

the data allows that later, while analysing the data, the mission can be reproduced in the exact same

way as that happened in the real mission, but this time without the need for the hardware.

1http://wiki.ros.org/rosbag/

36

http://wiki.ros.org/rosbag/

4.1 Datasets 37

As input for the reconstruction algorithm, two datasets referring to infrastructures were used.

Each dataset consists of a ROS bag containing all messages acquired by the UAV and the payload

set while performing its mission. As scenarios for the missions, a house (Gondomar - dataset

A), figure 4.1, and the main building of Quinta do Seixo (Valença do Douro, Tabuaço - dataset

B), figure 4.2, were chosen. Both datasets, besides containing the target infrastructure, are also

formed by its surrounding vegetation. Table 4.1 presents more details about the datasets.

(a) Left View (b) Front View (c) Right View

Figure 4.1: House - Dataset A

(a) Left View (b) Front View (c) Right View

Figure 4.2: Quinta do Seixo - Dataset B

Table 4.1: Datasets Characteristics

Dataset Number of messages Size Duration
A 2,518,317 67.5GB 14.39 minutes
B 2,772,787 73.5GB 15.57 minutes

To choose the scenarios, some restrictions have been taken into account. Since the UAV is

framed in CE class C3, under subclass A3 it is not possible to fly with uninvolved people present

in the area of the flight, and fly within 150 horizontally of unauthorized residential, commercial,

industrial, or recreational areas. Both selected places were isolated (without surrounding build-

ings), and the reduced number of people present there was aware of the flight, removing them

from the uninvolved people category. In addition to the characteristics of the scenes, in all flights,

the UAV was carefully controlled in order to eliminate any undesired risk.

38 Results

4.2 Data Processing

In this section the results related to the point cloud processing are going to be presented. The

algorithm receives messages from the ROS bags, filters them and produces as output a single point

cloud constituted by points aligned according to the scenario. The point cloud will later be used

to perform the surface reconstruction and the texturization.

The performed process can be divided in two steps where the first one consists on the alignment

of all point clouds received, and the second step is responsible for reducing the amount of points

presented on the point cloud, allowing the desired points (points associated with the surfaces of

the building) to be used on the reconstruction algorithm, without the influence of the unwanted

points.

4.2.1 Registration

Originally, the point clouds sent by the LIDAR are all in the LIDAR local reference frame, so, if

the sensor is moving in any direction, all the clouds will be put on top of each others, resulting on a

final point cloud containing is points disoriented, figures 4.3a and 4.3b. With this point cloud it is

impossible to find any similarity with the infrastructure scanned, and consequently it is impossible

to perform the surface reconstruction.

After the process of registration is performed, all point clouds will be transformed, so that all

of them are correctly aligned according to the scene. Figures 4.3c and 4.3d present the result of

the registration process over the previously presented images.

4.2.2 Point Cloud Noise Removal

The LIDAR used is capable of collecting points up to a distance of 120 meters and in all directions

(360º). With these characteristics, the point clouds generated will contain far more non-target

points than points which actually correspond to the building. With this in mind, a FoV filter was

applied in order to remove the unwanted points. The filter has a configurable parameter which

makes it possible to control the range of points considered as valid. In figures 4.4 and 4.5 it is

possible to understand the difference between the clouds containing points all around the sensor,

and the ones which only contain the wanted portion of the scenario.

While performing the registration of the point clouds, the algorithm stops receiving the mes-

sages from the LIDAR, so, from the same dataset (ROS bag), different computers with different

computational capabilities will end up with point clouds with different densities. In order for the

algorithm to use all the information presented on the ROS bags, in this specific computer, it is not

possible to run the ROS bag at its normal speed, making it mandatory to slow it down. Despite

not containing all the information from the ROS bag, the built point clouds have enough density

for the reconstruction step. The angle of the field of view is another aspect that can have a big

influence on the point cloud size, since it is responsible for reducing the amount of point present

in the cloud. Table 4.2 contains the number of points present in each point cloud.

4.3 Surface Reconstruction 39

(a) Before Registration - Top View (b) Before Registration - Front View

(c) After Registration - Top View (d) After Registration - Front View

Figure 4.3: Cloud Registration

(a) 60º Field of View (b) 90º Field of View (c) 360º Field of View

Figure 4.4: FoV Filter - Top View

4.3 Surface Reconstruction

In this section, the results obtained from the reconstruction of the 3D mesh will be presented. The

algorithm receives as input data the point clouds generated using the method previously explained,

section 3.2.7.

40 Results

(a) 60º Field of View (b) 90º Field of View (c) 360º Field of View

Figure 4.5: FoV Filter - Front View

Table 4.2: FoV Point Clouds Constitution

Point Cloud Number of Points
60 FoV 1,283,665
90 FoV 1,880,710
360 FoV 3,878,873

Due to the large size of the point clouds and the time it will take to perform the reconstruction,

only the point clouds submitted to a 90º field of view filter were used. This value was also used

because with a bigger angle, the point clouds began to contain too many non-building points.

Figure 4.6 represents the point clouds obtained on the previous step, using both dataset A and B.

4.3.1 Depth Influence

For Poisson reconstruction, the depth parameter has a big impact on the final 3D model, as well as

in the time the algorithm takes to perform the reconstruction. Bigger values for depth will make

the result more detailed, containing a higher number of vertices and surfaces. This increase will

lead the reconstruction to be more time consuming.

On figures 4.7 and 4.8 it is possible to compare the detail presented in the different meshes

based on the depth used to create them. It is important to emphasise that the meshes, from the same

scenario, were generated from the same point cloud. Only the depths used for the reconstructions

were different.

For both dataset, the influence of the depth in the Poisson Reconstruction algorithm is notori-

ous. With a depth of 7, it is almost impossible to differentiate the dataset because of the low detail

presented on the meshes. All the surfaces are completely flat, removing parts of the building such

as the windows and doors. With a depth value of 9 the mesh starts to have some detail, namely, it

is possible to detect the windows and doors positions as well as the roof. Finally, with a depth of

11, the meshes have enough detail, making it possible to detect subtle details, such as the cars in

front the building in figure 4.8, or the pillars in figure 4.7.

For the datasets used, a depth value bigger than 11 will make the process far more slow.

Beyond the time, the generated meshes will not have significant improvements, in fact, with bigger

4.3 Surface Reconstruction 41

(a) House - Front-Left View (b) House - Front-Right View

(c) Quinta do Seixo - Front-Left View (d) Quinta do Seixo - Front-Right View

Figure 4.6: Point Clouds used on Reconstruction

(a) Depth 7 (b) Depth 9 (c) Depth 11

Figure 4.7: Reconstruction Depth - House

depth values surfaces which are flat on reality will appear with some roughness, due to the presence

of some noise, figure 4.9 illustrates the phenomenon.

42 Results

(a) Depth 7 (b) Depth 9 (c) Depth 11

Figure 4.8: Reconstruction Depth - Quinta do Seixo

(a) Depth 12 (b) Depth 11

Figure 4.9: Roughness from High Depths

4.3.2 Statistic Filter Influence

In the Poisson Reconstruction algorithm, as presented in section 3.2.7, the increase in the applied

depth makes it so that each constituent point of the cloud will have a greater influence on the

result. With this, the cloud becomes more detailed, however, the influence of noise becomes more

noticeable. Thus, when applying the reconstruction to a high depth, a filter can be applied to the

cloud in order to reduce the number of outliers found in it. In the figure 4.10 it is possible to

compare the differences between the result using the filter, and without using it. In the image on

the left, due to the lack of the filter, the mesh presents a lot of irregularities on its surfaces. In the

image on the right, and once the filter has been applied, it is possible to see that the irregularities

have disappeared, leaving the mesh with a more realistic appearance. It is important to notice that

the filter did not remove details from the structure, as seen in the roof tiles.

The filter considers as outlier areas of the point cloud where its density is reduced, so it is

necessary to be careful in its use as it may eventually remove important parts of the scenario. In

the datasets used, as the density of points in the regions associated with the building surfaces is

quite high, the filter did not remove important parts of the cloud.

4.4 Texturization 43

(a) Without Filter (b) With Filter

Figure 4.10: Statistic Filter Impact on Reconstruction

In Table 4.3 the characteristics of both, the obtained meshes and the original point clouds

are presented, making it possible to compare the different processing times of the algorithm with

the number of vertices and surfaces of the resulting meshes. For the reconstructed meshes the

statistical filter was used in order to remove undesired surfaces. While calculating the time values,

only the reconstruction process was running in the computer, in order to make the value fair.

Table 4.3: Generated Meshes characteristics

Dataset Original Cloud Depth Reconstruction Time Mesh Vertices Mesh Surfaces
A 25,652,635 points 7 21.081s 11,559 22,942
A 25,652,635 points 9 35.485s 123,724 247,518
A 25,652,635 points 11 179.442s 1,090,146 2,181,306
B 27,841,984 points 7 23.441s 13,967 27,755
B 27,841,984 points 9 40.745s 161,582 322,930
B 27,841,984 points 11 224.518s 1,831,643 3,663,510

4.4 Texturization

In this section, the meshes extracted from the texturization process are presented. The algorithm

on this section uses the intensity values from the point cloud to colorize the mesh acquired on the

previous step. The resulting meshes will only have a gray scale scheme of colours, because the

intensity values on the point are obtained by the LIDAR and are all integers values from 0 to 255.

For the texturization process, only the meshes generated with depth value of 11 and its respective

point clouds were used.

The figure 4.11 shows the result of applying the texture to the mesh from dataset A. It is

possible to verify that only the surfaces relative to the house present texture, as they are the only

areas where the point cloud and the mesh coincide. With texturing, it is now possible to clearly

detect the windows of the building, as well as it is possible to observe the contrast between the

darker and lighter areas (zone of separation between the roof and the faces of the house).

44 Results

(a) No Texture - Left View (b) No Texture - Front View (c) No Texture - Right View

(d) Textured - Left View (e) Textured - Front View (f) Textured - Right View

Figure 4.11: House Meshes

(a) No Texture - Left View (b) No Texture - Front View (c) No Texture - Full View

(d) Textured - Left View (e) Textured - Front View (f) Textured - Full View

Figure 4.12: Quinta do Seixo Meshes

Similar to what happens in figure 4.11, in figure 4.12 (dataset B) it is possible to detect details

that were not present in the original model. A clear example can be seen in the image 4.12e,

4.5 Final 3D Models 45

where it is possible to see the building’s trademark image on the surface of the house, something

impossible only with the reconstruction process. In addition to this detail, in the same image, it is

also possible to detect other parts of the building more easily, such as the windows and respective

contours, doors, roof and patio benches. The mesh region associated with the cars also presents a

very significant improvement, as it becomes possible to distinguish its wheels and windows.

With the set of figures presented above it is possible to understand the influence of texture on

the meshes. It can be concluded that meshes without texture, despite having some level of detail,

can not be compared with the textured ones because they miss important characteristics of the

scenario that can only be obtained through texturing. Beyond the big improvement on the mesh,

the time associated with the texturization process is significantly smaller than the time required to

perform a reconstruction, Table 4.4.

Table 4.4: Reconstruction and Texturization Times

Dataset Reconstruction Time Texturization Time
A 179.442s 12.154s
B 224.518s 14.430s

4.5 Final 3D Models

As explained in the beginning of this chapter, all the results must have a context, so that they

can be evaluated. In this section, images and meshes will be put side to side, making it possible

to compare the pictures extracted from the reconstructed meshes with the images from the real

infrastructures. In order to have a comparison with reality as close as possible, the mesh regions

that do not correspond to the buildings were removed manually using the CloudCompare [52] tool.

4.5.1 House

Through the figure 4.13 it is possible to make the comparison between the created mesh and the

real infrastructure. The images on the left side are both extracted from the same mesh. The angles

for capturing the images were chosen so that the region from the mesh was as close as possible to

the associated real image.

It is possible to confirm that in terms of geometry, the three-dimensional model is very similar

to the real infrastructure. The windows and roofs present a lot of detail, being possible through

the figure 4.13c to verify that during the mission the shutters of the windows were open. In terms

of details, it can be seen that in the 3D model, the chimney, despite being insulated and quite

thin, was well rebuilt. The pillars are also well defined, even though it is a lower point density

zone. Regarding the plants that are found around the house, as expected, they do not have as much

definition (during the acquisition, due to the wind, they ended up moving). As for the texture

present in the model, it can be seen that the lighter regions of the model correspond to the areas of

46 Results

the house whose surfaces were lighter and the darker areas correspond to the roof, stone walls and

windows.

(a) Mesh Front View (b) Building Front View

(c) Mesh Right View (d) Building Right View

Figure 4.13: Meshes vs Reality - House

4.5.2 Quinta do Seixo building

In this subsection and similarly to the previous one, the results obtained at the end of the three-

dimensional model creation process are presented. In figure 4.14, it is possible to compare the

result from dataset B with the original building.

Regarding the form that the created model presents, it is possible to conclude that this consists

of a structure very similar to the structure of the real infrastructure. The model managed to present

a very interesting level of detail as the windows of the building, its roofs, the door and even the

cars that are in front of it can be seen with good definition. Similar to what happens in the other

dataset, it is possible to observe that the model managed to reconstruct isolated and very thin parts

of the scenery, as is the case of the lightning rod existing on the building’s roof. Regarding the

texture present in the model, what stands out the most is effectively the building’s logo found on

the front facade of the house. Furthermore, through the colors of the model it is also possible

to differentiate regions such as the faces of houses and roofs in the model. In the figure 4.14c

the interior of the infrastructure was not very well reconstructed due to the low density of points

present in the region (the UAV did not fly inside the building).

4.6 3D Model Comparison 47

(a) Mesh Front View (b) Building Front View

(c) Mesh Left View (d) Building Left View

Figure 4.14: Meshes vs Reality - Quinta do Seixo

4.6 3D Model Comparison

This section contains the results obtained while trying to detect differences between meshes from

the same scenario. For this process, information extracted from two flights on the House scenario

were used. One of the flights covers 2 faces of the house and the second one covers all the 3

faces. To assess the differences between the models, we chose to use a heat map, where the colors

of the map will be directly related to the distances between the models. For the creation of the

heat map presented on figure 4.15 the open source software Cloud Compare was used. With this

representation it is possible to understand that all the surfaces with the colour yellow can be found

in both models, while the surfaces with colors red or blue only exist in one of them. Thus, with

this heat map it becomes easy to find differences between the models.

4.7 UAV Mission Creation

As explained in the section 3.1.2, in this project, it was developed a ROS node capable of receiving

as input a .kml file and from it creating and uploading a mission to the UAV. The deployment of the

mission, more precisely, the control of the vehicle while it carries out the mission, is completely

autonomous and uses the classes developed by the manufacturer specifically for this aircraft.

48 Results

(a) Left View

(b) Right View

Figure 4.15: Meshes Comparison

4.7 UAV Mission Creation 49

Regarding the creation of the mission, in the figure 4.16a it is possible to observe the choice

of points made in the Google My Maps tool, where each point is defined by its geographic coor-

dinates. The POI point consists of the point chosen as the point of interest, i.e, the point where the

drone has its front always pointed. The figure 4.16b shows the mission that was sent to the drone.

This image was captured in the controller of the UAV, while it was carrying out the mission. Using

the images presented, it is possible to observe that the path taken by the drone is very similar to

the path defined in the .kml file.

(a) Points defined on Google My Maps (b) Mission sent to UAV

Figure 4.16: Mission Trajectory

Chapter 5

Conclusion

The results obtained through the developed system are presented as being very satisfactory. It is

possible to reach this conclusion by analyzing the figures 4.11 and 4.12. Making the comparison

between the images of the models and the scenarios, it is possible to conclude that the models

are very similar, since their geometry were reconstructed in a very identical way to the target

infrastructure.

Regarding the various stages of the system, in the point clouds registration stage, the devel-

oped method presents very interesting results, as it is possible to obtain, only with the A-LOAM

algorithm, the necessary transformations to be applied in the point clouds in order to align them

according to the scenario. Although this algorithm presents quite good results, it is limited to using

point clouds as input data. This aspect, together with the error present in the data acquisition by

LIDAR, means that, despite the correct alignment applied to the point clouds, it will also contain

some noise. This noise will have more influence on the final model as the depth of the algorithm

used increases.

Regarding the cloud filtering process, the developed filter allows only the points related to the

target surfaces to be acquired, thus resulting in a final cloud with much less noise (points related to

vegetation and outliers resulting from the alignment). The only condition that has to be taken into

account is that for the filter to work properly, the UAV and consequently the LIDAR must always

be pointed towards the infrastructure. This filtering had a very positive influence on the final result,

as it made the point cloud used lighter, maintaining a high density in the regions associated with

the faces of the infrastructures, which consequently allowed the reconstruction algorithm to work

faster and get better results.

In the reconstruction part, very interesting results were obtained considering some parameters

used. The point clouds obtained were quite dense, which was a crucial aspect for the good perfor-

mance of this step. With the use of low-density point clouds, and given that the algorithm tends

to round straight surfaces, parts of the scenarios such as pillars or even roofs tend to be rounded,

losing their similarity with the real infrastructure. An example of this phenomenon can be seen

in figure 4.12a. What caused the phenomenon was the fact that the sensor did not capture points

on the inside of the building’s roof, causing the density of points in that region to be very low,

50

5.1 Limitations of the system 51

ending up generating these irregular surfaces. In this specific scenario, what could have been done

in order to improve this result would have been to fly the UAV over these regions, but given the

dimensions of the vehicle and the proximity it would have to be to the walls and other objects,

it was decided to do not perform these risky maneuvers as the cost could be far higher than the

benefit.

In the texturing stage, the results obtained were very interesting. With the applied texturing,

it was possible to embed in the models several features, lost in the reconstruction stage, as is the

case of the design present on the building’s facade in the 4.12e image or even other details that

end up making the constituents of the meshes more clear.

With the models created, the difference detection step presents itself as a very interesting

feature for carrying out inspections. Through the presented results, figure 4.15, it is possible to

detect in the models, through the generated heat map, the lack of small components such as the

staircase handrail (shown in red in the Right View), the lack of one of the facades of the house

(blue in Right View) or the small roof (also shown in blue Left View). Some of the meshes an

point clouds generated on this dissertation can be found at: https://drive.inesctec.pt/

s/mkmmHrsoAJ5rYeQ

5.1 Limitations of the system

The developed system allows to fulfill the objectives presented in the chapter 1.4, however despite

its promising results some restrictions were imposed by the various technologies used.

• The sensor used has a precision between 1.5 and 3cm which makes it impossible to be used

in some type of inspection where the small details are very important. Taking into account

that the data coming from the sensor is directly applied in the A-loam algorithm, this one,

despite being able to estimate the necessary transformation to align the point clouds, will

end up generating some noise. As a way of trying to minimize the effect of this noise,

several filters were applied throughout the process.

• As the sensor used is capable of generating point clouds at a very high frequency, the ac-

cumulation of the various point clouds received by the algorithm will make the point cloud

used for the reconstruction contain an extremely high number of points. To manipulate the

point clouds, classes from the PCL library were used. Despite the good functioning of the

library for small point clouds, in the case of large clouds, the same has not happened. The

library’s problem for manipulating the granting clouds arises from the fact that the classes

use a 32-bit variable to store the various points of the cloud. Since this variable has a finite

size, it means that the number of points constituting the final point cloud also has to be.

From the results obtained, a cloud with the number of points close to the limit will present a

size of approximately 10GB (file in ASCII format). As a way to solve this problem, the node

responsible for receiving the point clouds from LIDAR is able to discard a set of clouds, this

value being defined by the user.

https://drive.inesctec.pt/s/mkmmHrsoAJ5rYeQ
https://drive.inesctec.pt/s/mkmmHrsoAJ5rYeQ

52 Conclusion

• Since the intensity used by texturing is obtained by LIDAR, and given the limitations of the

spectrum of values present in it (0-255), the final models can only be represented in a gray

scale, making some details only distinguishable through the color to be lost.

• Regarding the system used to detect differences, this also has some limitations, namely

the fact that it can only detect differences between the built models, and only consider

the surfaces and not the texture present on them. If the meshes used do not have enough

definition, it will be impossible to know if any changes have occurred in small details,

as could be the case of a small crack in a wall. Despite these limitations, and since the

reconstruction of the meshes manages to preserve the general structure of buildings, it is

possible to conclude that more significant changes in infrastructure, such as the fall of a

roof, or even the evolution of a construction, can be detected by the developed system.

5.2 Comparison with Photogrammetry

As previously mentioned, in the area of three-dimensional reconstruction, a widely explored tech-

nique is photogrammetry. For this technique, cameras are used, in order to enable the capture of

data related to the same scenario, but with different angles. One of the aspects that must be taken

into account when using photogrammetry is the synchronization between the images obtained.

This aspect is very important, because the scenario should remain the same in all images in or-

der to be able to relate features. In the case of rebuilding infrastructures, this aspect is not very

problematic as infrastructures are static objects.

Photogrammetry has some limitations that can be overcome by the proposed approach, namely,

the inability to acquire data under adverse lighting conditions and the impossibility of performing

reconstructions from textureless surfaces. This last limitation is very relevant because, through

photogrammetry, it is complicated to reconstruct a flat surface since it does not have enough fea-

tures, making it difficult to relate the different images acquired. The main advantages of pho-

togrammetry over the 3D scanners, and consequently the developed system, is the price of the

equipment, since cameras are usually less expensive than 3D sensors like LIDARs. Given these

advantages and disadvantages of the system, the use of one or the other technique should be care-

fully analyzed, so that with the characteristics that each one presents, the user is able to decide

which one will be more advantageous.

5.3 Future Work

The developed system is modular, which means that the different stages of the entire process are

well divided, making it possible to perform changes in some of the parts and the entire process will

continue to work properly. Therefore, future work should sensibly focus on trying to overcome

the existing limitations of the system and presented in section 5.1.

5.3 Future Work 53

• In order to reduce noise from the sensor and the SLAM algorithm, other sensors and algo-

rithms should be tested. For sensors, price is a parameter that affects the quality of the data

obtained, and the use of a sensor with a higher resolution and precision will make the noise

obtained much lower. Regarding the SLAM algorithm, other variations should be tested,

namely variations whose input data are not limited to point clouds. Since the UAV has sen-

sors that were not explored, like an IMU, those sensors can be used to improve the SLAM

algorithm, helping with trajectory estimation.

• One possibility to overcome cloud size limitation is to change the variable type on the library

code. This approach is not the best one, since every user will have to perform this alteration

in order to run the programs. Taking this into account, other libraries should be explored.

These new libraries should also be able to reduce the processing and reconstruction time of

point clouds, so that greater depths can be used.

• Regarding the texture of the 3D model, images of the scenes must be acquired, using the

cameras from the UAV, alongside with the point clouds. Having both types of information it

will be possible to associate an RGB value to each point from the point clouds. To perform

this association, a calibration process between the LIDAR and the camera must be done.

The change in the points information will allow the final 3D model to contain colors from

the visible light spectrum.

• To improve the detection of differences between models, other techniques as well as differ-

ent 3D manipulation programs should also be explored.

Appendix A

Hardware used and Connections

Table A.1: Components

Component Model Qt Type Weigth[Kg]
Aircraft Matrice 300 RTK 1 Onboard 3.6
Batteries TB60 2 Onboard 1.35

Multi-sensor payload Zenmuse H20T 1 Onboard 0.83
Onboard computer Manifold 2-C 1 Onboard 0.205

Lidar OS1-64 1 Onboard 0.455
Power distribution Unit MA1P6A 1 Onboard -

USB 3.0 Hub MA1H4A 1 Onboard -
Computer adapter board - 1 Onboard 0.096

Controller Smart Controller PJ001 1 Offboard 0.630
GNSS mobile station D-RTK 2 1 Offboard 2.4

Battery station BS60 1 Offboard 8.4

Table A.2: Power Connections

Component Port Component Port Cable
H20T Gimbal connector M300 PSDK.1 -
M2C PWR.1 PDU PWR.2 XT30 Female to XT30 Male
PDU PWR.8 CAB PWR XT60 Female to XT30 Male

USBH USB-A cable M2C USB-A USB-A Male to USB-A Female
CAB USB-C cable M300 OSDK.1 -
OS1 OPC PDU PWR.3 OPC2 to XT30 Male

54

Hardware used and Connections 55

Table A.3: Logical Connections

Component Port Component Port Cable
H20T Gimbal connector M300 PSDK.1 -
USBH USB.4 CAB USB USB-A to USB-A
USBH USB.3 CAB UART USB-A to TTL
USBH USB-A cable M2C USB.2 -
CAB USB-C cable M300 OSDK -
OS1 OPC M2C ETH OPC to RJ45 Male

56 Hardware used and Connections

References

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng. "ROS:
an open-source Robot Operating System". volume 3, 01 2009.

[2] Z. M. Cinar, A. A. Nuhu, Q. Zeeshan, and O. Korhan. "Digital Twins for Industry 4.0: A
Review". In Fethi Calisir and Orhan Korhan, editors, Industrial Engineering in the Digital
Disruption Era, pages 193–203, Cham, 2020. Springer International Publishing.

[3] C. Boje, A. Guerriero, S. Kubicki, and Y. Rezgui. "Towards a semantic Construction Dig-
ital Twin: Directions for future research", jun 2020. doi:10.1016/j.autcon.2020.
103179.

[4] Q. Qi and F. Tao. "Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0:
360 Degree Comparison". IEEE Access, 6:3585–3593, 2018. doi:10.1109/ACCESS.
2018.2793265.

[5] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee. "Digital Twin in Industry: State-of-the-Art".
IEEE Transactions on Industrial Informatics, 15(4):2405–2415, 2019. doi:10.1109/
TII.2018.2873186.

[6] Autodesk Inc. "What are the benefits of BIM?". autodesk.com. https://www.
autodesk.com/solutions/bim/benefits-of-bim (Accessed on Jan. 9, 2021).

[7] R. Khilar, S. Chitrakala, and S. SelvamParvathy. "3D image reconstruction: Techniques,
applications and challenges". In 2013 International Conference on Optical Imaging Sensor
and Security (ICOSS), pages 1–6, 2013. doi:10.1109/ICOISS.2013.6678395.

[8] J. I. Ebert. "Chapter 3 - Photogrammetry, Photointerpretation, and Digital Imaging and
Mapping in Environmental Forensics". In Brian L. Murphy and Robert D. Morrison, editors,
Introduction to Environmental Forensics (Third Edition), pages 39–64. 2015. doi:https:
//doi.org/10.1016/B978-0-12-404696-2.00003-5.

[9] A. Tsai, J. W. Fisher, C. Wible, W. M. Wells, J. Kim, and A. S. Willsky. "Analysis of
Functional MRI Data Using Mutual Information". In C. Taylor and A. Colchester, editors,
Medical Image Computing and Computer-Assisted Intervention – MICCAI’99, pages 473–
480, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[10] P. N. B. Do and Q. C. Nguyen. "A Review of Stereo-Photogrammetry Method for 3-D
Reconstruction in Computer Vision". In 2019 19th International Symposium on Commu-
nications and Information Technologies (ISCIT), pages 138–143, 2019. doi:10.1109/
ISCIT.2019.8905144.

[11] S. Sah and N. Jotwani. "Stereo Matching using Multi-resolution Images on CUDA". Interna-
tional Journal of Computer Applications, 56:47–55, 10 2012. doi:10.5120/8947-3119.

57

http://dx.doi.org/10.1016/j.autcon.2020.103179
http://dx.doi.org/10.1016/j.autcon.2020.103179
http://dx.doi.org/10.1109/ACCESS.2018.2793265
http://dx.doi.org/10.1109/ACCESS.2018.2793265
http://dx.doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.1109/TII.2018.2873186
https://www.autodesk.com/solutions/bim/benefits-of-bim
https://www.autodesk.com/solutions/bim/benefits-of-bim
http://dx.doi.org/10.1109/ICOISS.2013.6678395
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-404696-2.00003-5
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-404696-2.00003-5
http://dx.doi.org/10.1109/ISCIT.2019.8905144
http://dx.doi.org/10.1109/ISCIT.2019.8905144
http://dx.doi.org/10.5120/8947-3119

58 REFERENCES

[12] A. Geiger, M. Roser, and R. Urtasun. "Efficient Large-Scale Stereo Matching". In Ron
Kimmel, Reinhard Klette, and Akihiro Sugimoto, editors, Computer Vision – ACCV 2010,
pages 25–38, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[13] R. Kalarot and J. Morris. "Comparison of FPGA and GPU implementations of real-time
stereo vision". In IEEE Computer Vision and Pattern Recognition, pages 9–15, 2010. doi:
10.1109/CVPRW.2010.5543743.

[14] S. Forstmann, Y. Kanou, J. Ohya, S. Thuering, and A. Schmitt. "Real-Time Stereo by using
Dynamic Programming". In 2004 Conference on Computer Vision and Pattern Recognition
Workshop, page 29, 2004. doi:10.1109/CVPR.2004.428.

[15] Y. Zhao and G. Taubin. "Real-time stereo on GPGPU using progressive multi-resolution
adaptive windows". Image and Vision Computing, 29(6):420–432, may 2011. doi:10.
1016/j.imavis.2011.01.007.

[16] A. Ivanavičius, H. Simonavičius, J. Gelšvartas, A. Lauraitis, R. Maskeliunas, P. Cimmper-
man, and P. Serafinavičius. "Real-time CUDA-based stereo matching using Cyclops2 al-
gorithm". EURASIP Journal on Image and Video Processing, 2018(1):12, 2018. doi:
10.1186/s13640-018-0253-2.

[17] J. Masson. "Desenvolvimento de um algoritmo para a reconstrução 3D a partir de imagens
RGB". Ph.d. dissertation, UFSC, 2018.

[18] M. Bici, F. Gherardini, F. Campana, and F. Leali. "A preliminary approach on point cloud
reconstruction of bronze statues through oriented photogrammetry: the "Principe Ellenistico"
case". IOP Conference Series: Materials Science and Engineering, 949, 2020. doi:10.
1088/1757-899X/949/1/012117.

[19] C. Yi, Y. Zhang, Q. Wu, Y. Xu, O. Remil, M. Wei, and J. Wang. "Urban building recon-
struction from raw LiDAR point data". CAD Computer Aided Design, 93:1–14, dec 2017.
doi:10.1016/j.cad.2017.07.005.

[20] L. Zhang and S. Singh. "LOAM: Lidar Odometry and Mapping in Real-time". 07 2014.
doi:10.15607/RSS.2014.X.007.

[21] Z. Li, P. C. Gogia, and M. Kaess. "Dense Surface Reconstruction from Monocular Vision
and LiDAR". 2019 International Conference on Robotics and Automation (ICRA), 2019.
doi:10.1109/ICRA.2019.8793729.

[22] B. Zhang, B. Xiang, and L. Zhang. "Parameter-free outlier removal of 3D point clouds with
large-scale noises". 2017 17th International Symposium on Communications and Informa-
tion Technologies (ISCIT), 2017. doi:10.1109/ISCIT.2017.8261207.

[23] A. P. Bustos and T. Chin. "Guaranteed outlier removal for point cloud registration with
correspondences". IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(12),
dec 2018. doi:10.1109/TPAMI.2017.2773482.

[24] M. Kazhdan, M. Bolitho, and H. Hoppe. "Poisson Surface Reconstruction". In Proceedings
of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, pages 61–70,
Goslar, DEU, 2006. Eurographics Association.

http://dx.doi.org/10.1109/CVPRW.2010.5543743
http://dx.doi.org/10.1109/CVPRW.2010.5543743
http://dx.doi.org/10.1109/CVPR.2004.428
http://dx.doi.org/10.1016/j.imavis.2011.01.007
http://dx.doi.org/10.1016/j.imavis.2011.01.007
http://dx.doi.org/10.1186/s13640-018-0253-2
http://dx.doi.org/10.1186/s13640-018-0253-2
http://dx.doi.org/10.1088/1757-899X/949/1/012117
http://dx.doi.org/10.1088/1757-899X/949/1/012117
http://dx.doi.org/10.1016/j.cad.2017.07.005
http://dx.doi.org/10.15607/RSS.2014.X.007
http://dx.doi.org/10.1109/ICRA.2019.8793729
http://dx.doi.org/10.1109/ISCIT.2017.8261207
http://dx.doi.org/10.1109/TPAMI.2017.2773482

REFERENCES 59

[25] N. Wongwaen, S. Tiendee, and C. Sinthanayothin. "Method of 3D mesh reconstruction from
point cloud using elementary vector and geometry analysis". Proceedings - ICIDT 2012,
8th International Conference on Information Science and Digital Content Technology, 1, jun
2012.

[26] A. Zavodny, P. J. Flynn, and X. Chen. "Textured mesh generation of extracted regions
from urban range-scanned LIDAR data". pages 1–6, 2011. doi:10.1109/ICME.2011.
6012230.

[27] L. Roldão, R. de Charette, and A. Verroust-Blondet. "3D Surface Reconstruction from Voxel-
based Lidar Data". 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019.
doi:10.1109/ITSC.2019.8916881.

[28] L. Roldão, R. de Charette, and A. Verroust-Blondet. "A Statistical Update of Grid Represen-
tations from Range Sensors". Technical report. arXiv:1807.08483v2.

[29] W. Lorensen and H. Cline. "Marching Cubes: A High Resolution 3D Surface Construction
Algorithm". ACM SIGGRAPH Computer Graphics, 21:163–, 08 1987. doi:10.1145/
37401.37422.

[30] M. Waechter, N. Moehrle, and M. Goesele. "Let There Be Color! Large-Scale Texturing of
3D Reconstructions". In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision – ECCV 2014, pages 836–850, Cham, 2014. Springer International
Publishing.

[31] D. Lattanzi and G. Miller. "Review of robotic infrastructure inspection systems". Jour-
nal of Infrastructure Systems, 23(3), sep 2017. doi:10.1061/(ASCE)IS.1943-555X.
0000353.

[32] S. Yu, J. Jang, and C. Han. "Auto inspection system using a mobile robot for detecting
concrete cracks in a tunnel". Automation in Construction, 16(3):255–261, may 2007. doi:
10.1016/j.autcon.2006.05.003.

[33] H. Choset. "Bridge inspection with serpentine robots". Transportation Research Board,
IDEA Program, 2002.

[34] D. Schmidt and K. Berns. "Climbing robots for maintenance and inspections of vertical
structures - A survey of design aspects and technologies". Robotics and Autonomous Systems,
61(12):1288–1305, dec 2013. doi:10.1016/j.robot.2013.09.002.

[35] R. R. Murphy, E. Steimle, M. Hall, M. Lindemuth, D. Trejo, S. Hurlebaus, Z. Medina-
Cetina, and D. Slocum. "Robot-Assisted Bridge Inspection". Journal of Intelligent & Robotic
Systems, 64(1):77–95, 2011. doi:10.1007/s10846-010-9514-8.

[36] F. Khan, A. Ellenberg, M. Mazzotti, A. Kontsos, F. Moon, A. Pradhan, and I. Bartoli. "In-
vestigation on Bridge Assessment Using Unmanned Aerial Systems". Structures Congress
2015. Proceedings, 2015.

[37] M. Kaamin, N. A. Idris, S. M. Bukari, Z. Ali, N. Samion, and M. A. Ahmad. "Visual
inspection of historical buildings using micro UAV". MATEC Web of Conferences, 103,
2017. doi:10.1051/matecconf/201710307003.

http://dx.doi.org/10.1109/ICME.2011.6012230
http://dx.doi.org/10.1109/ICME.2011.6012230
http://dx.doi.org/10.1109/ITSC.2019.8916881
http://arxiv.org/abs/1807.08483v2
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000353
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000353
http://dx.doi.org/10.1016/j.autcon.2006.05.003
http://dx.doi.org/10.1016/j.autcon.2006.05.003
http://dx.doi.org/10.1016/j.robot.2013.09.002
http://dx.doi.org/10.1007/s10846-010-9514-8
http://dx.doi.org/10.1051/matecconf/201710307003

60 REFERENCES

[38] N. Metni and T. Hamel. "A UAV for bridge inspection: Visual servoing control law with
orientation limits". Automation in Construction, 17(1):3–10, nov 2007. doi:10.1016/j.
autcon.2006.12.010.

[39] F. Azevedo, A. Dias, J. Almeida, A. Oliveira, A. Ferreira, T. Santos, A. Martins, and E. Silva.
"LiDAR-Based Real-Time Detection and Modeling of Power Lines for Unmanned Aerial
Vehicles". Sensors, 19(8), 2019. doi:10.3390/s19081812.

[40] T. Santos, M. Moreira, J. Almeida, A. Dias, A. Martins, J. Dinis, J. Formiga, and E. Silva.
"PLineD: Vision-based power lines detection for Unmanned Aerial Vehicles". In 2017 IEEE
International Conference on Autonomous Robot Systems and Competitions (ICARSC), pages
253–259, 2017. doi:10.1109/ICARSC.2017.7964084.

[41] J. G. Victores, S. Martínez, A. Jardón, and C. Balaguer. "Robot-aided tunnel inspection and
maintenance system by vision and proximity sensor integration". Automation in Construc-
tion, 20(5):629–636, 2011. doi:https://doi.org/10.1016/j.autcon.2010.12.
005.

[42] DJI. "M300_RTK_User_Manual_EN". dl.djicdn.com. https://dl.djicdn.com/
downloads/matrice-300/20200507/M300_RTK_User_Manual_EN.pdf (Ac-
cessed on Jun. 15, 2021).

[43] JJones. "How to convert latitude or longitude to meters?". stack-
overflow.com. https://stackoverflow.com/questions/639695/
how-to-convert-latitude-or-longitude-to-meters (Accessed on May.
14, 2021).

[44] W. Hess, D. Kohler, H. Rapp, and D. Andor. "Real-Time Loop Closure in 2D LIDAR
SLAM". In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages
1271–1278, 2016.

[45] T. Shan and B. Englot. "LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry
and Mapping on Variable Terrain". In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4758–4765. IEEE, 2018.

[46] J. Zhang and S. Singh. "LOAM: Lidar Odometry and Mapping in Real-time". In Robotics:
Science and Systems, 2014.

[47] R. B. Rusu and S. Cousins. "3D is here: Point Cloud Library (PCL)". In IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 2011. IEEE.

[48] Automatic Addison. "How to Convert a Quaternion to a Rotation Ma-
trix". automaticaddison.com. https://automaticaddison.com/
how-to-convert-a-quaternion-to-a-rotation-matrix/ (Accessed on
Apr. 6, 2021).

[49] R. Rusu. "Semantic 3D Object Maps for Everyday Manipulation in Human Living Environ-
ments". Ph.D. Dissertation, Institut für Informatik, TUM, Munich, Germany, 2009. [Online].
Available: http://mediatum.ub.tum.de/doc/800632/941254.pdf.

[50] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia. "Mesh-
Lab: an Open-Source Mesh Processing Too"l. In Vittorio Scarano, Rosario De Chiara, and
Ugo Erra, editors, Eurographics Italian Chapter Conference. The Eurographics Association,

http://dx.doi.org/10.1016/j.autcon.2006.12.010
http://dx.doi.org/10.1016/j.autcon.2006.12.010
http://dx.doi.org/10.3390/s19081812
http://dx.doi.org/10.1109/ICARSC.2017.7964084
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2010.12.005
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2010.12.005
https://dl.djicdn.com/downloads/matrice-300/20200507/M300_RTK_User_Manual_EN.pdf
https://dl.djicdn.com/downloads/matrice-300/20200507/M300_RTK_User_Manual_EN.pdf
https://stackoverflow.com/questions/639695/how-to-convert-latitude-or-longitude-to-meters
https://stackoverflow.com/questions/639695/how-to-convert-latitude-or-longitude-to-meters
https://automaticaddison.com/how-to-convert-a-quaternion-to-a-rotation-matrix/
https://automaticaddison.com/how-to-convert-a-quaternion-to-a-rotation-matrix/
http://mediatum.ub.tum.de/doc/800632/941254.pdf

REFERENCES 61

2008. doi:10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/
129-136.

[51] D. R. Peachey. "Solid Texturing of Complex Surfaces". SIGGRAPH Comput. Graph.,
19(3):279–286, July 1985. doi:10.1145/325165.325246.

[52] CloudCompare. "CloudCompare - 3D point cloud and mesh processing software".
danielgm.net. https://www.danielgm.net/cc/ (Accessed on May. 27, 2021).

http://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
http://dx.doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
http://dx.doi.org/10.1145/325165.325246
https://www.danielgm.net/cc/

	Front Page
	Abstract
	Resumo
	Acknowledgment
	Conteúdo
	Lista de Figuras
	Lista de Tabelas
	1 Introduction
	1.1 Problem
	1.2 Context
	1.3 Motivation
	1.4 Goals
	1.5 Thesis Outline

	2 Literature Review
	2.1 Digital Twins
	2.1.1 Constitution of a Digital Twin
	2.1.2 Application on Construction

	2.2 3D Reconstruction
	2.2.1 Point Cloud Acquisition
	2.2.2 Noise removal
	2.2.3 Surface Reconstruction
	2.2.4 Texturization

	2.3 Robots for Building Construction and Maintenance
	2.3.1 Types of Robots
	2.3.2 Different Scenarios

	3 Proposed Approach
	3.1 Data Acquisition
	3.1.1 Hardware
	3.1.2 Autonomous Navigation

	3.2 Data Processing
	3.2.1 Odometry Calculation
	3.2.2 Point Cloud Registration
	3.2.3 Field of View filter
	3.2.4 Normal Estimation
	3.2.5 Saving the Final Cloud
	3.2.6 Statistical Filter
	3.2.7 Surface Generation
	3.2.8 Texturization
	3.2.9 Mesh Alignment
	3.2.10 Mesh Comparison

	4 Results
	4.1 Datasets
	4.2 Data Processing
	4.2.1 Registration
	4.2.2 Point Cloud Noise Removal

	4.3 Surface Reconstruction
	4.3.1 Depth Influence
	4.3.2 Statistic Filter Influence

	4.4 Texturization
	4.5 Final 3D Models
	4.5.1 House
	4.5.2 Quinta do Seixo building

	4.6 3D Model Comparison
	4.7 UAV Mission Creation

	5 Conclusion
	5.1 Limitations of the system
	5.2 Comparison with Photogrammetry
	5.3 Future Work

	A Hardware used and Connections
	References

