
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

3D reconstruction in underwater
environment using CAD model

alignment with images

Fábio André da Rocha Morais

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Luís Filipe Teixeira, PhD

Co-Supervisor: Pedro Costa, MSc

July 29, 2021



© Fábio Morais, 2021



Resumo

O investimento em equipamentos de exploração, produção, armazenamento, transporte e dis-
tribuição na indústria petrolífera e do gás é elevado. Tipicamente, as operações de inspeção,
manutenção e reparação (IMR) são realizadas por veículos operados à distância (ROVs) que são
controlados por um piloto. Ao automatizar estes ROVs, o custo da operação pode ser significati-
vamente reduzido e a sua qualidade de inspeção melhorada.

O objetivo da dissertação é fazer reconstrução 3D em unidades métricas de alguns elementos
de interesse das estruturas subaquáticas. A abordagem para este objetivo foi segmentar vários
elementos, tais como válvulas e hot stabs. Estes objetos segmentados irão fundir-se com modelos
CAD 3D destes mesmos elementos. A segmentação e localização dos objetos pode ser útil para
no futuro planear as ações necessárias para interagir com os equipamentos. Foi desenvolvido
um modelo de segmentação e um outro modelo de estimação de profundidade, para ser utilizado
num método de simultaneous localization and mapping (SLAM) que projeta em 3D e segmenta os
objetos de interesse. Finalmente, foi criado e explorado uma variação do Mask R-CNN, que deteta,
segmenta e prevê a pose dos objetos (rotação + translação), este método permite o alinhamento
dos modelos CAD com a imagem.

O modelo 3D SLAM semântico alcançou resultados satisfatórios, apesar de não ter uma re-
construção 3D satisfatória. Para a estrutura, válvulas e hot stabs o modelo de segmentação obteve
valores de intersection over union (IoU) de 0.88, 0.44 e 0.11, respetivamente. O método proposto
para gerar mapas de profundidade a partir de modelos CAD melhorou a precisão do modelo de
0.45 para 0.64.

Uma vez que o modelo 3D SLAM semântico não conseguiu alcançar uma reconstrução 3D de
alta qualidade, foi introduzida uma variação do Mask R-CNN, que prevê a pose dos modelos CAD
para cada frame, que obteve um erro médio de distância para as válvulas de 0.5 metros e um erro
médio de ângulo de 1.3º.

As nossas experiências demonstram que é possível melhorar o modelo de profundidade uti-
lizando modelos CAD para gerar um mapa de profundidade mais denso. Além disso, quando
os modelos CAD estão disponíveis, é preferível alinhá-los com a imagem em vez de prever a
profundidade para ser utilizado nos métodos SLAM, principalmente em aplicações de robótica
submarina que requerem objetos complexos e com fracas condições de visibilidade.
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Abstract

The equipment for exploration, production, storage, transportation, and distribution in the oil and
gas industry are expensive. Typically, the operations of inspection, maintenance and repair (IMR)
are carried out by remotely operated vehicles (ROVs) that are piloted remotely. By automating
ROVs, the cost of operation can be significantly reduced while the inspection quality is improved.

This dissertation aims to develop a 3D reconstruction method on underwater structures, par-
ticularly in some objects of interest. This goal was approached by segmenting several elements,
such as valves and hot stabs. These segmented objects will merge with 3D computer-aided design
(CAD) models of these same elements. The segmentation and location of each object of interest
may be helpful to, in the future, plan the necessary actions to interact with the given equipment. To
achieve this, a segmentation and depth estimation model was developed to be used in a dense 3D
semantic simultaneous localization and mapping (SLAM). Finally, a variation of Mask R-CNN
was introduced to detect, segment and predict its relative position to the camera by adding a new
predictor to return the pose of the object (rotation + translation); this method enables the alignment
of CAD models with the image.

The proposed 3D semantic SLAM achieved satisfactory results, even though it does not have
a satisfactory 3D reconstruction. For the structure, valves, and hot stabs, the segmentation model
achieved intersection over union (IoU) values of 0.88, 0.44, and 0.11, respectively. The proposed
framework for generating depth maps from CAD models improved the depth model, increasing
the model accuracy from 0.45 to 0.64.

Since the 3D semantic SLAM was unable to achieve a high-quality 3D reconstruction, a vari-
ation of the Mask R-CNN was introduced, which predicted the pose of the CAD models for each
frame with a distance mean error of 0.5 meters for the valves and an angle mean error of 1.3
degrees.

Our experiments demonstrate that it is possible to improve the depth model using CAD models
to generate a more dense depth map. Additionally, when CAD models are available, it is preferable
to align them with the image for underwater robotics applications that require complex objects and
poor visibility conditions rather than predicting the depth to use in SLAM methods.
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Chapter 1

Introduction

1.1 Context

The oil and gas industry equipment for exploration, production, storage, transportation, and dis-

tribution are expensive and essential assets. If they are not well maintained, their failures can

have disastrous consequences for the natural world and human civilization [17]. As a result of

these factors, the authors of [17] predict that the inspection robots market will continue to grow

in the near future, as inspection robots are desirable for the industry by reducing human error and

lowering the cost of inspections.

The most widely used inspection technologies can be roughly classified into four categories

based on the type of sensor used, namely visual inspection, ultrasonic inspection, magnetic in-

spection, and eddy current inspection [17]. A central piece in most of the oil and gas fields is the

subsea Xmas tree, as shown in Figure 1.1: a subsea structure that regulates the flow of pipes. Such

structure is used for maintenance purposes.

Figure 1.1: The Xmas tree that will be used. The blue circles represents valves, whereas the red
circles represents hot stabs.
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2 Introduction

A subsea Xmas tree is made up of numerous valves that are used for testing, maintaining,

regulating, or restricting the flow of produced oil, gas, and liquids coming up from the well below

that are required to control hydrocarbon production. These complex assemblies of valves and other

components are installed at the wellhead to monitor and control production flow and manage gas

or fluids injection.

Subsea Xmas trees typically have a wide range of valves. These valves are typically configured

with manual or actuated valves, either hydraulic or pneumatic. The configurations of subsea Xmas

trees may vary depending on the needs of the projects and field developments.

Another important element is a subsea hydraulic connection device that transports hydraulic

fluid from a topside hydraulic power unit to energize subsea equipment is known as a hot stab. It

is essentially a hydraulic quick-acting connection developed for deep-sea use.

1.2 Motivation

Typically, remotely operated vehicles (ROV) perform inspection, maintenance and repair (IMR)

operations under the control of a pilot aboard a ship. It would be interesting to control the ROVs

on land to perform these operations safely and cheaply, dispensing hiring a boat and crew. By im-

proving the automation of ROVs, the operation cost can drop considerably and improve the quality

of the inspection [18]. The limitation of controlling ROVs from the ground is the communication

latency, which is especially noticeable during operations requiring a high degree of precision, such

as interacting with the structure. The goal is to automate these tasks that are currently impractical

due to latency.

The project is lined up with Abyssal’s projects, an independent privately-owned technology

company that provides cutting edge 3D visualization, simulation, and digitalization capabilities

for subsea operations.

The goal of Abyssal is to develop a system capable of making underwater vehicles semi-

autonomous in tasks like inspection, maintenance and repair operations. As part of these opera-

tions, vehicles are common to perform high precision actions, such as turning valves. To develop

a system capable of turning valves, we need a model of perception capable of identifying different

objects of interest.

This dissertation project will develop a model for segmenting the valves and hot stabs. This

segmentation will be merged with a 3D point cloud of the same objects, which will be created

using CAD models. The segmentation and location of each interest element may be helpful to, in

the future, plan the necessary actions to interact with the given equipment.

1.3 Problem Definition

As mentioned in Section 1.2 this work aims to merge 2D information from segmentation with 3D

models of a Xmas tree, more precisely valves and hot stabs, using an unknown monocular RGB

camera.



1.4 Objectives 3

Most of the existing solutions for 3D reconstruction are limited to the indoor or outdoor en-

vironment; in underwater environments, the semantic segmentation, depth estimation and simul-

taneous localization and mapping (SLAM) are less advanced. Besides that, the state-of-the-art

(SOTA) methods of 3D semantic segmentation use a stereo camera or an RGB-D sensor to accu-

rately predict the depth map, as RGB-D cameras can get the pixel-level dense depth map of RGB

image directly. However, RGB-D suffer from the limited measurement range, sunlight sensitivity

and do not work underwater.

Finally, within the existing solutions, we have 3D reconstruction from multiple images that

are based on feature matching. Although, for the underwater environment, extracting repeated

features is challenging. The characterization of the environment is discussed in Section 2.1.

1.4 Objectives

The fundamental objective of this project is to implement a model that:

1. Segments a set of objects of interest in videos of underwater structures;

2. Fuses the segmentation with 3D models of these same objects;

3. Improves the 3D reconstruction by using CAD models;

4. Predicts the object pose and aligns CAD models into an image.

1.5 Document Structure

Chapter 1 focuses on the context, motivation and objectives for the proposed work.

Chapter 2 reviews the background and literature, starting by characterizing the environment

in Section 2.1 and then Section 2.2 presenting the background about camera geometry. Section

2.3 presents Image Segmentation, the state-of-the-art architectures, as well as examples of Image

Segmentation in underwater environments. Then, it proceeds to an introduction of depth estima-

tion and the recent works on unsupervised depth estimation in Section 2.4. Section 2.5 introduces

Simultaneous Localization and Mapping. Section 2.6 reviews 3D Reconstruction and 3D semantic

mapping. Finally, CAD model alignment in RGB images was presented in Section 2.7.

Chapter 3 discusses the two models developed to perform 3D reconstruction and object recog-

nition on each object. In Section 3.1 describes our approach to 3D semantic mapping, which

combines depth estimation and semantic segmentation. In Section 3.2 our proposed approach for

CAD model alignment with images are described.

Chapter 4 presents the various experiments and their results, as well as a discussion of those

results and their implications for the system’s limitations. Starting by describing the dataset in

Section 4.1, the 3D semantic mapping are evaluated in Section 4.5 and the CAD model alignment

with images in Section 4.6.3, the comparison between these two methods are presented in Section

4.7.
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Finally, chapter 5 draws conclusions and future work.



Chapter 2

Background and Literature Review

2.1 Characterization of the Environment

Underwater images are usually more challenging due to the specific conditions, such as quality

degradation due to absorption and scattering [19], thus causing low contrast, blurring and colour

deviations. Moreover, organic particles such as sand, floating debris, dead or decomposed organ-

isms, called "marine snow" affect the image quality [2]; examples of this degradation are shown

in Figure 2.1.

Figure 2.1: Examples of underwater image quality degradation (e.g., color casts, decreased con-
trast, and blurring details). Extracted from [1].

Figure 2.2 shows the Jaffe-McGlamery model; the light received by a camera is decomposed

into three parts: the light reflected directly from the object; a forward scattering component that

randomly deviates light to the camera; and a backscattering component that reflects the light in

floating particles into the camera.
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Figure 2.2: Under water model. Extracted from [2].

Recently Sea-thru [20] was presented to solve some of these issues. The authors propose to

"remove the water" from images by estimating backscatter using the dark pixels and their known

range information. The calculation of the spatial variability illuminant is then used to obtain a

range-dependent attenuation coefficient, thus significantly improving the image’s analysis.

2.2 Camera Geometry

In the scope of this dissertation, it is also necessary to specify what is meant by an object’s or

a camera’s pose. Pose with 6 degrees of freedom (DoF) refers to an object’s coordinates in 3D

space, including translation and rotation around the x,y, and z axes, also known as pitch, roll, and

yaw. The camera’s extrinsic matrix describes the camera’s location in the world and what direction

it is pointing to.

2.2.1 3D Transformations

Different rotation representations can be used. As a result, the two most commonly employed

representations, and thus of importance in this dissertation, are rotation matrices and Euler angles.

Euler angles explain orientation through a series of three rotations, each applied on the ob-

ject’s original axis and changing after each rotation (intrinsic rotations). Because any sequence

of rotations is possible, the Euler angles representation is heavily reliant on conventions. As long

as standards are followed appropriately, Euler angles are easy to use and do not suffer from over-

parameterization.



2.2 Camera Geometry 7

Figure 2.3: The yaw-pitch-roll convention for Euler angles [3].

Translation - 3D translations can be written as

x′ =
[

I | t
]

x (2.1)

Where I is the identity matrix (3 × 3), t the translation vector, x is the initial homogeneous coor-

dinates of the object and x′ new homogeneous coordinates of the object after translation.

Rotation + translation Also know as 3D rigid body motion or the 3D Euclidean transforma-

tion [21] is defined as

x′ =
[

R | t
]

x (2.2)

Where R is a 3 × 3 orthonormal rotation matrix

R = RZ(ψ)RY (θ)RX(φ) (2.3)

=

 cosψ −sinψ 0

sinψ cosψ 0

0 0 1


 cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ


 1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (2.4)

Multiplying out the three matrices on eq. 2.4 , we obtain the Euler angle parameterization

of the three-dimensional rotation matrix. Where ψ,θ ,φ represent the three Euler Angle axes,

yaw-pitch-roll as shown in Figure 2.3.

=

 cosψ cosθ cosψ sinθ sinφ − sinψ cosφ cosψ ′ sinθ cosφ + sinψ sinφ

sinψ cosθ sinψ sinθ sinφ + cosψ cosφ sinψ sinθ cosφ − cosψ sinφ

−sinθ cosθ sinφ cosθ cosφ

 (2.5)
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2.2.2 Pinhole Camera

Understanding the parameters of a pinhole camera model that will be used during this project is

crucial to comprehending the principles that will be thoroughly presented. As a result, this section

will give a brief overview of that parameters used in this project.

Camera Intrinsics

The intrinsic matrix is parameterized by Hartley and Zisserman [22] as

K =

 fx 0 cx

0 fy cy

0 0 1

 (2.6)

which uses independent focal lengths fx and fy for the sensor x and y dimensions. In a true

pinhole camera, fx and fy have the same value, but it can differ for a number of reasons, such

as flaws in the digital camera sensor, errors in camera calibration and the image has been non-

uniformly scaled in post-processing.

The camera’s optical centre is the intersection point between the pinhole and the straight per-

pendicular line to the image plane. The optical centre is the point at which it intersects the image

plane. Usually (cx,cy) = (W/2,H/2), where W and H are the image height and width, and (cx,

cy) is the optical centre.

Camera Extrinsic

Figure 2.4: Extrinsic parameters and the relationship between a point in the world and camera
coordinates.

Due to the frequency with which a camera might move, it is necessary to construct a new

coordinate system that will be utilized as a reference frame, as shown in Figure 2.4. This new

coordinate system will be referred to as the world frame in this context.
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The extrinsic matrix is a rigid transformation matrix, consisting of a 3× 3 rotation matrix in

the left-block and a 3×1 translation column-vector in the right:

E =

[
R t

0 1

]
(2.7)

Combining equations 2.6 and 2.7 makes it possible to project a 3D point X into a pixel x using

the formula x = P ·X , where P = K ·E.

2.3 Image Segmentation

Image segmentation is a classic subject and is one of the most studied in image processing and

computer vision [23]. Image segmentation divides an image into distinct regions. It is often

not interested in all the parts of the image, but rather in particular areas with semantically relevant

classes. With many uses, such as robotic perception, augmented reality, medical image processing,

image segmentation is an essential subject in computer vision [4]. It is also an essential topic in

autonomous driving due to the capability of detailed scene understanding.

Image segmentation has been an important step in recent years, and a large number of pa-

pers have been carried out to develop new approaches. It started with the earliest methods, such

as thresholding [24], k-means Clustering [25], watersheds [26]. New modern algorithms have

emerged in computer vision due to the popularity of deep learning and machine learning tech-

niques.

Image segmentation aims to obtain the mask of the interest object(s) by choosing the portions

in the image that correspond to it. Two distinct types of segmentation can be formulated, the most

classic version (semantic segmentation) and instance segmentation, represented in Figure 2.5.

Figure 2.5: In the first image where semantic segmentation is applied, the category (cube) is one
of the outputs, and all cubes are coloured the same. The image on the right, instance segmentation
divides the instances (the cubes) apart from the categories (cube). Extracted from [4].

In semantic segmentation, the output is the category for every pixel in that image, labelling all

the pixels independently with the respective category label. Consequently, it can not distinguish

between two objects, as shown in Figure 2.5 . In contrast, instance segmentation outputs the
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location and objects identities in that image, similarly to object detection. On the other hand,

instance segmentation predicts all the segmentation mask for all the objects in the image.

One limitation on underwater images is on the semantic segmentation, due to almost no under-

water public datasets to train the models. Thus, it is impossible to have a benchmark evaluation of

segmentation models. Recently, in [7] the authors have proposed a large-scale dataset for semantic

segmentation of underwater imagery that contains 1525 underwater images and the respectively

ground truth semantic labels.

In the next section, a brief introduction to the deep learning architectures used for segmentation

will be presented, such as Fully convolutional network, encoder-decoder based models and lastly

an R-CNN based models (for instance segmentation).

2.3.1 State-of-the-art segmentation models

2.3.1.1 Fully Convolutional Network

The authors of [5] proposed the Fully Convolutional Network (FCN), one of the first deep learning

networks for image segmentation task. FCN uses and transforms the existing CNN architectures,

such as VGG16, GoogLeNet, AlexNet and ResNet into fully-convolutional layers [4], replacing

the fully-connected layers of that architectures. Consequently, the model outputs a spatial seg-

mentation map instead of classification scores, as shown in Figure 2.6.

Figure 2.6: Replacing fully connected layers into fully convolution layers.
Extracted from [5].

This work is considered a milestone in image segmentation [27]. It showed how CNNs could

be trained end-to-end, learning how to produce dense predictions for semantic segmentation on
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variable-sized images. However, FCN has some limitations in the standard model. The first sig-

nificant limitation is the actual speed being not fast enough to run in real-time. Lastly, the model

can not be directly applied to unstructured data such as 3D point clouds.

2.3.1.2 Encoder-Decoder Based Models

The encoder-decoder architecture comprises an encoder that takes an input image and generates

feature maps or a low-resolution image with a sequence of convolutions and pooling layers, and the

decoder that recovers the original image resolution using the low-resolution feature map to produce

the pixel-wise segmentation, minimizing the loss. However, the decoder is a divergence point in

some architectures. One advantage compared with other methods is the freedom of choosing the

input size.

The encoder-decoder architecture also takes a network for classification, such as VGG16

which can be used as encoder.

The authors of [6] proposed a new approach using a different decoder stage, as described

above, with a series of upsampling and convolution layers with a softmax classifier at the end to

predict pixel-wise labels, as shown in Figure 2.7.

Figure 2.7: SegNet architecture. Extracted from [6].

A new fully convolutional encoder-decoder shown in Figure 2.8 was recently proposed by [7],

with skip connections between mirrored composite layers. It provides competitive efficiency while

maintaining fast end-to-end inference, which is fundamental for underwater robots autonomous

navigation.
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Figure 2.8: SUIM architecture. Extracted from [7].

2.3.1.3 R-CNN based models

The initial purpose of region-based convolutional network (R-CNN) was to take an input image

and output a set of bounding boxes, each of which contained an object and its class. The big

problem with R-CNN is the computational cost, since it needs much time and cannot run in real-

time. Many extensions resolved these issues, such as Fast R-CNN, Faster R-CNN, and Mask

R-CNN. In testing times, Faster R-CNN is 213x faster than R-CNN with truncated SVD [28].

Faster R-CNN was the first perform a region proposal network to get the regions of interest (ROI)

and the respective class label.

As illustrated in Figure 2.9, masked region-based convolution neural network (Mask R-CNN)

works towards the problem of instance segmentation, the process of detecting and delineating each

distinct object of interest in the image, it is a combination of two subproblems, object detection

and semantic segmentation.

Figure 2.9: Mask R-CNN architecture. Extracted from [7].
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Mask R-CNN [29] uses an architecture similar to Faster R-CNN, adapting it to instance seg-

mentation, using fully convolution networks. Faster R-CNN performs object detection in two

stages. First, it determines the bounding box and the regions of interest, which is done by the re-

gion proposal network (RPN). After that, for each ROI, it determines the class label of the object,

which is done with ROI pooling. Finally, the proposals are passed to a fully connected layer to

classify and output the bounding boxes for objects.

The authors of [8] proposed an integrated multi-scale Retinex with colour restoration (MSRCR)

into the Mask R-CNN framework in underwater environments. The objective is to detect and seg-

ment three underwater creatures, namely echinus, holothurian, and starfish.

It verifies that Mask R-CNN has notable results in a challenging and complex environment;

however, compared with Mask R-CNN, the mAP and Recall of the proposed method by the authors

increases, the method has a recall of 94,52%, while the Mask R-CNN have 83.95%. Similar to

Mask R-CNN, the method has a low number of pictures detected per second (FPS), compared with

YOLOv3. They also demonstrate that proper image enhancement algorithms can improve deep

learning models accuracy in a limited sample dataset underwater scenario.

Figure 2.10 illustrates one example of instance segmentation proposed by [8].

Figure 2.10: Result of instance segmentation proposed by the method.
Extracted from [8].

2.4 Depth Estimation

Predicting the depth of the scene from the input images is a challenge for robot navigation. Tradi-

tional depth estimating techniques, such as motion structure and stereo vision matching, are based

on the correspondence of several points of view.
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Depth estimation can be performed with different methods, such as supervised, unsupervised

and semi-supervised. Inferring the depth of a scene and the ego-motion of a robot or autonomous

vehicle is a critical problem in robotics and autonomous driving. Accurately estimating the 3D

positions of objects and the scene’s geometry is critical for motion planning and decision mak-

ing. Several methods attempt to learn depth and ego-motion from monocular video. Figure 2.11

illustrates an example of unsupervised learning of depth and ego-motion from monocular videos.

Figure 2.11: The authors of [9] proposes an architecture that employs a single-view depth and
multi-view pose network, with a loss calculated by warping nearby views to the target using the
computed depth and pose. A model that takes a succession of images and attempts to explain its
observations by predicting the camera’s expected motion and scene structure. Extracted from [9].

Methods based on explainability mask: The view reconstruction algorithm based on the

projection function relies on the static scenario assumption, i.e. the location of dynamic objects

on adjacent frames does not satisfy the projection function that affects the photometric error and

the training process. Masks are also commonly used to reduce the effect of dynamic objects and

occlusions.

Recent methods such as [9], [30], [31] and [32] use mask estimation based on deep learning,

which reduces the effects of dynamic objects and occlusion.

Methods based on traditional odometry: Instead of using the pose estimated by a pose net-

work, the pose regressed from traditional direct visual odometry helps in depth prediction [33].

Direct visual odometry takes the depth map created by the depth network and the three-frame

snippet to estimate the poses between frames by minimizing the photometric error. Then, the

measured poses are returned to the training system.

Methods based on multi-tasks framework: The latest methods have implemented additional

networks for multi-task, such as object motion [10], optical flow [34] and camera intrinsics matrix

[35].
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Casser et al.[10] proposed unsupervised learning of scene depth and robot ego-motion, where

supervision is provided by monocular videos. It also reveals that unsupervised depth estimation

models can be more accurate than supervised sensor approaches due to sensor reading problems

such as misses or noisy sensor values. It can also run in real-time on several GPUs.

Figure 2.12: An illustration of the framework. Extracted from [10].

This approach enables migration between environments by moving models trained in one en-

vironment to another. It also enhances the pioneering work in unsupervised depth estimation [30],

which in practice suffers from the fact that object motions in complex scenes are not handled.

In this improved version Casser et al.[10] considers the motion of dynamic objects in the

scenes, as seen in Figure 2.12. An object motion network is implemented to simulate individual

objects motion and uses segmented images as inputs. Since the above techniques are based on the

pre-requisites of known camera parameters, this restricts the network’s application to unknown

cameras.

2.5 Simultaneous Localization and Mapping

Simultaneous Location and Mapping (SLAM) is a common technique for autonomous navigation

of mobile robots in an unknown environment and aims to incrementally build a consistent map of

this environment while simultaneously determining its location within this map. To drive precisely,

a mobile robot must have an exact map of the environment [36].

Mobile robots may have internal and external sensors included. The internal sensors allow the

entity to collect measurements such as velocity, position change and acceleration. The sensors that

can be used for this purpose are the incremental encoders, accelerometers and gyroscope.

The external sensor contains a laser scanning sensor, an ultrasonic sensor and a vision sensor

to obtain the robot’s distance and position from the external environment relative to the external

object [37].
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When cameras are employed as the only exteroceptive sensor, it is called visual SLAM. Visual

SLAM systems can be complemented with information from internal sensors to increase accuracy

and robustness.

Monocular visual SLAM techniques are a challenge since they have problems such as neces-

sary initialization, scale ambiguity and scale drift. However, this work focuses only on the visual

SLAM with monocular and RGB-D data because of hardware constraints present; further ahead, it

can be extended to other sensors.

Visual SLAM is classified into direct and feature-based (indirect) methods. The direct method

leads to semi-dense and dense construction, while the indirect method causes sparse construction.

Figure 2.13 illustrates this difference in a straightforward way. Both methods extract character-

istics from images and connect them with descriptors. The direct method compares the intensity

(depth can also be included) of a pixel in one image to its warped projection in another image. This

is referred to as photometric error. On the other hand, the indirect method requires an additional

step to extract features and point-to-point correspondence. Then, the reprojection error function

compares the 2D position in one image to the 2D projection of the equivalent 3D point in another

image. The additional step renders it indirect.

Figure 2.13: Difference between direct and feature-based methods. Extracted from [11].
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2.5.1 Sparse Construction

• MonoSLAM [38] — was the first monocular SLAM system, based on extended kalman

filter (EKF) and can perform in real-time.

• ORB-SLAM [39] — was the first to implement the concept of separating camera track-

ing and mapping in parallel, with three parallel threads: tracking, local mapping and loop

closure.

• ORB-SLAM2 [40] — introduces support with monocular, stereo and RGB-D cameras,

including map reuse, loop closing and relocalization capabilities;

• ORB-SLAM3 [41] — the most recent ORB-SLAM families, is 2 to 5 times more accurate

than previous approaches, performing Visual, Visual-Inertial and Multi-Map SLAM with

monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models. ORB-

SLAM3 is as stable and substantially more accurate as of the best solutions available in the

literature in all sensor configurations;

2.5.2 Semi-Dense Construction

• LSD-SLAM [11] — proposes a direct method which operates on Lie-Algebra, allowing to

build large-scale and consistent maps of the environment with a monocular camera and runs

in real-time;

• DSO [42] — is a new approach from the author of LSD-SLAM, a direct method that creates

semi-dense models similar in density to LSD-SLAM, but much more accurate;

2.5.3 Dense Construction

• ElasticFusion [43] — proposes a method for performing dense visual SLAM in real time

that is capable of capturing extensive and comprehensive dense globally consistent surfel-

based maps of room-scale environments explored with an RGB-D camera;

• BundleFusion [44] — uses an RGB-D camera and estimates globally optimized poses in

real-time, supports robust tracking with recovery from gross tracking errors and re-estimates

the 3D model in real-time to ensure global consistency, within a single parallelizable opti-

mization framework

2.5.4 Segmentation with SLAM

SLAM methods can include semantic information to increase the performance and provide a better

understanding of the scene.

• Fusion++ [45] — is a real-time object-level SLAM system that generates a stable and accu-

rate 3D graph map of any reconstructed item. While an RGB-D camera navigates through
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a cluttered indoor scene, Mask R-CNN instance segmentations are used to initialize com-

pact per-object Truncated Signed Distance Function (TSDF) reconstructions with object

size-dependent resolutions and a novel 3D foreground mask;

• MaskFusion [46] — is a real-time, object-aware, semantic and dynamic RGB-D SLAM

system based on Mask R-CNN. It can also recognize, segment and assign semantic class

labels to multiple objects in the scene, while tracking and reconstructing them even when in

continuous and independent motion;

Other SLAM methods can address a variety of issues, such as ScanComplete [47], which

takes an incomplete 3D scan of a scene and predicts a complete 3D model along with per-voxel

semantic labels; DenseFusion [48] estimates 6D pose of a set of know objects from RGB-D

images; CNN-SLAM [49] estimates the depth with CNNs from a monocular camera.

2.6 3D Reconstruction

With the latest developments in autonomous driving and augmented reality, a fundamental com-

puter vision goal is the accurate 3D reconstruction of the surrounding world. This 3D reconstruc-

tion is typically achieved by fusing some sensors, such as LIDAR and Stereo, into 3D models.

Although these sensors can be highly powerful, they require special hardware that will not be used

in this project.

Some approaches in 3D reconstructions require single-view, multiple-view or stereo recon-

struction to perform the 3D reconstruction. The single-view reconstruction uses information from

one view of the object or scene. In contrast, multi-view reconstruction uses information from two

or more viewpoints of the object or scene. Stereo reconstruction is a particular case of multi-view

reconstruction, and in this case, two cameras often placed close together concerning the object,

are used.

The vision setup can be defined in three categories: a monocular camera [50, 51], a stereo

camera [52] and an RGB-D camera [53]. Since the restriction of monocular camera use mentioned

in chapter 1, this research will rely on the monocular and RGB-D approaches since it is possible

to simulate RGB-D data predicting depth maps in monocular cameras.

The next two sections will concentrate on object reconstruction and 3D semantic mapping,

respectively.

2.6.1 3D Object Reconstruction

Various approaches can be made to achieve a 3D shape representation, such as voxels, point-

clouds, and meshes.

Mesh R-CNN[12] extends Mask R-CNN and outputs high-resolution triangle meshes of the

objects with a single RGB image.
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Figure 2.14: Predicting 3D meshes with an input image.
Extracted from [12].

Mesh R-CNN aims to build a system that inputs a single RGB image, detect all objects in the

scene, and outputs a bounding box, category label, segmentation mask, and 3D triangle mesh for

each detected object. Besides that, the system has to handle with cluttered images and be trainable

end-to-end.

Figure 2.14 demonstrates that the system first detects and segments all the objects; then pre-

dicts coarse voxelized object representations which are converted to meshes.

The 3D shape process consists of a voxel branch and a mesh refining branch. First, the voxel

branch calculates a coarse 3D voxelization of an object that is transformed to an initial triangle

mesh. The mesh refinement branch then changes the vertex location of this initial mesh using a

series of graph convolution layers on the mesh’s edges.

Other methods, such as the latest PiFu[54], have introduced a model that uses occupancy

fields to perform a highly detailed clothed human with a single input image or a multi-view input

image. This recent work outperforms current solutions, as it can produce high-resolution surfaces,

including unseen regions. PiFu demonstrates that it can be extended to general objects by explicitly

combining global features and local features.

Some other methods are applied in multi-view shape prediction with modern learning tech-

niques are [55, 56].
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2.6.2 3D Semantic Mapping

3D reconstruction is desirable as a volumetric map, not just point clouds or surfels, since it is

impossible to explicitly use point clouds and surfels for robot object collision detection or robot

navigation. Densely labelled semantics is the secret to smart robot navigation, and it is also essen-

tial for robot-object interaction to distinguish between individual objects [57].

For the next stage of robot intelligence and intuitive user interaction, maps need to expand

beyond geometry and appearance - They need to include semantics [13].

SemanticFusion[13] combines the geometric information from the ElasticFusion SLAM method

with modern advancements in semantic segmentation using CNNs, allowing real-time processing

at frame-rates of 25Hz.

Figure 2.15: Overview of SemanticFusion pipeline [13].

As illustrated in Figure 2.15, the SemanticFusion pipeline consists of three different units: A

real-time SLAM based on ElasticFusion, a CNN and a Bayesian update scheme.

The SLAM approach offers correspondences from a 2D frame to a globally compatible 3D

map. Separately, the CNN receives an RGB-D image and returns a range of probabilities per pixel

class. Finally, the Bayesian update scheme keeps track of the probability distribution class for

each surfel, and uses the correspondence given by the SLAM to update those probabilities based

on CNN’s predictions.
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Voxblox++ [58] was proposed to overcome the previous method’s limitation since it did not

include details on the geometry and relative location of individual objects in the scene.

An approach to incrementally building volumetric object-centric maps during online scanning

with a localized RGB-D camera was implemented. In each frame, the method performs geometric

segmentation; semantic instance-aware segmentation refinement; data association and finally map

integration.

Figure 2.16: Individual stages of the system. Extracted from [13].

Figure 2.16 presents the individual stages of the Voxblox++. The RGB-D image is processed

with Mask R-CNN to detect and predict the semantic mask. Simultaneously, the geometric seg-

mentation decomposes the image depth into a collection of convex 3D segments. Consequently,

the data association method defines the segments expected in the actual frame to their correspond-

ing instance in the global map to be obtained for each map-consistent label. Lastly, dense geometry

and segmentation information from the current frame is merged into the global map scale.

Murez et al. introduced Atlas [59], an end-to-end 3D reconstruction method, by directly re-

gressing a truncated signed distance function (TSDF) from a collection of RGB images. They

concluded that direct 3D regression is more successful than the intermediate representation of

depth maps before calculating the scene’s complete 3D model.

Additionally, the authors of [60] proposed a modern 3D semantic segmentation view-based

approach that would use synthetic images made from "virtual views" of the 3D scene rather than

limiting processing acquired by a physical camera. This method outperforms all prior multi-view

approaches for 3D semantic segmentation.

2.7 CAD Model Alignment in RGB images

As seen before, we have many frameworks that can perform 3D reconstruction with RGB-D input;

However, these reconstructions can be noisy and incomplete due to scanning patterns, motion blur

or complex environment, like subsea images. As a result of these limitations, it is unsuitable for

many applications, including real-time robots and augmented reality, since it is fundamental for

the system to perceive the pose of the object.
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One way to address this problem is to find and align CAD models to an input; with this

solution, it is possible to have clean 3D reconstructions and each object’s pose estimation, which

serves the requirements for many applications described.

Figure 2.17: Scan2CAD takes an RGB-D input and align the CAD models by predicting heatmap
correspondences and formulate an energy minimization to find the best alignment between CAD
and the RGB-D input. Extracted from [14].

Scan2CAD [14] proposed a method to address the problems described before in RGB-D re-

constructions. As illustrated in Figure 2.17, given the geometry of a noisy and incomplete RGB-D

scan, Scan2CAD aligns clean and complete 3D CAD models to their counterpart objects in the 3D

scan.

Scan2CAD proposed a variational 9DoF (3 degrees for translation, rotation, and scale each)

optimization to produce final CAD model alignments. The method detects Harris keypoints and

predicts correspondence heatmaps for each Harris keypoint and CAD model. It is possible to find

optimal 9DoF transformations by using the predicted heatmaps.

Scan2CAD also introduced a new dataset from ScanNet [61], CAD models from ShapeNet

[62] and oriented bounding boxes for each object.

Figure 2.18: Representation of Mask2CAD system. Extracted from [15].
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Mask2CAD [15] attempts to combine 2D recognition with 3D reconstruction capabilities by

using CAD model representations of objects. The method takes an RGB image as input and pre-

dicts each object’s bounding boxes, class labels, and segmentation masks. It learns to establish a

shared embedding space between these recognized picture regions and 3D CAD models of objects

from these detected image regions, allowing it to retrieve a geometrically similar model for the

image observation, as illustrated in Figure 2.18.

For object detection, Mask2CAD uses a modified version of ShapeMask [63], which predicts

bounding boxes, class labels, segmentation masks and also the object alignment to the image.

Figure 2.19: During training, an RGB image is used to perform object detection, which generates
a bounding box, segmentation mask, and feature description for each discovered object. After that,
the object feature descriptor is used to train for shape retrieval using an image-CAD embedding
space, pose regression for object rotation, and center regression for object position. Extracted from
[15].

As illustrated in Figure 2.19 the same regions of interest (ROI) feature predicts the rotation

and translation of the object in the camera space. It initially performs k-medoid clustering on the

quaternions of each class to obtain k-canonical poses for rotation.

Mask2CAD uses a contrastive loss for the pose and center regression with complex example

mining since the contrastive loss is more stable than the triplet loss. Because the easy examples do

not include much information to improve the model, mining complex examples helps their model

to achieve better performance.

Vid2CAD [64] is based on Mask2CAD and addresses how to combine 3D shape retrievals

and alignments from individual frames, such as those produced by Mask2CAD, during each video

frame sequence to create a globally consistent 3D representation of the complete scene.

It solves the problem of matching CAD models to a video sequence of a complex scene with

many elements. This integration process reduces scale and depth ambiguities in per-frame pre-

dictions and enhances the estimation of all pose parameters in general. The solution resolves
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occlusions and handles items that are out of view in individual frames by using multi-view con-

straints, resulting in reconstructing all objects into a single globally consistent CAD representation

of the scene.



Chapter 3

3D Semantic Reconstruction

This chapter will discuss the two models that we developed for 3D reconstruction and object

recognition. We will begin with our baseline method, which is based on dense 3D semantic SLAM,

and then present a new methodology that utilizes pose alignment with CAD models to improve

the precision.

3.1 3D Semantic Mapping

We present a method for leveraging RGB-D dense SLAM algorithms such as ElasticFusion [43] or

SemanticFusion [13] using only monocular cameras. Due to the fact that these approaches require

an RGB-D input and we only have an RGB image, we must estimate a depth map.

Figure 3.1: An overview of our pipeline: Input images are used to produce semantic segmentation
and depth map estimations; These depth and segmentation maps are combined to create the final
dense semantic map using SemanticFusion [13].

As illustrated in Figure 3.1, our pipeline is composed of three distinct units; 1) a model to pre-

dict semantic segmentation and the semantic mask segmentation; 2) a dense depth map prediction

25
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model and finally, 3) the dense 3D semantic mapping, which merges these two predictions to build

the semantic 3D map.

We want to distinguish three classes in this approach: structure, valves, and hot stabs. As

illustrated in Figure 3.1, the segmentation model predicts the structure in green, the valves in blue,

and the hot stabs in red.

3.1.1 Ground Truth Depth Maps Generation

Figure 3.2: Pipeline proposed by [16] to create a dataset of semi-dense depth maps using structure-
from-motion (SfM).

We used the methodology proposed in [16] , which presented a method for generating "ground

truth" depth maps through the usage of the SfM framework, as illustrated in Figure 3.2. The

purpose of SfM is to concurrently estimate the 3D model of a structure and the camera pose using

image correspondences; thus, the environment must be static to obtain correct triangulation and

matching points.

As the first step in constructing an SfM pipeline, a Match Graph must be constructed, with

images working as nodes and an edge connecting two images if there is any point connection

between them. We begin by identifying and reconstructing multiple disjoint Match Graphs indi-

vidually, resulting in multiple independent point clouds. Along with the point clouds, the relative

position of the camera used to capture each input image is determined. We obtain a depth map

for each input image using this information in conjunction with the camera’s intrinsic parameters

[16].

To properly train and evaluate a CNN for depth prediction, we require a dataset with consistent

scale across all examples; we scaled the different point clouds to metric units using 3D CAD

models of known underwater structures.

To create our annotated dataset, we used OpenSfM as our SfM framework. OpenSfM is a

Python-based Structure from Motion library built on top of OpenCV. It allows the construction of

a high-quality point cloud of the entire structure at a high cost in terms of time. This software

generates a JSON reconstruction file containing all camera poses, the 3D reconstruction and depth

maps for all frames, which we used as our ground truth.
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3.1.1.1 Improved Ground Truth Depth Maps Generation

Figure 3.3: Our proposed pipeline to improve the framework proposed by [16]. We extend the
framework by adding a new branch that generates synthetic views to capture depth maps from
CAD using the camera pose.

The noise and incompleteness of the depth maps generated by the prior method can be a problem

for our depth map model, as using semi-sparse ground truth depth maps makes it difficult to

achieve a usable 3D reconstruction.

To tackle this issue, we proposed a new method to create the annotated dataset. As shown in

Figure 3.3, we first aligned the CAD model with the 3D reconstruction generated by OpenSfM,

and then we captured the depth of the CAD model per frame using the predicted camera poses by

OpenSfM.

Due to the fact that we do not know the intrinsics of the camera, we empirically calibrated

the camera parameters, assuming a pinhole camera model, to obtain the focal length and principal

point.

This solution may have some disadvantages, such as alignment errors and the camera intrinsics

not being accurate, but it produces more accurate depth maps for our model.

3.1.2 Depth Map Estimation Model

Figure 3.4: Our CNN based on [16] with skip-connections trained with semi-sparse ground-truth
depth maps.
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The architecture of our depth model, as illustrated in Figure 3.4, is inspired by the DispNet

[65] architecture, which comprises an encoder-decoder architecture with skip connections between

the encoder and decoder. Our network, on the other hand, does not perform multi-scale depth

prediction. All convolutional layers are followed by ReLU activation, except for the prediction

layers, which use 1/(α ∗sigmoid(x)+β ) with α = 7.203 and β = 0.935 to constrain the predicted

depth to be always positive within a reasonable range.

We used as loss the mean squared error (MSE) between the predicted depth and the depth

ground truth. Because the ground truth depth maps are semi-sparse, some pixels in the input

image do not have a ground truth value. As a result, we multiplied the ground truth depth map

mask by the predicted depth map, ignoring the background and pixels with no value in the ground

truth to avoid forcing the model to predict values close to zero. Therefore, the loss is applied only

to the pixels for which y is defined:

MSE(x,y) =
1
N

N

∑
i=1
‖yi− f(xi)‖2 (3.1)

Where N denotes the number of pixels in the input that contain ground-truth values, x represents

the input image and f (x) the output of the current model, and y denotes the ground truth depth

map.

3.1.3 Semantic Segmentation Model

(a) Our ResUNet architecture based on [66].

(b) Convolutional block for the presented model based on [66].

Figure 3.5: Our ResUNET architecture and the convolutional block.

For this application we used ResUNet, an encoder-decoder architecture that combines the strengths

of residual learning and the simpler model U-NET, as shown in Figure 3.5a. The residual unit sim-

plifies the network’s training, while the skip connections ensure that the data propagates without

degradation, allowing the creation of a neural network with substantially fewer parameters and
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improved performance. Our model differs slightly from ResUNet, consisting in five convolutional

blocks (ConvBlock), each one followed by a maxpool layer of 2 x 2, except for the fifth Con-

vBlock. Each ConvBLock comprises two blocks of 3 x 3 convolutions (stride 1 and padding 1), a

LeakyReLU with a slope of 0.2 and batch normalization, as represented in Figure 3.5b.

Because there are three classes (structure, valves and hot stabs), we used multiclass cross-

entropy loss to classify them, whose output is a probability value between 0 and 1.

CE =−
C

∑
i

ti log(si) (3.2)

Where ti is the ground truth value (0 or 1) if class label is the correct classification; si the predicted

probability of class i, and C the number of classes (structure, valve, hot stab).

3.1.4 3D Semantic Mapping

Our final step is to combine the segmentation and depth estimations described previously. To

accomplish this, we modified the original SemanticFusion [13] to work with our models. The

original SemanticFusion pipeline is composed of three separate units, 1) a real-time SLAM sys-

tem, ElasticFusion, which provides dense correspondence between frames; 2) a CNN to output a

dense pixel-wise semantic probability map; and finally, 3) a Bayesian update scheme that keeps

track of the class probability distribution for each surfel1, updating those probabilities using the

correspondences provided by SLAM based on CNN’s predictions.

Figure 3.6: Our proposed architecture inspired by SemanticFusion [13]. Our model takes a set of
RGB images and the correspondence depth estimation, which will be used for SLAM reconstruc-
tion. Our semantic segmentation model generates per-pixel class probabilities, which will be used
to perform semantically fused dense reconstruction.

1Surface Element
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As illustrated in Figure 3.6, our model removes the CNN architecture implemented by Seman-

ticFusion, and replaces it with a per pixel class probabilities that we will read at the beginning of

our method, making the method more adaptable to new models. Our method begins by reading

all files containing the probabilities of each class in each pixel for each frame. This file has C

columns and H×W rows, where C denotes the number of classes, H denotes the image’s height,

and W denotes the image’s width. By loading these files at the start of the program, the CNN is

no longer required to predict the per-pixel class probabilities allowing us to omit them from our

method.

3.2 CAD Model Alignment With Images

We present our method for jointly detecting objects in real-world images and selecting the corre-

sponding CAD model and pose for each detected object. This method produces a clean representa-

tion of the objects in an image; it ensures a correct, efficient shape representation for applications

such as interactive scenarios.

As explained in section 2.7, techniques based on RGB-D SLAM generate geometry that may

or may not reflect a natural shape, with a tendency toward noise or over smoothing and an exces-

sive amount of tessellation. Due to these restrictions, these results are unsuitable for a wide variety

of applications, including real-time robotics scenarios. Our proposed method addresses the limi-

tations of our earlier method, which were discussed in section 3.1. In addition, this methodology

attempts to accurately represent the objects of interest, such as valves and hot stabs; this is accom-

plished by employing the CAD model for each object.

d

Figure 3.7: Our proposed pipeline, which is based on Mask R-CNN, generates bounding boxes,
6dof poses, and semantic segmentation for each detected object. For each of the N bounding
boxes, the encoder predicts a vector of rotation and translation along the three axes.
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3.2.1 Proposed Architecture

As illustrated in Figure 3.7, we start by detecting all objects in the image domain by predicting

their bounding boxes, segmentation masks and class labels from the input image. Next, we predict

the object alignment to the image as 6 dof pose optimization (rotation + translation) based on these

observed image regions.

We used Mask R-CNN for object detection since it is a simple, flexible, and generic frame-

work for object instance segmentation. Mask R-CNN takes an RGB image as input and produces

detected objects with their bounding boxes, class labels, and segmentation masks. As described in

section 2.3.1.3, Mask R-CNN uses the same RPN stage as Faster R-CNN to propose candidate ob-

ject bounding boxes. Additionally, it introduces a new branch for predicting the class, box offset,

and binary mask for each RoI.

We modified this framework to learn features for our pose estimation by adding a new predictor

to output the pose (rotation + translation) for each RoI.

We used the average binary cross-entropy loss proposed by the original method for the Lmask,

the classification loss Lcls and bounding-box loss Lbox are indentical as those defined in [67], for

the Lpose we used the simple L1 loss specified in Equation 3.3.

Lpose =
1
N

N

∑
i=1
|(yi− ŷi)| (3.3)

Where N represents the number of bounding boxes predicted, y represents the ground truth

pose and ŷ the prediction pose, both of which are a 6×1 vector denoting rotation and translation

along each axis. y = [Rx,Ry,Rz,Tx,Ty,Tz].

3.2.2 Generation of Ground Truth Object Poses

To train the method proposed, each object and frame must have a ground truth pose (rotation +

translation). Since we have the camera pose for every frame generated by OpenSfM, mentioned

in section 3.1.1.1, we can compute the pose for every object using the equation:

O/c =C−1×O/W (3.4)

Where O/c represents the object pose relative to the camera, C denotes the camera pose and

O/W denotes the object pose relative to the world, all the variables are defined as a matrix of 4×4

[R | t].
To obtain the object’s pose relative to the world, the software MeshLab was used to align each

object in its respective point cloud position manually. The point cloud was extracted by OpenSfM

described in section 3.1.1.1. The camera pose for each frame was extracted by OpenSfM, as

mentioned in section 4.
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By applying equation 3.4 to the object’s pose relative to the world and the camera pose, we

obtain the object’s pose relative to the camera. We applied this equation to each frame, using the

camera pose for each frame and the object’s pose relative to the world, a constant matrix; this

resulted in an object pose relative to the camera for each frame.

Rather than training our model with a 4× 4 matrix and then forcing it to predict 16 val-

ues, we convert the rotation matrix to Euler Angles, resulting in a pose vector of six elements

[Rx,Ry,Rz,Tx,Ty,Tz].



Chapter 4

Experiments and Results

4.1 Dataset

We used two different videos to implement the proposed methods, each with a unique scenario.

After extracting one frame per second from each of the two videos, we obtain a total of 213

high-definition images (1920× 1080 resolution). These images were divided into 180 images

for training, 33 images for validation. To evaluate our model, we used a distinct video from the

others; we then extracted 1 frame per second from the video to evaluate our model, and 20 frames

per second for dense 3D semantic mapping.

To evaluate our model, we used a unique video; we then extracted one frame per second from

the video and used it to evaluate our segmentation and depth models, resulting in 99 images. We

extract 20 frames per second to run the dense 3D semantic mapping described in section 3.1.4,

resulting in 1980 images.

(a) Video for training purposes. (b) Video for training purposes. (c) Video for test purposes.

Figure 4.1: Comparative analysis of the videos included in our dataset’s.

Example frames of the three videos are shown in Figure 4.1. The first Figure 4.1a combines

multiple angles and shots of the structure from various distances; the second Figure 4.1b com-

bines multiple perspectives and shots of the structure from a close distance ; the final Figure 4.1c

combines different perspectives and shots from afar, solely for the purpose of testing the model.

33
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4.2 Improved Depth Maps

(a) Depth Map Generated by OpenSfM. (b) Improved Depth Maps with CAD alignment.

Figure 4.2: Comparison between the depth maps generated by OpenSfM [16] and our improved
method for generating ground truth depth maps.

As illustrated in Figure 4.2, the method described in section 3.1.1.1 significantly improved the

ground truth depth maps; the depth maps are now cleaner and contain additional structure infor-

mation, whereas the other method produces semi-sparse depth maps with a significant lack of

structure information.

Because OpenSfM does not find correspondences between some images, the method proposed

in [16] generates some ground truth images that are devoid of values. As a result, the depth

estimation model must reject these depth maps. By contrast, our model has no such issues, as

we obtain the depth from CAD rather than OpenSfM. Furthermore, both methods assume that the

world is static.

4.3 Segmentation Model

We trained our model using the ResUNet segmentation model on an NVIDIA TITAN V GPU with

512x256 images and cross-entropy as a loss. It takes one hour to train 200 epochs with a batch

size of 16.
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Figure 4.3: Loss of the training and validation data during the model’s training phase.

We completed our training with a validation loss of 0.16 and a train loss of 0.02 using 188

training images and 33 validation images, as shown in Figure 4.3.

Figure 4.4: A selection of the frames generated by our segmentation model.Whereas green repre-
sents the Xmas tree, blue represents the valves, and red represents the hot stabs.

Figure 4.4 shows three examples of the model’s output to a single image from the test dataset.

The model predicts too many false positives for the valves, predicting valves rather than structure.

Table 4.1: Intersection Over Union (IoU) for each object.

Object IOU
Structure 0.88
Hot Stab 0.11
Valves 0.44

Table 4.1 shows the evaluation per object; the hot stabs have the lowest IoU since they are one

of the smallest objects in the image with poor image quality and illumination, and it is tough for

the model to predict it; otherwise, the model predicts the tree reasonably well, as expected.

There are a few ways to improve the model’s performance, including the addition of a larger

dataset to enable a better generalization and a fusion of the segmentation and depth estimation

to improve the segmentation. We focused on improving the segmentation of these small objects,

which is accomplished by the approach described in section 3.2.
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4.4 Depth Model

To evaluate the depth estimation, we follow the evaluation performed in [68]. The evaluation is

based on measurements for error and accuracy. Absolute relative difference (Abs Rel), squared

relative difference (Sq Rel), root mean squared error (RMSE), and root mean squared logarithmic

error (RMSE log) are all error metrics. Three types of accuracy metrics are available: a1, a2, and

a3, representing the percentage of pixel depth prediction reasonably near the ground truth. The

a1 metric is the most exacting, while a3 is the least exact. For this purpose, we only consider the

a1 and a2 metrics, as we want to compare the methods with strict accuracy to choose the most

accurate.

We trained our depth model in 500 epochs, with a batch size of 4 and a learning rate of 0.0001.

It takes about 400 epochs to converge and get a1 = 0.93 and Absrel = 0.077 in validation mode.

Table 4.2: Depth evaluation metrics over the 2 proposed methods for generating ground truth. The
SfM GT Depth Maps method was described in section 3.1.1, while the CAD GT Depth Maps was
described in section 3.1.1.1.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ a1 ↑ a2 ↑
SfM GT Depth Maps 0.144 0.751 2.730 0.180 0.750 0.886

CAD GT Depth Maps 0.192 0.776 2.964 0.217 0.638 0.955

SfM GT Depth Maps* 0.302 1.776 3.564 0.517 0.454 0.755

* Evaluated on all pixels that belong to the Xmas tree. For pixels where the SfM method did not
compute depth values, we use the CAD generation method.

(a) Depth map prediction generated with the
method of SfM GT depth map.

(b) Depth map prediction generated with the
method of CAD GT depth map.

Figure 4.5: Comparison of the two previously described methods. In both methods, a segmentation
mask was used to reject the background.

As shown in table 4.2, the SfM ground truth depth maps have a better accuracy metric than

our CAD ground truth depth maps because we use a mask on our prediction to consider only the

pixels for which we have a value. Due to the fact that the SfM depth maps contain significantly

fewer pixels than our CAD version, we cannot determine which depth map performs better in 3D

reconstruction by evaluating the depth map metrics. We applied the CAD GT depth map as a

mask to our SfM GT depth map to determine which method produces the best values and has the
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lowest error. Based on the results presented in Table 4.4, we determined that our CAD version

mentioned in section 3.1.1.1 contains additional information about the structure, valves, and hot

stabs, allowing the model to predict a precise output easily, as shown in Figure 4.5.

4.5 Dense 3D Semantic Mapping

For this evaluation, we used the test video described previously in this section and illustrated in

Figure 4.1c; The video was divided into 20 frames per second rather than one frame per second

for this application because 20 frames per second is the minimum frame rate required to run the

video smoothly on SemanticFusion. We used video frames to predict segmentation and depth for

all frames in order to generate data for SemanticFusion. All the videos of this section are available

on our website1.

(a) Dense 3D semantic mapping from the origi-
nal ground truth depth maps.

(b) Dense 3D semantic mapping from the im-
proved ground truth depth maps.

Figure 4.6: A sample of frames from our model that demonstrates the 3D reconstruction and object
segmentation. The complete videos are available on our website.

The image results of our reconstruction presented in Figure 4.6 are aligned with the results

presented in table 4.4, because our depth model has difficulties predicting complex objects with

different shapes.

1https://paginas.fe.up.pt/ up201504257/dissertacao

https://paginas.fe.up.pt/~up201504257/dissertacao
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While our improved method contains more detail of the structure than the original, both meth-

ods fail to reconstruct the structure, valves and hot stabs.

As a result, we can conclude that our method is incapable of generalizing complex objects in

this environment, and thus that another approach focusing exclusively on the objects of interest is

required.

4.6 CAD model alignment with images

We used only the test dataset 4.1c rather than the three presented in section 4.1 to simplify our eval-

uation; this eliminates scale ambiguity and incoherence poses along with different datasets.The

dataset consists of a 1:44 minute video that generates 104 images at a frame rate of 1fps. It was

divided into 89 training images (85%) and 15 test images (15%).

The CAD model of the entire structure is on the correct scale, measuring 9× 10× 6 meters;

the CAD model was subdivided into objects of interest: valves and hot stabs. The dimensions of

the valves are 0.5×0.7×0.5 meters or 0.5×1×0.5 meters, depending on the type of the valve;

the hot stabs are 0.05×0.75×0.3 meters in size.

We used Mask R-CNN for instance segmentation, with the ResNet-50 as backbone and a

gradient descent optimizer with a momentum of 0.9, a learning rate of 0.0005, and a decay rate of

0.1 after 100 epochs.

(a) Valve 1 (b) Valve 2 (c) Valve 3 (d) Valve 4 (e) Hot Stab

Figure 4.7: The CAD models that were used in this approach are shown above. There are four
different types of valves and one hot stab.

We evaluated the bounding boxes, semantic segmentation mask and pose estimation for each

object estimated by our model.
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4.6.1 Bounding Boxes

Figure 4.8: Two examples of bounding boxes estimation.

Table 4.3: Object detection results for all images.

Object IoU Precision Recall F1
Valves 0.932 0.963 0.950 0.955

Hot Stabs 0.869 1 0.853 0.906

As illustrated in Figure 4.8 and Table 4.3, we obtained satisfactory detection results; this is crit-

ical for pose prediction, which is dependent on the detected object and its associated label class.

Occasionally, our model predicts more than one bounding box for an object; to address this issue,

we used a non-max suppression technique, which is typically used in object detection and aims to

select the best bounding box from a collection of overlapping boxes.

4.6.2 Semantic Segmentation

Figure 4.9: Two examples of semantic segmentation estimation.

Compared to the previous method, which had a high rate of false positives, the semantic segmen-

tation estimation by Mask R-CNN is precise with a low rate of false positives. Our model does
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not have a precise mask due to the small size and complexity of the hot stab, but it performs well

in general. We assume that we have only one class for the valve; in contrast to the bounding box

detection, where we had four classes for the valves, we assume that they are all identical, as we

will not be using these masks to predict the pose.

Table 4.4: IoU metric evaluating the semantic segmentation results.

Object IoU
Valves 0.871

Hot Stabs 0.474

4.6.3 Pose Estimation

The pose estimation model was trained over a period of 1000 epochs with a batch size of 2 and

a learning rate of 0.0005 with a decay of 0.9 for every 100 epochs. The model was trained using

degrees rather than radians for Euler Angles in order to obtain a more accurate result in terms

of angle error rather than distance error. The angle values range are between 80 and 100, while

distance values range between -20 and 10; when using the L1 loss discussed in section 3.2, the loss

has a greater tendency to converge to the angle ground truth due to its higher values in comparison

to the distance.

The model’s metrics are summarized in Table 4.5; this model has a mean error of one meter

due to the outliers, as shown in Table 4.5a. As expected, the angles are highly accurate; the

maximum error is about 4 degrees. Again, due to the small size of hot stabs, the model is not very

effective, in comparison to the valves.

Table 4.5: Results for pose estimation. All error distance measurements are in meters, while angle
measurements are in degrees. The vector displayed in the column of angles has three axes [x,y,z]
and represents the mean and standard deviation for each axis.

Distance Angle
Object Number of Objects min max mean std min max mean std
Valves 281 0.116 6.740 0.813 0.962 0.00001 4.430 [0.621, 0.635, 0.376] [0.6264, 0.688 , 0.353]

Hot Stabs 50 0.363 7.0294 2.665 2.228 0.003 2.676 [0.782, 0.733, 0.434] [0.671, 0.686, 0.351]
Total 331 0.116 7.029 1.093 1.406 0.001 4.430 [0.645, 0.650, 0.385] [0.636, 689, 353]

(a) Baseline with a high variance in the distance error.

Distance Angle
Object Number of Objects min max mean std min max mean std
Valves 266 0.046 5.996 0.547 0.688 0.004 10.203 [1.300, 1.076, 0.699] [1.195, 0.845, 0.505]

Hot Stabs 44 0.150 1.945 0.390 0.427 0.003 7.23 [1.209, 1.124, 0.801] [1.619, 0.889, 0.555]
Total 310 0.046 5.996 0.525 0.602 0.003 7.203 [1.287, 1.084, 0.715] [1.032, 0.853, 0.514]

(b) Improved version that places more emphasis on the translation vector than angles,
resulting in a reduction in mean distance error.

To attempt to improve our solution, we increased the score threshold to filter the boxes with

a higher degree of confidence; we also emphasized the translation vector by increasing its weight

in the loss function to obtain a more precise prediction. As expected, when we emphasize the
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translation vector, the mean distance error decreases by 0.2m and the angle error increases by 0.5

degrees, as shown in Table 4.5b.

(a) Baseline with a high variance in the distance.It was used the Euler angles expressed in
degrees without a score threshold.

(b) Improved version that places more emphasis on the translation vector than angles.
Using Euler angles are expressed in radians, and a score threshold of 0.5 is used.

Figure 4.10: Distribution of errors for each detected object. The sum of the two objects is indicated
in blue. Hot Stabs have a high proportion of objects with errors greater than 1.5m, whereas valves
have a higher proportion of objects with errors between 0.1m and 1m than with errors greater than
1.5m.

To help visualize how the model works, we depicted the distribution of errors for each detected

object in Figure 4.10. The majority of valves have errors of less than 1m; on the other hand, the

majority of hot stabs have values greater than 1m.

As illustrated in Figure 4.10b, the majority of valves are between 0.1m and 0.5m, which is a

reasonable result in general. In comparison, we continue to have a high error value in hot stabs.

In Figure 4.11, two examples of the prediction pose are represented in red, and the ground

truth pose is represented in grey. Figure 4.11b demonstrates a high precision in the distance error,

but one outlier was detected.
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(a) An example of a frame with only valves de-
tected.

(b) An example of a frame with valves and hot stabs
detected.

Figure 4.11: Two distinct frames, one with the prediction pose highlighted in red and the other
with the ground truth pose highlighted in grey. Each object has the correct rotation, but some
objects have an incorrect translation vector.

4.7 Comparison With The Baseline

The datasets must be the same in order to compare our proposed model to the baseline properly.

As a result, we conducted an additional experiment using the 3D Semantic Mapping technique

described in Section 3.1. This new experiment used the same dataset as the method proposed in

Section 3.2; both used a 1:44 minute video shown in 4.1c divided into 89 images for training and

15 images for testing. We compared these two models by comparing their semantic segmentation

and the final reconstruction.

Object IoU
Valves 0.705

Hot Stabs 0.521
(a) Baseline.

Object IoU
Valves 0.871

Hot Stabs 0.474
(b) Adapted Mask R-CNN.

Table 4.6: Comparison between the semantic segmentation performance.

As illustrated in Table 4.6, the baseline method has a slightly better IoU for hot stabs, whereas

our proposed method has a considerably better IoU for valves. Overall, we can conclude that the

adapted Mask R-CNN performs better.



4.7 Comparison With The Baseline 43

Table 4.7: Depth evaluation metrics of this experiment.

Abs Rel Sq Rel RMSE RMSE log a1 a2
0.129 0.03 0.739 0.043 0.87 0.97

As shown in Table 4.7, the baseline achieved an acceptable overall result for depth estimation.

(a) Result for frame 550.

(b) Result for frame 1500.

Figure 4.12: Reconstruction results. As shown in a), the 3D reconstruction begins with a satisfac-
tory reconstruction, but the reconstruction degrades in later frames, as shown in b).

However, as shown in Figure 4.12 the method fails one more time in the 3D reconstruction,

with a lot of over smoothing and imprecise position of the valves and hot stabs. The video of the

3D reconstruction with this method is presented on our website 2.

Finally, we can infer that our proposed method produced superior results, as combining depth

map estimate into SLAM methods is highly imprecise, lacking in information, and vulnerable to

semantic segmentation outliers.

2https://paginas.fe.up.pt/ up201504257/dissertacao

https://paginas.fe.up.pt/~up201504257/dissertacao
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Chapter 5

Conclusions and Future Work

Depth estimation is a difficult task in the subsea environment, not only due to the physical proper-

ties of the water, but also due to a severe lack of datasets for deep learning methods.

This dissertation makes use of Abyssal’s dataset, which contains 320 images with no depth

map ground truth and semantic segmentation that has been manually annotated for each image.

Our initial approach to this problem was using a dense 3D semantic SLAM method, which

joins depth map and semantic information predicted by our models. Unfortunately, this method-

ology failed to produce satisfactory results in 3D semantic SLAM due to the imprecision of the

prediction depth maps. In comparison, the segmentation model produced an acceptable overall

result. We attempted to improve the precision of the depth map model by optimizing our proposed

ground truth depth maps; this improved the depth model’s estimation but was still insufficient to

provide a satisfactory 3D reconstruction.

Our second approach attempts to address these concerns by predicting the pose of CAD models

for each image; since our problem was with predicting good depth maps, this methodology does

not use depth maps. We modified Mask R-CNN by adding a new predictor to output the pose

(rotation + translation) for each RoI. We achieved a high level of accuracy in predicting each

object’s bounding boxes and pose; for object detection, the valves and hot stabs had an F1 of

0.955 and 0.906, respectively. Additionally, for pose estimation, we obtained a mean distance

error of approximately 0.5 meters for the valves and 2.6 meters for the hot stabs. Pose estimation

is related to bounding box prediction; if the model predicts the incorrect class for the object or the

bounding box of a non-object, the pose prediction will fail. Rejecting some outliers, we believe

that it is possible to obtain a perfect 3D reconstruction and alignment using this method, allowing

the ROVs to interact with the objects.

Due to the time constraints, the Mask R-CNN with pose prediction was developed using a

single dataset. The main goal of future work is to evaluate the model’s performance using all three

datasets. Our model could be improved by increasing the number of images, which would allow it

to generalize more confidently. We ignore occlusion and scale ambiguity in our environment, but

it is critical to address these issues in the future. In addition, the proposed model is a single-frame

representation; a step forward would be to resolve scale and depth ambiguities using multi-view

45
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consistency constraints.
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