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Abstract Virtual Glove (VG) is a low-cost computer vision system that utilizes two 
orthogonal LEAP motion sensors to provide detailed 4D hand tracking in realtime. 
VG can find many applications in the field of human-system interaction, such as 
remote control of machines or tele-rehabilitation. An innovative and efficient data-
integration strategy, based on the velocity calculation, for selecting data from one of 
the LEAPs at each time, is proposed for VG. The position of each joint of the hand 
model, when obscured to a LEAP, is guessed and tends to flicker. Since VG uses 
two LEAP sensors, two spatial representations are available each moment for each 
joint: the method consists of the selection of the one with the lower velocity at each 
time instant. Choosing the smoother trajectory leads to VG stabilization and precision 
optimization, reduces occlusions (parts of the hand or handling objects obscuring 
other hand parts) and/or, when both sensors are seeing the same joint, reduces the 
number of outliers produced by hardware instabilities. The strategy is experimentally 
evaluated, in terms of reduction of outliers with respect to a previously used data 
selection strategy on VG, and results are reported and discussed. In the future, an 
objective test set has to be imagined, designed, and realized, also with the help of 
an external precise positioning equipment, to allow also quantitative and objective
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(a) (b)

Fig. 1: Hand positioning inside VG (a) and the corresponding numerical model (b) 
reconstructed by using 24 joints (4 for the thumb and 5 for each of the other fingers).

evaluation of the gain in precision and, maybe, of the intrinsic limitations of the 
proposed strategy. Moreover, advanced Artificial Intelligence-based (AI-based) real-
time data integration strategies, specific for VG, will be designed and tested on the 
resulting dataset.

Keywords Virtual Glove (VG) · Hand rehabilitation · Orthogonal LEAP motion 
sensors · human-system interaction · Data-integration

1 Introduction

In recent years, computer vision is becoming increasingly important in addressing a 
wide range of application areas, including human action recognition [4, 16], aerial 
image processing [5, 31], person re-identification [33, 37], and human-system inter-
action [14, 32]. Concerning the latter, its goal is to improve the communication be-
tween users and computers, virtual reality environments, electromechanical devices, 
and robots. With the use of highly sophisticated sensors, a lot of critical applications 
on remotely operating systems, e.g., driving robots, rovers, or performing medical 
procedures [10, 19, 25, 38, 39], are becoming possible. Tele-operated systems are 
expensive, neither replicable nor quickly replaceable. The results of long-planned, 
critical, costly, and challenging operations depend on their proper use, that requires 
precise recording and reproduction of the operator’s hand and finger movements.

Both non-vision and vision-based gesture recognition are usually employed to 
finely track the hand and all its joints. The non-vision approaches utilize wearable de-
vices, such as wired gloves, for the detection of finger movements [7, 20, 34], while 
vision-based approaches use the interpretation of video-collecting devices, usually 
sensors operating also in the infrared (IR) range, placed at a certain distance from the 
subject [2, 9, 10, 27, 28, 39, 41]. The key advantage of vision-based systems is that no 
physical contact is required and the movements are free and natural, being the hand 
unforced to wear anything, and it could naturally be used to grip specialized tools 
in order to carry on a procedure (for example, surgical devices). However, in order 
to be used to control remotely operating systems, the movements must be identified
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Fig. 2: Running example. The switching modality (top row) and the proposed in-
tegration strategy (bottom row). In the top row, the switching modality selects data 
from just one of the LEAPs. With the proposed modality, second row, the joints are 
selected according to their stability and data coming from both LEAPs are fused in 
the same model. Notice that, blue, red, and green are referred to horizontal LEAP, 
vertical LEAP, and the proposed data integration strategy, respectively.

with good spatial precision (few millimetres) and in real-time (at least 30 frames per 
second, fps, are necessary). In the last few years, the use of immersive Virtual Reality 
(VR) interfaces driven by natural hand movements for remote control, is growing up 
thanks to the development of innovative optical 3D vision-based systems for gesture 
recognition [12] and the range of applications that benefited from them is increased, as 
is occurring in rehabilitation [3, 30]. One of the most recent optical 3D sensors, based 
on stereo vision, is the LEAP motion controller (LEAP1). LEAP is a high-resolution 
3D hand-sensing device which allows the freehand natural interaction, crucial for the 
implementation of real-time, realistic VR systems [6, 30]. It uses 3 IR light sources and 
two detectors o obtain 3D visual information saved and reproduced almost 
simultaneously (more than 60fps) from the server. It has been successfully integrated 
with VR environments in rehabilitation and neuroergonomics [8, 26, 30], and also used 
as a tool for touchless interfaces, such as 3D writing recognition sys-tems [18]. One of 
its advantages is that it is appropriate for different hand sizes (adults and children), as 
well as for different hand shapes (healthy people and patients with residual infirmities). 
However, if objects have to be handled, e.g., a joystick or the controller of a remotely 
operated vehicle, they can produce occlusions. Even parts of the hand itself often cross 
over with the view of the sensor (self-occlusions). Thus, LEAP, such as most vision-
based systems, can fail to correctly reproduce the hand trajectory because the spatial 
position of some joints of the hand, invisible to the sen-sor, are guessed, thus resulting 
in inaccurate and unstable representations. That could be negligible when just raw 
gestures need to be reproduced, but crucial when finer movements are used in tele-
operated applications, such as tele-surgery or operations in dangerous environments. 
Recently, several works have been published with the aim of improving hand tracking 
accuracy by combining LEAP data with those of other devices or data from multiple 
LEAPs [17, 21–23, 40]. In particular, in [21] a LEAP is

1 https://www.ultraleap.com/
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supported by an RGB webcam to improve the quality of the recognition of symbols 
in the 3D American sign language datasets. Aim of the proposed system is to reduce 
the ambiguities, due to occlusions, in gesture recognition: the RGB webcam is used 
as an auxiliary system, being it unable to furnish specific spatial information. The 
same gesture recognition problem for identification of American sign language and 
Hand-icraftGesture is solved accurately with just one LEAP [40]. In [22, 23] a LEAP 
is supported by a Depth camera. The system has very good accuracy (regarding 
gesture recognition) but low frame rate (15fps) making it not suitable for applications 
that requires higher frequency (30fps or greater) to track natural hand movements. 
More-over, due to the occlusions between fingers, the method can perform well only 
when the hand is in ideal orientations/positions. Kiselev et al. [17] use three LEAPs 
for gesture recognition. The Authors show that by increasing the number of sensors, 
the accuracy also increases due the fact that the number of occlusions decreases. 
More-over, the use of multiple sensors of the same type greatly improves the 
performance of the data integration strategy due to the easiness in comparing similar 
models. How-ever, since just one LEAP at time can be driven by a single operating 
system, the used client/server architecture described in the paper suggests that at least 
three different computers have been used (cheap and critical in terms of 
synchronization). In addi-tion, as two of the three LEAPs are coplanar, they mostly 
contribute to increase the active region but have low influence in reducing 
occlusions. Finally, the performance of the system, in terms of frame rate, has not 
been discussed. Shen et al. [35], solve the problem of occlusions in gesture 
recognition by proposing the use of three LEAPs placed with their long axes on the 
medium points of the sides of an equilateral trian-gle. Though the paper deeply 
discuss on the system assembly, calibration, data-fusion and results in terms of 
position/orientation accuracy, no mention is dedicated to the resulting efficiency of 
the system in terms of fps.

Virtual Glove (VG) is a system based on the synchronized use of two orthogonal 
LEAPs (Fig. 1) for reducing the probability of occlusions [30]. Better results regard-
ing occlusions reduction could have been obtained with three LEAPs on a equilat-
eral/equiangular configuration, as in [35], but we would have had serious problems 
with the real-time maintenance (at least 30fps) on a low-cost computer. Though the 
paradigm of VG [29] is applicable to any number of sensors placed in any angular 
configuration, the choice of two orthogonal sensors represents a good compromise 
between optimization/positioning of the region of interest (ROI), precision and effi-
ciency. In fact, through project-related considerations and qualitative measurements 
regarding position/dimensions of the ROI and precision with respect to the angle, it 
can be argued that: 1) An acute angle between the sensors planes [15], though useful 
to approach the ROI to sensors and to maximize precision of the sensors individu-
ally, would reduce the space between sensors that implies a reduction of the hand 
movements inside the system and, consequently, a reduction of the ROI. Moreover, 
IR reciprocal interferences between sensors would increase, thus resulting in a re-
duction of stability, reliability and, hence, of the final precision of the tracking; 2) An 
obtuse angle between the sensors planes, though increasing the space between 
sensors, would move away the ROI from the sensors surface, thus reducing the pre-
cision of the system. In the original embodiment of VG, data coming only from one 
of the LEAPs were used at each time instant by mutual exclusion: the one having the
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most favourable orientation with respect to the hand palm was chosen. Though sim-
ple and efficient, this solution did not solve many cases of occlusions and, to increase 
efficiency, a lot of useful information coming from the orthogonal sensor got wasted.

To integrate data from both LEAP sensors and to solve the problem of data wast-
ing, we have also considered the possibility offered by Machine Learning [24], ML, 
and Deep Learning [36], DL, but, though very effective, they could be either too slow 
or too computationally expensive to be used in a low cost machine (VG system is 
imagined for accurate and, in the same time, low-cost human-system interaction 
[20]). Besides, we would face the difficulty of getting sufficiently populated labelled 
datasets to be used for training and composed by the spatial positions of the hand 
joints (collected by a position indicator and considered the ground truth) and the cor-
responding spatial positions measured by both LEAP sensors while moving the hand 
inside the VG. This last task, necessary for using ML and DL strategies, is a long 
pro-cess that, to be carried on, requires the usage of an advanced, mini-invasive 
(LEAP sensors have to view the hand and its joints) and precise position indicator, 
such as one of those produced by VICON2, to be installed on the hand.

Aim of the present paper is to design and test a completely different data inte-
gration approach for VG, a good trade-off between simplicity, efficacy and efficiency 
without the requirement of any training datasets. The rest of the manuscript is struc-
tured as follows: Section 2 reviews VG assembly (both hardware and data collection 
strategy). Section 3 details the proposed data-integration method. Section 4 presents 
experimental measurements, results, and discussion. Finally, Section 5 concludes the 
manuscript and delineates future work and developments.

2 The VG assembly

2.1 Design, calibration, and sensors management

The VG hardware consists of a rigid support, equipped with lodges for the 
orthogonal LEAP sensors Fig. 1a. The sensors are fixed inside the lodges through 
plastic screws to avoid vibrations and movements. The center of each LEAP is 
positioned at 18.5 cm from the internal corner of the support: these measurements 
were optimized for maximizing the signal into a 21 cm side, while also reducing 
VG’s dimensions.

Both sensors were calibrated to a common right-handed Cartesian coordinate sys-
tem, the center of which lies on the LEAPs plane, at the intersection of their vertical 
axes. Calibration was performed by accurately measuring, with a high precision po-
sitioning system3 (spatial precision 0.01mm) the position of a tip of a stick on a set of 
m points inside the region of interest of the VG. On the same points, spatial measure-
ments were collected by both LEAPs (one sensor at a time) and by calculating the 
transformation matrix [11]. Given the cloud of points measured by the two LEAPs 
each with its proper reference system, A = {ai : 1 ≤ i ≤ m} and B = {bi : 1 ≤ i ≤ m},

2 https://www.vicon.com/hardware/
3 GUALDONI Mod. 49 FU 80, 1995, Milan - Italy
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it finds the rotation matrix R and the translation vector s that minimizes the error:

err =
1
m

m

∑
i=1
‖Rai + s−bi‖2 (1)

The center of mass for both sets, CA = 1
m ∑

m
i=1 ai and CB = 1

m ∑
m
i=1 bi, are calcu-

lated and used to center the sets on the origin:

A+ = {ai
+ : ai

+ = ai−CA} B+ = {bi
+ : bi

+ = bi−CB} (2)

This allows to compute the cross-covariance matrix:

H =
1
m

m

∑
i=1

a+i b+
i

T (3)

and to apply the Singular Value Decomposition (SVD) to decompose H in the vector
[U,S,V ] = SV D(H), such that H = USV T where U and V are orthogonal matrices
and S is a non-negative diagonal matrix. In VG the rotation R, can be computed by
R =UV T and the translation by s =−RCB +CA.

The resulting transformation, in homogeneous coordinates, is:

W =


R1,1 R1,2 R1,3 s1
R2,1 R2,2 R2,3 s2
R3,1 R3,2 R3,3 s3

0 0 0 1

 (4)

Regarding the operation of two sensors at the same time, the software develop-
ment kit of the LEAP (SDK)4 does not allow the use of two devices on the same
operating system and an architecture based on the use of virtual machines is neces-
sary. In our architecture, two virtual machines (slaves) are installed on the physical
machine (master) and each of them manages one of the two sensors. Data provided by
the SDK through the websocket are captured by a javascript router and returned to a
server hosted on the master machine. In the same way, the server sends data from both
devices to one or more clients running on the master. The server receives data from
the routers and elaborates them by performing the coordinate transformation and by
constructing, and representing on a virtual environment, the numerical hand model.
The hand model structure could variate depending on the specific programming lan-
guage SDK. In fact, VG uses Javascript API and the computations are performed by
employing the bone class: Given a Hand instance, it has access to the Arm (bone
class) and to the Finger classes. Each Finger accesses to its bones (i.e., metacarpal,
proximal, intermediate, and distal) and joints (i.e., attributes carpPosition, mcpPosi-
tion, pipPosition, dipPosition, btipPosition). Fig. 1 shows the hand inside the VG (a)
and the corresponding numerical model (b).

4 https://developer.leapmotion.com/setup/desktop
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Fig. 3: Example of data production from both LEAPs (blue and red dots), along time 
(vertical axis) and space (horizontal axis). The fps can change with time: always the 
slower is used to produce data. Empty dots, from the faster sensor, are discarded. 
The parameters (space and time changes) for the calculation of Internal and Exter-
nal velocities are also shown. The reported example is just representative (spatial 
discrepancies between sensors have been enlarged for graphical purposes)

2.2 Original data collection strategy

The original hand tracking strategy is based on a switching approach, i.e., at any 
given time instant t, only one sensor, and the same for all joints, is used to track the 
hand. In fact, both sensors are switched on but only one LEAP at a time is active and 
furnishes data (Fig. 2, top row). To determine which LEAP is active (the “favorite” 
sensor), the palm’s normal vector p, (a vector orthogonal to the palm of the hand), is 
used to find the angle between the X-axis of the horizontal LEAP reference system 
and the projection of p on the X-Y plane. If the angle is between 225 and 315 (the 
palm is facing downwards) or between 45 and 135 (the palm is directed upwards) the 
horizontal LEAP is active, while data from the vertical sensor are ignored. Out of 
these ranges, the role of the sensors is inverted: the vertical LEAP becomes active 
and data from the horizontal LEAP are ignored. Though this approach is very 
efficient (just hand orientation is necessary to choose which model to use) and 
capable to fix occlusions caused by the hand’s palm, it performs poorly when the 
hand is not perfectly oriented toward one of the sensors and/or when the hand is 
bending and some fingers obscure the others (this could occur in any orientation of 
the hand). In fact, with mutual exclusion, just data coming from one sensor are used 
each time instant, and, by discarding those of the other, a lot of potentially useful 
information is lost. These effects are accentuated when occlusions increase because 
of the handling of an object. In what follows we describe the new strategy we 
propose to exploit data from both LEAPs at the same time, thus improving the VG’s 
capability of reducing occlusions.
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3 The proposed data integration strategy

We aim at using data coming from both sensors. In particular, the role of “favourite 
view” to the sensor which has the palm of the hand oriented toward it, as in the 
mutual exclusion strategy, is maintained just at the beginning of acquisition but, after 
that, data from both sensors are checked for each joint and just those from one of the 
sensors, each time, are selected in terms of stability and used to track that joint, i.e., 
at any time t, different joints of the model could be associated to different sensors 
(Fig. 2, bottom row). The reason of this choice is two-fold: the hand is a dynamic 
structure and, during time, a joint could be alternately obscured or visible; when a 
joint is lost by one sensor, its guessed position could be very far from the correct 
value, correctly represented by the other sensor (in this case, merging data from both 
sensors would reduce position errors). In fact, when LEAP is tracking the hand, it 
correctly represents the joints that it sees and guesses those that it does not see due to 
occlusions.

When LEAP loses a joint, first it becomes temporally unstable (forming high-
frequency flickers and shakes) and then it stabilizes the guessed position and main-
tains it still until the joint becomes visible again: at that point, the position is updated 
to the right one (also this update occurs abruptly). This produces jumps and spikes on 
the trajectory that could also consist of errors of centimetres (see the Section 4 be-
low). A LEAP hand model contains data for all joints and for each time, even if some 
of them are invisible to the sensor. In this last case, the positions of invisible joints 
are guessed on the basis of the hand shape and previous temporal view (a proprietary 
LEAP strategy). The strategy we propose is to check, for each joint, the data flow 
coming from both sensors and to choose those coming from the more stable of the 
two. Joint’s stability is inversely proportional to its velocity: when the model is un-
stable, spikes and jumps are produced in the trajectory and velocity is high. Since we 
have data of the same joint from both sensors, the velocity is computable and finite 
for both LEAPs and the corresponding values can always be compared: for each time 
instant, data are selected from the LEAP showing lower velocity, in module. The 
data flow, from both sensors, is shown in Fig. 3. Each sensor is collecting data with 
varying frame rate, also different between LEAPs, and data from closest times are 
compared. Two velocity values are calculated: one is the velocity along the same 
sensor, that we call Internal (intra-sensor) velocity, and the other is the velocity 
“produced” by skipping from one sensor to the other, that we call External (inter-
sensors) velocity. External velocity is usually present because of the spatial 
differences between the two sensors (see Fig. 3). We first define these velocities and 
then we describe the stabilization strategy. For each joint (i = 1,2, ...,24) of the 
sensor L j ( j = 1,2), we calculate the Internal velocity:

|vIi(t)|L j =

√√√√(dxi,L j
dtL j

)2

+

(
dyi,L j
dtL j

)2

+

(
dzi,L j
dtL j

)2

(5)

Tavares
Line
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Table 1: Truth table indicating, inside the cells, the sensor that has to be chosen if the
logical conditions (row and column) are met at the same time (logical AND)

|vIi(t)|L1 < |vIi(t)|L2 |vIi(t)|L1 ≥ |vIi(t)|L2
CL,i = 1 L1 |vEi(t)| ≤ |vIi(t)|L1 |vEi(t)|> |vIi(t)|L1

L2 L1
CL,i = 2 |vEi(t)| ≤ |vIi(t)|L2 |vEi(t)|> |vIi(t)|L2 L2

L1 L2

and the External velocity (it does not depend on one specific sensor):

|vEi(t)| =
√(

dxi
dt

)2
+

(
dyi

dt

)2
+

(
dzi

dt

)2
(6)

By indicating with CL,i the LEAP currently used for the joint i, the resulting inte-
gration algorithm is the following:

1. At the starting time, take the hand model from the favourite LEAP for all the
joints and update CL (here the i is missing because the LEAP is the same for all
the joints);

2. Step to the following time t (that of the slower LEAP);
3. For each joint i:

(a) For each LEAP L j:
i. Calculate |vIi(t)|L j and |vEi(t)|;

4. Verify conditions in Tab. 1, take the data from the appropriate LEAP and update
CL,i accordingly;

5. Go to step 2.

The conditions in Tab. 1, a truth table, allow to define from which LEAP we have
to select data for the joint i at the time t. As it can be noticed, we first define the lowest
value for the Internal velocity and, if a change of sensor is necessary with respect to
the current CL,i, we also check whether the External velocity is lower than the current,
Internal, one. If this condition is met (data across sensors are more stable than those
into the current one), a sensor data skip is allowed, otherwise data are collected from
the original sensor. As it can be noticed, time also affects the LEAP choice because
the number of fps changes with time for both sensors, and the two fps could even
be always different. However, we always use the lower fps. In Fig. 4 an example is
illustrated. The derivative calculation is obviously discrete.

The resulting hand model is a mixture of joints tracked from both sensors, re-
sulting in a smoother train of points. The compared values refer to the same joint.
No velocity threshold is needed: no constraint needs to be set regarding the maxi-
mum velocity of the hand. In fact, having two sensors to register the same joint, it
can be supposed that, if the joint is moving, the smoother track is the more precise
between the two. To further improve precision, it could be useful to verify how to
merge data when both sensors are operating correctly. In that case, however, addi-
tional calculations are necessary to verify the correctness of the data but that could
preclude real-time.

Tavares
Line
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Fig. 4: Fingertip trajectories on x, y, and z axes for a 25 sec free-hand moving exer-
cise. Blue and red lines represent the trajectories obtained, respectively, by the hori-
zontal and the vertical sensor; while the green trajectory is the one produced by the
new proposed approach. Dashed lines indicate LEAP switch points in the original
switching strategy. Two screenshots of the video, occurring at about 2.0 sec and 20.0
sec, respectively, are also reported (bottom right), to indicate: the experimental con-
ditions; the position of the hand; and the real-time representation of the model on the
screen of a PC. X symbols on the time axes indicate screenshots occurrences.

Table 2: Outliers. The number of outlier spikes using the old switching approach
(before) in comparison to the new proposed method (after), and their reduction’s
percentage

Finger x y z
Before After % Reduction Before After % Reduction Before After % Reduction

Thumb 19 6 68,4 18 13 27,8 21 12 42,9
Index 35 11 68,6 54 19 64,8 49 17 65,3
Middle 23 9 60,9 58 21 63,8 35 17 51,4
Ring 15 8 46,7 34 16 52,9 31 12 61,3
Pinkie 11 6 45,5 37 19 48,6 29 13 55,2

4 Experimental measurements and results

4.1 Data collection

To demonstrate the effectiveness of the proposed strategy in comparison with the
usage of a single sensor, measurements were collected while a subject moved the
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left hand inside the VG (the usage of the right hand would have been the same). We
performed the experiment with the hand free, without grabbing any object, in order
to highlight that: 1) the instability effects on the reproduced trajectories are due to
the loss of the signal (occlusions) and not to disturbances due to the grabbed object;
2) also in a free-hand mode the number of occlusions during the tracking process is
high. The experiment started with the hand still oriented toward the horizontal LEAP,
followed by wrist rotations alternated to a sequence of hand open-close operations.
The number of wrist rotations was 5, corresponding to 6 hand positions with respect
to the LEAPs (these are important to establish the changes of orientation of the hand
with respect to both sensors, as clarified below). The duration of the sequence was
25 seconds for a total of 961 4D positions (x, y, z, and t all referred to the world
system of VG). The hand model reconstructed in real-time by the proposed strategy
was shown on a computer screen and saved into a database (DB). Apart from the
reconstructed model, also original models obtained by each LEAP were stored into
the same DB.

The whole experiment was also recorded using an external video camera and time
was monitored by a stopwatch. Conditions of the room were maintained normal in
order to avoid favorable conditions: no particular attention was paid to maintain ex-
ternal interferences low (controlled light, temperature, electromagnetic disturbances,
and so on) and to maintain the background free of objects.

4.2 Results and discussion

Data obtained with the proposed method and those from each single LEAP have been
recovered from the DB to be shown into the same plots. To this aim, the trajectories
of just the 5 fingertips, organized by axes, are presented in Fig. 4 where three lines are
reported: data from the horizontal LEAP (blue line), data from the vertical LEAP (red
line) and data obtained with the proposed integration strategy (green line). As it can
be observed, the green curve follows alternatively values from the blue or from the
red curves by remaining on the smoother one. In fact, the green curves are smoother
than blue and red ones and, in that way, also spikes and jumps, obviously representing
tracking losses or outliers, are reduced. A summary of the outliers’ reduction by using
the proposed solution with respect to the switching approach is reported in Tab. 2.
Though most of the outliers are removed, some of them remain mostly where both
sensors are unstable at the same time.

Obviously, the data collection strategy originally used in VG would maintain all
the outliers occurring for the actually active sensor, since the only information used to
get data from one of the LEAPs was the orientation of the hand. Fig. 4 also indicates,
with vertical dashed lines, the instants where the switching between sensors occurred
in the original procedure, because the limit angles were overgone. Further, additional
discontinuities could be produced by the transition from one LEAP to the other, as
it can be observed at both sides of the vertical lines in the plots. Another important
aspect to be noticed is that the selection of the blue or the red trajectory by the green
one depends on the specific joint and not on the orientation of the hand palm (in that
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Table 3: Outlier Average Values. Average values of the plot outliers with the old
and the new data integration method, together with their % reduction percentage,
separated by finger and grouped by axis (first four columns) and separated by axis
and grouped by finger (the remaining four columns)

Finger Before After % Reduction Axis Before After % Reduction
Thumb 19,3 10,3 46,4 x 20,6 8,0 58,0
Index 46,0 15,7 66,2 y 40,2 17,6 52,0
Middle 38,7 15,7 58,7 z 33,0 14,2 55,2
Ring 26,7 12,0 53,6
Pinkie 25,7 12,7 49,8

way, at a given time instant, a joint uses data by looking at its own smoother trajectory
which could be different from that used by another joint).

Particular attention should be paid at the difference between spatial representa-
tions of the two LEAPs for the same joint that, in some traits, can be very high and
continues to be high for a long time. As said before, this depends on the behavior
of the sensor: when a LEAP has to guess the position of a joint, it chooses the best
estimated position and maintains it until it sees the joint again. During this time, the
positions indicated by the two sensors could greatly differ and this justifies the usage
of data coming from just one of them instead of merging data from both. Such an
effect also becomes evident in Fig. 4, especially for the time interval between t=1
sec and t=3 sec, where pinkie finger is shadowed by the rest of the hand with respect
to the vertical sensor: its guessed positions by the vertical LEAP are quite different
from those collected (correctly) by the horizontal one. When data are collected by the
proposed integration strategy, the correct position is selected.

Fig. 4 also shows relevant snapshots of the experiment on which some fingertip
occlusions are highlighted: thanks to the proposed identification strategy, the trajecto-
ries are smoothed, as it can be observed on the plots, and the final reconstructed hand
model is correctly reproduced on the computer screen in real-time. As noticeable,
the system can follow and sufficiently record hand movements without any special
preparation needed. The presented results have been acquired under normal condi-
tions, which indicates that the VG system is capable to perform well also outside
a laboratory and, after further development, makes it a good candidate for future
applications in external environments. Based on these qualitative results, the model
shape resembled the real hand accurately and, most importantly, the model followed
the hand movements in real-time when operated on a PC with Intel I7, 32Gb Ram,
NVIDIA GE force GTX 1080. The results confirmed that the model was represented
on the screen at 47fps (demonstrated by registering the timestamps of the presen-
tations on the screen) which is about 1.5 times the frequency required to consider
human-systems interaction useful for real-time (about 30fps). This high frequency
image acquisition is what allows us to combine and synchronize the two LEAP sys-
tems, even when they do not work on the same fps.

Tab. 2 shows that outliers in all five finger trajectories have been reduced to more
than their half. In particular, the average reduction is 58% for the x, 51.6% for the y,
and 55.2% for the z direction. To conclude the analysis, we want to remark that, both
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from Fig. 4 and from Tab. 2, certain fingers show a lower number of outliers than 
others. Thumb has the less outliers in both approaches (its averages on the three axes 
are 19.3 and 10.3 for the old and the new method respectively) while pinkie comes 
second using the old method (25.7 outliers on average) and ring finger has the second 
less spikes with the new method (12 on average). This is obviously due to their more 
favorable position (external). To provide an overview of outlier average values for 
both fingers and axes, Tab. 3 is also presented. Moreover, two other considerations 
can be made: 1) the x coordinate is more stable than other coordinates (there is a not 
evident explanation to that behavior and we have to explore it); 2) there is a different 
behavior between the two LEAPs of the VG (the horizontal one was more stable than 
the vertical). This point is probably due to internal hardware differences between the 
two sensors and it is not an environment effect. In fact, by rotating the VG of 90, the 
two LEAPs maintain the same behaviour.

5 Conclusion

Occlusions are one of the biggest and most studied issues in hand movement track-
ing. The LEAP system, with its low cost and simple setup, offers the opportunity of 
significantly reducing the problem, by using more than one detector to multiply the 
visual information. We presented a new strategy for selecting data coming from both 
sensors forming the VG, a system composed by two vertically placed LEAP de-
tectors to provide 4D hand tracking in real-time. The proposed strategy has made it 
possible to reduce occlusions, to avoid outliers and false position indications (errors) 
with respect to using data from just one sensor, and to increase the stability of VG. 
These are the necessary conditions by which VG, being a touchless system which 
leaves the hand free to perform natural movements, could be effectively used for re-
producing hand and finger movements with good spatial and temporal resolution and, 
hence, to drive systems remotely with high accuracy. However, the proposed results 
are only capable to demonstrate qualitative improvements with respect to the original 
mutual exclusion strategy. Future work will be dedicated to organize measurements 
from which it would be possible to obtain also quantitative evaluations and to study 
possible countermeasures to the residual instabilities produced when some views are 
obscured with respect to both sensors at the same time (the usage of a third detector, 
as in [35], could help but the real-time conditions have to be checked). Moreover, ad-
vanced data integration strategies based on AI will be designed and tested to improve 
VG precision and stability, while maintaining a sufficiently low computational load 
for a low-cost machine to maintain real-time. In particular, we aim to reach this goal 
by using AI-based approaches, such as those in [1, 13, 40], applied to the temporal 
trajectories described by each joint of the hand.

Acknowledgements The work has been financially supported by the Italiam Minister of the University 
and Research (Dottorato di Ricerca innovativo a caratterizzazione industriale borsa n.2, PON 2014-2020).



14 Giuseppe Placidi et al.

References

1. Ameur S, Ben Khalifa A, Bouhlel MS (2020) A novel hybrid bidirectional uni-
directional lstm network for dynamic hand gesture recognition with leap motion.
Entertainment Computing 35:1–10

2. Ankit C, Jagdish RL, Karen D, Sonia R (2011) Intelligent approaches to interact
with machines using hand gesture recognition in natural way: A survey. Interna-
tional Journal of Computer Science & Engineering Survey pp 122–133

3. Avola D, Spezialetti M, Placidi G (2013) Design of an efficient framework
for fast prototyping of customized humancomputer interfaces and virtual envi-
ronments for rehabilitation. Computer Methods and Programs in Biomedicine
110(3):490–502

4. Avola D, Bernardi M, Foresti GL (2019) Fusing depth and colour information for
human action recognition. Multimedia Tools and Applications 78(5):5919–5939

5. Avola D, Cinque L, Foresti GL, Pannone D (2020) Homography vs similarity
transformation in aerial mosaicking: which is the best at different altitudes? Mul-
timedia Tools and Applications 79:18387–18404

6. Bachmann D, Weichert F, Rinkenauer G (2014) Evaluation of the leap motion
controller as a new contact-free pointing device. Sensors 15(1):214–233

7. Battaglia E, Bianchi M, Altobelli A, Grioli G, Catalano MG, Serio A, Santello
M, Bicchi A (2016) Thimblesense: A fingertip-wearable tactile sensor for grasp
analysis. IEEE Transactions on Haptics 9(1):121–133

8. Carrieri M, Petracca A, Lancia S, Moro SB, Brigadoi S, Spezialetti M, Ferrari M,
Placidi G, Quaresima V (2016) Prefrontal cortex activation upon a demanding
virtual hand-controlled task: A new frontier for neuroergonomics. Frontiers in
Human Neuroscience 10(53):1–13

9. Chen L, Wei H, Ferryman J (2013) A survey of human motion analysis using
depth imagery. Pattern Recognition Letters 34(15):1995–2006

10. Chen S, Ma H, Yang C, Fu M (2015) Hand gesture based robot control system
using leap motion. In: Proceedings of the Intelligent Robotics and Applications
(ICIRA), pp 581–591

11. Eggert DW, Lorusso A, Fisher RB (1997) Estimating 3-d rigid body transforma-
tions: A comparison of four major algorithms. Mach Vision Appl 9(56):272290

12. Erden F, etin AE (2014) Hand gesture based remote control system using infrared
sensors and a camera. IEEE Transactions on Consumer Electronics 60(4):675–
680

13. Iacoviello D, Petracca A, Spezialetti M, Placidi G (2016) A classification al-
gorithm for electroencephalography signals by self-induced emotional stimuli.
IEEE Transactions on Cybernetics 46(12):3171–3180

14. Imran J, Raman B (2020) Deep motion templates and extreme learning machine
for sign language recognition. The Visual Computer 36(6):1233–1246

15. Jin H, Chen Q, Chen Z, Hu Y, Zhang J (2016) Multi-leapmotion sensor based
demonstration for robotic refine tabletop object manipulation task. CAAI Trans-
actions on Intelligence Technology 1

16. Khan MA, Akram T, Sharif M, Muhammad N, Javed MY, Naqvi SR (2020)
Improved strategy for human action recognition; experiencing a cascaded design.



Data integration by two-sensors in a LEAP-based Virtual Glove 15

IET Image Processing 14(5):818–829
17. Kiselev V, Khlamov M, Chuvilin K (2019) Hand gesture recognition with multi-

ple leap motion devices. In: 2019 24th Conference of Open Innovations Associ-
ation (FRUCT), IEEE, pp 163–169

18. Kumar P, Saini R, Roy PP, Pal U (2018) A lexicon-free approach for 3d handwrit-
ing recognition using classifier combination. Pattern Recognition Letters 103:1–
7

19. Liu Y, Zhang Y (2015) Toward welding robot with human knowledge: A
remotely-controlled approach. IEEE Transactions on Automation Science and
Engineering 12(2):769–774

20. Luzhnica G, Simon J, Lex E, Pammer V (2016) A sliding window approach
to natural hand gesture recognition using a custom data glove. In: 2016 IEEE
Symposium on 3D User Interfaces (3DUI), IEEE, pp 81–90

21. Mahdikhanlou K, Ebrahimnezhad H (2020) Multimodal 3d american sign lan-
guage recognition for static alphabet and numbers using hand joints and shape
coding. Multimedia Tools and Applications 79(31):22235–22259

22. Marin G, Dominio F, Zanuttigh P (2015) Hand gesture recognition with leap
motion and kinect devices. 2014 IEEE International Conference on Image Pro-
cessing, ICIP 2014 pp 1565–1569

23. Marin G, Dominio F, Zanuttigh P (2016) Hand gesture recognition with jointly
calibrated leap motion and depth sensor. Multimedia Tools and Applications
75(22):14991–15015

24. Mehryar M, Afshin R, Talwalkar A (2018) Foundations of Machine Learning,
2nd edn. MIT Press

25. Mizera C, Delrieu T, Weistroffer V, Andriot C, Decatoire A, Gazeau J (2020)
Evaluation of hand-tracking systems in teleoperation and virtual dexterous ma-
nipulation. IEEE Sensors Journal 20(3):1642–1655

26. Moro SB, Carrieri M, Avola D, Brigadoi S, Lancia S, Petracca A, Spezialetti M,
Ferrari M, Placidi G, Quaresima V (2016) A novel semi-immersive virtual real-
ity visuo-motor task activates ventrolateral prefrontal cortex: a functional near-
infrared spectroscopy study. Journal of Neural Engineering 13(3):1–14

27. Placidi G (2007) A smart virtual glove for the hand telerehabilitation. Computers
in Biology and Medicine 37(8):1100 – 1107

28. Placidi G, Avola D, Iacoviello D, Cinque L (2013) Overall design and implemen-
tation of the virtual glove. Computers in Biology and Medicine 43(11):1927–
1940

29. Placidi G, Cinque L, Petracca A, Polsinelli M, Spezialetti M (2017) A virtual
glove system for the hand rehabilitation based on two orthogonal leap mo-
tion controllers. In: Proceedings of the 6th International Conference on Pat-
tern Recognition Applications and Methods - Volume 1: ICPRAM,, INSTICC,
SciTePress, pp 184–192

30. Placidi G, Cinque L, Polsinelli M, Spezialetti M (2018) Measurements by a leap-
based virtual glove for the hand rehabilitation. Sensors 18(3):1–13

31. Prasad MG, Akula SP, Vemula A, Chandran S (2019) Mosaicing of multiplanar
regions through autonomous navigation of off-the-shelf quadcopter. IET Cyber-
systems and Robotics 1(3):81–92



16 Giuseppe Placidi et al.

32. Quintas J, Menezes P, Dias J (2017) Information model and architecture
specification for context awareness interaction decision support in cyber-
physical humanmachine systems. IEEE Transactions on Human-Machine Sys-
tems 47(3):323–331

33. Rui S, Qiheng H, Wei F, Xudong Z (2020) Attributes-based person re-
identification via cnns with coupled clusters loss. Journal of Systems Engineering
and Electronics 31(1):45–55

34. Rusk Z, Antonya C, Horvth I (2011) Methodology for controlling contact
forces in interactive grasping simulation. International Journal of Virtual Reality
10(2):1–10

35. Shen H, Yang X, Hu H, Mou Q, Lou Y (2019) Hand trajectory extraction of hu-
man assembly based on multi-leap motions. In: 2019 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM), pp 193–198

36. Shi Z (2019) Advanced Artificial Intelligence, 2nd edn. WORLD SCIENTIFIC
37. Tang Y, Xi Y, Wang N, Song B, Gao X (2020) Cgan-tm: A novel domain-to-

domain transferring method for person re-identification. IEEE Transactions on
Image Processing 29:5641–5651

38. Wang Z, Wang D, Zhang Y, Liu J, Wen L, Xu W, Zhang Y (2020) A three-
fingered force feedback glove using fiber-reinforced soft bending actuators. IEEE
Transactions on Industrial Electronics 67(9):7681–7690

39. Wei LJ, Sen LW, Sani ZM (2015) Leap motion underwater robotic arm control.
Jurnal Teknologi 74(9):153159

40. Yang L, Chen J, Zhu W (2020) Dynamic hand gesture recognition based on a leap
motion controller and two-layer bidirectional recurrent neural network. Sensors
20:2106–2123

41. Zhang W, Cheng H, Zhao L, Hao L, Tao M, Xiang C (2019) A gesture-based
teleoperation system for compliant robot motion. Applied Sciences 9(24):1–18




