
Visually-defined Real-Time Orchestration of IoT Systems
Margarida Silva
MIEIC and DEI

Faculty of Engineering, University of Porto
Porto, Portugal

ana.margarida.silva@fe.up.pt

João Pedro Dias
INESC TEC and DEI

Faculty of Engineering, University of Porto
Porto, Portugal
jpmdias@fe.up.pt

André Restivo
LIACC and DEI

Faculty of Engineering, University of Porto
Porto, Portugal

arestivo@fe.up.pt

Hugo Sereno Ferreira
INESC TEC and DEI

Faculty of Engineering, University of Porto
Porto, Portugal

hugo.sereno@fe.up.pt

ABSTRACT
In this work, we propose a method for extending Node-RED to
allow the automatic decomposition and partitioning of the system
towards higher decentralization. We provide a custom firmware for
constrained devices to expose their resources, as well as new nodes
and modifications in the Node-RED engine that allow automatic
orchestration of tasks. The firmware is responsible for low-level
management of health and capabilities, as well as executing Mi-
croPython scripts on demand. Node-RED then takes advantage of
this firmware by (1) providing a device registry allowing devices
to announce themselves, (2) generating MicroPython code from
dynamic analysis of flow and nodes, and (3) automatically (re-)as-
signing nodes to devices based on pre-specified properties and
priorities. A mechanism to automatically detect abnormal run-time
conditions and provide dynamic self-adaptation was also explored.
Our solution was tested using synthetic home automation scenar-
ios, where several experiments were conducted with both virtual
and physical devices. We then exhaustively measured each scenario
to allow further understanding of our proposal and how it impacts
the system’s resiliency, efficiency, and elasticity.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; Embedded systems;Distributed architectures;
• Software and its engineering → Embedded software; Inte-
grated and visual development environments; • Hardware
→ System-level fault tolerance.

KEYWORDS
Internet-of-Things, Orchestration, Distributed Systems, Real-Time
Systems, Embedded Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8840-5/20/11. . . $15.00
https://doi.org/10.1145/3448891.3448938

ACM Reference Format:
Margarida Silva, João Pedro Dias, André Restivo, and Hugo Sereno Fer-
reira. 2020. Visually-defined Real-Time Orchestration of IoT Systems. In
MobiQuitous 2020 - 17th EAI International Conference on Mobile andUbiq-
uitous Systems: Computing, Networking and Services (MobiQuitous ’20),De-
cember 7–9, 2020, Darmstadt, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3448891.3448938

1 INTRODUCTION
The Internet-of-Things (IoT) mostly consists of uniquely identifiable
objects (i.e., things) and their virtual representations within the In-
ternet infrastructure [12]. Broadly, it refers to the inter-connectivity
between ordinary devices alongside their contextual awareness,
sensing capability, and autonomy [20]. The interest in IoT has been
growing as the number of connected devices rises steadily. Estima-
tions point to around 26 billion physical Internet-connected devices
(circa 2020), and predictions are targeting 75 billion in 2025 [1, 2]. Al-
though this presents several opportunities, these devices are highly
heterogeneous in both their hardware and capabilities, which causes
several issues in terms of development, scalability, maintainability,
security, and autonomy [1, 9, 11].

Although most (I)IoT systems are large-scale, they are typically
designed and built around centralized architectures (as most of the
existent Web services), where one main component executes most
of the computation on data provided by edge devices (i.e., sensors
and actuators) [24]. We also observe centralized cloud services in
cloud-based IoT architectures, mostly due to the advantages of
management and costs (e.g., the economics of scale when building
datacenters, automatic backup of all data, and enforce physical secu-
rity [36]). Examples include IoT PaaS such as AmazonWeb Services
(AWS) IoT, IBM Bluemix, and Microsoft Azure IoT Suite [28]. Other
on-premises solutions are more suitable for the fog tier (e.g., QNAP
QIoT Suite, Home Assistant, and OpenHAB), which provide fea-
tures to integrate and build IoT systems with the aid of rules and
triggers (usually visually-defined) [3]. Their processing is usually
centralized in a single instance, integrating Node-RED (or a similar
solution) as the event processing engine for the user-defined rules
and triggers (e.g., Fig. 3) [15, 21].

These centralized approaches have several consequences, in-
cluding: (1) computation capabilities of the edge devices are being
ignored, (2) it introduces a single point of failure, and (3) data is
being transferred across boundaries (e.g., private, technological

https://doi.org/10.1145/3448891.3448938
https://doi.org/10.1145/3448891.3448938

MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany Silva et al.

and political) either without the need or even in violation of legal
constraints. Ideas such as the one of Local-First [22] — i.e., data
and logic should reside locally, independent of third-party services
faults and errors — and NoCloud [31] — i.e., on-device and local
computation should be prioritized over cloud — are mostly ignored.
Edge and Fog Computing have been suggested to solve some of
these limitations by pushing some processing tasks away from
the cloud and into lower-tier devices [25]. Nonetheless, most of
the issues remain unaddressed, as the central instance, if it exists,
should orchestrate the system so that the computational tasks are di-
vided into independent blocks that could then be executed by other
devices instead of running everything in a centralized way [29].

In this paper, we explore how the computation capabilities of
heterogeneous devices capable of running custom code can be
leveraged to improve the resiliency, efficiency, and scalability of
IoT systems. For this purpose, a prototype was developed consist-
ing mainly of two parts: (1) extensions and modifications to the
Node-RED system — allowing it to orchestrate the computing tasks
among the available devices while taking into account their cur-
rent capabilities; and (2) a MicroPython-based firmware that runs
on the edge devices that can receive, interpret and execute the
orchestrator-assigned computational tasks.

We evaluated this approach in terms of functionality, resilience to
hardware/software errors, and efficiency (i.e., latency and elasticity);
by scaling up the number of available devices and computational
tasks. We concluded that the system’s resilience to failures was
improved and once orchestrated, that the system operated in a
distributed fashion (even without the orchestrator’s presence). We
verified that the system scales, at least up to 50 devices (affirming
its suitableness for most smart home setups). We also concluded
that our approach increases the delay in communication between
nodes, mostly due to changes in the channel (i.e., from a Node-RED
in-process communication to a decentralized Wi-Fi MQTT-based).

The remaining paper is structured as follows: Section 2 presents
an overview on related work and summarizes the open research
challenges. Section 3 provides insights on our approach architecture
and implementation. Section 4 presents the experiments and results.
These results are discussed in Section 5 and some closing remarks
and future work directions are given in Section 6.

2 RELATEDWORK
Node-RED [15] is a web-based development and runtime environ-
ment for developing Internet-of-Things systems. It provides the
end-user with a drag-n-drop interface to connect devices and APIs
using a flow-based programming approach. Programs are called
flows, built with nodes connected by wires. Regarding its architec-
ture, the base class EventEmitter maintains a subscriber list of
all the nodes connected to it and emits events to them. When a
node finishes processing data, from external sources or another
node, it calls the methods send() with a JavaScript object. In its
turn, this method calls the EventEmitter emit() method that
sends named events to the subscribed nodes. Being open-source,
Node-RED takes advantage of a large community that contributes
new nodes and improvements to the tool. It is the most popular
open-source visual programming tool for IoT, with more than 10100

stars on GitHub [10], being integrated into several IoT platforms as
the flow designer and event processing runtime.

Blackstock et al. [5, 16] present an IoT development approach
(DDF), which they claim as suitable for fog-based applications that
are dependent on the context of the edge devices where they op-
erate. The authors extended Node-RED and implemented D-NR
(Distributed Node-RED), which contains processes that can run
across devices in local networks and servers in the cloud. All de-
vices running D-NR subscribe to an MQTT topic that contains the
status of the main flow. When the flow is deployed, all devices run-
ning D-NR are notified and, based on a set of constraints, decide
which nodes may need to deploy locally and which sub-flows must
be shared with other devices. Each device has a set of characteristics,
from its computational resources, such as bandwidth and available
storage, to its location. The developer can insert constraints by
specifying which device a sub-flow must be deployed to or the com-
putational resources needed. Subsequent works [17, 18] focus on
deploying multiple instances of devices running the same sub-flow,
and the support for more complex deployment constraints.

Szydlo et al. [32, 35] proposed a transformation and decompo-
sition of flows into executable Lua artifacts. Their contribution
includes flow transformations, and a portable runtime environment
called uFlow that seamlessly edge devices with Node-RED. Flows
are transformed based on developer-defined configurations stat-
ing which operations will run on which device. These operations
are implemented using the uFlow solution, which allows parts of
the flow to run on edge devices but keeping the communication
cloud-dependent. Results point to a decrease in the number of mea-
surements needed by sensors. However, there is no automation
of the initial flow’s decomposition and partitioning, nor efforts in
detecting bottlenecks or addressing their impact. They further im-
proved uFlow with an execution engine that enables the design of
applications to be decomposed onto heterogeneous devices accord-
ing to a defined decomposition schema. Several algorithms for flow
decomposition are mentioned [19, 26], but no results are presented.

Cheng et al. [8] provide an implementation of a standards-based
programming model for Fog Computing and scalable context man-
agement. They extend the data-flow programming model with
hints to facilitate the development of fog applications. The scalable
context management introduces a distributed approach, which al-
lows overcoming a centralized approach’s limits, achieving much
better performance in throughput, response time, and scalability.
Follow-up approaches [7] provide infrastructure managers with an
environment that allows building decentralized IoT systems with
increased stability and scalability. Dynamic data, representing the
IoT system and logical flows, is orchestrated between sensors and
actuators. The application is designed using the FogFlow Task De-
signer, a hybrid text and visual programming environment, which
results in an abstraction called Service Template, which contains
specifics about the resources needed for each part of the system.
Once the Service Template is submitted, the framework will deter-
mine how to instantiate it using the context data available. Each
task is associated with an operator, and its assignment is based on
(1) how many resources are available on each edge node, (2) the
location of data sources, and (3) the prediction of workload.

Visually-defined Real-Time Orchestration of IoT Systems MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany

Noor et al. [27] present another distributed approach (DDFlow)
by extending Node-RED with a system runtime that supports dy-
namic scaling and adaption of application deployments. The dis-
tributed system coordinator maintains the state and assigns tasks to
available devices, minimizing end-to-end latency. Notions of node
and wire are expanded, with a node in DDFlow representing an
instantiation of a task deployed in a device, receiving inputs and
generating outputs. Nodes can be constrained in their assignment
by optional parameters, such as Device and Region. A wire connects
two or more nodes and can have three types: Stream (one-to-one),
Broadcast (one-to-many), and Unite (many-to-one). Each device has
a set of capabilities and services that correspond to a node. The
devices communicate this information through their Device Man-
ager or a proxy. The coordinator is responsible for managing the
DDFlow applications and is composed of three main components:
(1) a visual programming environment, (2) a Deployment Manager
that communicates with the Device Managers of the devices, and
(3) a Placement Solver, responsible for decomposing and assigning
tasks to the available devices. When an application is deployed, a
network topology graph and a task graph are constructed based on
the real-time information retrieved from the devices. The coordina-
tor proceeds with mapping tasks to devices by minimizing the task
graph’s end-to-end latency of the longest path. If changes in the
network are detected, such as device failure or disconnection, task
assignment adjustments are made. The coordinator can be deployed
in multi-devices to improve the system’s reliability.

These related tools were characterized based on their mentions
or support for the following features and characteristics:

Leverage devices. Decentralized architectures take advantage of
the available computational power in the network. However,
some tools have limitations on the devices they can operate
on, as they are tailored for specific devices or tiers.

Communication capabilities. The orchestrator has to be aware
of the devices capabilities so it can make an informed deci-
sion for the decomposition and assignment of tasks.

Open-source. An open-source license allows access to the code,
making it possible for its analysis, improvement, and reuse,
playing a pivotal role for future research.

Computation decomposition. Adecentralized architecturemust
decompose the computation of the system into independent
and logical tasks that can be assigned to devices. The algo-
rithms used for this can be specified or are mentioned.

Run-time adaptation. Systems need to adapt to runtime changes,
such as non-availability of devices or even network failure.
The system notices these events and can take action to cir-
cumvent the problems and keep functioning.

From Table 1, we can conclude that the current research in de-
centralized architectures in visual programming tools applied to IoT
is incomplete. All the tools leverage the devices in the network but
in different ways. DFF [16] assumes that all devices run Node-RED,
which limits the type of devices that can be leveraged since it needs
to have minimum resources to run it. uFlow [32, 35] is the only
tool that specifies how it truly leverages constrained devices, with
the transformation of sub-flows into Lua code, with DDFlow [27]
assuming that all devices have a list of specific services they can
provide, that should match the node assigned to them.

Table 1: Check marks (✓) mean yes and empty means no.
Node-RED is used as a comparison baseline.

Tool Leverage
devices

Comm.
capabilities

Open-
source

Computation
decomposition

Run-time
adaptation

Node-RED [15] ✓ ✓
DDF [5, 16–18] Limited1 ✓ ✓ Limited2 ✓
uFlow [32, 35] ✓ Limited3 ✓ Limited3
FogFlow [7, 8] ✓ N/A ✓ Limited2 ✓
DDFlow [27] Limited4 ✓ Limited2 ✓

1 Assumes that all devices run Node-RED, which limits the type of devices.
2 Do not specify the algorithm used.
3 Communication between devices is made through the cloud.
4 Assumes that all devices have a list of specific services they can provide.

Regarding the method used to decompose and assign computa-
tions to the available devices, DDFlow describes the process with
the use of the longest path algorithm focused on reducing end-
to-end latency between devices. uFlow [32, 35] mentions several
algorithms that could be used, but does not specify which one was
implemented. Both DDF [16] and FogFlow [7, 8] do not specify the
algorithm used besides some constraints but are the only tools with
their source code accessible and with an open-source license. All
the tools claim to have support for runtime adaptation to changes
in the system, such as device failures.

Overall, these solutions solve specific problems or make assump-
tions regarding the scale of the system and devices constraints. Thus,
we can identify the following research challenges: (1) how to lever-
age the computational capability devices in the network, (2) how
to communicate computational capabilities of devices, (3) how to
detect device non-availability, (4) how to generate code for sub-
flows, and (5) how to make the system self-adaptable. We tackle
these challenges by creating and evaluating a prototype of an IoT
system having decentralized orchestration. Our motivational use
case is a home automation system, where Node-RED is used as a
programming and runtime environment. We assume that all the de-
vices have firmware capable of running MicroPython code, accept
custom code and can announce their capabilities.

3 ARCHITECTURE AND IMPLEMENTATION
We use Node-RED to (1) define programs (as flows) and (2) send
tasks to other devices in the network, acting as a system’s orches-
trator (cf. Fig. 1). The network devices make themselves known by
announcing their address and capabilities to a particular registry
node. Consequently, Node-RED assigns nodes to devices (taking into
account their capabilities) and communicates each node’s assign-
ment via HTTP. Constrained devices cannot directly run Node-RED
flows, so the orchestrator translates the nodes’ JavaScript code to
artifacts that can be interpreted by these devices.

Two main components were introduced to the palette: (1) the
Registry node, which maintains a list of available devices and their
capabilities and, (2) the Orchestrator node, which partitions and
assigns computation tasks to the available devices. The capability
of generating MicroPython code for supported nodes was added,
and aMicroPython-based firmware was developed that receives and
runs Python code generated by the orchestrator. The centralized
Node-RED built-in node’s communication was also replaced by an
MQTT-based distributed approach, leveraged by our firmware.

MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany Silva et al.

Node-RED	

Orchestrator	Node

Registry	Node

specificationFlow
(nodes)

device	up

IP	and	capabilities

announce assign ping	/	echo

Device	

HTTP	ServerAnnouncer Script

Figure 1: Implemented proof-of-concept overview.

3.1 Devices Setup
We consider constrained devices that are capable of running custom
code. Amongst the available hardware solutions, taking into con-
sideration both costs and features, we picked two IoT development
devices based on the Espressif Systems ESP32 and ESP8266 systems
on chip (SoC) [13, 14]. The first challenge is to find a way to take
advantage of the constrained devices by making them run arbitrary
scripts of code and communicate with other devices. Since both
selected devices can run MicroPython firmware, Python language
was used [4]. MicroPython already packs a small-footprint HTTP
server, and packages are available to implement asynchronous op-
erations (uasyncio) and MQTT publisher-subscriber (i.e., pub-sub)
communication (MicroPython-mqtt).

As the devices must receive arbitrary Python scripts (sent by
Node-RED) and run them, a HTTP server was used to receive
the Python payloads and save them in the device SPI Flash to be
executed later. The same HTTP server is used to implement an
endpoint that returns the state of the device, and an announcing
mechanism (cf. Section 3.3). These features were built as an integral
part of the firmware that runs on the devices.

The firmware also includes a fail-safemechanism, safeguarding
against several errors (including Out-of-Memory) that may happen
during the device’s lifespan (SRAM usage). This mechanism resets
all running tasks and recovers the HTTP server and communication
channels, being essential due to the high probability of these errors
occurring due to the device’s memory constraints.

3.2 Decentralized Node-RED Computation
Node-RED is a centralized by design, taking advantage of events
to allow communication between nodes in a flow. Implementing a
decentralized architecture required some changes to the its runtime.
These changes consistedmainly of (1) implementing a different com-
munication channel for node-to-node communication and (2) add
code generation features (i.e., JavaScript to MicroPython).

3.2.1 Node-RED Node-to-Node Communication. Node-RED nodes
communicate using events — node.js EventEmitter. The commu-
nication is forward-only, with nodes only sending data to the fol-
lowing nodes in the flow. Output wires are used to access which

nodes a message must be sent to by calling its receive() method.
This method triggers the emit() event, which will be caught by a
specific method, implementing its own logic, in each node. This
implementation is local and JavaScript specific, making it hard to
be used in a decentralized architecture where nodes will be exe-
cuted outside of Node-RED. It was necessary to implement a way
of communicating between nodes external to Node-RED that could
be supported by constrained devices.

Node-RED Node class was modified to use MQTT pub-sub com-
munication [34] instead of in-place communication. Each node
publishes messages to a unique and addressable topic generated at
the start of the flow and subscribed by the next node. This happens
for every node except for producer nodes that only act as publishers
and consumers that only act as subscribers. Since the modifications
were made at the base class level (from which every node derives
from) all the existent nodes and sub-flows became compatible with
this modification without further changes. However, if we want a
node to be orchestrabable, the code of the nodes themselves needs
to be changed (cf. Section 3.2.2).

3.2.2 Code Generation. To orchestrate Node-RED nodes amongst
devices, we need to generate MicroPython-compatible code from
the existent JavaScript (i.e., code generation). It is also necessary to
support multiple nodes in one script; thus, we defined a generalized
strategy appropriate for any node type. This was accomplished by
adding specific code generation methods to each orchestrabable
node, which provide (1) their functionality, and (2) input/output
capabilities. Since every flow communication is now MQTT-based,
the only input and output a node can have are its topics.

Code generation happens after the node-device assignment. This
generation creates device-specific code that carries out the tasks
assigned to the device (which can correspond to several nodes),
adding some wrapping code that is responsible for subscribing to
all input topics of all nodes, stopping the script’s processes, and
forwarding the messages to the respective nodes.

3.2.3 Custom Nodes. As previously mentioned, all the existing
nodes are compatible with the modified Node-RED. Nonetheless,
for a node to be orchestrabable, it must be modified to comply
with code generation needs. Each of these nodes has two available
properties: Predicates and Priorities. Similar to the Kubernetes
logic of assigning containers to machines [6], the predicates dictate
constraints that cannot be violated, and priorities are requests that
are advisable and recommended but can be ignored if needed.

3.3 Device Registry
IoT systems are typically built on top of heterogeneous parts, with
different capabilities and resources, and their network can be highly-
dynamic (devices can go off/on due to battery levels, hardware/-
software failures, and communication issues). To maintain a list of
network available devices and their capabilities, we need a Device
Registry [30] inside Node-RED.

When a device becomes available, information about itself is sent
to anMQTT topic. This information contains the device’s IP address,
its capabilities, and status (e.g., if the device has failed before). Node-
RED contains a Registry node that listens to the announcements
MQTT topics and saves the devices’ information. If this node is

Visually-defined Real-Time Orchestration of IoT Systems MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany

connected to an Orchestrator node, each time a new device appears,
a message is sent to the orchestrator to consider the new resources
in the following orchestration.

When a device has an Out-of-Memory error, it triggers a fail-
safe, where it reboots the HTTP server, stops running any script,
and restarts all communications. After this action, the device an-
nounces itself again but with a flag that indicates that it has failed.
This way, the Orchestrator node knows that a device is active but
not running any code and that it has possibly failed due to having
too many allocated nodes. In that case, it can dynamically adapt and
assign fewer nodes to the device, reducing the chances of causing
another Out-of-Memory error.

3.4 Computation Orchestration
The requirements to achieve this are two-fold: (1) a Orchestrator
node should act as coordinator, which when provided with an avail-
able devices list, along with their respective capabilities (cf. Sec-
tion 3.3), should decide which device should execute specific com-
putation nodes and, (2) the orchestrabable nodes should provide
both Predicates and Priorities that must be meet to assure their
correct execution (cf. Section 3.2.3).

Algorithm 1: Greedy algorithm for node assignment.
Input :deviceList, node, 𝛼 = 0.5, 𝛽 = 0.4, 𝛾 = 0.1
Output :bestDevice

1 onInput
2 electible← {𝑑 ∈ deviceList | hasMem ∧ isReady ∧ isCapable}
3 where
4 hasMem← #𝑑.nodes < #𝑑.lastError.nodes
5 isReady← 𝑑 .status = OK
6 isCapable← node.predicates ⊆ 𝑑 .capabilities

7 return
argmax
𝑑 ∈ electible

fitness(𝑑) = 𝛼 ·overlap+𝛽 ·vacancy+𝛾 · specificity

8 where
9 overlap← #(𝑑 .capabilities ∩ node.priorities)

#node.priorities
10 vacancy← (#𝑑.nodes + 1)−1

11 specificity← #(𝑑 .capabilities ∩ node.predicates)
#𝑑.capabilities

The assigning algorithm uses the devices capabilities and each
node’s Predicates and Priorities to assign nodes to devices. With
a greedy approach, the algorithm filters the devices that comply
with each node’s predicates and assigns the one having the best
fitness (cf. Algorithm 1). The fitness takes into account the number
of priorities the device can provide (𝛼 = 0.5), the number of already
assigned nodes the device has (𝛽 = 0.4), and the specialization of a
device (𝛾 = 0.1); meaning that a device with priorities not requested
by the node would be better if left for a future node that might
request them. We decided to opt for these particular values of these
hyper-parameters, as they performedwell in preliminary tests; their
optimization is out-of-scope of this paper. The goal is to assign each
node to the best possible device, spreading the tasks through all the
available devices. An example of a possible assignment can be seen
in Fig. 2, where the assignment matches the nodes’ priorities with
the devices’ tags while spreading the nodes over the devices.

Device	1

«dht» «bedroom»

Node	6
Node	10

«dht»

Node	1 Node	4

Node	8 Node	11
«dht»

Node	2 Node	5

«dht» «kitchen» Node	9

Device	2

«dht» «kitchen»

Node	3
«garden»

Node	7

Node	12

Device	2

«outside» «garden»

Figure 2: Node assignment example.

After assigning all nodes to a specific device, a code script is
generated for each one (cf. Section 3.2.2). Due to the constrained
memory of the devices, the number of nodes assigned to a device
may exceed their resources. In that case, it will fail-safe and return
an error to the assignment request. The orchestrator will receive
this information and repeat the process, assigning fewer nodes to the
ones that returned an Out-of-Memory error. If a device does not
return any response, the orchestrator will assume that the device
is unavailable and not assign any node to it.

The Orchestrator node can be triggered — proceeding to a system
(re)orchestration — by the following events: (1) start of the system,
when there is already a defined flow in the configuration, the as-
signment start after a period of 3s, to give time for the devices to be
registered by the registry node, (2) deployment of the entire flow
using the Node-RED editor or API, (3) appearance of a new device
detected by the Registry node, and (4) failure or recovery of a device,
which, working as a complement to the Registry node, is detected
using Ping/Echo pattern [33] which periodically pings the devices
in the system to assert their operational status.

4 EXPERIMENTAL OVERVIEW
We evaluate our approach in scenarios using both virtual and phys-
ical setups. Physical setups used ESP82661 and ESP322 devices
connected to the same Wi-Fi network. Virtual setups used Docker
containers with constrained resources. The experiments were per-
formed in a i5-6600K@3.5GHz w/16Gb RAM, Linux Manjaro 5.6.16,
Node-RED 1.0.6, Mosquitto 1.6.10, and MicroPython 1.12.

4.1 Experimental Scenarios
We defined two experimental scenarios. In ES1, a room has three
sensors that provide temperature and humidity readings every
minute. There is a virtual sensor that compares these readings
and triggers depending on certain thresholds. An AC reads it and
decides (a) if it switches on/off, and (b) its operating mode: cool, heat,
or dehumidify. The Minimal Working System (MWS) consists in
(a) one temperature sensor, (b) one humidity sensor, (c) one node
capable of making the decision, and (d) a working communication
channel amongst them. For ES2, the system has 20 devices that are
responsible for propagating an injected message in a long chain
of nodes, until it reaches a specific sink MQTT topic. The goal of
ES1 is to isolate the features of our work with a moderately simple,
although realistic, Node-RED flow (cf. Fig. 3). ES2 aims to measure
possible overheads of our solution.

1ESP8266 has a single-core at 80Mhz, 160Kb SRAM and 4Mb flash.
2ESP32 has a dual-core at 160Mhz, 512Kb SRAM and 4MB flash.

MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany Silva et al.

Figure 3: Partial flow, which is repeated three times to en-
able consensus and fault-tolerance strategies in ES1.

4.2 Experimental Tasks
For each one of the experimental scenarios (ES1 and ES2) we de-
fined a set of experimental tasks, detailed in the next paragraphs.

4.2.1 Experimental Scenario 1 (ES1). Two sanity checks were per-
formed, namely (ES1-SC1) with virtual devices, and (ES1-SC2)
with physical devices. A set of readings and message forwarding
tasks were performed with no compensation or any other fault-
tolerance strategies. Each sensor only provided environmental
readings to the system. Orchestration is centralized. We expect
all roundtrips to take less than the smallest part that can be re-
solved (measurement capability estimated to be < 1s). We then
defined a set of (re-)orchestration experiments where the system
must allocate computation tasks among the available resources:
(A) MWS is achieved via multiple possible configurations by

provoked device failure (fail-stop) using only virtual devices;
(B) MWS is achieved via multiple possible configurations by

provoked device failure (fail-stop) using physical devices;
(C) Inconsistent device behaviour, e.g., appearing and disappear-

ing in intervals shorter than the time needed for orchestrat-
ing convergence (OCT), possibly impacting the MWS;

(D) With 4 devices, each with different processing capabilities.
During orchestration, some devices will throw an Out-of-
Memory error because they cannot handle all the processing
tasks assigned to them (i.e., the size of the provided script).
The orchestrator should decide to send fewer tasks to these
devices, and converge to a working solution;

(E) With 4 devices, some of them exhibit a memory leak from
an unknown cause. These problematic devices stop work-
ing with an Out-of-Memory error at a random time. The
orchestrator should assume these devices cannot handle the
number of processing tasks assigned to them, and assign
them fewer tasks. Since the devices will keep breaking, the
orchestrator should eventually ignore them;

(F) With 4 devices, there is a device that is sensitive to a partic-
ular node. Whenever the orchestrator assigns this node to
that specific device, it throws a Out-of-Memory error. The
orchestrator should eventually converge to a solution where
the specific node is not assigned to that device.

(G) With 50 devices, there is a given probability of a particular de-
vice failing in each second. The downtime can go from 0s to
10s at random. The orchestrator must deal with the devices’
failure and re-orchestrate. This experiment is considered a
stress test, since it forces constant re-orchestrations.

During these experiments we should verify that (a) any restric-
tions (predicates) are enforced, by checking every obtained con-
figuration, and (b) that priorities are honored, by checking that
all specified priorities were taken into account, and only violated if
necessary. If specified priorities must be violated, (a) edge devices
should be used first, and (b) the level of decentralization should be
maximized by using the most available devices.

4.2.2 Experimental Scenario 2 (ES2). Regarding ES2, a total of 20
devices were connected in a line topology. A message is sent to
the starting device, which will propagate it to its output. All the
devices implement this propagation logic, which should result in the
initial message reaching the end of the line. The propagation time
is measured, starting when the message is sent and ending when
the message reaches the last node. This scenario was implemented
with different experimental configurations, namely:
(A) Non-modified version of Node-RED, using the default node-

to-node communication channel (EventEmitter), with all
the nodes sharing the same runtime;

(B) Modified version of Node-RED that uses MQTT as the node-
to-node communication channel, with all the nodes sharing
the same runtime;

(C) MQTT-based modified Node-RED, where each node of the
flow is assigned to a different virtual device (i.e., aMicroPython-
running Docker instance). The Docker instances and MQTT
broker run in the same host machine;

(D) MQTT-based modified Node-RED, where each node of the
flow is assigned to a different virtual device. The Docker
instances are in one host, but the MQTT broker is in another
one. All parts are connected to the same Wi-Fi network;

(E) Each physical device runs a simple script that performs the
desired behaviour, on top of a non-modified MicroPython
firmware image, communicating over MQTT. Node-RED is
not used, and there is no orchestration being performed;

(F) MQTT-based modified Node-RED, along with the modified
MicroPython firmware running on physical devices. Each
node is assigned to a different device. The devices communi-
cate by MQTT over the same Wi-Fi network.

5 DISCUSSION
We now discuss the results from our experimental tasks.

5.1 ES1: Sanity Checks
5.1.1 ES1-SC1. This experiment was used to observe the overall
approach in a controlled fashion. By using virtual devices we re-
duced the chance of hardware failures. The free flash size decreases
by ≈150Kb when the device receives a script for executing, i.e.,
matching the size of the payload. As the orchestrator assigns the
nodes, the corresponding scripts are built and sent to them. The time
it takes to deliver the script averaged 0.303 ± 0.165s. All exchanged
messages were captured, which allowed us to check that the sys-
tem behavior was the expected by (1) spreading the computation
amongst available resources, and (2) resulting in a system with the
expected functional behaviour.

5.1.2 ES1-SC2. The previous experiment was repeated using physi-
cal devices (four ESP32 devices). The orchestrator attributed 9 nodes

Visually-defined Real-Time Orchestration of IoT Systems MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany

to each device. The RAM usage in physical devices was smaller
than in virtual devices3. The free flash space was also smaller, as
expected. The script delivery time was longer than in the first ex-
periment, averaging 6.776 ± 0.476s. This is mainly attributed to
nodes being in different devices, with the Wi-Fi communication and
hardware specs having a non-negligible impact.

5.2 ES1: Experimental Tasks

10

20

30

40

50

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250 300

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (Kbytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

5 15 25 36 46 56 66 77 87 97 108 118 128 139 144 154 159

5 15 25 38 48 58 68 74 84 94 105 115

5 15 25 36 46 56 66 66 84 94 105 115 125 135 146 156 166 177 187 197 208 218 228 239 244 254 264 275 285 290

5 15 25 36 46 56 66 77

9 9 9 12 12 12 12 18 18 18 18 18

9 9 9 9 12 12 12

9 9 9 9 12 12 12 18 18 18 18 34 34 34 34 34 34 34 34 34 34 34 34 34 34

9 9 9

Figure 4: ES1-A measurements.

5.2.1 ES1-A. This experiment evaluates if the system is able to re-
orchestrate when a device fails. A set of virtual devices were turned
off one by one, until only one was left running. It was expected
for the system to detect when a device became unavailable and
to re-orchestrate by assigning nodes to the remaining devices. In
the end, we expected only one device to be running, with all the
nodes assigned to it. Fig. 4 shows the uptime of the devices, allowing
us to identify the moment each one fails. We can also observe an
increase in the payload size and the number of allocated nodes in
the remaining devices each time a device was turned off.

5.2.2 ES1-B. This experiment repeats ES1-Awith physical devices.
The payloads and number of nodes assigned through the experi-
ment are very similar (cf. Fig.5). However, we observe that Device 2
(the last remaining active), first fails when receiving the payload
containing the code for all the nodes of the system. This was ex-
pected, as its constrained memory cannot handle the full payload.
It then enters a fail-safe state, reporting an Out-of-Memory error,
and forcing the Orchestrator to assign it fewer nodes.

5.2.3 ES1-C. Similar to ES1-A and ES1-B, this experiment focuses
on testing the system’s ability to recover when devices fail and then
recover. In Fig. 6, we can observe Device 3 and Device 4 failing
3Which may be due to optimization differences between the Docker-compatible and
ESP-compatible MicroPython firmwares, garbage collector runs, and libraries.

10

20

30

40

50

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (Kbytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

16 26 38 49 55 66 77 87 99 109 115 126 136 147 159 165 176

10 21 26 37 48 59 70 80 86 97 108 119 130 141 146 157 168 179 190 200 207 3 5 16 26 37 48 53

15 26 37 48 59 64 75 86 97 108

10 15 26 37 48

9 9 9 9 9 9 9 12 12 12 12 12 12 18 18

9 9 9 9 9 9 9 12 12 12 12 12 12 18 18 18 18 18

9 9 9 9 9 9 9 12 12

9 9 9

Figure 5: ES1-B measurements

10

15

20

25

30

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200 250

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (Kbytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

15 36 56 77 92 113 133 154 175 195 216 236 257 273

15 35 56 77 97 113 133 154 175 195 216 236 257 272

15 36 56 67 10 20 20 41 56 77

15 36 56 5 10 20 20 41 61 77

9 9 18 18 12 12 9 18 18 18 9 9

9 9 18 18 12 12 9 18 12 12 9 9

9 9 9 12 12 9 9

9 12 12 9 12 12 9 9

Figure 6: ES1-C measurements.

very early. The system recovers by assign the corresponding nodes
to other devices. Device 4 then (1) recovers around 100s, (2) fails
again, and (3) recovers. The system disregards this swift failure,
and only re-orchestrates the second time Device 4 recovers. During
this experiment, Device 3 and Device 4 continue to fail and recover
in a predictable pattern, and the system keeps re-configuring itself.

MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany Silva et al.

The precise decision heuristic might need further investigation, as
a device that enters a fail/recover loop might introduce continuous
re-orchestrations (essentially an unintended DoS).

5.2.4 ES1-D. The memory constraints of IoT devices can nega-
tively impact the functioning of the system, by raising out-of-
memory errors when writing the received script into the device’s
SPI flash. This experiment assesses how the system recovers and
adapts in these conditions. Fig. 7 depicts the system behavior due
to the constrained memory of Devices 2 and 4. When the first as-
signment is made, at ≈50s, both these devices enter a fail-safe
state due to Out-of-Memory errors. The number of nodes present on
these devices are the ones assigned after they communicate to the
orchestrator their limitations. We then turn Device 2 off, and later
on. As it can be observed, once Device 2 stops, nodes are distributed
to the other devices, except for Device 4, which is memory con-
strained. After the recovery of Device 2, the system re-orchestrates
and the same number of nodes are assigned to the devices. The
fact that Device 4 fails after Device 2 recovered implies that the sys-
tem repeated the original assignment decision, ignoring previously
known information about memory constraints. This is a known
limitation to be addressed in the future.

0

5

10

15

20

25

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Dev. 1 Dev. 2 Dev. 3 Dev. 4

Payload Size (Kbytes)

Uptime (s)

Number of nodes allocated per device

Time (s)

5 15 25 36 46 56 67 77 87 97 108 118 128 133 144 154 164 175 185 190

15 25 35 10 21 31 31 31 31 2 12 22 33 43 53 64 74 74

5 15 25 36 46 56 66 77 87 97 103 115 125 135 146 156 166 177 187 187

5 15 25 38 3 13 23 34 39 49 59 2 13 23 33 44 54 64 74 74

13 13 13 13 13 13 15 13 13 13 13 13 13 13 13 13

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

12 12 12 12 12 12 14 12 12 12 12 12 12 12 12 12

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Dev. 2 fails▷ ◁Dev. 2 recovers

Figure 7: ES1-D measurements.

5.2.5 ES1-E. Besides memory limitations, we also expect the sys-
tem to be capable of handling unhealthy devices with memory
leaks. Device 2 was modified to always generate an Out-of-Memory
error after a random period. We expected the system to, eventually,
exclude this device during the assignment process. Fig. 8 shows
that Device 2 consistently fails after the first assignment of nodes
at ≈75s. The number of nodes assigned keeps decreasing, until the
device is excluded from consideration. This is currently a simple
process, in which the system will decrease the number of nodes it

assigns to a device every time it reports an Out-of-Memory to the
orchestrator. Once the minimum number of nodes reaches zero, the
device is excluded from the assignment process.

Dev. 1

Dev. 2

Dev. 3

Dev. 4

0 50 100 150 200

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Uptime (s)

Number of nodes allocated per device

5 15 25 36 46 56 66 77 87 97 108 118 128 133 144 154 164 175 185 195 206 216 221

5 15 25 36 46 56 66 2 1 2 10 21 26 36 46 57 67 77 88 98 108 113

5 15 25 36 46 56 66 77 87 97 108 118 128 133 144 154 164 175 185 195 206 216 221

5 15 25 36 46 56 66 77 87 97 108 118 128 139 144 154 164 175 185 195 206 216 221

9 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12

8 6 4 1

9 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12

10 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12

Figure 8: ES1-E measurements.

5.2.6 ES1-F. To further assess the resilience of the system, nodes
causing errors in specific devices were deliberately added. We ex-
pected for the system to re-orchestrate and converge to a solution
where those specific nodes were assigned to devices not affected
by the problem. Neither the system nor the devices know which
specific node/device combinations are causing the faulty behaviour,
so this scenario is overall interpreted by the orchestrator as a de-
vice problem. As the first assignment could be correct by sheer
chance, we forced a system re-orchestration, by turning off and
on all devices in a random order, and repeating the process three
times. Fig. 9 shows these on/off events at the ≈125s, ≈200s and
≈275s timestamps. In this case, the devices affected by the faulty
nodes were Device 2 and Device 4. The event we aim to test occurs
at ≈300s. As can be seen in Fig. 9, 10 nodes are assigned to Device
4. The uptime of Device 4 resets in this small time period (the next
uptime is less than 20s), meaning that an Out-of-Memory occurred
and the device entered a fail-safe state. The system updates, al-
locating the 10 nodes previously assigned to Device 4 through all
the available devices. Since Fig. 9 shows the data in intervals of 20s,
the assignment in Device 4 happens before the assignment present
in the other devices. When the system receives information that
Device 4 is available again, it already knows that it has a limitation,
so it only assigns 9 nodes to it. It can be seen that the missing node
is assigned to Device 1. Since Device 4 does not enter a fail-safe
state, the node assigned to Device 1 must have been the faulty one.

5.2.7 ES1-G. To further investigate possible limitations in our cur-
rent approach, we proceeded to inject constant failures in the avail-
able devices. Every second, each device has a 𝑝 = 5% of becoming
unavailable for 0–10s. During this period, the device becomes unre-
sponsive, announcing itself only when it recovers. Fig. 10 shows
that the system is kept continuously re-orchestrating. But once the
majority of devices fail, the system becomes unstable. It is impor-
tant to note that, similar to previous experiments, once a device
fails, the number of nodes does not update to zero. We conclude that
devices with the same number of nodes during the total execution
of the system failed early on and continued to fail, stopping the or-
chestrator assignment. Despite that at ≈100s there is a period where
all devices are available, the orchestration does not converge during

Visually-defined Real-Time Orchestration of IoT Systems MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany

0 50 100 150 200 250 300 350 400 450

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Uptime (s)

Number of nodes allocated per device

15 36 56 77 97 102 15 36 46 20 41 51 5 25 46 67 82 103 123 144 164 180

15 36 56 77 97 102 25 41 51 15 36 46 5 25 46 67 87 103 123 144 164 180

15 36 56 77 92 20 41 51 15 36 51 5 25 41 61 82 103 123 144 164 180

15 31 53 14 34 40 21 31 2 23 38 1 9 15 35 56 76 97 112 133 148

10 10 10 13 10 10 10 10 10 13 10 10 10 10 10 10 10 10

9 9 9 12 9 9 9 9 9 12 9 9 9 9 9 9 9 9

9 9 12 9 9 9 9 9 12 9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9 9 33 10 9 9 9 9 9 9 9 9

Dev. 1

Dev. 2

Dev. 3

Dev. 4

Figure 9: ES1-F measurements.

that time. This is due to the system re-orchestrating whenever a
device becomes available (since each device announces itself indi-
vidually, each announcement triggers a new orchestration). This
process takes time and results in several failed orchestrations due
to outdated data on the device’s operating status; being also taxing
for the devices, causing an overload of received assignments that
will never make the system function as a whole.

5.3 ES2: Experimental Tasks
To benchmark the impact of our approach we proceeded to incre-
mentally instrument NodeRED with partial implementations and
measure each of them. Our setup consists in a flow that passes
a message through several devices, recording the total roundtrip.
The NOP nodes execution consists of only redirecting their input to
their output. A message containing only the current timestamp is
inserted into the system by triggering the Inject node, and the same
message is expected to appear in the Node-RED Debug console.

Table 2: ES2 elapsed time measurements.

Label Min Q1 Q2 Avg Q3 Max

ES2-A 3 8 10 10 13 15
ES2-B 134 353 431 489 711 883
ES2-C 1217 1260 1318 1400 1574 1665
ES2-D 1445 2332 2536 2392 2708 3059
ES2-E 3616 4031 4142 4133 4372 4452
ES2-F 4168 4357 4569 4751 5088 5940

This experiment was run with different configurations (ES2-
A to ES2-F) to assert the impact of each modification/module, as
described in Section 4.2.2. Each experiment was replicated ten times,
and the resulting measurements are shown in Table 2.

When the decentralization is applied inside Node-RED (cf. ES2-
B) it is possible to see that the introduction of the MQTT com-
munication (Mosquitto broker) running in the same host causes
some latency. The introduction of Dockers running the firmware
in the same host as the Node-RED instance and MQTT causes addi-
tional latency (cf. ES2-C), making it possible to conclude that the
MicroPython-based developed firmware also delays the commu-
nication. By repeating the same experiment but with the broker
running in another machine (same network) (cf. ES2-D), it is no-
ticeable that the times are more spread out and the overall latency
of the system increases. As the Node-RED and the broker run in

0 40 80 120 160 200 240 280
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Time (s)

D
ev

ic
e

2 1 1 1 4 4 9 9 9 9 9 9 12
2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 21 21 21 21 21 21 21 21 21 21 21
2 1 2 16 16 16 16 16 16 16 16 16 16
2 2 1 1 1 1 1 1 11 11 11 1 2
2 2 20 20 20 9 8 1 2 2 1 1 18
2 1 2 11 11 11 11 11 11 11 11 11 11
2 2 2 2 2 2 2 2 2 2 2 1 18
2 1 2 2 2 10 10 10 14 2 1 1 6
2 2 2 2 2 10 2 1 1 1 1 1 1
2 1 2 1 1 1 1 1 1 1 1 1 1
2 1 4 1 4 4 4 4 4 4 4 4 4
2 2 1 2 2 9 9 1 1 1 1 1 1
1 1 3 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 8
1 1 1 1 2 2 2 2 2 2 2 2 2
2 2 1 2 2 2 2 2 2 2 2 2 2
2 2 1 4 4 4 4 4 4 4 4 4 4
2 1 1 1 1 1 2 1 2 1 1 1 1
2 2 1 3 3 3 3 2 2 2 2 2 2
2 1 1 1 1 1 2 1 1 1 2 1 1
1 1 3 1 2 2 2 2 2 2 2 2 2
1 1 1 7 7 7 7 1 2 1 1 3 3
1 1 3 3 3 3 3 3 3 3 3 3 3
1 1 1 1 4 4 4 4 4 4 4 4 4
1 1 3 1 1 1 1 1 1 1 1 1 1
1 3 1 3 1 1 1 1 1 1 1 1 1
1 1 1 1 3 3 3 3 3 3 3 3 3
1 1 1 3 3 3 3 3 3 3 3 3 3
2 2 1 3 3 3 3 3 3 3 3 3 3
1 3 1 8 8 8 8 2 2 2 2 2 2
2 2 1 1 1 1 1 1 2 1 1 1 3
2 1 1 3 3 3 3 3 3 3 3 3 3
1 3 3 3 2 2 2 2 2 2 2 2 2
1 1 3 1 2 2 2 2 2 2 2 2 2
1 2 1 9 9 9 1 6 7 7 7 2 5
1 2 1 3 2 2 2 2 8 8 8 3 2
1 2 2 10 10 10 12 1 7 7 7 2 2
1 2 2 3 3 3 3 3 3 3 3 3 3
1 1 7 7 7 7 1 1 7 7 3 2 3
1 2 1 1 1 1 1 2 2 2 2 2 1
1 1 3 4 3 3 3 3 3 3 3 3 3
1 2 2 1 1 1 1 7 1 1 1 1 1
1 2 2 1 2 2 2 6 1 7 7 3 2
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 3 1 1 1 1 1 1 1 1 1 1
1 2 1 3 3 3 3 3 3 3 3 3 3
1 2 2 7 7 7 7 6 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2
1 2 2 11 11 11 11 11 11 11 11 11 11

Figure 10: Nodes assignment distribution over time.

different machines connected over Wi-Fi, we conclude that this is
the leading cause for the additional delay.

The experiment was repeated in physical devices: (1) by running
a simple code in the MicroPython flashed devices and injection
of messages directly in the broker (cf. ES2-E), and (2) by using
our approach as a whole, i.e., modified Node-RED and designed
firmware (cf. ES2-F). The results shows that the use of physical
devices produces higher times (as expected), but that the developed
firmware has little impact, visible by the comparison of their results.
We conclude that our approach, including the node-to-node commu-
nication change, is slower than the original Node-RED, but it mostly
results from the Wi-Fi communications and the base MicroPython
firmware. Also, this modification makes Node-RED more modular,
allowing the other communication mechanisms.

MobiQuitous ’20, December 7–9, 2020, Darmstadt, Germany Silva et al.

6 CONCLUSIONS
In this paper we presented both a method and an extension to
NodeRED that provides automatic decentralized orchestration of
constrained devices in an IoT network. We proceeded to evaluate it
through 2 experimental setups, divided into 13 scenarios. We have
shown that our approach is able to provide a decentralized sub-
strate for computation and dynamic adaptation of the system via
self-reconfiguration. We mainly addressed three quality attributes:
(1) resilience, to which we provide evidence that it is moderately ro-
bust, handling device failures and memory constraints dynamically;
(2) elasticity, by showing a moderate-sized IoT system functioning
in a decentralized fashion with devices being added and removed
in runtime; and (3) efficiency, where we investigate the overheads
introduced by our approach, and conclude that most of them come
from the extra latency introduced by the communication channels,
and very few from our proposed firmware. We identify some lim-
itations and possible improvements to our approach, namely: (1)
the algorithm used to orchestrate the nodes among the available re-
sources can fail to find a suitable configuration, (2) there’s room for
optimizations, e.g., bypassing the communication substrate between
nodes assigned to the same device (although this might hinder ob-
servability) and trying to increase the likelihood of such sets of
nodes being assigned to the same device (via static and/or dynamic
analysis of the flow [23]), (3) other firmware approaches could be
explored beyond MicroPython, and (4) the (re)orchestration cur-
rently redeploys the entire system and does not attempt to take
into consideration a set of minimal changes.

ACKNOWLEDGMENTS
This work was partially funded by the Integrated Masters in Infor-
matics and Computing Engineering (MIEIC) of the Faculty of Engi-
neering, University of Porto (FEUP) and the Portuguese Foundation
for Science and Technology (FCT), ref. SFRH/BD/144612/2019.

REFERENCES
[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. 2015. In-

ternet of Things: A Survey on Enabling Technologies, Protocols, and Applications.
IEEE Communications Surveys Tutorials 17, 4 (2015), 2347–2376.

[2] Tanweer Alam. 2018. A Reliable Communication Framework and Its Use in
Internet of Things (IoT). 3 (05 2018).

[3] Nayeon Bak, Byeong Mo Chang, and Kwanghoon Choi. 2018. Smart Block: A
Visual Programming Environment for SmartThings. In Proceedings - International
Computer Software and Applications Conference, Vol. 2. 32–37.

[4] Charles Bell. 2017. MicroPython for the Internet of Things. Springer.
[5] Michael Blackstock and Rodger Lea. 2014. Toward a distributed data flow platform

for the Web of Things (Distributed Node-RED). In ACM International Conference
Proceeding Series, Vol. 08-October. 34–39.

[6] Brendan Burns and Craig Tracey. 2018. Managing Kubernetes: operating Kuber-
netes clusters in the real world. O’Reilly Media.

[7] B. Cheng, E. Kovacs, A. Kitazawa, K. Terasawa, T. Hada, and M. Takeuchi. 2018.
FogFlow: Orchestrating IoT services over cloud and edges. NEC Technical Journal
13 (11 2018), 48–53.

[8] Bin Cheng, Gurkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and
Atsushi Kitazawa. 2017. FogFlow: Easy Programming of IoT Services Over Cloud
and Edges for Smart Cities. IEEE Internet of Things Journal PP (08 2017), 1–1.

[9] J. P. Dias, J. P. Faria, and H. S. Ferreira. 2018. A Reactive and Model-Based
Approach for Developing Internet-of-Things Systems. In 11th International Con-
ference on the Quality of Information and Communications Technology (QUATIC).

[10] João Pedro Dias, Bruno Lima, João Pascoal Faria, André Restivo, and Hugo Sereno
Ferreira. 2020. Visual Self-healing Modelling for Reliable Internet-of-Things
Systems. In Computational Science – ICCS 2020. Springer, 357–370.

[11] João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. 2020. A Pattern-
Language for Self-Healing Internet-of-Things Systems. In Proceedings of the 25th

European Conference on Pattern Languages of Programs (EuroPLoP 2020) (Online).
ACM.

[12] Manuel Díaz, Cristian Martín, and B Rubio. 2016. State-of-the-art, challenges,
and open issues in the integration of Internet of things and cloud computing.
Journal of Network and Computer Applications 67 (2016), 99–117.

[13] Espressif Systems. 2019. ESP8266 Technical Reference Manual. Technical Report.
Espressif Systems, Shanghai, China. https://www.espressif.com/sites/default/
files/documentation/esp8266-technical_reference_en.pdf

[14] Espressif Systems. 2020. ESP32 Technical Reference Manual. Technical Report.
Espressif Systems, Shanghai, China. https://www.espressif.com/sites/default/
files/documentation/esp32_technical_reference_manual_en.pdf

[15] OpenJS Foundation. 2020. Node-RED. Available: https://nodered.org/. Last
access 2020. [Online].

[16] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C.M. Leung. 2015.
Developing IoT applications in the Fog: A Distributed Dataflow approach. In
Proceedings - 2015 5th International Conference on the Internet of Things. 155–162.

[17] N. K. Giang, R. Lea, M. Blackstock, and V. C. M. Leung. 2018. Fog at the Edge:
Experiences Building an Edge Computing Platform. In 2018 IEEE International
Conference on Edge Computing (EDGE). 9–16.

[18] N. K. Giang, R. Lea, and V. C. M. Leung. 2018. Exogenous Coordination for
Building Fog-Based Cyber Physical Social Computing and Networking Systems.
IEEE Access 6 (2018), 31740–31749.

[19] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.
2017. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments.
Software: Practice and Experience 47, 9 (2017), 1275–1296.

[20] Md. Mahmud Hossain, Maziar Fotouhi, and Ragib Hasan. 2015. Towards an
Analysis of Security Issues, Challenges, and Open Problems in the Internet of
Things. 2015 IEEE World Congress on Services (2015), 21–28.

[21] Felicien Ihirwe, Davide Di Ruscio, Silvia Mazzini, Pierluigi Pierini, and Alfonso
Pierantonio. 2020. Low-Code Engineering for Internet of Things: A State of
Research. In Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings (Virtual Event,
Canada) (MODELS ’20). Association for Computing Machinery, New York, NY,
USA, Article 74, 8 pages.

[22] Martin Kleppmann, Adam Wiggins, Peter Hardenberg, and Mark McGranaghan.
2019. Local-first software: you own your data, in spite of the cloud. 154–178.

[23] Tiago Matias, Filipe F Correia, Jonas Fritzsch, Justus Bogner, Hugo S Ferreira,
and André Restivo. 2020. Determining Microservice Boundaries: A Case Study
Using Static and Dynamic Software Analysis. In European Conference on Software
Architecture. Springer, 315–332.

[24] Julien Mineraud, Oleksiy Mazhelis, Xiang Su, and Sasu Tarkoma. 2016. A gap
analysis of Internet-of-Things platforms. Computer Communications 89-90 (2016).

[25] N. Mohan and J. Kangasharju. 2016. Edge-Fog cloud: A distributed cloud for
Internet of Things computations. In 2016 Cloudification of the Internet of Things
(CIoT). 1–6.

[26] Mohammed Islam NAAS, Laurent Lemarchand, Jalil Boukhobza, and Philippe
Raipin. 2018. A Graph Partitioning-Based Heuristic for Runtime IoT Data Place-
ment Strategies in a Fog Infrastructure. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing (Pau, France) (SAC ’18). Association for Com-
puting Machinery, New York, NY, USA, 767–774.

[27] Joseph Noor, Hsiao Yun Tseng, Luis Garcia, and Mani Srivastava. 2019. DDFlow:
Visualized declarative programming for heterogeneous IoT networks. In Proceed-
ings of the 2019 Internet of Things Design and Implementation. ACM, 172–177.

[28] P. Patel, M. Intizar Ali, and A. Sheth. 2017. On Using the Intelligent Edge for IoT
Analytics. IEEE Intelligent Systems 32, 5 (2017), 64–69.

[29] D. Pinto, J. P. Dias, and H. Sereno Ferreira. 2018. Dynamic Allocation of Serverless
Functions in IoT Environments. In 2018 IEEE 16th International Conference on
Embedded and Ubiquitous Computing (EUC). 1–8.

[30] Antonio Ramadas, Gil Domingues, Joao Pedro Dias, Ademar Aguiar, and
Hugo Sereno Ferreira. 2017. Patterns for Things That Fail. In Proceedings of the
24th Conference on Pattern Languages of Programs (Vancouver, British Columbia,
Canada) (PLoP ’17). The Hillside Group, USA.

[31] Reza Rawassizadeh, Timothy Pierson, Ronald Peterson, and David Kotz. 2018.
NoCloud: Exploring Network Disconnection through On-Device Data Analysis.
IEEE Pervasive Computing 17 (03 2018).

[32] Joanna S., T. Szydlo, M.Windak, and R. Brzoza-Woch. 2019. FogFlow - Computation
Organization for Heterogeneous Fog Computing Environments.

[33] James Scott and Rick Kazman. 2009. Realizing and Refining Architectural Tactics :
Availability. Technical Report August. Software Engineering Institute.

[34] Dipa Soni and Ashwin Makwana. 2017. A survey on mqtt: a protocol of internet
of things (iot). In International Conference On Telecommunication, Power Analysis
And Computing Techniques (ICTPACT-2017).

[35] T. Szydlo, R. Brzoza-Woch, J. Sendorek, M. Windak, and C. Gniady. 2017. Flow-
Based Programming for IoT Leveraging Fog Computing. In IEEE 26th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises.

[36] R. Want, B. N. Schilit, and S. Jenson. 2015. Enabling the Internet of Things.
Computer 48, 1 (2015), 28–35.

https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://nodered.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture and Implementation
	3.1 Devices Setup
	3.2 Decentralized Node-RED Computation
	3.3 Device Registry
	3.4 Computation Orchestration

	4 Experimental Overview
	4.1 Experimental Scenarios
	4.2 Experimental Tasks

	5 Discussion
	5.1 ES1: Sanity Checks
	5.2 ES1: Experimental Tasks
	5.3 ES2: Experimental Tasks

	6 Conclusions
	References

