
Pattern Based GUI testing for
Mobile Applications

Pedro Costa
Department of Informatics

Engineering, Faculty of
Engineering of the University

of Porto
Porto, Portugal

ei10011@fe.up.pt

Miguel Nabuco
Department of Informatics

Engineering, Faculty of
Engineering of the University

of Porto,
Porto, Portugal

miguelnabuco@fe.up.pt

Ana C. R. Paiva
INESC TEC, Department of

Informatics Engineering,
Faculty of Engineering of the

University of Porto
Porto, portugal
apaiva@fe.up.pt

Abstract—This paper presents a study aiming to assess the
feasibility of using the Pattern Based GUI Testing approach,
PBGT, to test mobile applications. PBGT is a new model based
testing approach that aims to increase systematization, reusability
and diminish the effort in modelling and testing. It is based on
the concept of User Interface Test Patterns (UITP) that contain
generic test strategies for testing common recurrent behaviour,
the so-called UI Patterns, on GUIs through its possible different
implementations after a configuration step. Although PBGT was
developed having web applications in mind, it is possible to
develop drivers for other platforms in order to test a wide set of
applications. However, web and mobile applications are different
and only the development of a new driver to execute test cases
over mobile applications may not be enough. This paper describes
a study aiming to identify the adaptations and updates the PBGT
should undergo in order to test mobile applications.

I. INTRODUCTION

Mobile applications are seeing an incredible growth. Ac-
cording to Gartner Inc.[2], in 2013, 879.8 million mobile
devices with Android operating system were shipped, and in
2014 this number is expected to grow to over one billion.
Every month, around 20,000 new applications are released,
and the current number of apps in the Android market is over
1,200,000 [3]. These numbers prove that this platform has
reached a great sucess and that the developers are focusing
more and more on developing applications for mobile operat-
ing systems.

However, due to particularities of the Android environment,
the Android application testing process is a challenging ac-
tivity [5]. Physical constraints of mobile devices (such as
small memory, small display or low-power CPU) as well as
developers lack of experience with the Android environment
(which revolves around concepts such as activities, services
and content providers, who do not exist in desktop or web
applications) make mobile applications prone to new kinds of
bugs [6]. A study found that Android applications have defect
densities orders of magnitude higher than the operating system
[7].

In this paper, we apply a methodology, Pattern-Based GUI
Testing (PBGT) [1], that intends to test mobile applications
based on models built upon User Interface Test Patterns

(UITPs) [8]. This methodology was originally applied to test
web applications.

Users interact with mobile applications in a different way
they interact with web applications. In web applications users
typically use a keyboard and a mouse whereas in mobile
applications users only use their fingers. The range of possible
actions is also diferent; in web applications users can only
click, double-click, right-click or scroll, whether in mobile
applications the range of possible actions is broader and
includes long-press, pinch to zoom, and swipe.

This paper aims to identify the main differences between
web and mobile applications in order to check if the User Inter-
face Test Patterns (UITP) used for testing web applications still
apply to testing mobile applications. It also attempts to answer
if there is the need for aditional UITPs or, on the contrary, if
some existing UITPs do not apply to mobile applications.

Finally, the effectiveness of the PBGT approach for finding
errors on mobile applications will be assessed on a mutated
open-source application.

This paper is structured as follows: in Section II, the state of
the art regarding model-based testing and mobile testing is pre-
sented. Section III explains the overall architecture of PBGT.
Section IV presents the case study: the research questions, the
application under test, the mutants and the discussion of the
results. Finally, Section V presents the conclusions reached,
as well as future work.

II. STATE OF THE ART

Model-based testing is the automation of the design of
black-box tests [4]. It allows the creation of a model with
the expected SUT behavior, rather than manually writing the
tests, and then deriving test cases from that same model.

Although discussed and researched actively for some years,
MBT has not been widely used in the industry. Major obstacles
in the adoption of MBT include organizational difficulties and
the lack of easy-to-use tools [17] [18]. However, MBT has
shown to be effective in detection of errors [13][11][12].

There are multiple MBT approaches such as Spec#,
VAN4GUIM, Event Flow Graphs (EFGs), Labeled State Tran-
sition Systems (LSTSs) and Finite State Machines (FSMs).



A GUI mapping tool was developed in [9], where the GUI
model was written in Spec# with state variables to model the
state of the GUI and methods to model the user actions on
the GUI. However, the effort required for the construction
of Spec# GUI models was too high. An attempt to reduce
the time spent with GUI model construction was described
in [10] where a visual notation (VAN4GUIM) is designed and
translated to Spec# automatically. The aim was to have a visual
front-end that could hide Spec# formalism details from the
testers.

Event Flow Graphs is one of the most popular approach. The
idea is to use a Ripping Tool [15] in order to automatically
create a model that features all possible event interactions.

Other approach uses Labelled State Transition Systems
(LSTSs), action words and keywords, with the goal to describe
a test model as a Labelled Transition System (LTS), where
its transactions correspond to action words [19]. Keywords
correspond to key presses and menu navigation. According to
the authors, by varying the order of events it becomes possible
to find previously undetected events.

Miao et al. [22] proposed a FSM approach (called GUI
Test Automation Model − GuiTam) with the goal to overcome
some limitations of the EFG approach. They proved that there
exists an inclusive mapping between EFG and GuiTam, that is,
for each EFG, there exists at least one GuiTam that is able to
automate all the EFG automated tests. They also proved that
the storage requirement of the GuiTam is one order less than
that of the EFG model, and the computational complexity is
at a similar level.

Concerning model-based testing on mobile applications,
more specifically on Android applications, there are not many
model-based testing approaches, as this is a relatively recent
technology. Yumei et al. [14] proposed an Optical Character
Recognition (OCR) ripper, that uses OCR to traverse through
the application GUI in order to create a GUI model and
generate test cases. This process is not fully automatic, as the
OCR ripper sometimes provides innacurate results, or misses
GUI windows. Their aproach is OS independent, so it can be
used in any mobile operating system.

Takala [16] developed TEMA Tools, which is a set of
model-based testing tools, that includes tools for test mod-
eling, test design, test generation and test debugging. TEMA
models are state machines, specifically labeled state transition
machines. Although TEMA Tools was developed for testing
Symbian GUI applications, it was adapted to Android by
adding a keyword-based test automation tool, that is able
to detect GUI elements through keywords stored in Android
Window service.

Wang [20] presents a grey-box approach for automatically
extracting a model of a given mobile application. In his
approach, he extracts the set of events supported by the
application GUI, using static analysis. Then, by systematically
running these events on the running application using a
crawler, he constructs a model of the application. Although
this approach is almost fully automatic, it requires a good
knowledge of the precise set of GUI actions to generate a

high quality model.
Most of these approaches are tied to the application to

test. The application must be given to the tool in order to
generate the model. This does not promote reusability. Other
approaches do not generate test scripts forcing the tester to
build them. Most of these test scripts have only one path and
the models do not allow cycles resulting in bigger models.
In addition, MBT approaches usually use models describing
the expected behaviour of the application under test instead of
describing the testing goals in a higher level of abstraction.

PBGT approach aims to solve these issues by providing
UITP (User Interface Test Patterns) that are generic test strate-
gies to test common recurrent behaviour on GUIs over their
different possible implementations after a configuration phase.
By using UITP, PBGT increases the level of abstraction of test
models, promotes reuse and diminishes the effort required in
the modelling phase of the model based testing process.

III. OVERALL ARCHITECTURE OF PBGT

Pattern Based GUI Testing (PBGT) is a testing approach
that aims to increase the level of abstraction of test models
and to promote reuse [1] in order to diminish the model based
testing effort. PBGT has the following main components:

• PARADIGM-DSL — A domain specific language (DSL)
for building GUI test models based on UI test patterns
(UITP) [25];

• PARADIGM-ME — A modelling and testing environ-
ment to support the building, mapping and configuration
of test models [26];

• PARADIGM-TG — A test case generation tool that
builds test cases from PARADIGM models according to
different coverage criteria [27];

• PARADIGM-TE — A test case execution tool to execute
the tests, analyze the coverage (on the model and on the
code) (PARADIGM-COV) and create reports with test
results [24] ;

• PARADIGM-RE — A reverse engineering tool that
extracts part of the PARADIGM models from existent
web applications [28].

The activity diagram of the PBGT Tool set is shown in
Figure 1.

Currently, PBGT is used to test web applications. By using
PARADIGM-ME, the user can build and configure the test
model written in PARADIGM language with UI Test patterns.
Each UI Test Pattern instance may have multiple configura-
tions. There are two types of configurations: Valid and Invalid.
For example, for a login UI test pattern this includes an invalid
configuration that simulates an erratic behavior of the user
(for example, inserting wrong username and password for a
denied authentication) and a valid authentication (for example,
providing valid username and password for an acceptable
authentication); and for an input test pattern it may include
simulating an erratic behaviour by inserting letters in a text
box that only accepts numbers and the correct behaviour
by inserting numbers. In addition, it is possible to provide



Fig. 1. Activity Diagram of the PBGT tool set

different configurations for testing valid (or invalid) behaviour
as far as different test input data is provided.

A UI Test Pattern describes a generic test strategy, formally
defined by a set of test goals, denoted as

< Goal;V ;A;C;P > (1)

where:
• Goal is the ID of the test;
• V is a set of pairs [variable, inputData] relating test input

data (different for each configuration) with the variables
involved in the test;

• A is the sequence of actions to be performed during test
execution;

• C is the set of checks to be performed during test
execution;

• P is the precondition defining the set of states in which
is possible to perform the test.

The PARADIGM language (Figure 2) is comprised by
elements and connectors [25] (Figure 3). There are four types
of elements: Init (to mark the beginning of a model), End (to
mark the termination of a model), Structural (to structure the
models in different levels of abstraction), and Behavioral (UI
Test Patterns describing the behavior to test).

As models become larger, coping with their growing com-
plexity forces the use of structuring techniques such as dif-
ferent hierarchical levels that allow use one entire model "A"
inside another model "B" abstracting the details of "A" when
within "B". It is like what happens in programming languages,
such as C and Java, with constructs such as modules. Form is
a structural element that may be used for that purpose. A Form
is a model (or sub-model) with an Init and an End elements.

Group is also a structural element but it does not have Init
and End and, moreover, all elements inside the Group are
executed in an arbitrary order. The PARADIGM’s elements
and connectors are described by: (i) an icon/figure to represent
the element graphically and; (ii) a short label to name the
element. The concrete syntax of the DSL is illustrated in

Figure 3. Additionally, elements within a model have a number
to identify them and, optional elements have a "op" label next
to its icon/figure.

This language has three connectors (the definition of these
connectors is based on ConcurTaskTrees - CTT [29]): "Se-
quence"; "SequenceWithDataPassing"; and "SequenceWith-
MovedData". The "Sequence" connector indicates that the
testing strategy of the target element cannot start until the
testing strategy of the source element has completed. The "Se-
quenceWithDataPassing" connector has the same behavior as
"Sequence" and, additionally, indicates that the target element
receives data from the source element. "SequenceWithMoved-
Data" has a similar meaning to the "SequenceWithDataPass-
ing" connector, however, the source element transfers data to
the target, so the source loses the data that was transferred. In
addition, there is another kind of relation among elements –
"Dependency" – indicating that the target element depends on
the properties of a set of source elements, for instance, when
it is the result of a calculation.

In PARADIGM-ME, the tester builds the web application
test model, by creating the respective UITPs and joining them
with connectors. These connectors define the order that the
UITPs will be performed. PARADIGM models have to be
written according to a set of rules in order to be consistent
and allow generating test cases from it. These rules are
implemented in the modelling environment as OCL constraints
[25]. After building the model, the tester has to configure each
UITP with the necessary data (test input data, pre-conditions,
and checks). The list of UITPs supported by PARADIGM-
DSL (Figure 2) is the following:

• Login — The Login UITP is used to verify user authenti-
cation. The goal is to check if it is possible to authenticate
with a valid username/password and check if it is not
possible to authenticate otherwise.

• Find — Find UITP is used to test if the result of a search
is as expected (if it finds the right set of values).

• Sort — The Sort UITP is used to check if the result of
a sort action is ordered accordingly to the chosen sort
criterion (such as sort by name, by price and ascending
or descending).

• Master Detail — Master Detail UITP is applied to
elements with two related objects (master and detail) in
order to verify if changing the master’s value correctly
updates the contents of the detail.

• Input — The Input UITP is used to test the behavior of
input fields for valid and invalid input data.

• Call — The Call UITP is used to check the functionality
of the corresponding invocation. It is usually a link that
may lead to a different web page.

To execute the tests, it is necessary to establish a mapping
between the model UITPs and the UI patterns present on
the web application under test. This is performed by a point
and click process starting by selecting the element within the
UITP and then pointing the corresponding element in the GUI.
This will allow the test execution module to know which web



Fig. 2. Model of PARADIGM language

Fig. 3. PARADIGM syntax

elements to interact with that corresponds to a certain UITP
described in the model. For the mapping, PARADIGM-ME
will save the following information:

• Text boxes ID’s — the ID property of the GUI object.
• Images — The image of the UITP form. This is saved

through Sikuli [21] and is used when the tool is not able
to identify the object by its ID.

• Area coordinates — The coordinates of the object.
When the two previous methods fail, the tool uses the
coordinates in order to interact with the object.

After the mapping is made, PARADIGM-TG will then gen-
erate test cases from the model. With the test cases generated,
PARADIGM-TE will perform the tests on the web application
and provide reports with the results.

The mapping process is performed manually by the tester
which is prone to errors, either by selecting the wrong GUI
element of selecting a set of elements instead of one. In this

case the behaviour of the test may be different from expected.
However, if this happen, the tester may fix the mapping
information without changing the model and afterwards the
process is automatic.

PBGT can be used to test web applications that are being
developed from scratch or to test already existing web appli-
cations. In the latter scenario, PARADIGM-RE can be useful
to generate part of the PARADIGM model by exploring the
existing web application. Afterwards, the tester can validate
and complete the model with additional configurations and/or
additional (not found by the reverse engineering approach)
UITPs [8].

The use of this tool can be seen on a video at
www.fe.up.pt/~apaiva/tools/PARADIGM5min.mp4.

IV. CASE STUDY

Pattern Based GUI Testing approach was initially developed
having in mind the testing of web applications and uses
Selenium in its core.

In order to use PBGT to test mobile applications, a new
driver was developed. This driver uses Selendroid, due to
its high compatibility with Selenium, so most of the already
existing PBGT code could be reused. The main differences
between web and mobile versions of the PBGT approach were
in the mapping and interaction strategy. The difference relies
mainly on the attributes from each elements that are saved. For
mobile applications, PBGT does not save the area coordinates
of the element due to the large discrepancies in screen sizes
and resolutions and to screen rotations. Nonetheless, relies
more on the id of the element, if it has one, in order to interact
with it during test case execution.

The aim of this case study is to assess the applicability of
PBGT in testing mobile applications and, more specifically,
indends to answer the following research questions.

A. Research questions

R1) Is it possible to use PBGT approach to test mobile
applications?

R2) Is it possible to find bugs in mobile applications using the
PBGT testing approach for testing mobile applications?

B. Application under test

The experiment was performed over one Android applica-
tion: Tomdroid[23], a note-taking application. Tomdroid is an
application that acts as a Tomboy client, which is a desktop
note-taking application. Therefore, Tomdroid can synchronize
its notes with Tomboy, allowing basic Create, Retrieve, Update
and Delete (CRUD) operations and other functionalities like
sorting notes and link to other notes, sites and phone numbers.

Tomdroid was chosen because it is an open-source appli-
cation, allowing us to fault seeding mutants in the code and
measure the effectiveness of the PBGT approach to test mobile
applications.



C. Mutants

In order to assess the capacity of PBGT in finding failures
on mobile applications we followed a fault seeding strategy
in which we generated mutants that negated the Boolean
conditions inside if and while clauses. Afterwards, we ran the
test cases generated by PBGT in order to check if the mutants
were killed or not.

Tomdroid is a Tomboy client for Android. Tomboy is an
open-source desktop notetaking application. The Tomdroid
packages chosen for fault seeding mutants were org.tomdroid,
which is responsible for managing CRUD operations; and
org.tomdroid.ui, the package responsible for user interaction.

PBGT was able to kill 85.4% of the mutants (see table VIII).

D. Threats to validity

This experiment was performed over a single mobile ap-
plication. If we test the PBGT approach on a broader set
of applications the mutation score could be different. In
particular, it may happen when the application requires specific
mobile interactions, like swipe, which we are not able to
reproduce in PBGT at this moment.

E. Test Models

The test models were built using the PARADIGM-DSL
language. As an example, Figure 4 shows one of the test
models of the Tomdroid application. This model is used to
test editing notes.

Fig. 4. Tomdroid model to test editing notes

This test model was built using only two different patterns:
the Call UITP and the Input UITP. The sequence of actions
performed by the Call UITP during test case execution is a
click event. It is possible to provide different configurations
in order to check the proper behaviour of the application after
such click. The Input UITP provides the means to check the
behaviour of the application after inserting valid and invalid
input data on input fields.

The model is easy to understand although it has 3 different
test paths. The tester only has to be concerned with the model
since these test paths are generated by PARADIGM-TG. The
test paths are as follows:

• 3, 4, 5, 6, 7, 8
• 3, 4, 5, 6, 7, 9
• 3, 4, 5, 6, 10
All test paths start by clicking on a button (UITP 3) to

dismiss a message that is always shown when the Tomdroid
application is opened for the first time, as can be seen in Figure
7. After that, one can open an existing note (UITP 4), which
is created upon the installation of the application, attempt to
edit the note (UITP 5) and change the title (UITP 6). The
test paths diverge at this point. In one path the changes are
saved (UITP 10) whereas, in the other two, the discard button
is clicked (UITP 7). After clicking on the discard button, one
path confirms (UITP 8), returning to the saved state, and the
other one does not (UITP 9), continuing editing the note.

All different test paths run separately so the changes made
on the GUI that are not saved (in a database or file) in one
are not propagated to the others. This way, the order in which
they run is not relevant.

All elements in the model are configured so as to define
the test input data (when needed), the checks to perform
and the precondition defining when to run the related test
strategy. Table I and Table II show the configurations for all
the elements in the model in Figure 4.

Taking the element [5] within Table I as an example,
after clicking on the related button, PBGT checks if the text
"Welcome to Tomdroid!" is present in the layout and checks
if the text "<size:large>" is not present in the layout. Besides
checking if text is or is not present on a layout, the Call UITP
can also be configured to check if the click action resulted
in changing the activity (called page in the web applications
domain) or, on the contrary, if stayed in the same activity.

Taking the element [6] of Table II, after sending the text
"Edited" to the related GUI object, no check is performed.

Two more models were created to test the mobile applica-
tion: one model for the creation and visualization of notes,
showed in Figure 5 and another for testing the sorting criteria
of notes, showed in Figure 6. The configurations set for
model in Figure 5 are shown in Table III and IV and the
configurations set for model in Figure 6 are shown in table V,
VI, VII.

The test paths for the model shown in Figure 5 are:
• 3, 4, 6, 7, 8, 9
• 3, 4, 6, 7, 8, 10



TABLE I
CONFIGURATIONS OF CALL ELEMENTS

UITP Check Pre-condition

[3] PresentInPage("Tomdroid’s First Note") true

[4] PresentInPage("Welcome to Tomdroid!") true

[5] PresentInPage("Welcome to Tomdroid!") and

NotPresentInPage("<size:large>") true

[7] StayOnSamePage true

[8] NotPresentInPage("Edited") true

[9] PresentInPage("Edited") true

[10] ChangePage true

TABLE II
CONFIGURATIONS OF INPUT ELEMENT

UITP Input Pre-condition

[6] Edited true

• 3, 4, 6, 7, 11, 12, 13, 8, 9
• 3, 4, 6, 7, 11, 12, 13, 8, 10
The model shown in Figure 6 only has one test path:
• 3, 4, 7, 8, 9, 10, 11

TABLE III
CONFIGURATIONS OF CALL ELEMENTS OF FIGURE 5

UITP Check Pre-condition

[3] StayOnSamePage true

[4] ChangePage true

[7] PresentInPage("First Note") true

[8] PresentInPage("Welcome") true

[9] ChangePage true

[10] PresentInPage("Secret Text") true

[11] ChangePage true

[13] PresentInPage("First Note") true

When the configuration for all models is complete, the tester
has to establish the map between UITP and real UI patterns
within the mobile application shown in Figure 7. After this, it
is possibe to generate test cases and run them over the mobile
application. If a test path has only UITP with one configuration
each, there will be one test case executing each configuration
defined. When a test path traverses a UITP with 2 (or n)
configurations, there will be 2 (or n) test cases executing the
different configurations.

Fig. 5. Tomdroid model to test creating and viewing notes

Fig. 6. Tomdroid model to test sorting notes

F. Failures Detected

Regarding failures detected, i.e., Tomdroid mutants killed,
PBGT was able to detect a large number of failures, killing the
majority of mutants as can be seen in table VIII. The mutation
score is 85.4%.



TABLE IV
CONFIGURATIONS OF INPUT ELEMENTS OF FIGURE 5

UITP Input Pre-condition

[6.1] Tomdroid true

[6.2] Secret Text true

[12] A true

TABLE V
CONFIGURATIONS OF CALL ELEMENTS OF FIGURE 6

UITP Check Pre-condition

[3] StayOnSamePage true

[4] ChangePage true

[8] ChangePage true

[10] StayOnSamePage true

The failures detected can be classified into the following
categories:

1) Notes do not open.
2) Application throws unhandled exceptions.
3) Notes do not show text.
4) Discarded changes are saved.
5) Notes are not saved.
6) Notes have unformatted content.
7) Notes are not created.
8) When creating new note with repeated title does not add

a number.
9) When creating new note always adds a number.

10) Notes are displayed in the wrong order.
11) Malfunction in links between notes.
12) Wrong text in action bar.

These failures were detected by using the following checks:
a) PresentInPage, which checks that some text is present
in a layout; b) NotPresentInPage, which checks that some
text is not present in a layout; c) ChangePage, which checks
that after an action changed activity; or d) StayOnSamePage,
which checks that after an action remained in the same activity.

Regarding category 1) (Notes do not open), it was possible
to detect these failures by using the checks a) (PresentInpage)
and c) (ChangePage). In some cases, by attempting to open
a note, the activity does not change, failing in c); others, an
error message is displayed, failing in a). In the latter case, b)
could be used too with the same effect.

When an unhandled exception is thrown, the application
stops, making it impossible to continue the model and failing
the subsequent checks.

Failures within category 3) (Notes do not show text) are
detected by the check a) (PresentInPage).

When editing a note, Tomdroid gives the user the possibility
to save the changes or discard them. Failures such as 4)

TABLE VI
CONFIGURATIONS OF INPUT ELEMENTS OF FIGURE 6

UITP Input Pre-condition

[5] White Note true

[6] Secret Text true

TABLE VII
CONFIGURATIONS OF SORT ELEMENTS OF FIGURE 6

UITP Field Pre-condition

[9] [White Note, Tomdroid’s First Note] true

[11] [Tomdroid’s First Note, White Note] true

(Discarded changes are saved) and 5) (Notes are not saved)
may arise with this type of behaviour. The model shown in
Figure 4, with the configurations shown in Tables I and II,
was able to detect this type of failure.

Tomdroid’s notes use an XML syntax in order to display
the text in different ways. In item 6) (Notes have unformatted
content) the text was displayed in that XML syntax and, with
the check b) (NotPresentInPage) it was possible to detect this
failure.

The user might create a note with a repeated title, thus
making it hard to distinguish two different notes. When this
happens, Tomdroid adds a number to the title making it
different from the others. It was possible to detect failures such
as Failures 7) (Notes are not created), 8) (When creating new
note with repeated title does not add a number) and 9) (When
creating new note always adds a number), by attempting to
create the note and then using check a) (PresentInPage) to
verify that the title is present and with the correct text.

Tomdroid allows the user to sort the notes displayed by title
or by date of creation. For detecting the failure 10) (Notes are
displayed in wrong order) it was used an element, the Sort
element, that enabled to check the order in which the notes
are displayed.

When a title of a note is written on the text of another note,
a link is created. Then, the user can simply click on that link in
order to open the note. With PBGT, it was possible to detect
that a link was not working properly, Failures 11, by using
check c) (ChangePage).

When the wrong text is shown in the action bar, Failures
12, they are detected using check a) (PresentInPage).

There were six mutants that PBGT was not able to kill.
These mutants fit in two categories:

1) Notes do not link to another applications.
2) Text appears on the screen in a different color.
Regarding the first category, PBGT should be able to detect

this failure with check c) nonetheless, PBGT was not able to
detect these failures due to technical limitations, as Selendroid
is only capable of interacting with one application and because



Fig. 7. Screenshot of Tomdroid application

TABLE VIII
TEST RESULTS USING PARADIGM

Tomdroid

Mutants 41

Killed 35(85.4%)

of that not capable to detect if a new application was open.
Concerning the last category, PBGT does not have a mean

to check text color.

G. Discussion

After the experiment we were able to answer the question
R1) and R2). Indeed, besides PBGT was developed for the
web context, it is possible to use PBGT for testing mobile ap-
plications and it is possible to find bugs on those applications.
To use the PBGT approach to test mobile applications, some
adjustments had to be made as described in section IV. The
high percentage of mutants killed answers R2).

In addition to the above research questions, we were also

able to gather some information regarding two other questions,
not derived directly from the results of the experiment, but
from the interaction with PBGT applyed to mobile applica-
tions. The questions are:

R3) Are the current UITPs enough for testing mobile appli-
cations?

R4) Are there specific ways of interaction particular to mobile
applications that are not covered by PBGT?

Answering question R4), mobile applications give the user
different ways of interaction, such as the longpress, the swipe
and the pinch. These differences exist because users interact
with mobile GUIs using their fingers rather than a mouse.
Therefore, mobile applications do not have hover menus
making the point sequence mapping mode of PBGT obsolete.
There is the need for adding new sequence actions to the
existing elements specific for mobile applications that include
such different ways of interaction.

The different screen sizes between smartphones and tablets
are a problem too. Some applications have different layouts
because of this issue. Therefore, the model should behave
according to these differences. One way of achieving this is
by adding pre-conditions to the UITP elements specifying the
screen sizes and resolutions they support. Then, the tester
could specify the range of screen sizes he wants to test or
simply let the tool choose a set of screen sizes that is sufficient
to transverse all the model. These test strategies impose the
use of an emulator as a real device has a fixed screen size.

Mobile applications give the user the possibility to rotate the
screen, changing its orientation. Since on Android applications
the Activity is destroyed and recreated on the event of chang-
ing the screen’s orientation, several problems may arise. Some
information may not be properly saved before the destruction
of the Activity, making the recreated Activity outdated. Also,
an uncaught exception may be thrown.

Lastly, since layouts may be different depending on the
screen orientation and PBGT does not support it, it is im-
possible to test all layouts. This answers question R3), there
is the need for a new UITP that changes the screen orientation
and checks the state of the GUI.

Another difference between web and mobile applications is
that it is common for mobile applications call other applica-
tions. It is common for an application to open a browser or
the smartphone’s camera for example.

As PBGT uses Sikuli, it is possible to interact with some
elements that are not acessible using Selendroid alone. As
an example, Tomdroid creates links inside TextViews that
Selendroid can not interact with and, with Sikuli, PBGT can.

Nonetheless, PBGT does not have a mean to check text or
another element’s color.

It is also important to notice that this approach tests software
applications through their GUIs which means that it does not
test if the application data is effectivelly correct, i.e., it may
happen that data seems correct through the GUI but it is not
correct in the related database.



V. CONCLUSIONS AND FUTURE WORK

This paper presented a case study that aimed to test the
applicability of the PBGT approach to mobile applications.
We started by fault seeding mutants into an open-source
Android application named Tomdroid, in order to check how
PBGT would behave in the mobile context. Then, we detailed
the categories of failures that PBGT was able to detect and
discussed the results.

We concluded that the PBGT approach works in the mobile
context but still needs some improvements. As it was expected,
mobile applications are different from web applications. The
main differences are in the way the user interacts with the
GUI, the possibility to change the screen’s orientation and the
possibility to have different layouts for different screen sizes.

In the future, PBGT needs to be able to emulate the different
gestures the user typically can perform in a mobile application
such as the swipe, also known as the flick; the longpress which
happens when the user leaves the finger pressed for a longer
period of time; and the pinch, the typical gesture for zooming
in and out. These mobile gestures may be integrated in the
Call UITP.

To solve the difference in screen sizes, as stated in the
IV-G subsection, we will create new pre-conditions that may
be added to the elements so the tester can specify on which
screen sizes each element is present. This way, it is possible
to test all different screen sizes with only one model.

Finally, we will create a new UITP for the mobile context
that will allow to rotate the screen and provide it with some
checks such as the PresentInPage and the NotPresentInPage.

It is also interesting for PBGT to support another Mobile
OSs (such as iOS) which can be done by building specific
drivers. The PBGT approach is all about reusability and the
models could be used to test different applications in different
OSs.

REFERENCES

[1] Moreira, R. and Paiva, A. and Memon, A., “A Pattern-Based Approach for
GUI Modeling and Testing”. Proceedings of the 24th annual International
Symposium on Software Reliability Engineering (ISSRE 2013), 2013

[2] Gartner, "Gartner Says Worldwide Traditional PC, Tablet, Ultramobile
and Mobile Phone Shipments Are On Pace to Grow 6.9 Percent in 2014",
March, 2014, http://www.gartner.com/newsroom/id/269231, last acessed
April 2014

[3] AppBrain, "AppBrain Stats", https://www.appbrain.com/stats/number-of-
android-apps, last acessed April 2014

[4] Utting, Mark, and Bruno Legeard. Practical model-based testing: a tools
approach. Morgan Kaufmann, 2010.

[5] Amalfitano, Domenico and Fasolino, Anna Rita and Tramontana, Porfirio
and De Carmine, Salvatore and Atif M. Memon. 2012. Using GUI
ripping for automated testing of Android applications. In Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2012). ACM, New York, NY, USA, 258-261.

[6] Hu, Cuixiong and Neamtiu, Iulian. 2011. Automating GUI testing for
Android applications. In Proceedings of the 6th International Workshop
on Automation of Software Test (AST ’11). ACM, New York, NY, USA,
77-83.

[7] Maji, A. Kumar and Hao, K. and Sultana, S. and Bagchi, S. Characterizing
failures in mobile oses: A case study with android and symbian. In
Software Reliability Engineering (ISSRE), 2010 IEEE 21st International
Symposium on, pages 249-258.

[8] Nabuco, M.; Paiva, A.C.R.; Camacho, R.; Faria, J.P., "Inferring UI
patterns with Inductive Logic Programming," Information Systems and
Technologies (CISTI), 2013 8th Iberian Conference on, 19-22 June 2013

[9] Paiva, Ana C. R. and Faria, João C. P. and Tillmann, Nikolai and Vidal,
Raul F. A. M., "A Model-to-Implementation Mapping Tool for Automated
Model-Based GUI Testing", ICFEM, Lecture Notes in Computer Science,
Springer, vol. 3785, pp. 450-464, 2005

[10] Moreira, Rodrigo M. L. M. and Paiva, Ana C. R., "Visual Abstract
Notation for Gui Modelling and Testing - VAN4GUIM", ICSOFT 2008,
pp. 104-111, 4 March 2008.

[11] Paiva, A.C.R., "Automated Specification-Based Testing of Graphical
User Interfaces", Ph.D, Engineering Faculty of Porto University (Ph.D
thesis), Department of Electrical and Computer Engineering (2007),
www.fe.up.pt/ apaiva/PhD/PhDGUITesting.pdf

[12] A. C. R. Paiva, J. C. P. Faria, and R. F. A. M. Vidal, "Specification-based
testing of user interfaces," in Interactive Systems. Design, Specification,
and Verification, 10th International Workshop, June 2003, pp. 139-153.

[13] El-Far, Ibrahim K., and James A. Whittaker. "Model-Based Software
Testing." Encyclopedia of Software Engineering (2001).

[14] Wu, Yumei, and Zhifang Liu. "A Model Based Testing Approach for
Mobile Device." Industrial Control and Electronics Engineering (ICI-
CEE), 2012 International Conference on. IEEE, 2012.

[15] Memon, Atif M., Ishan Banerjee, and Adithya Nagarajan. "GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing." WCRE.
Vol. 3. 2003.

[16] Takala, T.; Katara, M.; Harty, J., "Experiences of System-Level Model-
Based GUI Testing of an Android Application", Software Testing, Verifi-
cation and Validation (ICST), 2011 IEEE Fourth International Conference
on, pp.377,386, 21-25 March 2011

[17] Robinson, Harry. "Obstacles and opportunities for model-based testing
in an industrial software environment." Proceedings of the 1st European
Conference on Model-Driven Software Engineering, Nuremberg, Ger-
many. 2003.

[18] A. Hartman, "AGEDIS project final report, 2004," Available at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.575&rep=rep
1&type=pdf, last acessed April 2014

[19] Kervinen, Antti, et al. "Model-based testing through a GUI." Formal
Approaches to Software Testing. Springer Berlin Heidelberg, 2006. 16-
31.

[20] Yang, Wei and Prasad, Mukul R. and Xie, Tao. 2013. A grey-box
approach for automated GUI-model generation of mobile applications.
In Proceedings of the 16th international conference on Fundamental
Approaches to Software Engineering (FASE’13)

[21] Sikuli API, https://code.google.com/p/sikuli-api/, last acessed April 2014
[22] Miao, Yuan, and Xuebing Yang. "An FSM based GUI test automation

model." Control Automation Robotics & Vision (ICARCV), 2010 11th
International Conference on. IEEE, 2010.

[23] Tomdroid, https://launchpad.net/tomdroid, last acessed April 2014
[24] Liliana Vilela, Ana C. R. Paiva, "PARADIGM-COV - A Multimensional

Test Coverage Analysis Tool", in CISTI 2014 - 9th Iberian Conference
on Information Systems and Technologies, Barcelona, 18-21 June, 2014

[25] Rodrigo M. L. M. Moreira, Ana C. R. Paiva, "A GUI Modeling DSL for
Pattern-Based GUI Testing - PARADIGM", 9th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE
2014), 28-30 April, Lisbon, Portugal

[26] Tiago Monteiro, Ana C. R. Paiva, "Pattern Based GUI Testing Modeling
Environment", March 18, Fourth International Workshop on TESTing
Techniques & Experimentation Benchmarks for Event-Driven Software
- TESTBEDS, Co-located with The Sixth IEEE International Conference
on Software Testing Verification and Validation, 2013

[27] Miguel Nabuco, Ana C. R. Paiva, "Model-based test case generation
for Web Applications", 14th International Conference on Computational
Science and Applications (ICCSA 2014), Guimaraes, Portugal, June 30
- July 3, 2014

[28] Miguel Nabuco, Ana C. R. Paiva, "Inferring User Interface Patterns
from Execution Traces of Web Applications", Software Quality workshop
of the 14th International Conference on Computational Science and
Applications (ICCSA 2014), Guimaraes, Portugal, June 30 - July 3, 2014

[29] Paternò, Fabio, Cristiano Mancini, and Silvia Meniconi. "ConcurTask-
Trees: A diagrammatic notation for specifying task models." Human-
Computer Interaction INTERACT’97. Springer US, 1997.


