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Abstract Radiation oncology for prostate cancer is important as it can de-
crease the morbidity and mortality associated with this disease. Planning for
this modality of treatment is both fundamental, time-consuming and prone
to human-errors, leading to potentially avoidable delays in start of treatment.
A fundamental step in radiotherapy planning is contouring of radiation tar-
gets, where medical specialists contouring, i.e., segment, the boundaries of
the structures to be irradiated. Automating this step can potentially lead to
faster treatment planning without a decrease in quality, while increasing time
available to physicians and also more consistent treatment results. This can
be framed as an image segmentation task, which has been studied for many
decades in the fields of Computer Vision and Machine Learning. With the ad-
vent of Deep Learning, there have been many proposals for different network
architectures achieving high performance levels. In this review, we searched the
literature for those methods and describe them briefly, grouping those based
on Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). This
is a booming field, evidenced by the date of the publications found. However,
most publications use data from a very limited number of patients, which
presents an obstacle to deep learning models training. Although the perfor-
mance of the models has achieved very satisfactory results, there is still room
for improvement, and there is arguably a long way before these models can be
used safely and effectively in clinical practice.
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2 Gonçalo Almeida, João Manuel R.S. Tavares

Fig. 1 Anatomical and CT slices of the same person (from the Visible Human Project).
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1 Introduction

Prostate cancer is the most prevalent non-cutaneous cancer and the second
leading cause of cancer death in men. It is estimated that about 1 in 9 men
will be diagnosed with prostate cancer in their lifetime [1,2]. However, with
appropriate treatment, the 5-year survival rate is 98.2% [3,4].

Radiation Therapy (RT) is a fundamental part of modern cancer care, serv-
ing more than 1.5 million patients worldwide [5], and the demand is projected
to increase by 16% by 2025 [6]. It is considered that half of all cancer patients
would benefit from radiotherapy in the course of their disease, but in Europe
at least 25% of patients do not receive this treatment [7].

Radiotherapy planning is a sequence of events that lead from the initial
patient encounter to the start of treatment. With the advancement of radiation
delivery techniques, the number of treatment parameters increased so much
that planning has become a very complex and time-consuming task, taking
hours to days of human effort for each patient [8]. One of the most critical
steps is the contouring of radiation targets which is akin to a segmentation
task. It is just as important to ensure enough radiation dose in the target, as
it is to stay below specific radiation absorption levels in the normal tissues [9].

It is fundamental that anatomical features are defined on Computed To-
mography (CT) images, because radiation dose calculations depend on tissue
electronic densities [10], which are not available on other imaging modalities.
Due to their specific advantages, Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) scans can be, and are, also used in
clinical practice to help with contouring; yet, CT is indispensable to radiation
oncology (Figure 1) [11].

The output of this organ contouring task is a segmentation mask, as it
can be thought of as an overlay onto the medical image (Figure 2). As any
other task performed by human beings, this is subject to variability. Inter-
observer variability for prostate manual segmentation has been estimated at
18-25%, using various different metrics [13,14]. These studies also attempted
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Fig. 2 Examples of segmentation masks for prostate cancer radiotherapy [12].

to find intra-observer variability, where the same physician contoured the same
CT scan more than one time, finding variations of 1.5-9.0% [13] and 2-8% [14].
This variability has a significant impact on the final treatment plan and patient
outcomes.

There are also small anatomic variations due to patient positioning dur-
ing image acquisition, such as bladder and rectum filling, movement due to
breathing, state of hydration, weight loss, muscle contraction due to anxiety
and room temperature and even due to heart pumping. Radiotherapy centers
follow specific protocols to minimize the impact produced by these factors, so
that planning CT images are as reproducible as possible [15], but there will
always be some residual uncertainty [16].

If the step of volume definition could be fully automated while ensuring
perfect correlation with the anatomical structures, the gains would be im-
mense: no uncertainties associated with manual delineation, ensuring perfect
encompassing of the target volume, increasing treatment success and patient
survival; decreasing the geometric margins used today to compensate for er-
rors, leading to fewer radiation-induced complications as a smaller total volume
would be irradiated; increase in physician time; less time between first patient
encounter and treatment start, which also improves patient outcomes.

This review focuses on deep learning for segmentation of radiation targets
and normal tissues during radiotherapy planning for prostate cancer. Although
there is a considerable number of review articles on the use of deep learning for
medical image analysis [17–19], to the best of the authors’ knowledge, there
is none on this particular topic. This is a nascent field, arguably in an early
stage of development, but in a very important moment of increasing interest
by the research community. The number of articles reviewed can be considered
short, but this is due to novelty, and their very recent publication dates helps
explain the importance that the subject has been gathering: there have been
more than a dozen studies published in the last year, warranting the need for a
review of this subject. Therefore, this study can be invaluable both for image
analysis researchers as well as clinical practitioners who should recognise the
potential benefits of automatic segmentation in their practice.

The male pelvic anatomy is composed of organs with similar density (soft-
tissues), such as the prostate, bladder and rectum. The boundaries between
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these organs are often very hard to distinguish, due to the small differences in
contrast (especially in CT images). Also, this is one of the anatomical regions
with the most variation between subjects but also within the same individual,
owing to changes in content of the bladder and rectum. Furthermore, other
structures are required to be segmented, which include the femoral heads and
the penile bulb, offering additional challenges to designing models capable of
performing automatic segmentation of all the structures needed for radiother-
apy planning for prostate cancer. Unlike some other anatomical locations, RT
for prostate cancer is performed by irradiating the whole organ, which must
be the segmentation object, as opposed to segmentation of a tumor volume
inside a given organ (e.g. lung, breast). This seems to make the task compara-
tively easier, but, in fact, increases the importance of an accurate segmentation
because of the adjacent structures, not allowing for much margin of error.

This article is structured as follows: the next section presents a brief overview
of deep learning as a tool for image analysis and the models that were devel-
oped for image segmentation. In the methods section, the search developed for
this review is described. The results section presents the main findings achivied
with the selected works grouped by the used imaging modality: MRI and CT.
The final section provides a critical discussion of the results and draws the
conclusions.

2 Machine Learning and Deep Learning

Deep learning is a subfield of Machine Learning (ML) which uses neural net-
works with many hidden layers to map a certain input to a predefined output.
The used deep learning model has the intrinsic ability to learn useful features
directly from the input data that are important to the task at hand. This may
be classification, regression, clustering or segmentation, among others. When
the output labels are available, the method of learning is called supervised
learning [20].

2.1 Convolutional Neural Networks

In 2012, in a landmark moment in the history of Machine Learning and Com-
puter Vision, researchers from the University of Toronto achieved an impressive
result in the ImageNet competition conquering the first place by a large mar-
gin to all other teams [21]. They used a Convolutional Neural Network (CNN)
several layers deep and were able to nearly halve the error of the previous best
result. CNNs had been first used over two decades before, when LeCun et al.
applied them to the task of recognizing hand-written digits in 1990 [22].

In a CNN, at least one layer of the network performs a convolution oper-
ation on that layer’s inputs. This is performed by means of a filter or kernel,
which is translated across and down the input matrix to produce a representa-
tion map of the original image. The filter is composed of learnable parameters
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which are updated through gradient descent. The filter is the same for every
part of the image (at each convolution operation), such that any features can
be extracted irrespective of their location in the image. This operation is very
successful because it is capable of correlating a certain pixel’s information with
that contained by adjacent pixels.

2.2 From classification to segmentation with CNNs

It is clear nowadays that deep learning-based models have become the state of
the art in medical image analysis, as most of the challenges are now populated
with these methods in all the top positions. However, it is worth understanding
that this only became true recently. It was only in 2017 that a fully Convo-
lutional Neural Network architecture proposed by Yu et al.[23] captured the
first place in the PROMISE12 prostate segmentation challenge. Since then,
traditional ML models have been continually going down the leaderboard.

Image classification is performed with CNNs, where a full image is input
into a network which returns a single one-hot vector as output, assigning the
image to one of several classes. For this architecture to be used for segmenta-
tion, it had to be modified such that the output would consist of a segmen-
tation mask (or could later be processed to become one). The first attempts
had the network look at a small part of the image (a patch) and classify it
as belonging to the object class or background. By dividing the image into
patches and classifying all of them, one could then build a rough segmentation
mask. However, the network never got to fully grasp the whole image, as it
would only have access to a small region of the image at a time.

Shelhamer, Long and Darrel came up with the Fully Convolutional Net-
work (FCN) architecture which produced a pixel-wise prediction all in one
go [24]. This worked by appending a layer that performs upsampling through
a transposed convolution, also called a deconvolution or up-convolution, de-
coding the information contained in the deepest layers of the CNN back into
the full size of the original image. Ronneberger et al. designed the U-Net by
dividing the network into two distinct parts: I) an encoding arm, progressively
downsampling the input through convolutions and pooling (similarly to the
traditional CNN); and II) a decoding arm, completely symmetric to the en-
coding part, where at each upsampling step they bring the spatial coordinate
information of the image from the opposite side of the network and use con-
catenation to place it together with the result of the up-convolution operation
[25]. This model outputs a segmentation mask, one value for each pixel of
the original image: the segmentation task was transformed into a pixel-wise
classification task.

U-Net became widely used for medical imaging segmentation and several
improvements were soon made. Cicek et al. created a version of U-net capable
of using 3D inputs instead of 2D images [26]. Similarly, Milletari et al. proposed
V-Net, a volumetric version of U-Net and incorporated the Dice coefficient into
the loss function [27]. The advantage of having a 3D architecture is that instead
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of supplying a slice of a CT or MRI volume, one inputs the whole volume into
the model, allowing for representation learning from all the data at once, akin
to the evolution from patch-based to whole image input. Unlike a 2D model,
which loses information situated between slices and is incapable of inferring
surface continuation [28], a 3D model can comprehend these details, which are
especially useful at the top and bottom ends of each structure. This increases
both accuracy and ease of use, at the cost of computational capability.

Yu et al. added residual skip connections to the U-Net architecture, and
it was the first time a fully convolutional neural network topped PROMISE12
[23]; Oktay et al. used a concept from Recurrent Neural Networks (RNN - used
for sequential data such as text and speech), and added Attention gates to the
concatenation step when bringing together the information about the spatial
coordinates of the input with the resulting feature map from up-convolutions,
with encouraging results for medical segmentation [29].

3 Methods

A systematic literature search was performed in Pubmed/Medline, ScienceDi-
rect and Scopus databases with the following keywords in various combina-
tions: “deep learning”, “convolutional neural networks”, “neural networks”,
“machine learning”, “prostate segmentation”, “prostate”, “segmentation”, “ra-
diotherapy”, “radiation therapy”, “radiation oncology”. This produced a total
of 528 unique results, most of which were completely unrelated to the sub-
ject at hand, based on analysis of title and abstract. For further analysis, 47
articles were selected based on the following inclusion criteria: segmentation
of the prostate, image analysis from studies of patients with prostate cancer,
research related with radiation therapy. The exclusion criteria were: segmenta-
tion of structures for rectal cancer, inclusion of female anatomy images, use of
ultrasound images (e.g., trans-rectal ultrasound), and not using deep learning
segmentation models. Among the selected results, 11 were literature reviews
which are detailed in the results section. Of the 36 original studies selected
based on abstract, after careful review of the body of text, 28 were kept as
they are specifically related to prostate segmentation using deep learning on
CT or MR images. Figure 3 shows the performed search and the obtained
results in the form of a PRISMA diagram.

4 Results

In a total of 28 selected articles, 19 performed segmentation on MRI images and
9 on CT images. As aforementioned, CT is essential for radiotherapy, but often
radiation oncologists use MRI together with CT (registered or not) to help
manual contouring. Thus, segmentations on MRI were also included, seeing
as they can be useful in clinical practice. However, prostate segmentation in
MRI is used with more goals in medicine than just for RT planning. Typically,
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Fig. 3 PRISMA diagram showing the results of the performed literature search.

segmentation on MRI is considered somewhat easier than on CT on account
of higher contrast between organs and structures on the acquired MR images.
This is observed in the performance of the reviewed articles.

In our search we found 11 reviews which at least briefly mention auto-
segmentation of the prostate with deep learning, but none offers a systematic
review of studies on this segmentation task. Among the studies on prostate
segmentation, at most 6 articles are presented in one of the reviews [30], with
the others merely mentioning in the text or presenting in a table fewer than
those. The earliest of these reviews was published in 2017, with a comprehen-
sive review of DL for many applications in medical imaging [31], and includes
a table where 5 articles covering prostate segmentation are presented. The re-
maining range from focusing on the potential benefits of artificial intelligence
(AI) and DL to cancer imaging as a whole [32], to medical image analysis [17,
33], to radiation therapy in all phases of the planning process [8,11,19,34], to
covering ML applications for prostate cancer from diagnosis to treatment to
follow-up [35,36].

Some articles mention if the ground truth segmentation was performed by
a radiologist, radiation oncologist or other medical specialty. This is important
because segmentation for prostate volume assessment (typically performed by
radiologists in MRI) is quite different from segmentation for radiation ther-
apy, where specific training is undertaken and millimetric accuracy is essential
(detailed in Tables 1 and 4).

For the development of automated segmentation methods to be possible,
there have to be ways to correctly compare validated manual segmentations to
those performed by computational algorithms. There is no single best metric
for this purpose, as some give more importance to volume differences while
others impose a higher weight on boundary differences. Important to note,
nevertheless, that most published works proposing computational segmenta-
tion methods report Dice Similarity Coefficient (DSC) and some measure of
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surface distance, be it Average Boundary Distance (ABD, eq.2) or Hausdorff
Distance (HD). Particularly, 95%HD is the 95th percentile of the Hausdorff
Distance, seen widely in the literature. The Dice Similarity Coefficient is cal-
culated as:

Dice Similarity Coefficient =
2|A ∩B|
|A|+ |B| , (1)

where A and B are the segmented volumes to be compared. The Average
Boundary Distance and Hausdorff distances are, respectively:

ABD =
1

|As|+ |Bs|

!
"

a∈As

minb∈Bs ||a− b||+
"

b∈Bs

mina∈As ||a− b||
#
, (2)

HD = maxa∈As(minb∈Bs ||a− b||), (3)

where As and Bs are the surfaces of the segmented volumes to be compared,
and ||a− b|| is the Euclidean distance between two points on A and B.

4.1 Magnetic Resonance Imaging

Among the articles reviewed, 19 proposed deep learning models for prostate
segmentation on MRI. Nearly half (9) used a 3D pipeline. The largest used
dataset had 958 patient scans [37]. The use of public datasets was found in 10
articles, with data from PROMISE12 challenge [38], ASPS13 [39], BWH [40]
and ProstateX [41].

Although tempting to make comparisons between prostate DSC achieved
by the different methods, it would be unwise to do so, because the datasets
used and the data handling varies significantly. It is only fair to make direct
comparisons among those studies which were submitted to a standardised
competition. Some articles present their score at the PROMISE12 challenge,
which uses a combination of metrics for more robust comparisons - this is
indicated in Table 1 if included in the article. Table 2 presents the models
used by the various authors, their contributions, benefits and limitations of
their approaches. In the following paragraphs, there is an in-depth description
of the methods used by the various authors and how some innovated in specific
features.

From the publishing dates one can see that it was really in 2018 that the
use of deep learning (DL) for prostate segmentation started to gain widespread
interest, and really took off in 2019. However, some authors had experimented
with DL methods before: instead of end-to-end learning, they used deep net-
works for feature extraction through representation learning and applied those
features in traditional methods [44,45]. Although primitive, these served as ex-
amples to the potential of DL for automated segmentation in the male pelvic
anatomy. Interestingly, some authors have been more recently again combin-
ing DL with traditional machine learning methods: Tan et al. combined a
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deep neural network with variational methods and improved the CNN-only
segmentation on low-resolution, low-quality images [52].

Data preprocessing, including cropping, rescaling and histogram normali-
sation, is commonly used and is generally beneficial [42,48–50,59]. Instead of
handcrafted methods, one study attempted a learning-based approach for this
preprocessing step by training a neural network, achieving positive results [46].
It would be interesting to see more experiments to validate this approach.

Although the Cross-entropy and Dice loss functions have somewhat been
established as the most stable and are used by most authors [48,50,55,57,59],
design of a loss function is shown to be significant by some authors who use
new functions tailored to organ edges [58] or with tunable hyperparameters
which can be adapted to the dataset at hand [37,42]. This, however, can make
generalisation more difficult to achieve.

In order to fit the model to the training data, end-to-end learning through
gradient descent-based optimisation is the process most widely used (Stochas-
tic Gradient Descent [53], Adam [55], Adadelta [37,50]), but some authors
experimented with adversarial learning where a discriminator network is used
to distinguish ground-truth from artificial model segmentations [56,57]. By
optimising both networks in tandem, when the discriminator is no longer able
to make correct distinctions, the segmentation network is properly fitted to
the training dataset and able to perform very accurate segmentations. Al-
though hard to train and computationally demanding, the improvements are
significant.

Transfer learning, where the network is initialised with pre-trained weights
from a different domain dataset, has been applied to prostate segmentation by
Tian et al. with success [43]. This was done from a network trained on a dataset
of natural images, which was shown to be able to adapt well to MRI images.
Zhu et al. also employed knowledge transfer but through a different technique,
by using a discriminator network to enforce convergence between feature vec-
tors produced by the segmentation network from two different datasets [58].
They argue that this method allows for more effective knowledge transfer,
especially using images of the same imaging modality and similar domain,
but with different details such as scanner specifications. It can be a successful
strategy to overcome data scarcity typical of medical imaging problems.

Another strategy to tackle dataset limitations is semi-supervised learning,
which was employed in one study [55]. This allows for the use of images for
which expert segmentations are not available, effectively increasing the amount
of data the model is trained on, leading to better results than using only the
data for which ground-truth is available. The problem with this approach is
that it requires manual validation to determine when the artificial segmenta-
tions are good enough to be added to the training set.

The use of deep supervision where the ground-truth labels are provided
to the model at various levels of the network - as opposed to only at the
output - was shown to improve prostate edge detection and spatial continuity
by facilitating gradient propagation [47,48]. This is presented as a significant
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improvement whilst being relatively easy to implement as side-outputs in the
segmentation network [48].

Only two studies on MR images attempted segmentation of the organs-
at-risk (OARs) besides the prostate. Both of them used a similar strategy: a
softmax layer at the top of the convolutional network for multi-class voxel-
wise classification [55,57]. One study offers a distinct approach for multi-class,
which despite being used for segmentation of a substructure of the prostate
(peripheral zone), could potentially be used for OARs [49]. This strategy con-
sists of cascaded U-nets, one network for each structure to be segmented,
where the output of the preceding network is used to make the input to the
next. Besides, the authors show that using two networks trained together in
a cascade also improves the segmentation ability of the first network, due to
the features learned by the second network which are propagated backwards.

The use of post-processing rules is explored by some authors such as elim-
inating segmentations smaller than a certain volume to avoid false positives
and filling holes inside larger segmentations to deal with false negatives [50,
59]. Although this strategy can be tuned to the specific data at hand with
positive results, it precludes generalisation ability as different datasets have
different field-of-view and resolution, and at the base and apex there can be
slices where the prostate has a very small volume which would be missed by
using such rules.

It is likely that a combination of many of these advances could be employed
together in a single framework based on fully convolutional neural networks to
improve the state-of-the-art performance. This seems possible because many
of the various contributions are not mutually exclusive in their implementa-
tion, but might even be synergistic in improving segmentation performance,
as already shown for some features such as dense, residual and long skip con-
nections [57–59]. In fact, the study with the best result on the PROMISE12
challenge achieved this by combining several of the improvements that have
been employed separately by other authors, and using a new loss function
focused on organ boundaries [58].

Arguably the improvement that provides the best performance gain is hav-
ing a fully three-dimensional architecture. It is intuitive that by only looking
at 2D slices, a model would have difficulty understanding the spatial conti-
nuity of an object. In theory, a 3D deep learning model can perform better
segmentation of volumes, especially at the top and bottom of approximately
round objects such as the prostate. This is in general reflected in the scores of
the studies reviewed, as can be seen in Table 1.

The most successful studies build upon a common stem - fully convolutional
neural network with encoder-decoder architecture similar to the classic U-net
- and each provide some improvement by adding new network modules or
training strategies. However, there are some studies that seem to deviate and
present radically different approaches which arguably deserve more attention:
instead of a voxel-wise classification, Karimi et al. designed a neural network
that predicts the coordinates of a point cloud in 3D space to predict the
prostate volume [54]. Yet, their result is not significantly better and training
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is difficult due to the high number of parameters. Also, in contrast to other
implementations, Feng et al. employed multi-task learning with a regression
task besides voxel classification for segmentation: the regression component
predicts the intensity map and boundary location for each organ. Information
gained from the regression tasks helped guide the segmentation in the low
contrast boundary regions [55]. More than alternate ways to connect neural
network components and small improvements, these provide new avenues of
research, even if their results are not the best.

4.2 Computed Tomography

Of all reviewed articles, 9 used computed tomography scans as the domain for
prostate and OAR segmentation. Two-thirds (six studies) used a 3D pipeline
while only 3 used 2D patches or the whole slices for segmentation. No articles
made use of public datasets (to the best of the authors’ knowledge there are
none available), and the largest dataset was comprised of 1114 scans. Con-
trary to what happened with MRI, more authors attempted to segment both
prostate and OARs, including bladder, rectum, femoral heads and penile bulb.
This is probably due to the fact that prostate segmentation in CT is more
specific to radiation oncology, where OAR segmentation is essential. The main
findings are summarized in Table 4 and a brief description of the models, their
benefits and limitations are given in Table 5.

Similarly to the studies focused on MRI, the earlier articles which per-
formed prostate segmentation on CT used a combination of DL and more
traditional methods (multi-atlas fusion [60] and level-set method [62]). Their
findings established the usefulness of Deep Learning for this task and lead the
way to more advanced, better performance models.

Computed tomography images have significantly less contrast than mag-
netic resonance images, particularly for soft-tissue organs such as those in the
pelvic cavity. The boundaries between the prostate, bladder and rectum are
sometimes difficult to define, especially where they touch or the edges seem to
vanish. In order to overcome this problem, Zhou et al. employed several long
pathways between the encoder and decoder arms of their U-net-like model
making use of dilated convolutions, a distilling path and also a regression task
focused on the boundaries. They were able to extract information at different
resolution scales. For the same problem, some authors adopted Attention gates
commonly used in Recurrent neural networks [69] and incorporated them into
the long skip connections of their segmentation models [63,68]. It is difficult to
compare these approaches as their models have other differences and were not
applied to the same dataset, but it would be useful to have direct qualitative
comparisons.

To further address the low contrast of CT, in clinical practice MRIs are
often used to help with manual contouring, mainly after registration with the
CT images. Dong et al. designed a Cycle Generative Adversarial Network
(CycleGAN) to generate synthetic MR images (sMRI) from the input CT
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[63]. The organ segmentations were then performed on the sMRI, with better
results than applying the same model to the CTs of the same patients. A
drawback of this method is that it requires previously co-registered CT and
MR images for training the CycleGAN, but it is impressive that this model
can overcome low contrast and vanishing boundaries by synthesising simulated
Magnetic Resonance images.

Besides low contrast and blurry edges between organs, CT of the male
pelvis is notorious for large organ shape and appearance variations. In the-
ory, by accurately identifying whole-organ shape variations one would already
solve the vanishing boundaries problem. He et al. propose a solution based on
distinctive curves, a morphological representation of the surface of each or-
gan, which are incorporated into an FCN to guide the segmentation [65]. This
method is successful in round or tubular structures as are the prostate, bladder
and rectum. However, by using specific points to find the distinctive curve for
each organ (the most anterior, posterior, left, right and center points), they
often run into undersegmentation if there are small indents or outdents not
captured by in the curve model.

To perform multi-organ segmentation, and similarly to what was seen in
MRI studies, most authors use a softmax function at the top of network [61,
63]. One study used this strategy to also segment the penile bulb, a notoriously
difficult structure to localise on CT due to its small size and very low contrast
difference to the background - achieved a DSC of 72.21% for this structure [68].
Some authors achieve segmentation of the various organs by training three
separate networks [65,66]. This often leads to overlaps in some voxels, which
Wang et al. tackle by using a max function getting the classification from the
highest confidence model, but He et al. use a weighted majority voting method:
a weighting factor is multiplied with the network probability. The prostate
segmentation network has larger weighting than bladder or rectum. Thus, if
the network confidences for a given voxel is the same for the three networks,
the voxel will be classified as prostate. This has the potential drawback of
oversegmentation of the prostate, which the authors try to overcome by fine-
tuning the weighting of each network [65].

Data handling for training, validation and testing is crucial and impacts the
performance of deep learning models greatly. Likewise, any model is only as
good as the quality of the underlying ground-truth labels used for its training.
In this regard, most of the studies in this review are hindered by using manual
contours mostly from a single expert, since this will imprint their personal
preferences and biases into the models. Some studies were able to overcome
this problem by having manual contours performed by different physicians in
the training set, helping cancel out inter-observer variation [64–66]. Liu et al.
quantified the benefit of this approach by comparing model performance on
a test-set with manual segmentations by one single expert to another test-set
with a consensus segmentation from 5 experts [64]. The same trained model
performed better on the consensus test-set with smaller standard deviation
(DSC of 0.88 ± 0.03 vs 0.85 ± 0.04). This shows that the model was able to
combine knowledge from the set of different specialists, thus achieving better
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generalisation ability. Any medical imaging dataset to be used for training
robust deep learning models for segmentation should take this finding in con-
sideration.

Although one of the advantages of deep learning models for segmentation
is that they are fully automatic, requiring no intervention, it seems that per-
formance can be improved by having some method to improve initial organ
localisation [64,65]. This allows for a smaller, higher-resolution sub volume
to be extracted and used by the segmentation network instead of the whole
imaging volume where the vast majority of the image is useless for the segmen-
tation task. To overcome this problem, Liu et al. experiment with two possible
solutions: a patch-based data augmentation method and using a smaller local-
isation CNN preceding the larger segmentation network (this latter method
is also used by other authors [65–67]). The results are similar for both ap-
proaches, but the 2-network method shows higher variation in distance met-
rics, particularly in the superior-inferior direction [64].

5 Discussion and conclusion

As evidenced in the Results section, there are several studies proposing differ-
ent deep learning architectures for radiotherapy planning for prostate cancer.
Research is booming in this field, proven by the fact that most of the articles
reviewed were published in the last year. Although CT is of utmost importance
for RT, it is MRI which has the most attention by the research community.
This is perhaps explained by acknowledging that segmentation on MR images
has more uses, from diagnosis to follow-up, and for more medical specialties
than the niche use of CT segmentation for radiation oncology. Likewise, there
are several publicly available datasets for prostate segmentation in MRI but
none in CT. This presents an obvious hindrance to research and should be
addressed as soon as possible.

The published articles in CT show smaller variance in prostate DSC than
those in MRI. Although at first this seems noteworthy, it is most likely coin-
cidental. The various models are widely different, and have been applied to
different datasets, in number of patients, image quality and resolution. If all
models were applied on the same standardised dataset, it is expected that
a model such as a combination of a very simple CNN with traditional ML
[62] would perform much worse than a complex three-dimensional fully con-
volutional network with improved modules [67]. In fact, Zhou et al. present a
comparison study showing that a classic U-net applied to the same dataset as
their proposed model approaches 60% as to DSC in the harder cases [61]. Like-
wise, a classic U-net was also implemented by Kearney et al. achieving a mean
DSC of 84.13% on the prostate (versus 90.02% of the proposed model) [68].
This is another evidence that direct quantitative comparisons between models
applied on different datasets should be made carefully until the models can be
tested on the same dataset.
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Segmentation of the prostate alone has gained attraction by the research
community, evidenced by the importance of some older challenges still active
nowadays, but there has been a low investment in segmentation of both ra-
diation targets and OARs, specifically for RT planning. Possible reasons for
this may be lack of access to RT planning images (as opposed to diagnos-
tic images), and difficulty in getting expert segmentations of every structure
required (as opposed to only the prostate itself).

In line with semantic segmentation of natural images for tasks other than
those related to the medical field, it can be seen that researchers are follow-
ing the most recent advances in deep learning with techniques such as dense
connections, dilated convolutions, spatially varying convolutions, anisotropic
convolutions, attention gates, multi-task learning, cost function engineering,
generative networks and adversarial training applied to the encoder-decoder
architecture that has become the standard for medical imaging segmentation.
Combination of several of these methods in a single model designed for end-to-
end learning seems promising as these may be synergistic in the performance
gains.

These methods are usually compared through geometric comparisons in
the form of overlap and boundary metrics, but the dosimetric impact of these
differences in the radiotherapy treatment plan is essential for future incorpo-
ration of these computational models in clinical practice, with the overarching
goal of improving quality and efficiency in healthcare.

The review by Moore [8] about automated treatment planning in radia-
tion therapy ends with a vision of the future where computers automatically
calculate a deliverable dose distribution within a second after the physician
completes their last contour. In the current review, we have realized that in
that future the physician might not even need to contour the volumes at all,
instead performing expert validation of the segmentations and the radiation
doses all in one go, right after the planning CT is acquired, allowing the treat-
ment to start earlier.
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