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Abstract—This paper describes the application of Evolutionary 
Particle Swarm Optimization, EPSO, to the optimization of the 
short term operation of hydro stations in market environment. 
The maximization of the revenues of hydro stations, namely 
pumping stations, is gaining increasing attention by generation 
companies. However, this is typically a complex problem given 
the non linear relation between the power, the flow and the 
head, the temporal coupling between stations in cascade and the 
increasing number of pumping stations. The EPSO based 
algorithm displayed a very good performance in terms of the 
quality of the final operation plan as well as regarding the speed 
of convergence and the robustness of the algorithm.  

Index Terms—hydro stations, EPSO, markets, optimization 

I. INTRODUCTION 
In the last twenty years the paradigm underlying the 

expansion and the operation planning of power systems was 
substantially altered in a large number of countries due to the 
development of electricity markets and the rapid increase of 
renewable and dispersed generation. Under this new more 
decentralized model, there are several generation companies 
competing to supply the demand and retailers competing to 
enlarge the portfolio of contracts with end consumers. 
Operation planning has changed with the possibility of biding 
to pool markets and to establish bilateral contracts.  

Specifically regarding operation planning, the presence of 
hydro stations has always been most welcomed namely if the 
hydro share is significant given the revenues these assets can 
provide. Therefore, it is very important to develop models to 
select the most adequate generation/pumping periods of the 
planning horizon. Differently from the past, generation agents 
are now apparently favoring shorter term strategies that 
enable maximizing the profit computed as the difference 
between the revenues obtained from selling electricity at the 
market price and buying electricity for pumping in some 
hours along the trading period. This can be formulated as a 
large scale integer optimization problem namely considering 
cascades of hydro stations and the need to consider a trading 
period of at least 24 hours or more desirably of a whole week. 

According to these ideas, this paper describes a short 
term hydro scheduling problem, HSP, on which a number of 
tests were run having an increasing complexity level and, as a 
result, an increasing applicability to real problems aiming at 
identifying the most adequate strategy for the operation of a 
set of hydro stations. This problem was initially addressed 
using an under relaxation approach and Genetic Algorithms 
[1, 2]. In this paper, we are now using Evolutionary Particle 
Swarm Optimization, EPSO, to test the performance of this 
metaheuristic to address a realistic integer optimization 
problem. The paper includes results to illustrate the 
application of these models to plan the operation of a set of 
hydro stations along a planning period in order to evaluate the 
performance of the mentioned EPSO approach.    

II. BRIEF LITERATURE REVIEW 
The scientific community has long been interested in the 

optimization of the operation of hydro stations. The attention 
devoted to this problem is well known in countries in which 
hydro has a dominant position in the generation mix as in 
Brazil and Norway. In a large number of countries generation 
systems are hydrothermal which originated a large number of 
approaches namely to manage the use of the water on the 
longer term allocating a value to its use.  

The original hydro scheduling problem has non linear 
nature and this originated the use of different non linear 
optimization techniques to solve it [3, 4]. Several 
approximations were introduced in order to reduce the large 
complexity of these models namely leading to linearized 
models solved by commercial or customized linear packages 
[4]. The use of dynamic programming to solve this problem 
was also initially reported but the curse of dimensionality 
prevented its application to realistic sized systems. Other 
publications include binary variables as [5, 6] to represent the 
state of each station in each period. More recently, several 
metaheuristic techniques started to be applied to the hydro 
scheduling problem. These include neural networks [7], 
Genetic Algorithms [2, 8] and several implementations of 
particle swarm approaches [9, 10].    
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III. EVOLUTIONARY PARTICLE SWARM OPTIMIZATION, EPSO 
Particle Swarm Optimization (PSO) is a population based 

metaheuristic based on an analogy with swarms of birds and 
fish schooling. In PSO each agent is associated to a particle 
of the swarm and it is characterized by its position and 
velocity. In typical PSO approaches, a new particle is 
generated from an ancestor, according to the “movement 
rule” (1) and (2) admitting that the indices pt and it represent 
the particle and the iteration of the algorithm. The particle pt 
in iteration it+1 results from the addition of the particle in 
iteration it with the velocity vector. This vector (2) is the 
addition of three terms – the inertia related with the velocity 
vector of particle pt in iteration it, the memory using the 
position of the best of the ancestors of particle pt in previous 
iterations and a cooperation term that includes information 
from the best so far identified particle. The memory and 
cooperation terms are multiplied by random numbers and p is 
a communication factor that allows that only some 
components of the cooperation term are used to obtain the 
velocity vector.  
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In these expressions it
ptX , 1it

ptX +  are the positions of 

particle pt in iterations it and it+1, it
ptV  and 1it

ptV +  are the 
velocity vectors of particle pt from iteration it-1 to it and from 
it to it+1, 1Rnd  and 2Rnd are random numbers from uniform 
[ ]1,0  distributions, ptb is the best of the ancestors of particle pt 
and Gb is the best particle so far identified, best global. 

Several authors report that this scheme was adequate to 
make the swarm converge to the zone of the optimum, but it 
turned difficult to obtain fine convergence to the optimum 
final position. Therefore, [11] proposed an evolutionary 
approach to the PSO algorithm that evolves as follows.   
Procedure EPSO 

Initialize a random population P of npt particles 
REPEAT 

Replication  – each particle is replicated r times; 
Mutation  – each particle has its strategic parameters mutated; 
Reproduction – each particle generates an offspring through 

recombination; 
Evaluation  - each offspring has its fitness evaluated; 
Selection –the best particles survive to form a new generation; 
Test - for termination (based on fitness, on number of generations 

or other criteria); 
Until test is positive. 

End EPSO 

In this scheme, departing from an initial population, each 
particle is cloned a number of times, r, forming r populations. 
Then, the weights associated to the inertia, memory and 
cooperation terms are mutated so that one passes from W to 
W* using for instance an additive expression as (3) in which 
σ is a learning parameters fixed externally. 

                              ( )[ ]τ= 1,0Nlog.W*W  (3) 

In the algorithm reported in [12] not only the weights of 
the memory, the inertia and the cooperation terms are 
perturbed. The EPSO algorithm includes a mutation over the 
best global particle identified so far, Gb , using (4). The 

weight *
4W  controls the “size” of the neighborhood of Gb  

where it is more likely to find the real best solution. The off-
spring of each particle is generated by the recombination of 
the terms so that the velocity vector is now given by (5). 
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In this expression, *
Gb  is the mutated best overall particle 

found by the swarm in their past life, *
1W  , *

2W   , 
*
3W  and *

4W  
are the weights of the inertia, the memory the cooperation and 
the best global and p  is a communication factor in [ ]1,0 . Once 
the offsprings are obtained, the new particles shall be 
evaluated using an evaluation function that depends on the 
problem under analysis. Once this step is concluded, then all 
particles in all r populations are evaluated. The selection is 
done comparing the value of the evaluation function of 
particle pt of population 1, with particle pt of population 2, 
…. The particle of index pt in all r populations having the 
best evaluation function passes to the next iteration, that is, it 
is included in the new population. Several tests reported in 
[11] showed that EPSO displays faster and more accurate 
convergence to optimum, and it is more robust and 
insensitive to the initialization of weights. 

IV. MATHEMATICAL MODEL AND SOLUTION ALGORITHM 

A. General Mathematical Model 
When solving a Hydro Scheduling Problem (HSP) we are 

looking for a feasible operation schedule (inactive or 
operation as a generator or pump) for a set of hydro stations 
that maximizes the profit while enforcing a number of 
constraints. These stations can eventually be located in 
cascades so that their operation is interconnected from a 
temporal point of view. One of the major difficulties when 
addressing this problem is related with the non linear relation 
between the discharge volume q, the net head h, and the 
generated power p, as illustrated in Figure 1. For each 
particular value of the head, there is a non linear curve 
relating the power with the discharge volume. 

 
Figure 1. Family of curves for the hydropower output of a hydro power plant. 
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Admitting a hydro station i being scheduled in period k, 
the generated power is given by (6). In this expression, the 
gravity acceleration is 9,8 ms-2, ikq is the water flow in m3s-1, 

ikh is the water head in m and Tµ  is the generation 
efficiency factor. As indicated above, the head has a non 
linear relation with the water flow originating losses in the 
hydro circuit. Due to these losses, the generated power is 
more accurately given by (7) in which β represents the head 
loss coefficient. According to (7), for each value of ikh , there 
is a non linear relation between ikq and ikp . The head loss 
coefficient β is given by (9) in which hn∆ is the nominal head 
loss and qn is the nominal discharge flow. 

 Tikikik .h.q8,9p µ⋅=  (6) 

 ( ) T
2
ikikikik .q.h.q8,9p µβ−⋅=  (7) 

 
2qn

hn∆
=β  (8) 

The literature describes different ways to deal with this 
non linear relation. If the head loss term in (7) is neglected, 
we get a linear function between the power and the flow. 
Doing this, the power is larger than the one given by the real 
curve originating larger errors in the area of large flows. This 
is undesirable because the current practice indicates that 
hydro stations tend to operate at the maximum power as most 
as possible. Another approximation consists of using a 
constant value for the head loss, corresponding to the 
maximum discharge flow as illustrated by the red line in 
Figure 1. This is a more conservative approach that is 
interesting since the error is small in the area of large 
discharge flows. The adoption of a particular approximation 
depends on the nature of the station. For large reservoirs, 
even if there are large flows, we can admit that the head 
barely changes and so using a constant head will not originate 
large errors. However, for small reservoirs larger head 
variation can easily occur.  

If pumping is considered, the amount of power spent to 
pump water back to the reservoir is given by (9) where Pµ  is 
the pumping efficiency factor. 

 ( ) P
2
ikikikik /q.h.q8,9p µβ+⋅=  (9) 

The HSP problem is formulated by (10-18) to maximize 
the profit (10) obtained with the operation of I hydro stations 
along a period of K hours. At each period k the generated 
power of each station i, ikTP  , is sold at a market price kπ . If 
station i is pumping then the electricity is bought at the price 

kπ  thus representing a reduction of the revenue. On the other 
hand, if the maximum volume is exceeded then the water spill 
is non zero and this is penalized by the term iks.ps in (10). 
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K,...,1k;I,...,1i ==  (18) 
In this formulation: 
- Mi – set of upstream reservoirs directly connected with 
reservoir i; 
- m – index for a reservoir in set Mi; 
- ikTP  – generated power of reservoir i at hour k; 
- ikPP – pumped power in reservoir i at hour k; 
- ps  – penalty factor for spills; 
- iks  – spill of reservoir i at hour k; 
- ikv  –volume of reservoir i at hour k; 
- ika  – inflow of reservoir i at hour k; 
- Pikq – pumping volume of reservoir i at hour k; 
- Tikq  – discharge volume of reservoir i at hour k; 
- mφ , mω , mλ  – delays of turbine discharge, spill and 
pumping volumes; 
- minl

ivol , maxl
ivol  - minimum and maximum discharge 

volumes of reservoir i; 
- min

iv  , max
iv - level volume limits of reservoir i; 

- min
iqT  , max

iqT - turbine discharge limits for station i; 

- min
iqP , max

iqP - pumping volume limits for station i; 
- iKvol – volume level of reservoir i in period, K. 

This problem includes a set of equality constraints (11), 
one per station i and per period k, relating the volume ikv  
with the volume of the reservoir i in the period k-1, with the 
inflow and outflow, with the water spill and with the water 
balance in the upstream reservoirs directly connected with it. 
Constraints (12) impose the minimum and maximum limits 
for reservoir i. Constrains (13) enforce the hourly volumes of 
reservoir i and (14) and (15) impose limits to the water flows 
of station i in period k. Lastly, constraints (16) impose that 
water spills are non-negative and (17) sets the volume of the 
reservoir i at the end of the period, that is, at hour K. 
B. Solution Algorithm Using EPSO  

In this work we used the EPSO algorithm described in 
Section III to solve the problem (10-18). The developed 
approach addresses the non linear relation between the power, 
the head and the discharge volume in an iterative way. At the 
end of one iteration, the discharged volume is obtained and it 
is used to update the head loss term in (7) to update the net 
head. This new value is then used as input in the next 
iteration of the EPSO algorithm. The EPSO starts with the 
initialization of the number of particles in the population, the 
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weights in (5) and the learning parameter τ  in (3). The 
operation state of each station in hour k is coded as follows: 

-  -1 – the station is operating as a pump; 
-  0 – the station is not active; 
-  1 – the station is operating as a generator. 

This coding is based on the assumption that the generation 
and pumping flows are at the maximum possible, that is, if 
the station is generating then it is using the maximum 
possible flow and if it is pumping it is using the maximum 
pumping flow. Then, the EPSO evolves as it follows. 

Step 1 – Initialization - the initial population is created filling 
the vector that codes each particle with numbers -1, 0 or 1 
randomly sampled. Using this information, the generated or 
consumed powers are obtained using (7) or (9). These powers 
are then used to evaluate each particle using an evaluation 
function that includes the objective function (10) plus 
negative penalties if any constraint from (11) to (17) is 
violated. Then, the best particle corresponding to the one 
having the largest value of the evaluation function is store. 

Repeat EPSO cycle until convergence:  

Step 2 – Replication - the current population is duplicated 
to get a cloned one; 
Step 3 – Mutation - using (3), the weights of the cloned 
population are mutated;  
Step 4 – Reproduction - applying (5), for each particle in 
both populations (initial and cloned) the offsprings are 
obtained. The values obtained for each cell of each 
particle are in general not -1, 0 or 1. So, any value smaller 
than -0,5 is set at -1, and any value larger than 0,5 is set at 
1. Values in the interval from -0,5 to 0.5 are set at 0. This 
means that we are only admitting that a station is not in 
operation (0), or if it is generating or pumping than it is at 
the maximum possible value (1 or -1).  
Step 5 – Evaluation – after having the operation orders for 
each station in each period we evaluate each offspring 
using the evaluation function already described in Step 1; 
Step 6 – Selection – for each position of the new 
population there are two candidate particles, one from the 
current population and the other from the cloned one. 
From this pair, it passes to the new population the one 
having the largest value of the evaluation function. The 
best particle in every position of the population is updated 
as well as the best global particle identified so far; 
Step 7 – Convergence – this cycle continues until the next 
condition is valid: the global best particle did not change 
for a pre specified number of iterations and the standard 
deviation of the evaluation function of the particles in the 
new population is smaller than a specified threshold. 

V. RESULTS USING A CASCADE OF HYDRO STATIONS 

A. Data of the test hydro system  
The hydro system used to test the developed approach 

includes four reservoirs with the characteristics in Table I. 
Table II presents the hourly prices for a period of 48 hours. 

 

Table I.  Characteristics of the four hydro stations. 
 Res. 1 Res. 2 Res. 3 Res. 4 
Initial volume (hm3) 900 20 30 9 
Final volume (hm3) 900 20 30 9 
Minimum volume (hm3) 800 10 10 8 
Maximum volume (hm3) 1000 30 50 10 

max
iqT  (m3/s) 400 120 70 50 

max
iqP  ( m3/s) 400 120 70 50 

Head (m) 50 100 150 500 
Discharge efficiency, Tµ  0,88 0,89 0,89 0,90 

Pumping efficiency, Pµ  0,92 0,93 0,93 0,93 

Table II.  Electricity prices in €/MWh for a 48 h period. 

Hour Price Hour Price Hour Price 
1 55,00 17 58,50 33 56,15 
2 45,00 18 62,00 34 64,18 
3 46,50 19 90,60 35 70,24 
4 45,44 20 85,00 36 70,18 
5 45,52 21 85,00 37 72,63 
6 45,51 22 80,47 38 66,36 
7 45,58 23 70,00 39 59,78 
8 55,49 24 79,72 40 59,06 
9 56,16 25 56,20 41 60,64 

10 61,75 26 46,25 42 64,44 
11 72,50 27 46,02 43 91,91 
12 71,74 28 45,74 44 83,13 
13 72,42 29 45,36 45 84,49 
14 66,25 30 43,75 46 80,96 
15 61,07 31 43,89 47 67,05 
16 58,95 32 58,02 48 78,22 

B. Results for Test 1 
Test 1 was the simplest one and it was used to set a 

number of parameters of the EPSO algorithm. In this test we 
did not consider inflows and we admitted that the four 
stations are independent from a hydro point of view. 
According to Table I, since the initial and final volumes are 
equal, the number of pumping and generation periods should 
be equal. This allowed us to more easily evaluate the 
convergence of the algorithm to the optimal solution and to 
make a number of runs that lead to select populations with 20 
particles, a value of 0,9 to initialize the weights of each term 
in (5) and a value of 0,2 for the learning parameter τ in (3).  
C. Results for Test 2 

In this test we are now considering the following inflow: 
- Station 1 – 100 m3/s for hours 1, 2, 3 and 4;  
- Station 2 – 50 m3/s  in all hours; 
- Station 3 - 100 m3/s for hours 14, 15, 16, 17 and 18; 
- Station 4 – no inflows. 

This test also includes the computation of the head loss 
term in (7) and (9) calculated with the values obtained for 

ikq  in the previous iteration. Figure 2 displays the operation 
orders for each of the 4 stations along 48 hours. Because 
inflows are now considered, the number of discharge and 
pumping periods are no longer equal. In fact, there should be 
more discharges than pumping periods since the inflows help 
filling the reservoirs of stations 1, 2 and 3 with water again. 
Regarding Station 4, the operation strategy is not changed 
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regarding Test 1 because Station 4 has no inflows. The 
presence of inflows and the reduction of the number of 
pumping periods strongly contribute to increase the final 
profit given by (10).  

 
Figure 2. Generation and pumping periods for each station.  

D. Results for Test 3 
Test 3 differs from Test 2 because we are now planning 

the operation of the 4 stations for an entire week that is for 
168 hours. In this case, the number of pumping orders for 
Stations 1, 2 and 3 is smaller than the number of generation 
orders and generation tends to occur when the electricity 
prices are larger. On the other hand, since Station 4 has no 
inflows the number of generation and pumping orders are 
equal so that the final ad initial volumes are equal.  
E. Results for Test 4 

In Test 4 we admit that Stations 1 and 2 are in cascade 
(Station 1 upstream Station 2) while Stations 3 and 4 remain 
independent. We are also assuming that both inflows and the 
head loss term in (7) and (9) are considered. Figure 3 displays 
the operation orders for a period of 24 hours.  

 
Figure 3. Generation and pumping periods of the four stations. 

The operation orders for Stations 3 and 4 are unchanged 
but the number of pumping periods of Station 2 is now much 
more reduced. This is because Station 2 is downstream 

Station 1 and so it is receiving water whenever Station 1 is 
generating. As a result of this cascade, the number of 
pumping periods of Station 2 is more reduced because this 
station can more easily meet the equality of the initial and 
final volumes using the water coming from Station 1. 

VI. CONCLUSIONS 
This paper described the use of an Evolutionary Particle 

Swarm Optimization, EPSO, algorithm to the optimization of 
a set of hydro stations. The adequate planning of the operation 
of hydro stations (including generation and pumping periods) 
has always been a matter of concern to generation companies. 
With the advent of electricity markets this issue gained new 
attention because of the need of generation companies to 
optimize the use of their generation assets considering market 
prices. With this paper and with the MSc Thesis on which it is 
based we hope to have contributed with a further step in the 
development of powerful tools that help generation companies 
in optimizing the operation of their portfolios. 
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