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aBraśılia - DF, 70040-020, Brazil
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Abstract

Segmentation methods have assumed an important role in image-based diagnosis of several cardiovascular

diseases. Particularly, the segmentation of the boundary of the carotid artery is demanded in the detection

and characterization of atherosclerosis and assessment of the disease progression. In this article, a fully

automatic approach for the segmentation of the carotid artery boundary in Proton DensityWeighted Magnetic

Resonance Images is presented. The approach relies on the expansion of the lumen contour based on a distance

map built using the gray-weighted distance relative to the centre of the identified lumen region in the image

under analysis. Then, a Snake model with a modified weighted external energy based on the combination of

a balloon force along with a Gradient Vector Flow-based external energy is applied to the expanded contour

towards the correct boundary of the carotid artery. The average values of the Dice coefficient, Polyline

distance, mean contour distance and centroid distance found in the segmentation of 139 carotid arteries were

0.83 ± 0.11, 2.70 ± 1.69 pixels, 2.79 ± 1.89 pixels and 3.44 ± 2.82 pixels, respectively. The segmentation

results of the proposed approach were also compared against the ones obtained by related approaches found

in the literature, which confirmed the outstanding performance of the new approach. Additionally, the

proposed weighted external energy for the Snake model was shown to be also robust to carotid arteries with

large thickness and weak boundary image edges.
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1. Introduction

Cardiovascular diseases are a major cause of death and disability in the world. The most usual underlying

disease process is atherosclerosis, which is still the most dangerous disease that affects the majority of people

around the world [1]. The accumulation of fatty material and cholesterol in the walls of the arterial system

is the underlying condition to the formation of the so-called atherosclerotic plaques, which can progressively5

obstruct the blood through the artery and lead to heart attacks and strokes. Therefore, an early diagnosis is

important to rapidly establish the correct treatment planning for preventing the onset of such symptoms.

Magnetic resonance imaging (MRI) has been widely used in non-invasive image-based diagnosis of the

carotid artery. Particularly, magnetic resonance (MR) images have been successfully used in the character-

ization of atherosclerotic plaques, enabling the assessment of the disease progression [2]. Computer-aided10

methods for the analysis of the carotid artery in MR images play an important role to expedite the identifi-

cation and assessment of possible atherosclerosis and, consequently, the design of the best treatment plan to

prevent future symptomatic events. [3, 4, 5].

Despite the importance of the lumen contour for predicting the possible blood flow obstruction caused

by atherosclerotic plaques, carotid wall boundaries are essentially worth in assessing the morphology of15

the arteries considering the use of metrics like the wall thickness, for example, and even necessary as the

first step towards their identification in images with other surrounding structures. However, the manual

delineation of the lumen and carotid wall boundaries is a very arduous and time-consuming task; particularly,

when taking into account the high number of slices acquired in a single imaging exam. Approaches based

on surface graph cuts [6, 7], ellipse fitting [8, 9], difference of Gaussian [10] and active contour models20

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20] have been proposed for the segmentation of the lumen and carotid

wall boundaries in MR images. However, the main limitation of these methods is the necessity of manual

interventions and the expansion of the lumen contour according to a pre-defined value as in Ladak et al. [12],

van ’t Klooster et al. [15], Saba et al. [17] and Gao et al. [18].

Besides the approaches based on active contour models, the segmentation of structures in medical images25

can also be formulated as level set curves in order to tackle possible topological changes in the structures

of interest and the similarity of its grayscale intensities with the ones of neighbour structures [21, 22, 23].

Regarding the latter challenge, Wang et al. [24] proposed a shape-intensity level set method to segment the

boundary of the liver in Computed Tomography (CT) images of the abdominal region. Despite the reported

effectiveness, level set methods may still suffer to properly adapt the segmentation contours in regions of30

inhomogeneous grayscale intensity, a common aspect of the images herein tackled. On the other hand, active

contour models are still worth to handle tasks where the purpose is the identification of a single boundary.

Heuristic values can fail to properly expand the lumen contour outward the correct lumen region. Further-

more, the gradient information usually employed in active contour models is also inadequate to successfully

tackle weak boundaries that are commonly found on MR images of the carotid artery. Regarding the former35

challenge, the expansion of the lumen contour should not depend on any heuristic value in order the segmen-
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tation of the lumen and carotid wall boundaries can be fully automatic and robust, which is highly demanded

to rapidly provide to the clinical experts the region of the vessel to be evaluated. The latter difficulty regards

the adoption of suitable image processing techniques to extract useful information about regions of interest

that have weak boundaries, but have an important role in the achievement of the best segmentation results.40

These two difficulties were the main concerns of this study, which leads us to propose a novel approach for

adressing at the same time the fully automatic segmentation of carotid arteries and the weak boundaries in

regions of interest that occasionally lead the contours to incorrect locations.

Therefore, this article proposes a novel fully automatic approach to segment the lumen and outer bound-

aries of the carotid artery in Proton Density Weighted (PDW) MR images. The proposed approach performs45

the segmentation of the carotid artery boundary using a gray-weighted distance map and a Snake model

with a modified external energy that relies on Gradient Vector Flow and balloon forces. Briefly, the first step

of the new approach concerns the identification of the lumen contour using the mean roundness criterium

proposed in Jodas et al. [25]. Then, since the magnitude of the gradient along the lumen region prevents the

lumen contour to reach the boundary of the carotid artery, the gray-weighted distance map is employed to50

expand the contour outward the lumen region towards the carotid artery boundary. Then, the region inside

the expanded contour is discarded and the contour is used to initiate a Snake model in order to segment the

carotid artery boundary. Since the Snake model is a particular case of deformable models, the previously

identified lumen contour may be further improved using the concept of curve evolution to find the boundary

of the carotid artery based on geometrical properties of the contour and image-based information.55

This study provides three main contributions: 1) The use of the gray-weighted distance map to prevent

the lumen contour to be trapped inside the lumen region by the high magnitude of the gradient surround the

lumen contour. Consequently, the proposed approach assists the used active contour model to automatically

expand the lumen contour outward the lumen region; 2) the combination of a balloon force along with a

Gradient Vector Flow-based external energy in the Snake model to also handle the segmentation of the60

boundaries of carotid arteries of large thickness and weak image edges. The use of the intensities’ entropy

and the analysis of the gradient vectors ahead the points of the contour to be deformed are used to improve

the segmentation of the carotid wall boundary; 3) the detailed assessment of the accuracy of the proposed

approach using a challenging PDW MR image dataset.

The remainder of this article is organized as follow: Section 2 describes the proposed automatic seg-65

mentation approach. Section 3 presents segmentation results obtained by the proposed approach and their

comparison against the corresponding manual delineations. The advantages and limitations of the proposed

approach are identified in Section 4. Finally, the conclusions are drawn in Section 5.
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2. Materials and Methods

2.1. Used MR images70

This investigation was performed using MR images of the carotid artery that were beforehand used in

the research carried out by van Engelen et al. [26] and kindly provided by the authors on request. The

used images were collected according to the Medical Committee of the Erasmus Medical Center, and all

assessed patients provided their written consensus for the use of the acquired images. Additional information

about the MRI scans and related ethical clearance is available in van Engelen et al. [26]. All the images75

included in the used dataset represent cropped regions that contain carotid arteries acquired by multiple

imaging modalities. The MR images having a perfect registration, which was performed using the approach

suggested in van Engelen et al. [26], with the corresponding histology images were cropped to obtain the final

regions of interest of the carotid arteries [26]. Five MRI scans obtained from thirteen patients: T1-weighted

(T1W), Proton Density Weighted (PDW), Time-of-Flight (TOF), and two 3D-T1W scans, are contained in80

the dataset. Each included MRI scan is formed of nearly 17.7±4.8 slices per patient, having each one a pixel

size of 0.25 mm x 0.25 mm.

In order to overcome the lack of some manual delineations in the original dataset and some misalignments

of the provided contours due the registration process described in [26], which could affect the quantitative

analysis of the segmentation accuracy, the lumen and carotid walls were manually delineated on the 23085

PDW MR images of the thirteen patients. The delineations were made by a physician of the Neuroradiology

Department from the Centro Hospitalar São João, in Porto, Portugal, with the supervision of an experienced

physician from the same department. The manual contours of the lumen and carotid walls of the images

belonging to eight patients were established based on the PDW MR images only; the delineations of the

images belonging to four patients were made with the additional visual examination of the corresponding90

3D-T1W MR images; and the PDW MR images of one patient were not manually segmented due to their low

quality and the presence of strong artefacts; additionally, the images of two patients were not used due to the

impossibility of identifying the structures of interest. Hence, 185 PDW MR images with manual delineations

of the lumen and carotid boundaries were used in this study.

2.2. Proposed approach95

The diagram of the proposed automatic approach for segmenting the carotid wall boundary in PDW MR

images is depicted in Figure 1.

Here, the segmentation of the lumen boundary was performed using a method already developed and

proposed in our previous study [25], which relies on a circularity index calculated from each region identified

by the K-means algorithm with subtractive clustering. The method described in [25] refers to an already100

developed approach for the segmentation of the lumen region in images of magnetic resonance and intravas-

cular ultrasound imaging techniques. The identified lumen contour is then submitted to the vessel wall

segmentation stage to expand it to the outer boundary of the carotid artery. In the vessel wall segmentation
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Figure 1: Proposed approach for segmenting the carotid artery boundary in PDW MR images.

stage, the lumen contour is expanded according to two steps: the first step consists in expanding the contour

outward the lumen region, by means of the application of a Snake active contour with ellipse constraint in105

the grayscale distance map of the input MR image; and the second step completes the expansion to the true

boundary of the carotid artery, based on a Snake active contour with a suitable weighted external energy.

2.2.1. Distance map

Edge detection operators rely on the gradient of the input image to find significant variations on the

grayscale intensities of the existent regions. Usually, in Black-Blood MR images of the carotid artery, the110

lumen is a region with low intensity values surrounded by high intensity values corresponding to the region

of the vessel wall. Hence, significant variations of the grayscale intensity between the lumen and vessel wall

regions represent a challenge to expand the lumen contour towards the boundary of the carotid artery of

interest.

Usually, the external energies used in the Snake model rely on the magnitude of the gradient vectors to115

decrease the evolution of the initial contours towards the boundaries of the structures of interest. However,
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the high magnitude of the gradient vectors around the lumen region can hinder the expansion of the identified

lumen contour towards the boundary of the carotid artery under analysis. Approaches based on heuristic

values used in order to expand the lumen contour in the direction of the boundary of the carotid artery, may

still fail due to the lack of robustness against changes in the resolution of the input image. Therefore, an120

efficient and dynamic approach to avoid the edges between the lumen and carotid wall is proposed in this

study.

The distance transform is a technique applied on binary or grayscale images to assign a value to each

pixel of the structure of interest that represents the nearest distance to the pixels of the image background.

This transform has been successfully used in many image processing and analysis problems such as in skele-125

tonization [27], edge detection [28] and minimal path extraction [29] problems.

The geodesic time represents the gray-weighted distance between two pixels p and q in a grayscale image,

and it is defined as the sum of the pixel intensities along the minimum cost path connecting the two pixels.

The geodesic time was proposed by Soille [30] and it is calculated as the mean of two adjacent pixels of the

grayscale image f along the minimum path:130

tf (P ) =
l

∑

i=1

f(pi − 1) + f(pi)

2
, (1)

where f(pi − 1) and f(pi) are the intensity of two adjacent pixels along the minimum cost path tf (P ), and l

is the length of the path P . Starting from pixel p, the minimum cost relatively to pixel q is calculated taking

into account the 3x3 neighbors of each pixel along the path according to Equation 1. The geodesic time

assures that there is only one path with minimum cost between pixels p and q. Hence, the geodesic time is

the smallest amount of time, i.e., cost, between pixels p and q:135

tf (p, q) = min{tf(P )|P connects p and q}. (2)

Figure 2 illustrates an example of the gray-weighted distance calculated from a centre pixel to each pixel

at the border of a 5x5 matrix.

For each value of the matrix depicted in Figure 2(a), Equation 1 is applied to calculate the distance

between current value f(pi) and previous value f(pi − 1). For example, the distance between the path

represented by centre value 13 (f(pi − 1)) framed in red in Figure 2(a) and value 6 (f(pi)) located in line 3140

and column 2 of Figure 2(a) is equal to (13+6)
2 = 9.5, which is the value in line 3 and column 2 illustrated in

Figure 2(b). The same principle is followed to calculate the distances for all the neighbor values from centre

value 13. The arrows in Figure 2(b) indicate the paths that follow the minimum distances from the centre

position to the borders of the depicted matrix. For example, the distance from centre value 13 and value 4

located in line 3 and column 1 in Figure 2(a) is calculated as min(9.5 + (6+4)
2 , 9 + (5+4)

2 = min(14.5, 13.5),145

which gives values 13, 5, 4 as the minimum path from the centre value to the border located in line 3 and

column 1 of the example depicted in Figure 2.
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Figure 2: Example of application of the gray-weighted distance on a 5x5 matrix: a) The 5x5 matrix with grayscale intensities;

b) The gray-weighted distance calculated from the pixel framed in red to each pixel at the border of the matrix. (The arrows

indicate the path with minimum cost.)

As shown in Figure 2, the distance along the path connecting the centre pixel to each pixel at the border

of the matrix increases according to the intensity values. The higher the pixel intensities along the path, the

larger will be the distance from the starting pixel to the ending pixel. Considering the common low intensity150

of the lumen region of the carotid artery in Black-Blood MR images, the distances from the centre of the

lumen to all pixels at the border of the input image start to increase significantly as the paths reach the edge

between the lumen and the vessel wall regions. Hence, the expansion of the identified lumen contour beyond

the boundary of the lumen region can be performed by decreasing the contour evolution as the values of

the distance map increase. Examples of the gray-weighted distance applied to PDW MR images of carotid155

arteries are depicted in Figure 3.

Figure 3: Examples of the gray-weighted distance applied to PDW MR images of carotid arteries: The images on the top row

represent the ones with the segmented lumen contours in green (the starting points of the gray-weighted distance are the red

dots that represent the centres of the lumen contours). The images on the bottom row show the corresponding distance maps

calculated by Equation 1.

As shown in Figure 3, the grayscale intensities of the images corresponding to the distance maps (on the

bottom row) represent the distances from the centres of the lumen contours to all pixels at the border of the

images. The higher the intensity values are, the larger will be the distances from the centre of the lumen.
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The distances inside the lumen region start to increase close to the edges of the lumen boundary.160

2.2.2. Active contour model

Deformable models have been widely used in the segmentation of boundaries of structures presented in

medical images [31, 32, 33, 34, 35]. Active contours, also known as Snakes, were proposed by Kass et al. [36] to

find boundaries of regions in images through the evolution of curves, i.e., contours, controlled by internal and

external energies. The active contour model proposed by Kass et al. [36] has been extensively used in tasks of165

image processing and analysis, particularly in the segmentation of medical images. However, the gradient of

the input image commonly used as external energy provides limited capture range and poor convergence to

concavities. Hence, the initial contour needs to be placed close to the boundary of the structure of interest.

Therefore, balloon forces [37] were proposed to increase the amplitude and range of the contour to be evolved:

Fballoon = kn(s), (3)

where n(s) is a unit vector perpendicular to each point of the contour to be deformed, and k is a weight170

that defines the amplitude of the unit vector force. The sign of k defines the orientation of the contour,

i.e., the ability to inflate or deflate it around the structure of interest. A positive value of k will make the

contour to inflate until it fits the boundary of interest, whereas a negative value will be responsible to deflate

the contour. Balloon forces have been successfully applied to increase the pressure force of active contour

models, leading the contours to fit the boundaries of interest even when the initial contours are distant from175

the structures of interest. However, balloon forces may cause the segmentation contour to leak weak image

edges due to the amplitude and strengthen of the unit vectors.

Xu and Prince [38] proposed a new external force called Gradient Vector Flow (GVF) to increase the

capture range and tackle the concavities problem by diffusing the gradient vectors of an edge map calculated

from the input image. Although successfully used as an external energy for active contour models, the main180

disadvantage of the GVF method is the inability to deal with weak image edges that can cause the contour

to leak the true boundary. Liu and Bovik [39] proposed a new external energy for the Snake model based on

the decomposition of the Laplacian operator. This new external energy is called Neighbourhood-Extending

and Noise-Smoothing Gradient Vector Flow (NNGVF), which is based on the convolution of two templates

used to maintain the low-frequency components of the image obtained by a gradient operator, suppress noisy185

artefacts and increase edge-preservation. Since the convolution is performed in larger neighbourhoods, the

NNGVF performs noise reduction and captures more information to calculate the diffusion vectors in regions

with weak edges.

Although the NNGVF provides better results when compared to the GVF, the evolution of the contour

in structures with large areas is still the most challenge in the segmentation of medical images. Examples of190

segmentation results obtained by the Snake model with the NNGVF applied to PDW MR images of carotid

arteries are shown in Figure 4.
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Figure 4: Examples of incomplete convergence of the lumen contours to the boundaries of carotid arteries resulting from the

Snake model with the NNGVF applied to PDW MR images. (The identified lumen contours are in green, the blue contours are

the lumen contours expanded beyond the boundaries of the lumen regions by using the images resulting from the gray-weighted

distance, and the red contours are the results of the Snake model with the NNGVF initialized with the blue contours.)

In Figure 4, the lumen contours identified by the method proposed in [25] are represented in green; the

blue contours are the lumen contours expanded beyond the boundaries of the lumen regions by using the

Snake model initialized with the green contours in the images resulting from the gray-weighted distance; the195

contours in red are the results of the Snake model with the NNGVF initialized with the blue contours. Here,

the incomplete convergence of the initial contours in blue to the true boundaries of the carotid arteries is due

to the variations of the grayscale intensities inside the carotid wall and the high distance to the boundaries

of interest.

In order to overcome the usual limited range covered by the GVF, Khadidos et al. [40] proposed a new200

external energy for the Snake model based on the combination of the GVF and balloon-based forces. Hence,

a weighted factor based on the intensity of the magnitude of the gradient and the difference between the

directions of the balloon forces, and the gradient vectors was introduced to control the evolution of the initial

contour [40]:

Eext = (Fballoon ∗ (1− Ω)) + (FGV F ∗ Ω), (4)

where Fballoon is the balloon force calculated from the contour to be deformed, FGV F is the external energy205

calculated from the GVF based force and Ω is defined as:

Ω = h1−(AD−ǫ). (5)

Parameter Ω represents a value between 0 (zero) and 1 (one) measured based on the intensities of the pixels

ahead each point of the contour. Therefore, Ω is a weighted factor that determines which gradient forces

(GVF, balloon force or a combination of both) need to be applied at each point of the contour. Constant

ǫ = 0.001 is employed to avoid power by zero in cases where AD = 1. The value of h at each pixel (x, y)210

of the contour to be deformed is defined as the average value of the intensities inside a semi-circular region

centred at (x, y):

h(x, y) =
1

N

∑

(i,j)∈S

f(i, j), (6)
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where f(i, j) is the intensity value at pixel (i, j) of the image with edges detected by a gradient operator, S

is the region inside the semi-circle centred at contour pixel (x, y), and N is the number of pixels of region S.

The value of AD at each contour pixel (x, y) is defined as the average of the difference between the angle215

of the balloon force and the angle of each gradient vector inside a cone-shaped region ahead contour pixel

(x, y):

AD(x, y) =
1

M ∗ π

∑

(i,j)∈T

θ(i, j), (7)

where θ(i, j) is the angle between the balloon force at contour pixel (x, y) and the gradient vector at pixel

(i, j), T contains the pixels ahead contour pixel (x, y) that are inside the cone-shaped region, and M is the

number of pixels of this cone-shaped region. The semi-circular and cone-shaped regions are depicted in Figure220

5.

r

cn

cn

(b)(a)

Figure 5: Representation of the semi-circular region S in (a) and the cone-shaped region T in (b), both positioned perpendicularly

to contour pixel Cn. The blue line represents the contour to be deformed; parameter r in (a) represents the radius of the semi-

circular region; and the black arrows illustrated in (b) refers to the gradient vectors ahead contour pixel Cn. (Figure adapted

from [40].)

The balloon force is combined with the GVF forces in order to overcome the limitation of the leakage of

the contour close to the weak edges of interest. The weighted external energy was proposed to evolve the

contour based on the intensity of the pixels of the edge map ahead the points of the initial contour. The

balloon force is employed here to increase the amplitude of the gradient vectors to accelerate the expansion225

of the contour towards the border of interest. However, it tends to fail when a homogeneous region is found

or the gradient forces that surround the contour to be evolved are weak enough to stop the expansion or

contraction in the border of interest. Hence, the balloon force in Equation 4 has effect on the expansion of

the contour only when the intensities of the pixels of the edge map ahead the contour are homogeneous or the

gradient forces measured from the GVF are strong enough to allow the contour to be evolved. Given an edge230

map image f obtained by a gradient operator with edges represented by high intensity values and non-edge

regions represented by low intensity values, the main idea of the external energy proposed by Khadidos et al.

[40] is to apply the balloon forces to continue the evolution of the contour when a homogeneous region with
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low intensities is found. On the contrary, when an edge is found, the GVF based force is applied to fit the

contour to this edge.235

The weighted external energy was proposed to force the expansion of the contour in homogeneous regions,

and attenuate the evolution in heterogeneous regions close to the desired boundary. However, the leakage

of the contour remains a major challenge due to low intensity values in regions with weak edges. Since

the average value h of the intensities inside the semi-circular region tends to zero close to weak edges, the

balloon forces predominate the external energy proposed in Equation 4, leading the contour to leak the true240

boundary of the region of interest. Hence, a modification of the weighted external energy defined in Equation

4 is proposed to improve the segmentation results in weak boundaries. The modification consists in replacing

average value h by the entropy of the intensity values ahead pixel (x, y) of the contour to be deformed by:

h(x, y) = 1−
1

entropy(P ) + 1
, (8)

where entropy(P) is the entropy of the pixels inside the semi-circle centred at contour pixel P with coordinates

(x, y):245

entropy = −

N
∑

i=1

pi ∗ log2(pi), (9)

N is the highest possible intensity value, and pi is the probability of occurrence of intensity value i. An

entropy close or equal to 0 (zero) represents a homogeneous region; whereas an entropy greater than 0 (zero),

indicates a heterogeneous region. Hence, in a homogeneous region, the value of h tends to 0 (zero) and the

balloon force is prevalent on the weighted external energy. On the other hand, the value of h tends to 1 (one)

when the region is heterogeneous, leading to the application of the GVF in Equation 4. Unlike the average of250

the grayscale intensities, the entropy is more sensitive to the variation of intensities inside the region ahead

the pixel of the contour to be deformed. Hence, the GVF in Equation 4 tends to be applied in regions with

high entropy, leading the contour to stop in weak boundaries. Besides the use of the entropy, a weighting

factor is proposed to decrease the evolution of the contour when regions with low intensities are found:

A(x, y) =
1

N

∑

i,j∈S

f(i, j), (10)

where N is the number of pixels inside semi-circular region S, and (x, y) is a pixel of the contour. In Black-255

Blood MR images, the region outside the vessel wall is composed of low intensity values. Therefore, the

proposed weighting factor attenuates the evolution in regions with low intensities, while maintaining the

evolution in regions with high intensity pixels. The GVF in Equation 4 was replaced by the NNGVF to

handle more efficiently regions corrupted by noise, and the following modified weighted external energy is

proposed to find the boundaries of carotid arteries:260

Eext = A ∗ ((Fballoon ∗ (1− Ω)) + (FNNGV F ∗ Ω)), (11)
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where A is the weighting factor calculated for each contour pixel as defined in Equation 10. Regions S and T

used to calculate the values of AD and h defined in Equations 7 and 8 were defined as semi-circular shaped

regions to improve the capture range of the pixels ahead the pixel of the contour to be expanded towards the

boundary of the carotid artery.

2.2.3. Ellipse constraint265

Intensity variations on the input image can lead the lumen contour to local regions and hinder its evolution

beyond the boundary of the lumen region, making the contour to assume an irregular shape. Parts of the

lumen contour with incomplete evolution still remain inside or close to the boundary of the lumen region,

which could impede the evolution towards the true boundary of the carotid artery. Therefore, a geometrical

constraint is employed here to force the lumen contour to completely expand beyond the boundary of the270

lumen region and avoid local incomplete evolutions in regions with non-uniform grayscale intensity.

The ellipse constraint is employed to control the geometrical shape of the contour. In this work, the

ellipse constraint proposed by Ray et al. [41] and Wang et al. [42] is used to maintain the ellipsoid shape of

the expanded contour:

xi − λ(cx + r1 ∗ cos(θi − θm) ∗ cos(θm)− r2 ∗ sin(θi − θm) ∗ sin(θm)),

yi − λ(cy + r1 ∗ cos(θi − θm) ∗ sin(θm) + r2 ∗ sin(θi − θm) ∗ cos(θm)),
(12)

where [cx, cy] is the centroid of the contour, θm is the angle of the major axis of the contour with respect275

to x-axis, r1 and r2 are the radius of the major and minor axis of the contour, respectively, λ = 1 is an

adjustable parameter that represents the penalty factor for pixels whose distance is far away for an ellipse

shape, θi is the angle of pixel i
th of the contour with respect to its major axis, and xi and yi are the i

th pixels

of the contour. An illustration of the ellipse-shaped constraint is shown in Figure 6.

x-axis

Major axis

Minor axis

r1

r2
(cx,cy)

(xi,yi)

Figure 6: Illustration of the ellipse-shaped constraint integrated in the used Snake model.

The employed constraint penalizes the pixels of contours that assume a non-ellipsoid shape. Centroid280

(cx, cy) is measured by taking the mean of coordinates x and y of the contour, respectively. The value of θm

is obtained by calculating the angle between the major axis and the x-axis represented by the straight arrow

in Figure 6. The value of θi is obtained from the calculated angle between contour point (xi, yi) and the

major axis. The contour of the lumen might be irregular for calculating the major and minor axis based on
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Equation 12. However, the ellipse constraint was proposed in order to correct irregularities on the contour285

based on distances between the contour points and the major and minor axis, leading the contour to fit an

ellipse-shaped model. If the distance between a certain point (xi, yi) of the contour is far away from the

estimated circle measured by centroid (cx, cy) and the estimated major and minor axes (as illustrated by

the dotted curve in Figure 6), the point is corrected to fit the estimated ellipse-shaped contour. After all

the points of the contour be corrected, the Snake model is applied again to deform the new ellipse-shaped290

contour.

Therefore, Equation 12 is integrated into the constraint of the used Snake model, which is applied to

the images resulting from the gray-weighted distance proposed in Equation 1 to expand the lumen contour

beyond the boundaries of the lumen region. Examples of the expansion of the lumen contour performed by

the used Snake model with the ellipse constraint are shown in Figures 7 and 8.295

(a) (b) (c) (d)

Figure 7: Examples of the expansion of lumen contours resulting from the used Snake model with the ellipse constraint applied

to images obtained based on the gray-weighted distance: a) Original MR images with the segmented lumen contours in green;

b) The gradient vectors (in orange) computed from the images obtained based on the gray-weighted distance; c) The expanded

lumen contours (in blue) overlapped on the images representing the distance maps; d) The expanded lumen contours overlapped

on the original MR images.

As shown in Figure 7b, the lumen and carotid wall boundaries in images representing the distance maps

progressively increase the magnitudes and convergence of the gradient vectors. This behaviour is due to the

fact that the gradient magnitude of the distance map image is proportional to the distance value associated

to each pixel [43]. Therefore, the magnitude of the gradient vectors tends to increase at regions with higher

distances calculated with respect to the centre of the lumen region, leading the contour to expand beyond300

the boundary of the lumen region, as shown in Figure 7d.
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Figure 8: Examples of the expansion of lumen contours performed by the used Snake model without (images on the top row)

and with (images on the bottom row) taking into account the ellipse constraint.

In Figure 8, the contours produced by the Snake model without taking into account the ellipse constraint

were trapped due to the grayscale intensity variations inside the carotid wall. Particularly, the examples

shown in the images on the top row of Figure 8 depict incomplete evolutions of the contours caused by

gradient vectors with high magnitudes in the low intensities regions close to the lumen boundary. However,305

after the employment of the ellipse constraint, the contours overcome the regions with high intensity variations

and assume more regular shapes.

2.3. Validation measures

The contours segmented by the proposed approach and the corresponding manual delineations were

compared based on four measures: Dice coefficient (DC), Polyline distance (PD), mean contour distance310

(MCD) and centroid distance (CD). The Dice coefficient is used to calculate the overlap between the automatic

(Sauto) and manual (Smanual) segmentations:

DC =
2 ∗ |Sauto ∩ Smanual|

|Sauto|+ |Smanual|
. (13)

The Polyline distance represents the average minimum distance between two sets of points, i.e., image

pixels, and indicates how far one set is from the other one, being calculated as:

Ds(B1, B2) =
d(B1, B2) + d(B2, B1)

N(B1) +N(B2)
, (14)

where B1 and B2 are the two sets of points under comparison, N(B1) and N(B2) are the number of points315

in B1 and B2, respectively, and d(B1, B2) =
∑

v∈B1
min {d(v, s)} and d(B2, B1) =

∑

s∈B2
min {d(s, v)}.

An under- and over-estimation of the segmented region may affect the values calculated by the Dice

coefficient. However, the difference between the centroid of the contour segmented by the proposed approach

and the centroid of the corresponding manual delineation is low when the approach finds the correct location

of the region. Therefore, the centroid difference was also employed according to:320

CD =
√

(xs − xg)2 + (ys − yg)2, (15)
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where (xs,ys) and (xg,yg) represent the centroids of the segmented region and of the corresponding manual

delineation, respectively. The higher the centroid distance, the greater the distance between the regions.

The lumen area, total carotid area, average lumen diameter, average carotid diameter and vessel wall

thickness of the automatic and manual segmentations of the lumen and carotid artery contours were also

calculated to compare the segmentation results by means of the linear regression analysis and Bland-Altman325

analysis. The lumen area and the total carotid area are the absolute areas inside the contours of the lumen

and carotid artery, respectively, and the average diameter (AVD) of the segmented contours is defined as:

AVD =
1

N

N
∑

i=1

2 ∗ ri, (16)

where N is the number of pixels of the contour and ri is the radius of pixel ith, which is multiplied by 2 in

order to calculate the diameter of the contour at pixel ith. The vessel wall thickness is defined as the mean

distance between the segmented contours of the lumen and carotid artery.330

The Wilcoxon signed-rank test with 5% of significance was further applied to the obtained results in order

to conduct the statistical analysis.

3. Experimental results

A comparison between the contours obtained by the proposed approach and the corresponding ones

generated by manual delineations was performed in order to evaluate the accuracy of the segmentation335

results.

3.1. Parameters initialization

To segment the boundary of each carotid artery in the experimental image dataset, the proposed approach

was used with the parameter values indicated in Table 1.

Table 1: Values of the parameters used in the segmentation of the carotid artery boundaries under study.

Parameter 1st step 2nd step

α 0.05 0.05

β 0 1

µ 0.02 0.02

κ 1 1

σ 1 1

Radius of the semi-circle 5 5

Number of iterations 150 500

The value of parameter α was set to 0.05 to avoid the contour to become too rigid in regions with large340

areas. The value of β was set to 1 (one) in the second step of the proposed approach in order to the final

contour of the carotid artery be smoother. The value of κ was also set to 1 (one) to avoid the excessive
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amplitude of the balloon force defined in Equation 3. The value of σ was set to 1 (one) to avoid the excessive

smoothing of the boundaries of interest and consequently, the weakening and displacement of the gradient

vectors obtained by the NNGVF. The value of µ and the radius of the semi-circle defined in Equations 7345

and 8 were defined experimentally by combining and testing a set of values over 40 images of three patients

randomly selected. In this tuning process, the values chosen for µ varied from 0.01 to 0.07 according to

increments of 0.01, whereas the values selected for the radius of the semi-circle were between 2 and 10. The

mean Polyline distance was calculated for each combination of the values of µ and the radius of the semi-

circle. The value of µ, and the corresponding radius that provided the minimum average Polyline distance350

for the images of the three patients, were chosen to be the best values for the dataset under study. Due to

the computational cost required by the ellipse constraint, the number of iterations used in the first step of

the proposed approach was lower than the one used in the second step. However, the value chosen was able

to successfully expand the lumen contour beyond the boundary of the lumen region. Table 2 presents the

average values of the Polyline distance obtained for each combination of parameter µ with the radius of the355

semi-circle. The average values found for the Dice coefficient, Polyline distance, mean contour distance and

centroid distance that led to the best combination of µ and the radius of the semi-circle are indicated in

Table 3.

Table 2: Average values of the Polyline distance (in pixels) for each combination of parameter µ and the radius of the semi-

circular region obtained from 40 images. (The value in bold is the minimum average Polyline distance obtained for the images

of the three patients used for tuning these parameters.)

P
P
P
P
P
P
P
PP

µ

Radius
2 3 4 5 6 7 8 9 10

0.01 4.0117 2.8806 2.6332 2.4892 2.5602 2.5722 2.6396 2.7048 2.7265

0.02 3.4291 2.6974 2.5738 2.4675 2.598 2.7162 2.7595 2.8254 2.8547

0.03 3.203 2.6762 2.5468 2.5519 2.7642 2.8216 2.8431 2.9811 3.0341

0.04 3.0366 2.6938 2.5171 2.7535 2.9772 3.1496 3.1824 3.1831 3.327

0.05 2.9615 2.5438 2.6402 2.9168 3.1949 3.3402 3.4034 3.5569 3.6093

0.06 2.717 2.7496 2.9286 3.9539 3.4282 3.6216 3.6871 3.7895 3.8347

0.07 2.9005 3.0912 3.3454 3.6456 3.8288 3.9332 3.9784 3.9583 4.0072

Table 3: Average values found for the Dice coefficient, Polyline distance, mean contour distance and centroid distance that led

to the best combination of µ and the radius of the semi-circle.

Validation measure Weighted external energy NNGVF

Dice coefficient 0.8625 ± 0.0863 0.7666 ± 0.1202

Polyline distance (px) 2.4675 ± 1.7135 4.001 ± 2.7791

Mean contour distance (px) 2.4561 ± 1.6779 3.2355 ± 1.5508

Centroid distance (px) 2.9309 ± 2.6268 5.2198 ± 2.9887

*NNGVF=Neighbourhood-Extending and Noise-Smoothing Gradient Vector Flow; px=pixels.
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3.2. Performance evaluation

Examples of carotid artery boundaries segmented by the proposed approach and the corresponding manual360

delineations are shown in Figure 9.

Figure 9: Examples of carotid artery boundaries segmented by the proposed approach: the original PDW MR images are shown

on the top row; the images in the middle row illustrate the lumen contours (in green) along with the contours expanded based

on the images obtained by the gray-weighted distance (in magenta), which were then used to initiate the segmentation of the

carotid artery boundaries; the images on the bottom row illustrate the carotid artery boundaries segmented by the Snake model

with the proposed weighted external energy (in red) and the corresponding manual delineations (in blue).

The images in the middle row of Figure 9 show the lumen contours in green obtained by the automatic

method proposed in Jodas et al. [25] for the segmentation of the lumen region, whereas the ones obtained from

these contours by their expansion, using the Snake model with the ellipse constraint on the images obtained

by the gray-weighted distance, are in magenta. In the bottom row of the same figure, the contours in red are365

the carotid artery boundaries found by the Snake model with the proposed weighted external energy, and the

contours in blue are the corresponding manual delineations. From the images shown, it is possible to notice

that the carotid artery boundaries were correctly segmented in all images, with the automated results very

close to the corresponding manual delineations.

The comparison performed between the carotid artery boundaries obtained by the Snake model with the370

proposed weighted external energy and those generated by only taking into account the forces calculated by

the NNGVF, as well as the boundaries obtained by the method proposed by [40], is depicted in Figure 10.

The images in the middle row of Figure 10 show that the proposed approach is effective to expand the

lumen contour to the true boundary of the carotid artery. The incomplete evolution of the lumen contour

when only the forces calculated by the NNGVF are used was mainly due to the large thickness and grayscale375

intensity variations inside the wall of the carotid artery under study. Besides, the modified weighted external

energy was also more efficient than the one proposed by [40] in handling the regions where the border is

weak, as shown in Figures 10(a-c). The only exception is the example illustrated by Figure 10(d), where the
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(a) (b) (c) (d)

Figure 10: Examples of carotid artery boundaries obtained by the Snake model with the proposed weighted external energy

(in red) and the ones generated by only taking into account the forces calculated by the NNGVF (in yellow) and the weighted

external force proposed by [40] (in cyan). (The original PDW MR images are shown on the top row; the corresponding manual

delineations are shown in blue.)

contour obtained by the external energy proposed by [40] was quite similar to the contour obtained by our

modified proposed external energy.380

Regarding the quantitative analysis, the Dice coefficient values for the carotid artery boundaries obtained

by the Snake model with the proposed weighted external energy (in red) and the corresponding manual

delineations (in blue) shown in the second row of Figure 10 were equal to 0.97, 0.96, 0.93 and 0.97, respectively.

On the other hand, the Dice coefficient values for the Snake model with the NNGVF (in yellow) and the

corresponding manual delineations (in blue) were equal to 0.65, 0.72, 0.71 and 0.87, respectively. Considering385

the third row of Figure 10, the Dice coefficient values obtained taking into account the Snake model with

the weighted external energy proposed by [40] (in cyan) and the corresponding manual delineations (in blue)

were equal to 0.77, 0.89, 0.89 and 0.97, respectively. The distribution of the Dice coefficient values calculated

from the segmented lumen and carotid artery regions and the corresponding manual delineations are depicted

according to intervals of 0.2 in Figures 11 and 12, respectively.390

In terms of the lumen segmentation results, the interval of the Dice coefficient values between 0 (zero) and

0.20 includes the images erroneously segmented. From the 185 PDW MR images used in the experiments,

the lumen region was successfully segmented in 139 images. As depicted in Figure 11, the images with the

Dice coefficient values between 0 (zero) and 0.20, represent 26% (49 images) of the total segmentation results.

18



���� � ����
���

���� � ��	�
��

��	� � ����
��

���� � ��
�
���

��
� � ����
	��

��������	�
����
�����
���������	��
������		
����

���� � ����

���� � ��	�

��	� � ����

���� � ��
�

��
� � ����

Figure 11: Intervals of the Dice coefficient values calculated from the segmented lumen regions and the corresponding manual

delineations.

Figure 12: Intervals of the Dice coefficient values calculated from the segmented carotid artery regions and the corresponding

manual delineations.

The images with the Dice coefficient values from 0.21 to 0.40 (4 images) and from 0.41 to 0.60 (11 images),395

represent only 2% and 6%, respectively, of the total segmented lumen regions. Contrary, the resultant images

with the Dice coefficient values from 0.61 to 0.80 (42 images) and from 0.81 to 1.00 (79 images), represent 23%

and 43% of the total segmented images, respectively, reaching in total the greatest percentage of the total

number of images used in the experiments. Regarding the segmentation of the carotid artery boundaries, the

number of images having the Dice coefficient value between 0.81 and 0.90 is higher for the Snake model with400

the proposed weighted external energy in comparison with the Snake model using only the forces calculated

by the NNGVF. As shown in Figure 12, 90 images with a Dice coefficient value between 0.81 and 1.00 were

successfully segmented. On the other hand, the number of images with a Dice coefficient value in the same
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interval decreased to 76 when the Snake model with only the NNGVF forces was employed.

The average values found for the Dice coefficient, Polyline distance, mean contour distance and centroid405

distance of the segmented lumen contours in comparison with the corresponding manual delineations are

indicated in Table 4. Additionally, the average values of the same quantitative measures calculated from

the segmented carotid artery boundaries and the corresponding manual delineations are indicated in Table

5, including the measurements obtained from the segmentation results performed by the weighted external

energy proposed by [40].410

Table 4: Average values found for the Dice coefficient, Polyline distance (PD), mean contour distance (MCD) and centroid

distance (CD) concerning the lumen segmentation.

Dice ± std PD ± std (px) MCD ± std (px) CD ± std (px)

Patient 1 0.86 ± 0.06 1.50 ± 0.57 1.39 ± 0.51 1.95 ± 1.03

Patient 2 0.71 ± 0.17 2.65 ± 1.26 2.60 ± 1.70 3.30 ± 2.51

Patient 3 0.81 ± 0.17 1.24 ± 1.28 0.77 ± 0.50 1.49 ± 1.88

Patient 4 0.48 ± 0.21 2.24 ± 0.30 1.63 ± 0.67 1.63 ± 0.05

Patient 5 0.82 ± 0.10 0.78 ± 0.27 0.69 ± 0.18 0.96 ± 0.42

Patient 6 0.75 ± 0.15 2.51 ± 2.81 2.62 ± 3.62 3.24 ± 4.92

Patient 7 0.78 ± 0.11 1.16 ± 0.29 1.11 ± 0.37 1.55 ± 0.63

Patient 8 0.83 ± 0.12 1.15 ± 0.59 1.18 ± 0.68 1.22 ± 0.74

Patient 9 0.73 ± 0.22 1.14 ± 0.67 1.03 ± 0.85 1.45 ± 0.95

Patient 10 0.69 ± 0.22 1.81 ± 2.38 1.90 ± 2.99 2.03 ± 3.32

Patient 12 0.69 ± 0.21 2.07 ± 2.60 2.09 ± 3.14 2.43 ± 3.15

Average 0.76 ± 0.17 1.49 ± 1.53 1.40 ± 1.81 1.80 ± 2.20

*px = pixels; std = standard deviation.

Table 5: Averages values found for the Dice coefficient, Polyline distance (PD), mean contour distance (MCD) and centroid

distance (CD) regarding the segmentation of the carotid artery boundary.

Validation measure PWED NNGVF WED

Dice coefficient 0.83 ± 0.11 0.80 ± 0.11 0.74 ± 0.13

Polyline distance (px) 2.70 ± 1.69 3.01 ± 2.05 4.76 ± 2.85

Mean contour distance (px) 2.79 ± 1.89 2.87 ± 1.67 11.88 ± 5.55

Centroid distance (px) 3.44 ± 2.82 4.18 ± 2.97 4.65 ± 2.74

Error ratio of segmentation 0.13 ± 0.11 0.11 ± 0.09 0.17 ± 0.12

*NNGVF=Neighbourhood-Extending and Noise-Smoothing Gradient Vector Flow; px=pixels

*PWED = Proposed Weighted External Energy; WED = Weighted External Energy proposed by [40].

In terms of the lumen segmentation results, the average values of the Dice coefficient obtained for patient

1 are higher than the ones obtained for the other patients, as indicated in Table 4. On the other hand,

the averages values of the Polyline, mean contour and centroid distances are lower for patient 5 relatively

to the averages values for the other patients. As indicated in Table 5, the results obtained using the Snake

model with the proposed weighted external energy for the segmentation of the carotid artery boundary are415
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better than the majority obtained using the Snake model with the NNGVF and the weighted external energy

proposed by [40]. Regarding the average values of the validation measures, the Dice coefficient increased to

0.83 ± 0.11 when the proposed weighted external energy was used in the Snake model. The averages values

of the Polyline distance decreased to 2.70 ± 1.69 pixels after the usage of the Snake model with the proposed

weighted external energy. Additionally, the average value of the centroid distance obtained from the proposed420

approach is lower than the ones obtained from the Snake model with the NNGVF and the weighted external

energy proposed by [40] (3.44 ± 2.82 pixels against 4.18 ± 2.97 and 4.65 ± 2.74, respectively).

The Linear regression and Bland-Altman analysis concerning the lumen area and the average lumen

diameter showed a good correlation between the segmented lumen contours and the corresponding manual

delineations, as can be observed in Figure 13. The linear regression and Bland-Altman analysis for the total425

carotid area, average carotid diameter and vessel wall thickness calculated concerning the segmented carotid

artery boundaries and the corresponding manual delineations are depicted in Figures 14 and 15.

As shown in Figure 13a, the Spearman correlation between the segmented lumen contours and the corre-

sponding manual delineations was high and similar for both measures, reaching a value of 0.8811 and 0.8764

for the lumen area and average lumen diameter, respectively. For the segmentation of the carotid artery430

boundaries, the Spearman correlation between the total carotid areas obtained using the Snake model with

the proposed weighted external energy and the corresponding areas generated from the manual delineations

was equal to 0.7956, which is higher than the correlation coefficient of the segmentation results obtained

by the Snake model with the NNGVF (0.7338). Regarding the average carotid diameter, the Spearman

correlation between the segmentations obtained by the proposed approach and the corresponding manual de-435

lineations was equal to 0.7974, which is also better than the one obtained from the comparison between the

ones of the Snake model with the NNGVF and the manual delineations (0.7333). Additionally, the Spearman

correlation between the proposed approach and the corresponding manual delineations showed also better

results in comparison to the Snake model with the NNGVF regarding the vessel wall thickness (0.6308 and

0.6041, respectively). The differences between the segmented lumen contours and the corresponding manual440

delineations are shown in the Bland-Altman plots of Figure 13b. The Bland-Altman analysis of the carotid

artery boundaries segmented by the Snake model with the proposed weighted external energy and NNGVF

are depicted in Figures 14b and 15b, respectively. Regarding the lumen area, the average difference between

the segmented lumen contours and the corresponding manual delineations was equal to 13.50 pixels. For

the average lumen diameter, the average difference between the segmented and manually delineated lumen445

contours was equal to 0.21 pixels. For the total carotid area and average carotid diameter, the average

differences between the proposed approach and manual delineations were of 90 and 1.8 pixels, respectively.

The average difference between the vessel wall thickness calculated from the carotid artery boundaries seg-

mented by the proposed approach and the ones calculated from the corresponding manual delineations was

equal to 1.2 pixels. The high average difference of the total carotid area was due to the similar intensities450

in regions close to the boundaries of the carotid arteries, which makes more difficult the distinction between
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(a) (b)

Lumen area

Average lumen diameter

Figure 13: Linear regression (a) and Bland-Altman analysis (b) concerning the lumen area and average lumen diameter calculated

from the segmented lumen contours and the corresponding manual delineations.

the carotid boundaries and the image background. Examples of carotid artery boundaries segmented by the

proposed approach in images with background regions having intensities similar to the ones of the carotid

artery boundaries are illustrated in Figure 16.

As depicted in Figure 16, the carotid artery boundaries segmented by the Snake model with the proposed455

weighted external energy overestimated the corresponding manual delineations due to the similar grayscale

intensities surrounding the true boundaries of interest, leading to an increased difference between the areas

of the automatically segmented and manually delineated carotid artery boundaries.

Table 6 presents p-values calculated from the Wilcoxon signed-rank test as a statistical tool to check
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Figure 14: Linear regression (a) and Bland-Altman analysis (b) concerning the total carotid area, average carotid diameter and

vessel wall thickness calculated from the carotid artery contours segmented by the Snake model with the proposed weighted

external energy and the corresponding manual delineations.
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Figure 15: Linear regression (a) and Bland-Altman analysis (b) concerning the total carotid area, average carotid diameter

and vessel wall thickness calculated from the carotid artery contours segmented by the Snake model with the NNGVF and the

corresponding manual delineations.
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(a) (b) (c)

Figure 16: Examples of carotid artery boundaries segmented by the proposed approach in PDW MR images with almost

indistinguishable boundaries: The images on the top row are the original PDW MR images and the ones on the bottom row

shows the segmented carotid artery boundaries (in red) along with the corresponding manual delineations (in yellow). The

differences found between the areas of the segmented and manually delineated carotid artery boundaries shown in images (a-c)

were equal to 399 pixels, 297 pixels and 582 pixels, respectively. The images shown in (a) and (b) are indeed cropped as the

majority ones provided with the dataset.

whether a significant difference exists between the results obtained from the proposed segmentation method460

and the ones of the manual delineations. Moreover, the calculated p-values are also important to assess the

statistical analysis between the results of the proposed methods and the ones obtained from the NNGVF and

the Weighted External Energy proposed by Khadidos et al. [40].

Table 6: Results of the Wilcoxon signed-rank test (p-values) with 5% of significance for the Dice coefficient, Polyline Distance

(PD), Mean Contour Distance (MCD), Centroid Distance (CD), Area and Average Diameter (AVD).

Dice PD MCD CD Area AVD

Lumen Aut. vs Lumen Manual N/A N/A N/A N/A 0.58900 0.4489

PWED-Manual N/A N/A N/A N/A 3.4472e-07 9.9863e-07

NNGVF-Manual N/A N/A N/A N/A 4.2461e-05 1.8380e-05

WED-Manual N/A N/A N/A N/A 4.2629e-15 3.8329e-14

PWED-NNGVF 0.0002 0.6652 0.0017 0.0005 4.7934e-28 5.4811e-27

PWED-WED 6.4248e-10 2.6847e-09 6.3462e-09 1.0209e-06 5.0742e-16 3.8785e-16

*NNGVF = Neighbourhood-Extending and Noise-Smoothing Gradient Vector Flow; N/A = Not Applicable

*PWED = Proposed Weighted External Energy; WED = Weighted External Energy proposed by Khadidos et al. [40].

Regarding the lumen segmentation, the results presented in Table 6 indicate that the proposed automatic

method produced similar results in comparison with the corresponding manual delineations in terms of area465
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and average diameter of the segmented lumens. One can highlight that the results are quite similar at 5%

of significance, which shows the similarities between the automatic and manual segmented lumens. On the

other hand, the statistical analysis of the segmented carotid wall boundaries indicates a difference between

the areas and average diameters calculated from both automatic and manual delineations. As previously

discussed, such variances might be explained by the overestimation of the carotid wall boundaries produced470

by the proposed method in comparison with the ones manually delineated. Similarly, underestimation of

such boundaries generated by the NNGVF external energy might also explain the discrepancies between its

results and the corresponding manual delineations.

Despite such differences, the superior results produced by the method introduced here for carotid wall

segmentation purpose are confirmed as shown by the low p-values calculated from the Wilcoxon signed-rank475

test (Table 6). One can notice the low p-values of all measures, particularly as to the Polyline Distance

obtained from the proposed external energy and the NNGVF method, which indicates similarities between

the distances calculated from both methods.

3.3. Computational cost

Table 7 presents the mean execution time of the Snake model performed with the ellipse constraint and480

each external energy over the set of images of each patient.

Table 7: Mean computational time (in seconds) of the Snake model considering the ellipse constraint and the proposed external

energy in comparison with the NNGVF. The results are expressed as mean ± standard deviation.

Patient Ellipse constraint NNGVF only Proposed external energy

Patient 1 4.16 ± 0.58 4.13 ± 2.45 3.93 ± 2.39

Patient 2 2.33 ± 0.90 1.49 ± 1.12 4.12 ± 1.73

Patient 3 2.06 ± 1.07 1.27 ± 0.72 2.25 ± 1.02

Patient 4 2.75 ± 3.97 0.60 ± 0.63 4.50 ± 5.11

Patient 5 2.07 ± 0.77 1.97 ± 1.54 4.71 ± 2.99

Patient 6 1.76 ± 0.94 1.31 ± 1.33 6.91 ± 5.05

Patient 7 2.07 ± 0.49 4.33 ± 5.19 3.44 ± 1.66

Patient 8 2.63 ± 0.88 2.21 ± 0.97 3.97 ± 3.66

Patient 9 2.04 ± 1.33 2.55 ± 3.66 6.15 ± 3.06

Patient 10 2.00 ± 0.86 1.98 ± 1.74 4.35 ± 3.94

Patient 12 2.71 ± 1.08 3.03 ± 2.59 3.63 ± 2.74

From the data in Table 7, one can notice that the computational time of the proposed method is occa-

sionally greater than the one of the original Snake algorithm with only the NNGVF external energy. Such

behavior is explained by the fast and incomplete convergence of the Snake model when the wall of the carotid

artery under analysis is thick and inhomogeneous causing thereby, an incorrect segmentation (images in the485

26



middle row of Figure 10). However, there were cases where the obtained segmentation results and the re-

quired computational times were similar for both methods, as happened, for example, for Patient 1 (Table

7).

Regarding the computational complexity, the proposed active contour model performs similarly as the

original Snake algorithm, being the execution time of former method somehow influenced by the latter one.490

The computational cost of the new method might be calculated taking into account the following three steps:

i) application of the Snake model with the ellipse constraint; ii) calculation of the proposed external energy

(Equation 11); and iii) application of the Snake model over the image related to the external energy. As

demonstrated by Liang et al. [44], the computational complexity of the Snake model is for each iteration O(n),

where n is the set of points of the contour to be deformed. Furthermore, the ellipse constraint is performed495

similarly, ending up therefore with a computational complexity of O(n) for each point in n. Regarding

Equation 11, the external energy calculated by the NNGVF method has a computational cost of O(M x N)

in each iteration, where M and N represent the number of rows and columns of the image, respectively. This

computational complexity can be also given as O(N2) when the image resolution is NxN pixels. Finally, the

computational cost of the third step is also O(n) since it represents the application of the Snake model over500

the contour to be evolved towards the carotid artery boundary. Since the aforementioned steps i) and iii)

are performed in the same contour to be deformed along the whole segmentation process, the computational

complexity of the Snake model may be given as O(n) for all the n points of the contour in each iteration of

its evolving process.

In summary, the computational complexity of the proposed segmentation method, including all the steps505

to detect the carotid wall boundary, can be expressed as O(i x n) + O(I x N2), where i is the number of

iterations of the Snake model, n is the number of points of the contour to be evolved, N represents the size

of the input image and I is the number of iterations of the NNGVF method.

4. Discussion

The development of automatic segmentation methods devoted to medical images plays an important role510

in providing experts with auxiliary diagnosis tools for identifying various types of diseases. For example,

the segmentation of the lumen and carotid artery boundaries in MR images represents an important step

to quickly identify and quantify potential atherosclerosis in arteries. The segmentation of carotid artery

boundaries in PDW MR images was successfully tackled in this study. The use of the images obtained

by the gray-weighted distance to expand the lumen contour beyond the boundary of the lumen region in515

the input image represents an important contribution to correctly identify the boundary of the carotid

artery. Additionally, the usage of the proposed weighted external energy in the Snake model proved to be

effective in expanding the lumen contours towards the boundaries of carotid arteries even in cases of large

thickness. Additionally, the modification in the external energy as proposed by Khadidos et al. [40] makes

the convergence of the lumen contours more robust, stable and appropriate for carotid arteries with weak520
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image edges.

At first, the proposed segmentation method is adaptable to other image modalities without significant

changes in the values of its parameters. However, this study aimed at focusing primarily on 2D MR images,

namely on the ones from a cross-sectional perspective, since the boundaries of the carotid arteries acquired by

this image modality are usually readily distinguishable, especially the carotid wall boundary. A substantial525

number of studies, with particular reference to the ones presented by Cheng et al. [45] and Luo et al. [46], just

to cite a few, have also been carried out considering the usage of specific image modalities to identify vessel

structures either in longitudinal or cross-sectional views. However, this study was specifically conducted

to address the segmentation of the carotid artery in cross-sectional views, without including other images

modalities or prior steps to handle 3D imaging volumes as presented by Cheng et al. [45], which justifies the530

dataset herein used.

4.1. Parameters initialization

The convergence of the lumen contour to the boundary of the carotid artery under analysis depends on

the value of parameter α defined for the elasticity term of the Snake model. When the value of α decreases,

the contour elasticity is increased, leading to an easier evolution towards the boundary of interest. On the535

other hand, the contour becomes more rigid as the value of α increases, leading the contour to deflate even

in regions with large capture range provided by the gradient vectors. Hence, it was decided to use a low

value for parameter α in order to avoid the swift convergence and shrinking of the lumen contour. Parameter

β is employed to control the smoothness and bend of the contour. The higher is the value of β, the more

smooth the contour is. In the second step of the proposed approach, the value of β was set to 1 (one) in order540

to smooth the final contour of the carotid artery boundary. Parameter µ represents a regularization term

that controls the tradeoff between the Laplacian operator and the gradient of the image edge map defined

for the NNGVF. The value of µ depends on the amount of noise in the image under analysis. The higher

is the value of µ, more diffuse are the gradient vectors. In this study, the low value of µ determined by the

parameter tuning procedure plays an important role to avoid the excessive diffusion of the gradient vectors545

and the evolution of the lumen contour beyond the boundary of the carotid artery under analysis. Parameter

κ is responsible for the strength of the balloon forces and therefore, used to inflate or deflate the contour to

be deformed. When the value of κ increases, the amplitude of the unit vectors defined by the balloon force

also increases, leading the contour to pass through weak edges. Since the lumen contour needs to be inflated

from the lumen region to the boundary of the carotid artery, the value of κ was set 1 (one) to avoid the550

excessive amplitude of the balloon forces. Parameter σ is used in the Gaussian filter and has an important

role to control the amount of smoothness of the image and the capture range of the gradient vectors. A large

value for σ will cause the boundaries to become more smooth and distorted and therefore, the capture range

of the gradient vectors will be also increased. In order to avoid excessive distortion of the boundaries of the

input image, the value of σ was set to 1 (one). The number of iterations defined for the first step of the555

carotid artery boundary segmentation was lower than the one of the second step due to the computational
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cost imposed by the ellipse constraint. However, the value chosen in this study was sufficient to expand

successfully the lumen contour beyond the boundary of the lumen region. The radius of the disk-shaped

template used to calculate the values of AD and h defined in Equations 7 and 8 plays an important role in

the correct determination of the carotid artery boundary. Since the entropy of the pixels ahead the lumen560

contour to be expanded is responsible for the convergence to the carotid artery boundary of interest, a large

number of pixels could increase the entropy and lead to a fast and incomplete evolution of the lumen contour.

Contrary, a low number of pixels may still decrease the entropy defined in Equation 9 and, consequently, lead

the lumen contour to leak the true boundary of the carotid artery. Hence, the parameter tuning procedure

was important to determine the best radius for the dataset used in the experiments. The same values for α,565

β, µ and σ defined for the proposed weighted external energy were also used in the NNGVF formulation.

Although the values established for the parameters of the proposed approach were able to efficiently

identify the boundaries of the carotid arteries in the images used, the convergence of the lumen contour

is mostly dependent on the parameters of the internal energy of the Snake model, the amplitude of the

balloon forces and the number of iterations used to perform the convergence of the contour until it fits the570

desirable boundary. Changing the image resolution may still affect the segmentation results, leading the

lumen contour to an incomplete and slow convergence in images of higher resolutions. However, the proposed

approach might be easily adapted to initialize and adjust the aforementioned parameters for other MR image

datasets.

4.2. Performance of the proposed approach575

The distance map proposed in this study proved to be effective in expanding the lumen contour beyond

the boundary of the lumen region and therefore, to avoid the gradient vectors that can hinder the contour

to converge to the boundary of the carotid artery under analysis. Unlike the grayscale intensity of the

MR image, which contains variations in the gradient vectors obtained by external forces, the gray-weighted

distance map provides a gradual increase of the grayscale intensities starting from the centre of the lumen580

to the borders of the assessed image. Hence, it provides undisturbed and low grayscale intensities near the

lumen region of the carotid artery, which helps the lumen contour to expand outside the lumen region owing

to the low magnitude of the gradient vectors in that region. Along with the ellipse constraint, the contour

resultant from the Snake model applied to the image representing the distance map becomes more regular

and without concavities that may be caused by low intensity regions close to the lumen of the carotid artery.585

The modification in the weighted external energy as suggested by Khadidos et al. [40] shown to be

successful in converging the lumen contours to the boundaries of carotid arteries with large thickness. The

evolution of the lumen contour may still fail due to the diffusion of the gradient vectors in regions with large

intensity variations. Balloon forces have been proposed to improve the convergence of the contour based on

the strength of the unit vectors in each pixel of the contour to be expanded, leading to a rapid convergence590

even in regions with large areas. However, the balloon forces still fail in fitting the contour in regions having

weak edges, which causes the contour to leak the boundary of interest. Hence, the combination of balloon
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forces and the GVF-based external energy represents an important approach to handle at the same time with

the quick evolution of the contour in regions with large areas and the decrease of the contour evolution in weak

edges of the structures under analysis. The use of the entropy instead of the average intensities in Equation595

6 improves the convergence of the lumen contour in weak edges of the carotid artery boundary of interest

due to the sensitivity of the entropy in regions with high variations of grayscale intensities. Additionally, the

penalty term defined in Equation 10 proved to be effective in decreasing the contour evolution when dark

regions corresponding to the background of the image are found.

Regarding the total carotid area, the Bland-Altman analysis depicted in Figures 14b and 15b showed600

a significant difference between the segmented carotid artery boundaries and the corresponding manual

delineations. The bias corresponding to the difference between the total carotid areas calculated from the

results obtained by the proposed approach and the ones of the corresponding manual delineations was equal

to 89.59 pixels, with a standard deviation of 289.26 pixels. For the average carotid diameter, the bias

between the carotid artery boundaries segmented by the proposed approach and the corresponding manual605

delineations was equal to 1.79 pixels, with a standard deviation of 5.04 pixels. The bias between the vessel

wall thickness calculated from carotid artery boundaries obtained by the proposed approach and the ones of

the corresponding manual delineations was equal to 1.17 pixels with a standard deviation of 2.32 pixels. In

some cases, the manual delineations can underestimate the corresponding carotid artery contours obtained by

the Snake model with the proposed weighted external energy. Since the proposed weighted external energy610

relies on the similarity of the grayscale intensities of the input image, the segmentation error is due to regions

with intensities similar to the ones close to the boundary of the carotid artery to be segmented. The gradient

vectors of the carotid artery boundary are weaker than the ones of the lumen region, making the segmentation

more difficult and susceptible to errors due to the leakage of the contour beyond the true boundary of the

carotid artery under analysis.615

A comparison againts recent studies found in the literature was carried out in order to validate the

accuracy of the approach proposed here. Although a direct comparison is hardly possible since the validation

measures and the image dataset used in this study are different from the ones used in studies found in the

literature, the results obtained using our approach to segment the carotid artery boundary in PDW MR

images are comparable to the ones reported in the related studies found. The average value of the Degree of620

Similarity (DoS) between the automatic and manual segmentations of the carotid artery boundaries reported

by van ’t Klooster et al. [15] was equal to 75.3%. The average value of the DoS between the automatic

and manual segmentations of the boundaries of the Common Carotid Artery (CCA) reported by Gao et al.

[18] was equal to 82.7%. The Jaccard similarity between the automatic and manual segmentations of the

boundaries of carotid arteries reported by Saba et al. [17] was equal to 0.71 ± 0.08. The average value of625

the Dice coefficient between the carotid artery boundaries obtained by our approach and the corresponding

contours manually delineated was equal to 0.83 ± 0.11 (82.61% ± 10.84%). The Jaccard similarity obtained

from the comparison between the carotid arteries segmented by the proposed approach and the corresponding
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manual delineations was equal to 0.72 ± 0.15. The main limitation of the study carried out by van ’t Klooster

et al. [15] is that a signal profile vector with a specific length is necessary to find the edges of the lumen630

and carotid artery boundaries. Additionally, the gradient information is insufficient to cope with weak edges

commonly found in MR images of carotid arteries. Although the approach proposed by Saba et al. [17] is

similar to the one proposed in this study, it has a main limitation: the expansion of the lumen contour beyond

the boundary of the lumen region is based on a heuristic value. Similarly, the method proposed by Gao et al.

[18] also relies on the expansion of the lumen contour based on a heuristic value, although the method is fully635

automatic. Contrary, our proposed approach is fully automatic and the expansion of the lumen contours is

completely performed by using the distance map without needing any heuristic value.

4.3. Limitations

The proposed approach has two limitations. The first one regards the segmentation of carotid arteries

with calcifications. Calcifications appears as dark regions in PDW MR images and therefore, the convergence640

of the lumen contours towards the boundaries of carotid arteries may be compromised due to the strength

of the gradient vectors that avoid the expansion of the contour when calcified regions are presented. Hence,

future studies will be conducted to effectively identify local regions inside the carotid artery associated to

calcifications. The second limitation regards the segmentation of the lumen and carotid artery boundaries in

regions with bifurcations. Although bifurcation regions have been identified and delineated by the physician645

in the PDW MR images, the carotid artery boundary manually delineated in the input image having the

higher Dice coefficient value with the segmented carotid artery boundary was chosen to evaluate the accuracy

of the result. Hence, the segmentation of the lumen and carotid artery boundaries in bifurcation regions is

expected to be considered in future researches. Although Deep Learning approaches have been a topic of

research highly discussed and used in many studies related to image segmentation and classification tasks650

([47, 48, 49, 50, 51, 52, 53]), the proposed method presented here is aimed for the identification of structures

in medical images by means of well-known image processing and analysis algorithms. However, we also intend

to consider Deep Learning techniques for the segmentation of the structures of the carotid arteries in future

works.

5. Conclusions655

The segmentation of the lumen and carotid artery boundaries plays an important role in assessing the

progression of atherosclerosis. An automatic approach for the segmentation of carotid artery boundary in

PDW MR images was proposed in this article. The main contribution of this study is an efficient and robust

approach based on the gray-weighted distance map to expand the lumen contour towards the boundary of

the carotid artery without the use of any heuristic values. Additionally, the lumen contour expanded by660

the Snake model with the ellipse constraint applied to the distance map image, is used to identify the final

boundary of the carotid artery based on the Snake model along with the modified weighted external energy.
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The proposed approach proved to be also robust in identifying the boundaries of carotid arteries that have

large thickness and weak image edges.

The comparison between the carotid artery boundaries segmented by the proposed approach and the cor-665

responding manual delineations showed that the usage of the proposed weighted external energy in the Snake

model is more effective than if only the NNGVF is used. Additionally, the proposed approach outperformed

the results reported in related studies found in the literature.

Futures studies will be conducted to efficiently segment the lumen and carotid artery boundaries in PDW

MR images having bifurcation regions. The segmentation of the carotid artery boundaries using other MR670

image datasets is also expected in order to assess the parameters tuning procedure and the segmentation

results in images obtained with higher resolutions and different acquisition settings. Moreover, the segmen-

tation of the boundaries of carotid arteries having calcified regions is also expected to be addressed in order

to avoid the local convergence and incomplete evolution of the segmented lumen contours that can occur in

these cases.675
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