

Microstructural characterization of Ti6Al4V/Al₂O₃ joints produced using Ag-Cu sputtered coated Ti foil

Omid Emadinia*, Sónia Simões*, Carlos José Tavares**, Aníbal Guedes***

*CEMMPRE, Department of Metellurgical & Materials Engineering, FEUP, Portugal

*Centre of Physics, University of Minho, Portugal

***CMEMS, Department of Mechanical Engineering, University of Minho, Portugal

September 2019

Motivation

Increasing the applications of advanced ceramics for functional structures for:

- Having high thermal stability, stiffness and wear resistance
- Overcoming shortcomings related with high production costs of large or complex components used in
 - Aerospace, automotive, and chemical industries

Joining ceramic materials to metallic parts is a strategy

- However, it is not an easy task because metals & ceramics have different properties, e.g.:
 - Coefficient of thermal expansion
 - Wettability with liquid metal

Brazing technique is a method

- It requires lower temperature, pressure and holding time that it is required for diffusion bonding process
- Brazing has a merit of joining irregular dimensions
- Generally, it leads to the development lower residual stresses than other joining processes

Motivation

Brazing involves

• Joining two components by melting a brazing filler (> 450 °C) that wets and reacts with both base materials, it is traditionally carried out by a torch and the brazing filler

Shortcomings

 Reaction products formed at the interface may limit the operating temperature of joints to 300/350 °C, e.g. the extensive formation of (Ag), when Ag-based brazing fillers are used

Diffusion brazing involves

- Placing a brazing filler between two bases under optimized Base conditions:
 - Adequate heating apparatus
 - Proper heating temperature
 - Proper brazing filler
- During the heating period, the brazing filler material reacts with the components resulting in
 - the formation of phases with higher melting temperatures

Base

Brazing filler

Motivation

Brazing fillers

- Titatium base compositions like
 - 。 Ti-Cu-Ni system
- Silver base compositions like
 - 。 Ag-Cu system

A comparison

- Ti base brazing fillers require higher brazing temperatures (~1000 °C) than Ag base brazing fillers (~800 °C)
- Ag base brazing fillers induce the formation of (Ag) that can buffer residual stresses developed throughout the interface

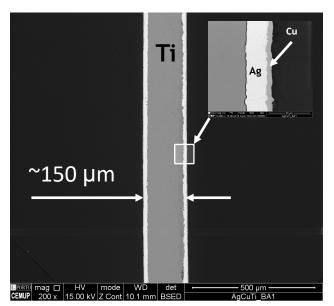
Shortcomings

- Ag base brazing fillers leave (Ag) in the interface leading to a softening effect
- Therefore, for this study, some Ag content of the brazing filler was replaced by Ti expecting to the elimination of (Ag)

Objectives

This study involves

- Diffusion brazing of Al₂O₃ to Ti6Al4V by the use of a Ti(Ag/Cu) brazing filler
- Microstructural characterization of the brazed interface by scanning electron microscopy technique (SEM/BES/EDS)
 - Understanding the microstructure evolved at the joint interface
 - Evaluation of the formation of unwanted phases at the joint interface
 - Microstructure influences the mechanical properties of the joints and service life of the joined components


Materials

Bases have disk shape of ~5 mm height

- Ti6Al4V (φ 7.0 Mm)
- Al₂O₃ (φ 6.0 mm)

brazing filler

- Ag-Cu sputtered coated Ti foil (Ti/Ag-Cu)
 - 。82.8Ti-12.4Ag-4.8Cu in wt.% (produced at CF-UM-UP)

Processing

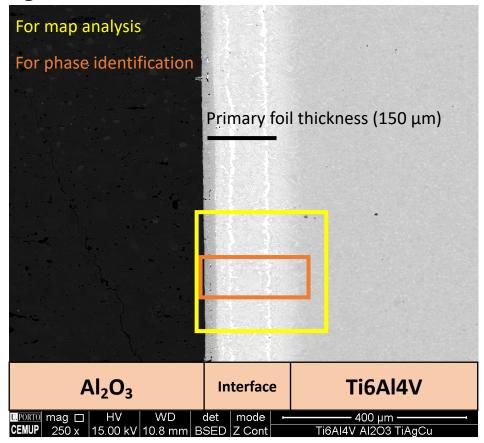
Cutting disks and grinding

- Ti base was ground by silicon carbide emery papers until 1000 mesh
- Alumina base was ground by the Aka disks until 6 μm diamond suspension

- Pieces were washed with alcohol, and dried
- Arranged in a metallic fixture which is fixed manually
- Heated in a resistance furnace assembled with a high vacuum pump at
 - 980 °C for 10 min at ~8×10⁻⁴ Pa

- Visual observation of the joints
- Grinding and polishing for microscopic observations by
 - Optical Microscope
 - SEM/BSE/EDS technique for phase identifications
- Providing a microhardness map of the interface

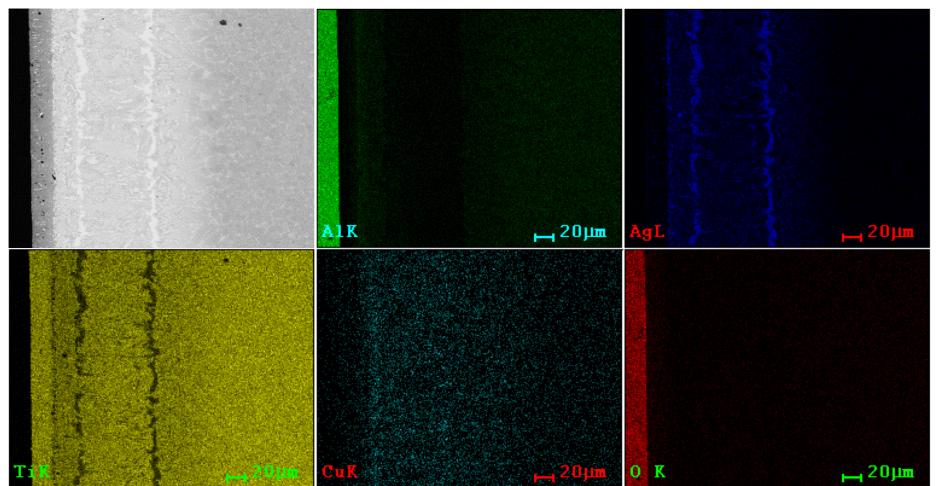
Fixture



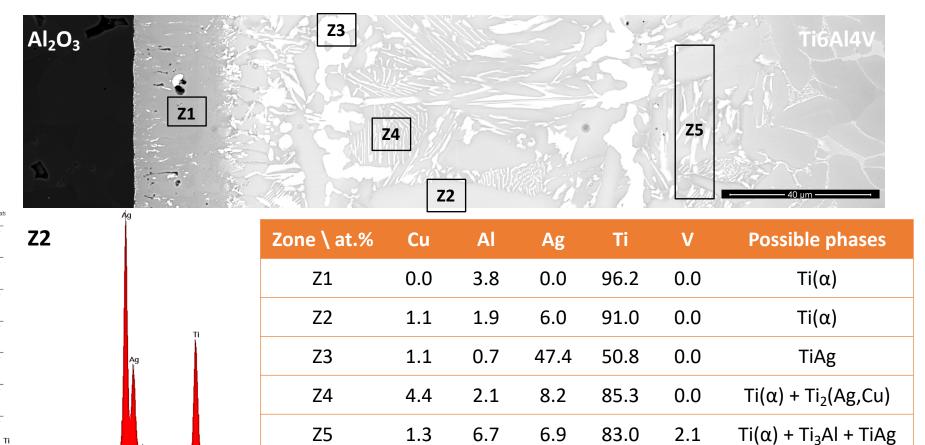
|x| Não é possível apresentar a image

Microstructural characterization

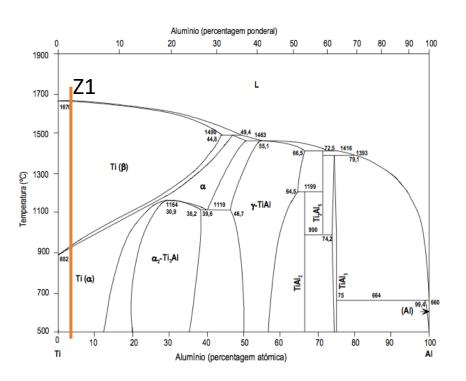
• A sound joint with a very complex microstructure was obtained by diffusion brazing at 980 °C for 10 min at 8 10-4 Pa

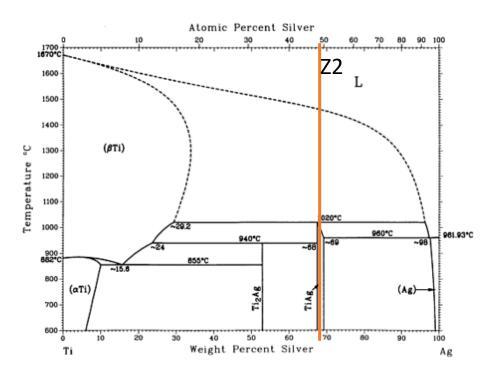


• SEM/EDS map of a selected zone of the Al_2O_3 - Ti(Ag/Cu) - Ti6Al4V interface

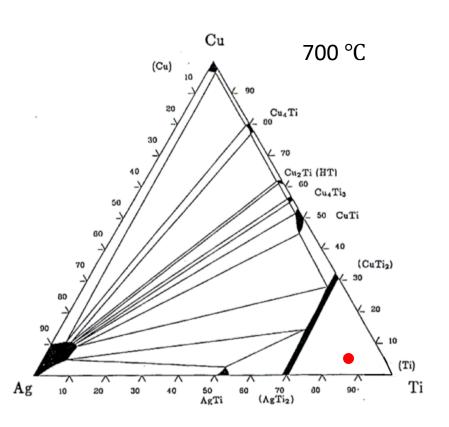


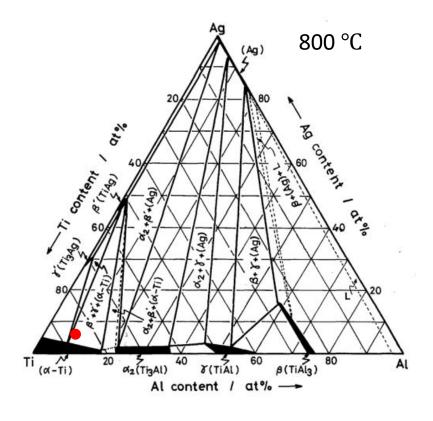
The pores are most probably inherited from the ceramic base



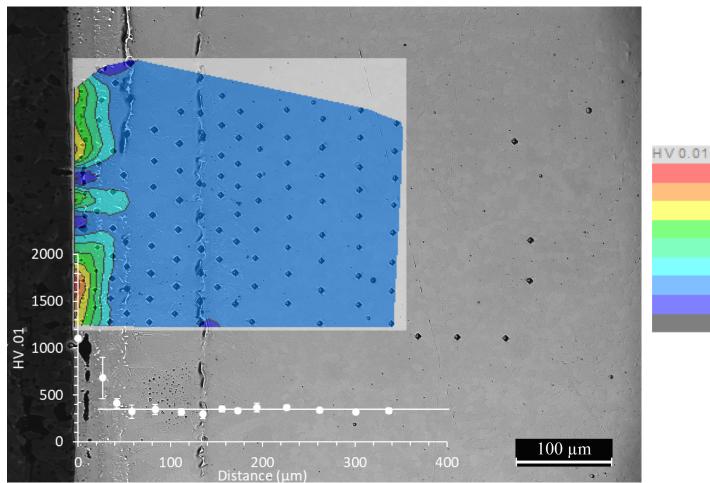


Phase identification of interested zones





Phase identification of interested zones



Microhardness map

• Al₂O₃ - Ti(Ag/Cu) - Ti6Al4V interface

Conclusions

- The diffusion brazing process was successfully performed for joining Al_2O_3 to Ti6Al4V by using a Ti(Ag/Cu) brazing filler at 980 °C at high vacuum
- The brazing process did not cause any defect (such as crack or porosity) at the joint interface
- Diffusion at the joint interface resulted in the formation of several intermetallic phases (TiAg, Ti₃Al, and Ti₂(Ag,Cu))
- The formation of (Ag) was not detected
- The hardness transition from the alumina towards the Ti6Al4V base presents values larger or similar to the titanium base alloy

Future works

- Shear strength test
- SEM from fractured surfaces
- X-ray diffraction
- TEM & Electron diffraction pattern analyses
- Influence of thermal post treatments on the strength and microstructure

S 150- à possival agressentar a imag

Acknowledgments

This work was financially supported by: Project NanoTiC-POCI-01-0145-FEDER - funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES.

Thanks for your attention

