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Abstract

Driven by their convenience and ubiquitousness, smartphones have been widely
adopted over the past ten years. As a consequence, mobile apps have rapidly become
indispensable to perform everyday tasks. Users rely on mobile apps to accomplish
tasks such as calling a taxi, renting a car, paying at grocery stores, ordering food,
and so on. Nowadays, being unable to operate with a smartphone device, may imply
being unable to carry out important tasks. This is the case when our smartphone
runs out of battery.

Thus, it is essential to ensure that mobile apps are energy-efficient. However, as we
demonstrate in this thesis, developing energy-efficient code is not as trivial as one
could imagine. Previous research has tackled this issue by proposing techniques
and tools to design energy-efficient mobile apps (e.g., studying anti-patterns) and
reliably assess energy improvements (e.g., software-based energy estimators). In this
thesis, we extend this research problem by studying how developers address energy
efficiency, pinpointing potential issues entailed by building energy-efficient code, and
proposing new techniques and practices to help developers address energy-related
requirements.

We start by compiling the current state-of-the-art methodologies used to measure
the energy consumption of mobile apps. Moreover, we study the limitations of
these methodologies. In particular, we measure the energy overhead entailed
by using User Interface testing frameworks during measurements. We show that
popular frameworks such as Calabash and AndroidViewClient should be avoided
when measuring energy consumption.

Following, we collect code smells from other non-functional requirements (in par-
ticular, performance) and explore their aptitude to improve energy efficiency. We
find five performance-based code smells that effectively reduce energy consumption
when fixed. Moreover, we study solutions typically applied to real-world energy effi-
ciency issues. We collect and document a catalog of 22 energy patterns by inspecting
energy-oriented changes in 1027 Android and 756 iOS apps. As a side contribution,
we compare how Android and iOS developers address the energy efficiency of their
apps.
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We leverage energy patterns in an automatic refactoring tool. We use this tool to
fix energy-based code smells in 45 open-source Android applications. Our results
emphasize the importance of using tools to help developers improve the energy
efficiency of their apps.

Last, we conduct an empirical study on the impact that managing the energy effi-
ciency of mobile apps brings to the maintainability of the codebase. By analyzing
a dataset of 539 energy efficiency-oriented changes, we show that improving en-
ergy efficiency hinders software maintainability. We discuss results and provide
recommendations to help developers avoid common issues and adopt development
processes that foster software maintainability.
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Resumo

Impulsionados pela sua conveniência e ubiquidade, os telemóveis inteligentes, vul-
garmente conhecidos como smartphones, tiveram uma grande adesão por todo o
mundo nos últimos dez anos. Como consequência, os smartphones tornaram-se
indispensáveis para realizar tarefas do dia-a-dia das pessoas. Os seus utilizadores
recorrem a aplicações móveis para tarefas tão banais como chamar um táxi, alugar
um carro, pagar no supermercado, encomendar comida, entre outras. Hoje em dia,
ficar sem acesso a um smartphone pode implicar a impossibilidade de realizar tarefas
importantes. Isto é o que acontece quando o telemóvel fica sem bateria.

Em consequência disso, é essencial garantir que as aplicações móveis fazem uma
gestão eficiente da bateria – isto é, são energeticamente eficientes. No entanto, tal
como demonstramos nesta tese, desenvolver código energeticamente eficiente não é
tão simples como seria de imaginar. Trabalho relacionado estudou este problema
propondo técnicas e ferramentas para desenhar aplicações mais eficientes (p. ex.,
estudando code smells) e para medir com fiabilidade melhoramentos no consumo
energético (p. ex., usando estimadores de energia baseados em software). Nesta
tese, alargamos o trabalho de investigação neste problema em diversas frentes:
estudamos como os programadores tipicamente lidam com requisitos de eficiência
energética; identificamos potenciais problemas relacionados com a criação de código
energeticamente eficiente; e propomos novas técnicas e práticas para ajudar os
programadores a criar software eficiente.

Começamos por fazer um levantamento do estado da arte das metodologias ex-
istentes para medição de energia em aplicações móveis. Estudamos também as
limitações destas tecnologias. Nomeadamente, medimos o custo adicional no con-
sumo de energia que advém da utilização de ferramentas de teste de interfaces de
utilizador. Mostramos que ferramentas populares como Calabash e AndroidViewClient
devem ser evitadas para medição de consumos de energia.

De seguida, colecionamos code smells relacionados com outros requisitos não fun-
cionais (nomeadamente, performance) e exploramos o seu potencial para melhorar
eficiência energética. Como resultado, descobrimos cinco code smells de perfor-
mance que efetivamente reduzem o consumo de energia quando devidamente
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corrigidos. Adicionalmente, estudamos soluções tipicamente aplicadas em proble-
mas reais de eficiência energética. Como resultado de analisar este tipo de soluções
em alterações de código de 1027 aplicações Android e 756 aplicações iOS, foi criado
um catálogo com 22 padrões de energia devidamente documentados. Como con-
tribuição suplementar, comparamos as diferenças entre programadores Android e
programadores iOS a gerir a eficiência energética das suas aplicações.

Como contribuição, também desenvolvemos uma ferramenta de refatorização au-
tomática de code smells de energia – Leafactor. Recorrendo a esta ferramenta, foi
possível corrigir code smells de energia em 45 aplicações open-source Android. Os
resultados obtidos realçam a importância de ferramentas automáticas para ajudar
programadores a melhorar a eficiência energética das suas aplicações móveis.

Por último, conduzimos um estudo empírico acerca do impacto que melhorar efi-
ciência energética em aplicações móveis pode ter na sua facilidade de manutenção.
Analisando um conjunto de dados com 539 alterações de código relacionadas com
energia, mostramos que este tipo de alterações de código reduzem significativa-
mente a facilidade de manutenção dos projetos. Discutimos os resultados e tecemos
recomendações para ajudar os programadores de aplicações móveis a evitarem
problemas recorrentes e a adotarem processos de desenvolvimento que promovem a
facilidade de manutenção do software.
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1Introduction

„Question everything generally thought to be
obvious.

— Dieter Rams

Dating back to 2007, a particular event changed the history of software engineering.
Steve Jobs, at the time Chief Executive Officer (CEO) of Apple, announced a new
mobile phone device: the iPhone (cf. Figure 1.1). This new mobile device ran
the iOS mobile operating system and, amongst other innovations1, it introduced
a multitouch interface, a capacitive touchscreen2, threaded text messaging, and
a mobile web browser with well-designed zooming and scrolling features [Grier,
2017].

However, the breakthrough innovation happened in the following year (2008), when
a new platform to acquire and publish mobile applications (apps, for short) was
announced: the App Store. For the first time, users could retrieve, buy, download,
and install any app in their phone simply by using this distribution platform. In
addition, the App Store took care of a number of tasks that, until then, had to be
ensured by developers: listing, hosting and installing the apps, processing payments,
certificating developers, and so on. By ensuring a big deal of the work entailed
by publishing an application, more developers were attracted to join in and start
building their apps. From the initial set of 500 iOS apps in 2008, Apple’s App Store
grew up to over 2.2 million apps, as of 20183. Quickly, other markets have joined
in: Google Play, Amazon Appstore, MyApp, 360 Mobile Assistant, Xiaomi App Store,
amongst others. As of 2018, Google Play was the biggest mobile app store, featuring
over 3.3 million Android apps.

Over the years, smartphones have become increasingly more powerful. Mobile and
wearable devices are nowadays the de facto personal computers, while desktop
computers are becoming less popular. Software products and services have been
increasingly focusing on mobile platforms as the main consumer target. For instance,

1The article “iOS: A visual history” by The Verge gives a broader picture on the evolution of the iPhone:
https://www.theverge.com/2011/12/13/2612736/ios-history-iphone-ipad (Visited on July
17, 2019)

2Until then, the most similar alternatives were the Personal Digital Assistant (PDA) phones that
featured a resistive touchscreen designed to be used with a stylus pen.

3An extensive list of mobile app markets is available here: http://www.businessofapps.com/guide/
app-stores-list/ (Visited on July 17, 2019).
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Figure 1.1: Steve Jobs announcing the Apple’s 1st generation iPhone (July 9, 2007). Source:
Apple Inc.

as of 2019, the popular social media app Instagram4 provides messaging features in
its mobile app that are not available in the analogous Web app. Likewise, the security
mechanism two-factor authentication (also known as 2FA), which is commonly
featured in desktop software, often requires users to have access to a smartphone.

The convenience of using smartphones allows users to accomplish important tasks
ubiquitously. Examples of typical mobile apps are present in Figure 1.2. Users
have access to a wide range of apps that allow them to perform everyday tasks,
such as hailing a taxi (Figure 1.2a), making payments (Figure 1.2b), ordering food
(Figure 1.2c), or even help them manage their medication intake (Figure 1.2d), and
so on. In consequence, being unexpectedly deprived of using a smartphone means
not being able to accomplish essential tasks. For instance, in an extreme scenario, if a
user relies on a medication tracking app such as the one in Figure 1.2d, it might mean
not taking medications as prescribed. In fact, an increasing number of users have
been observed to suffer from anxiety, nervousness or discomfort when out of contact
with a mobile phone – a condition technically referred as nomophobia [Bragazzi
and Del Puente, 2014]. This raises the importance of one of the most significant
limitations of smartphones: these devices run on batteries and have limited power
resources. Hence, the more tasks users need to accomplish with their smartphones
the less battery they will have available through the day.

A large scale study with over 4, 000 smartphone users found that, in order to prevent
losing connectivity, they charge their devices several times during the day [Ferreira
et al., 2011]. In 2016, the manufacturer LG reported that nearly 90% of smartphone

4Instagram is a photo and video-sharing social networking service, available at: http://www.
instagram.com/ (Visited on July 17, 2019).
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(a) Peer-to-peer rideshar-
ing app Uber.

(b) Online banking ser-
vice app Revolut.

(c) Delivery app Glovo. (d) Medication tracker
Medisafe.

Figure 1.2: Typical UI of popular mobile apps.

users suffered from the fear of losing power on their phone5. They dubbed this con-
dition as Low Battery Anxiety. Another marketing study conducted by the Australian
comparison site Finder6 found evidence that longer battery life is the most desired
feature for 89% of users in their next smartphone. Thus, energy efficiency in mobile
applications is an essential concern for both users and developers. Apps that drain
the battery life of mobile devices can ruin the user experience and, therefore, tend to
be removed unless they offer an essential feature to users. Moreover, previous work
found that users change their app usage patterns according to the battery level of
their phone [Hosio et al., 2016]. In other words, users will stop using certain apps
when their devices reach particular battery levels. Thus, any improvement in the
energy efficiency of an application has a significant impact on its success.

However, related work shows that developers lack the knowledge of best practices
to address the energy efficiency of mobile applications [D. Li and Halfond, 2014;
Robillard and Medvidovic, 2016]. In particular, mobile apps often have energy
requirements, but developers are unaware that energy-specific design patterns do
exist [Manotas et al., 2016].

This thesis aims to help developers create energy-efficient mobile apps. We investi-
gate existing limitations faced by mobile practitioners and leverage techniques that
can be adopted to improve energy efficiency.

5LG media publication with reports on Low Battery Anxiety: https://www.prnewswire.com/
news-releases/low-battery-anxiety-grips-9-out-of-ten-people-300271604.html (Vis-
ited on July 17, 2019)

6Finder’s official website: https://www.finder.com.au/ (Visited on July 17, 2019)
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1.1 Concepts and Definitions
Throughout this document, we use the following definitions:

Definition 1 (Energy Efficiency) Characteristic of a software system that indicates
how well the hardware’s energy resources are being used.

Definition 2 (UI testing framework) A framework that is able to mimic user inter-
actions (e.g., tap, swipe, etc.) in the user interface of a given application.

Definition 3 (Energy Test) A sequence of interactions with a software application
that explores a particular use case to assess energy efficiency.

Definition 4 (Design Pattern) A general, repeatable solution to common problems
faced when solving software engineering design problems [Gamma, 1995]. Typically, a
design pattern systematically names, motivates and explains a recommended solution.

Definition 5 (Energy Pattern) A design pattern that is known to improve the energy
efficiency of a software system.

Definition 6 (Code Refactoring) The process of restructuring the code to improve
non-functional requirements and reduce technical debt [Fowler, 2018].

Definition 7 (Code smell) A common sign in the source code that may indicate a
deeper problem in the software and should be refactored [Fowler, 2018].

Definition 8 (Maintainability) As defined by the International Standards on software
quality ISO/IEC 25010 is “The degree of effectiveness and efficiency with which a
software product or system can be modified to improve it, correct it or adapt it to changes
in environment, and in requirements” [International Organization for Standardization,
2011].

1.2 Problem Statement and Research Goals
As explained above, energy efficiency is a non-functional software requirement that
arose with the advent of smartphones. A naive approach could address energy
efficiency as a performance requirement. In this case, energy consumption would
be modeled as a function of Central Processing Unit (CPU) cycles, and other
simple metrics. However, related work has shown this is a very rough estimation
given all the subcomponents that run under-the-hood of modern smartphones (e.g.,
location sensors, haptic feedback engine, Graphics Processing Unit (GPU), multiple
heterogeneous CPUs, network connections) [R. A. A. Pereira, 2018; S. Chowdhury
et al., 2018a].
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Given the recency of the new mobile computing paradigm, little is known on how
to build energy-efficient mobile apps [D. Li and Halfond, 2014]. It is necessary to
study approaches that address the idiosyncrasies of mobile apps and their running
environments [Muccini et al., 2012].

Thus, in this thesis, we address the following main research question:

Main Research Question

What are the inherent limitations of state-of-the-art approaches to improving the
energy efficiency of mobile applications, and what can be done to help developers
address them?

Motivated by this main research question, this thesis incorporates the following
research goals:

Research Goal I: Describe the state-of-the-art approaches to measure the energy
efficiency of mobile applications (Chapter 2).

Practitioners can resort to different approaches to measure energy efficiency. Each of
them has advantages and disadvantages that need to be considered when performing
energy tests. We describe the state-of-the-art approaches and propose a methodology
to perform reliable energy tests.

Research Goal II: Study which User Interface (UI) testing frameworks can provide
reliable energy efficiency assessments and check if existing mobile application projects
are ready for automated energy testing approaches (Chapters 3 and 4).

Energy tests require using UI testing frameworks to make sure measurements are
repeatable. However, these frameworks are not designed for energy tests. Thus, it is
important to understand which frameworks can be safely used for energy tests. In
addition, we want to understand potential challenges in extending general-purpose
testing practices to energy-efficiency requirements by analyzing the current testing
culture in Free and Open Source Software (FOSS) Android projects.

Research Goal III: Study and document best practices and recurrent solutions that
can be reused to improve the energy efficiency of mobile apps. (Chapters 5 and 7).

Energy-efficiency improvements typically require specialized developers. They need
to come up with different solutions depending on the app, targeted users, context,
and so on. We want to understand which practices can be reused by other developers
to design energy-efficient mobile apps.

Research Goal IV: Develop static analysis and automatic refactoring tools to help
practitioners create energy-efficient mobile apps (Chapter 6).

1.2 Problem Statement and Research Goals 5



We study how automatic refactoring tools can help practitioners develop mobile apps
that are free of energy code smells. Moreover, we study their benefits in real-world
FOSS Android apps.

Research Goal V: Assess the impact of improving energy efficiency in the maintainabil-
ity of mobile software projects (Chapter 8).

While improving the energy efficiency of mobile apps, developers ought to ascertain
that their apps are maintainable. However, energy patterns require code changes
that are not always simple and may affect different parts of app codebases. We aim
to assess this impact and find energy patterns that require more attention.

1.3 Contributions
In this thesis, we deliver a number of contributions to help developers assess and
ensure the energy efficiency of mobile applications:

• A methodology to reliably measure the energy consumption of mobile appli-
cations. The methodology is implemented and released in the Python library
Physalia: https://github.com/tqrg/physalia.

• A comprehensive comparison of the overhead of UI testing frameworks on
energy testing.

• Best practices regarding the Application Programming Interface (API) usage
of UI testing frameworks for energy tests.

• A decision tree to help choose the UI testing framework which suits a given
mobile software project.

• An empirical study on the adoption of testing techniques in the Android
developer community.

• A static analysis tool to detect the usage of state-of-art testing frameworks.
Available at: https://github.com/luiscruz/android_test_inspector.

• A comprehensive investigation of the relationship of automated test adoption
with quality and popularity metrics for Android apps.

• An empirical study on the relationship between automated testing and CI/CD
adoption.

• A selection of FOSS mobile apps that comply with testing best practices. Avail-
able at: https://luiscruz.github.io/android_test_inspector/.

• Empirical validation of performance-based best practices to improve the energy
efficiency of Android apps.

• An automated refactoring tool, Leafactor, to apply energy efficiency best prac-
tices in Android application code bases.

6 Chapter 1 Introduction

https://github.com/tqrg/physalia
https://github.com/luiscruz/android_test_inspector
https://luiscruz.github.io/android_test_inspector/


• The submission of 59 Pull Requests (PRs) to the official code bases of 45 FOSS
Android applications, comprehending 222 energy efficiency refactorings.

• A catalog of 22 energy patterns with a detailed description and instructions
for mobile app developers and designers. It is available online: https://
tqrg.github.io/energy-patterns and contributions from the community
are enabled as PRs.

• A dataset with 1563 commits, issues, and PRs in which mobile app de-
velopment practitioners address the energy efficiency of their apps. The
dataset and collection tools are available online: https://github.com/TQRG/
energy-patterns.

• An empirical comparison of how the energy efficiency of mobile app develop-
ment is addressed in different platforms (viz. Android and iOS).

• An investigation of the impact of energy patterns in code maintainability.
The reproducibility package is available here: https://figshare.com/s/
989e5102ae6a8423654d.

A comprehensive explanation of these contributions is provided throughout this
thesis.

1.4 Thesis Outline
The outline for the rest of this thesis is depicted as a tree diagram in Figure 1.3. As
the root of the tree diagram is the main topic: mobile apps. Any chapters in different
root-to-leaf paths can be read in parallel.

We start by studying energy efficiency in terms of methodology tools and techniques
– Chapters 2 and 3. In parallel, we conduct an empirical study on the global picture
of testing in FOSS Android apps (Chapter 4). We get back to energy efficiency
by studying code patterns: in Chapter 5, we study which performance-based code
patterns can be used to address energy efficiency, and, in Chapter 6, we leverage
an automatic refactoring tool implementing those patterns. Finally, we build a
catalog of energy patterns in Chapter 7, and study their impact on maintainability in
Chapter 8. Conclusions and future work are discussed in Chapter 9.

All the URL references in this document have been saved in the WayBackMachine
internet archive. In case an URL is not available, it can be accessed from http:
//web.archive.org.

1.5 Origin of Chapters
All chapters in this thesis have either been published in peer-reviewed journals and
conferences or are currently under review. All publications have been co-authored
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Chapter 3

Code Patterns
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Patterns

Chapter 5
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Refactoring
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Energy Patterns
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Maintainability
Chapter 8

Testing
Chapter 4

Figure 1.3: Thesis Outline.

with Rui Abreu. Publication of Chapter 4 has also been co-authored with David Lo.
Publication of Chapter 8 has been co-authored with John Grundy, Li Li, and Xin
Xia.

Chapter 3 is based on work submitted to the IEEE Transactions on Software En-
gineering (TSE), which is currently under review. A preliminary version of
this work was published as a poster in the Proceedings of the International
Conference on Software Engineering (ICSE’18) [Cruz and Abreu, 2018a].

Chapter 4 is based on the work from [Cruz et al., 2019b], published in the Empirical
Software Engineering (EMSE) journal.

Chapter 5 is based on work from [Cruz and Abreu, 2017], published in the
IEEE/ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft 2017).

Chapter 6 is based on work submitted to the Journal of Software Engineering Re-
search and Development (JSERD). An earlier version of this work was published
in the Ibero-American Conference on Software Engineering (CIbSE) [Cruz and
Abreu, 2018b], having been distinguished with the Best Paper award. A pre-
liminary version of this work was published as a tool demo short paper in the
IEEE/ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft 2017) [Cruz et al., 2017].

Chapter 7 is based on the work from [Cruz and Abreu, 2019a], published in the
Empirical Software Engineering (EMSE) journal.

Chapter 8 is based on work submitted to The International Conference on Software
Maintenance and Evolution (ICSME), which is currently under review.
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2Measuring Energy Consumption
of Mobile Apps

Abstract

High energy consumption is a challenging issue that an ever increasing number
of mobile applications face today. Despite being an important non-functional
requirement of an application, energy consumption is being tested in an ad hoc
way. In this chapter, we describe the state-of-the-art approaches to measure energy
consumption. We present the two main categories of measurement tools: 1) energy
profilers, and 2) power monitors. We pinpoint the benefits and limitations of
the two categories. Moreover, we enumerate the required procedures to ensure
the collection of reliable energy measurements. For instance, measuring energy
consumption delves into mimicking user interactions, performing statistical valida-
tions, and so on. Finally, we present the library Physalia created to aid developers
and researchers to gather reliable energy measurements. This library was used
throughout the experiments in this thesis.

2.1 Introduction
When compared to traditional desktop applications, mobile apps run on devices with
limited resources: lower computing capacity, less memory, lower power source, and
so on. Nevertheless, mobile devices have very complex architectures, as illustrated
in Figure 2.1. These architectures are designed to run operative systems that restrict
apps to ensure optimal usage of resources. Thus, measuring energy consumption
is a challenging task that developers and researchers face when testing the energy
efficiency of their mobile apps.

Virtually, all the components presented in Figure 2.1 can be used during the execution
of an application. Thus, the energy consumption of a mobile application cannot be
constructed by merely measuring the execution time or the number of CPU cycles.
A typical example that demonstrates this is the usage of different types of CPUs:
smartphone architectures use fast but power-hungry CPUs for heavier tasks, and slow
CPUs that consume less energy for simpler tasks (e.g., heterogeneous architecture
big.LITTLE1 used in mobile devices) [Yu et al., 2013; Diop et al., 2014]. Another
example is the energy consumption entailed by starting and stopping components –
a phenomenon coined as tail energy consumption [Pathak et al., 2011b]. Thus, it is
not possible to measure energy consumption by measuring usage time. For example,

1big.LITTLE architecture: https://www.arm.com/why-arm/technologies/big-little (Visited on
July 17, 2019).
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Figure 2.1: Architecture of the Apple iPhone X (2017). Labels are depicted on top of each
component. Logic boards integrate several other components, such as, CPU
(Apple A11), NFC controller, Bluetooth, Audio codec, Cellular receiver, etc.

a single task that requires using a component for T seconds will spend less energy
than two tasks that need T/2 seconds and run separately, in the same conditions.

Moreover, energy consumption can be affected by many other factors: temperature,
background tasks, display brightness level, and so on. Different executions of the
same code may have different energy consumptions. Thus, measuring discernible
improvements to the energy efficiency of an application is not only challenging but
also time-consuming. For this reason, researchers have resorted to a number of
different approaches to measure energy consumption.

In this chapter, we describe the different approaches used in previous work to
measure the energy consumption of mobile applications, and pinpoint their main
advantages and disadvantages. In sum, there are two main groups: 1) estimation-
based measurements, using energy profilers, which are typically easy to set up but
less reliable and can only be used in a small set of contexts, and 2) hardware-based
estimations, using power monitors, which are complicated and hard to set up but
provide more reliable measurements.

A single test for energy consumption comprehends the following steps:

1. Set up power measurement tools.

2. Design a test case, i.e., mimic the user interaction of a typical use case scenario
of the mobile app under test.

3. Repeat the measurement at least 30 times.

4. Collect and aggregate power data.

5. Analyze results.

10 Chapter 2 Measuring Energy Consumption of Mobile Apps



In this chapter, we further explain the state-of-the-art approaches to implement the
steps mentioned above.

2.2 Set up power measurement tools
There are two main approaches to collect power data from the execution traces of
mobile applications:

Energy profilers. Software tools that model energy consumption as a function of
features that quantify impacting factors of energy consumption – e.g., number
of CPU cycles, the amount of time Global Positioning System (GPS) was
used, number of data packets transmitted using WiFi, and so on. These tools
provide an estimation of the energy consumption.

Power monitors. Hardware-based tools that measure the power delivered to the
smartphone in each timestamp. Power monitors provide power measure-
ments, as opposed to the energy estimates collected with Energy profilers.

2.2.1 Energy profilers.

Previous work delivered software-based estimators aiming to collect reliable energy
consumption data. These estimators typically model energy consumption as a
function of features collected from the execution trace of the application and how
long resources are being used (e.g., GPS, Cellular data, and so on).

State-of-the-art energy profilers (Android):

• GreenScaler [S. Chowdhury et al., 2018a].

• AnaDroid [Rua et al., 2019].

• PETrA [Di Nucci et al., 2017a].

• Greenoracle [S. A. Chowdhury and Hindle, 2016].

• eProf [Pathak et al., 2011b; Pathak et al., 2012a].

• PowerTutor [Zhang et al., 2010]. Used in [Zhang et al., 2012; Zhou et al.,
2017; Zhou et al., 2015; Couto et al., 2015; Couto et al., 2014].

• BatteryStats2. Delivered with the Android Software Development Kit (SDK).

• PowerProf [Kjærgaard and Blunck, 2011].

2Documentation of BatteryStats: https://developer.android.com/studio/profile/
battery-historian (Visited on July 17, 2019)
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• Trepn Power Profiler3. Used in [Malavolta et al., 2017].

• PowerBooter [Zhang et al., 2010].

• Sesame [Dong and Zhong, 2011].

• DevScope [Jung et al., 2012].

• AppScope [Yoon et al., 2012].

• V-edge [Xu et al., 2013].

• vLens [D. Li et al., 2013]. Used in [D. Li et al., 2014a].

• eLens [Hao et al., 2013].

Solutions for iOS are more rare, including the Energy Diagnostics Instrument 4 and
the Location Energy Instrument, targeted for location-based use cases. Both are
delivered with the iOS SDK. However, the documentation neither specifies which
components are covered nor the overall expected accuracy provided by these tools.

A detailed comparison of energy profilers is addressed in previous work [Hoque
et al., 2016]. Although these energy profilers can be very accurate, the validity of
their measurements is highly dependent on the context in which they are used. For
instance, as of 2016, Trepn Profiler was the only energy profiler considering the
GPU as a source of energy consumption [Hoque et al., 2016]. Moreover, although
most profilers report high accuracy, there is no standard benchmark to evaluate
energy profilers. This means that the self-reported accuracy of 97.5% for PowerTu-
tor[Zhang et al., 2010] is not necessarily higher than the self-reported accuracy of
94% for eProf[Pathak et al., 2012a]. In addition, there is no systematic approach
to assess whether a particular profiler is adequate for a given context (e.g., a set of
requirements).

2.2.2 Power Monitors

As an alternative to energy profilers, related studies have used hardware-based
power monitors to measure energy consumption:

• Monsoon Power Monitor. Used in [Zhang et al., 2010; Banerjee and Roychoud-
hury, 2016; D. Li and Halfond, 2014; D. Li et al., 2014b; Cruz and Abreu,
2018a; Jung et al., 2012; Wan et al., 2017].

3Trepn Power Profiler’s website:https://developer.qualcomm.com/trepn-profiler (Visited on
July 17, 2019).

4Apple’s Energy Diagnostics Instrument documentation: https://developer.apple.
com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/
MonitorEnergyWithInstruments.html (Visited on July 17, 2019)
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Figure 2.2: Typical setup for energy measurements.

• ODROID. Used in [Cruz and Abreu, 2017; Imes and Hoffmann, 2015; Shin
et al., 2013]

• NEAT [Brouwers et al., 2014].

• BattOr [Schulman et al., 2011]. Used in [Aditya et al., 2014]

• GreenMiner [Hindle et al., 2014]. Used in [S. A. Chowdhury and Hindle, 2016]

• Custom solutions were used in [Abogharaf et al., 2012; Rasmussen et al., 2014;
Sahin et al., 2016; Ferrari et al., 2015; Segata et al., 2014]

The main advantage of power monitors is the fact that they typically provide more
accurate energy measurements. The drawback is that this approach requires a
cumbersome preparation procedure5. A typical setup is depicted in Figure 2.2. It
requires three main components: 1) a controlling workstation, 2) a smartphone, and
3) a power monitor. The workstation takes care of controlling the power monitor,
with instructions to start/stop measurements and to set the power voltage supplied
to the smartphone, and of triggering the execution of test cases in the smartphone.
Finally, the power monitor sends the measured power data back to the workstation.

Under the hood, the smartphone needs to be disassembled and have its battery
removed while the power monitor is connected directly to the power source of the
smartphone. Such a procedure requires some hacking that may not be accessible for
an ordinary developer. Besides, several measures need to be taken to ensure that the
collected data is reliable. To name a few, differences in the temperature room may
affect results, the USB port cannot be connected to the device, and so on.

5Step-by-step guide to setup a Monsoon Power Monitor with an Android smartphone: https:
//tqrg.github.io/physalia/monsoon_tutorial.html (Visited on July 17, 2019).
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2.3 Design a test case
To measure the energy consumption of a mobile application, one needs to design
the use case in which the energy consumption will be tested.

The test case is executed by interacting with the UI of the app. In other words, a test
case is a sequence of UI interactions. These can be a simple Tap, Double Tap, a Swipe,
a Drag and Drop, writing with the Keyboard, pressing the Back Button (in the case of
Android), etc.

It is essential that the test case covers the scenario in which we want to test energy
efficiency. For example, if we want to improve the energy efficiency of the use cases
in which the app updates its data model from the cloud server, the test case should
cover at least that part of the code. Although this may sound trivial, it can only be
ensured if developers are aware of the code coverage achieved with their sequence
of UI interactions.

Manual tests for energy efficiency are not reliable. This is different from testing other
non-functional requirements. A test manually executed by a human entails delays
between UI interactions that cannot be systematically reproduced. In other words,
unnecessary delays during the execution of a test will delve into non-deterministic
overheads in the measured energy consumption (e.g., unnecessary Display usage).
Thus, automated test cases are more suitable to test energy efficiency.

Automated test cases are executed using UI frameworks. To name a few, the Android
SDK is shipped with MonkeyRunner, Robotium, and Espresso. Besides, there are tools
that record UI interactions and generate the respective test cases (e.g., Espresso Test
Recorder, Robotium Recorder, etc.). We detail the state-of-the-art UI frameworks and
analyze their reliability for energy efficiency tests later in Chapter 3.

An example of a UI test case extracted from the open source Android app GnuCash6

is presented below:

//class org.gnucash.android.test.ui.FirstRunWizardActivityTest
@Test
public void shouldDisplayFullCurrencyList (){

assertThat(mAccountsDbAdapter.getRecordsCount ()).isEqualTo (0);

onView(withId(R.id.btn_save)).perform(click ()); ¶

onView(withText(R.string.wizard_option_currency_other)).perform(click());
onView(withText(R.string.btn_wizard_next)).perform(click());
onView(withText(R.string.wizard_title_select_currency)).check(matches(

isDisplayed ())); ·

onView(withText("AFA␣-␣Afghani")).perform(click());
onView(withId(R.id.btn_save)).perform(click ());

6GnuCash git repository: https://github.com/codinguser/gnucash-android (Visited on July 17,
2019).
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onView(withText(R.string.wizard_option_let_me_handle_it)).perform(click());

onView(withText(R.string.btn_wizard_next)).perform(click());
onView(withText(R.string.wizard_option_disable_crash_reports)).perform(

click());
onView(withText(R.string.btn_wizard_next)).perform(click());

onView(withText(R.string.review)).check(matches(isDisplayed ()));
onView(withId(R.id.btn_save)).perform(click ());

// default accounts should not be created
assertThat(mAccountsDbAdapter.getRecordsCount ()).isZero (); ¸

boolean enableCrashlytics = GnuCashApplication.isCrashlyticsEnabled ();
assertThat(enableCrashlytics).isFalse ();

String defaultCurrencyCode = GnuCashApplication.getDefaultCurrencyCode ();
assertThat(defaultCurrencyCode).isEqualTo("AFA");

}

In this test, a number of taps is executed to go over the initial setup wizard when the
user installs the app. A single tap is executed with a statement akin to the one in ¶.
First, the button is identified by its id (stored in R.id.btn_save) using the method
onView(), and then a tap is instructed with the method call perform(click()).
Given that we are not testing functional requirements, assertions akin to the ones
in ·, ¸ are not necessary.

2.4 Collect and Aggregate Power data

Energy measurements are affected by a myriad of external conditions. Despite
the efforts to minimize most confounding factors, energy measurements can still
undergo small deviations from the effective energy consumption entailed by the
app. E.g., one can control the temperature of the device to a fixed temperature, but
ensuring that the temperature is exactly the same in two different executions is not
a trivial task. This leads to some level of non-determinism in energy measurements,
making testing for energy efficiency difficult.

As a rule of thumb, measurements ought to be repeated at least 30 times to minimize
bias [Sahin et al., 2014; Sahin et al., 2016; Cruz and Abreu, 2018a; Linares-Vásquez
et al., 2014]. To assess whether energy consumption is different in two different
versions of a given app, hypothesis testing is performed. It is formulated as follows:

H0 : µW (A) = µW (B)

H1 : µW (A) 6= µW (B)
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where A and B are two different versions of an app, W denotes the energy consump-
tion measured for a given version, and µ is the population mean.

Typically, the distribution of the mean of energy consumption for a given version
follows a Normal distribution. This should be verified using a normality test (e.g.,
Shapiro-Wilk test) or using data visualizations (e.g., histograms, probability den-
sity function). Assuming data follows a Normal distribution, a parametric test is
performed (e.g., Welch’s t-test) using a significance level below 0.05. If the result-
ing p-value is below the significance level, then H0 is rejected: there is statistical
evidence that the two versions A and B have different energy consumptions.

In addition, the data gathered from power monitors and energy profilers is not
necessarily a measurement of the total energy consumption. Data is returned as a
set of pairs of timestamp (t) and power level (P): (ti, Pi).

The total energy consumption (i.e., work performed) between timestamps t0 and tn
is calculated by integrating power over time:

W =
∫ tn

t0
P (t)dt (2.1)

where P is power and W is the energy consumption (i.e., work).

Since P is a continuous variable but what we have is a sample of measured values,
mathematical integration needs to be approximated using a numerical approach
based on the general Trapezoid Rule:∫ tn

t0
P (t)dt ≈ ∆t

2 [P (t0) + 2P (t1) + 2P (t2) + ...+ 2P (tn−1) + P (tn)] (2.2)

This calculation is illustrated in Figure 2.3. The energy spent during an experiment
is given by the area of the function of Power between the timestamp when the
interaction started (t0) and the timestamp when interaction ended (tn). As defined
by the International System of Units, the unit to measure time is the second (s),
power is watt (W), and energy consumption is joule (J). In the case illustrated
in Figure 2.3, following the general Trapezoid Rule in Equation (2.2), the energy
consumption is 28.71J.

2.5 Physalia: a library to measure energy
Given the particularities above, we leverage a Python library to help collect reliable
measurements of app energy consumption: Physalia7. The library is available with

7Physalia’s official website: https://tqrg.github.io/physalia/ (Visited on July 17, 2019)
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Figure 2.3: Energy consumption calculation.

an open source license and can be installed through the Python package manager
PyPI8.

The library was designed to be compatible with any power monitor and energy
profiler. Currently, it is fully tested to be used with the Monsoon Power Monitor. It
takes care of the following details:

• Controlling an Android device under test. I.e., configure workstation connec-
tion to the device, install/uninstall Android Application Packages (APKs),
open/close apps, run test cases, and so on.

• Asynchronously instruct the power monitor to start and stop measuring energy
consumption.

• Store and calculate the total energy consumption (cf. Equation (2.2)) based
on the collected power data and perform hypothesis tests over samples.

The following snippet shows an example of a simple script using Physalia to measure
the energy consumption entailed by launching an Android app.

from time import sleep
from physalia.power_meters import MonsoonPowerMeter
from physalia.energy_profiler import AndroidUseCase

MEASUREMENT_DURATION = 10 #seconds

def prepare(use_case): ¶

use_case.prepare_apk ()
def cleanup(use_case): ·

8Package available here: https://pypi.org/project/physalia/ (Visited on July 17, 2019)
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use_case.kill_app ()
def run(use_case): ¸

use_case.open_app ()
sleep(MEASUREMENT_DURATION)

use_case = AndroidUseCase(
"opening -native",
app_apk="./apks/mobile_app.apk",
app_pkg="pt.research.energyconsumption.mobileapp",
app_version="0.0",
prepare=prepare ,
run=run ,
cleanup=cleanup

)
power_meter = MonsoonPowerMeter(voltage =3.8, serial =12886) ¹

use_case.profile(power_meter=power_meter) º

¶ Set up and prepare the device and the app under test. In this case, it takes care of
(re)installing the APK of the app.

· Clean the device after executing the energy measurement. In this case, the app is
closed.

¸ The routine that is going to be measured. In this script, we only measure the
energy consumption of opening the app and waiting 10 seconds.

¹ Set up the power meter to start measuring. The Monsoon power meter with serial
number “12886” is set to output a voltage of 3.7V to the smartphone.

º Execute measurements 30 times and save data into a local CSV file.

2.6 Summary
In this chapter, we have studied the state-of-the-art approaches to test the energy
consumption of mobile apps. Concretely, in this chapter:

• We provide researchers and developers with a detailed guide to measure the
energy consumption of their mobile applications.

– How to mimic real use case scenarios.

– How to aggregate raw energy data.

– How to determine whether two different app versions have different
energy efficiency.

• We studied and listed existing tools to collect energy data.

• We propose the tool Physalia to help researchers and developers gather energy
measurements complying with best practices.

18 Chapter 2 Measuring Energy Consumption of Mobile Apps



3Energy Footprint of UI Testing
Frameworks

Measuring the Energy Footprint of Mobile Testing Frameworks
Luis Cruz and Rui Abreu
In: Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE, 2018.

On the Energy Footprint of Mobile Testing Frameworks
Luis Cruz and Rui Abreu
Submitted to IEEE Transactions on Software Engineering, 2019.

Abstract

As we have seen in Chapter 2, measuring energy consumption is not trivial.
Such limitation becomes particularly disconcerting when mimicking typical usage
scenarios of mobile applications: there is no knowledge as to what is the energy
overhead imposed by the testing framework.

In this chapter, we study eight popular mobile UI testing frameworks to assess
their overhead on energy measurements. We show that there are frameworks
which increase energy consumption up to roughly 2200%. While limited in the
interactions one can do, Espresso is the most energy-efficient framework. However,
depending on the needs of the tester, Appium, Monkeyrunner, or UIAutomator
are good alternatives. In practice, results show that deciding which is the most
suitable framework is vital. We provide a decision tree to help developers make an
educated decision on which framework suits best their testing needs.

3.1 Introduction
Automated testing tools help validate not only functional but also non-functional
requirements such as scalability and usability [Morgado and Paiva, 2015; Moreira
et al., 2013]. In Chapter 2, we have seen that the most reliable approach to measure
the energy consumption of mobile software is by using user UI testing frameworks [D.
Li et al., 2014a; S. Lee et al., 2015; Linares-Vásquez et al., 2014; Di Nucci et al.,
2017b; Carette et al., 2017; Cao et al., 2017]. These frameworks are used to mimic
user interaction in mobile apps while using an energy profiling tool. An alternative
is to use manual testing, but it creates bias, is error-prone, and is both time and
human resource consuming [Rasmussen et al., 2014].
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While using a UI testing framework is the most suitable option to test apps, there are
still energy-related concerns that need to be addressed. By replicating interactions,
frameworks are bypassing or creating overhead on system behavior. For instance,
before executing a Tap1, it is necessary to programmatically look up the target UI
component. This creates extra processing that would not happen during an ordinary
execution of the app. These peculiarities are addressed in this chapter, as they may
have a negative impact on energy consumption results.

As a motivational example, consider the following scenario: an app provides a
tweet feed that consists of a list of tweets including their media content (such as,
pictures, GIFs, videos, URLs). The product owner noticed that users rather value
apps with low energy consumption. Hence, the development team has to address
this non-functional requirement.

One idea is to show plain text and pictures with low resolution. Original media
content would be rendered upon a user Tap on the tweet, as depicted in Figure 3.1.
With this approach, energy is potentially saved by rendering only media that the
user is interested in. To validate this solution, developers created automated scripts
to mimic user interaction in both versions of the app while measuring energy
consumption using a power meter. The script for the original version consisted
in opening the app and scroll the next 20 items, whereas the new version’s script
consisted in opening the app and scrolling the next 20 items while tapping in 5 of
them (a number they agreed to be the average hit rate of their users). A problem
that arises is that the testing framework spends more energy to perform the five
extra Taps. Imagining that for each Tap the testing framework consumes 1 joule2 (J),
the new version will have to spend at least 5J less than the original version to be
perceived as more efficient. Otherwise, it gets rejected even though the new version
could be more efficient.

More efficient frameworks could reduce this threshold to a more insignificant value.
However, since testing frameworks have not considered energy consumption as
an issue, developers do not have a sense of which framework is more suitable to
perform reliable energy measurements.

In this chapter, we study popular UI testing frameworks in the context of testing
the energy efficiency of mobile apps. This empirical study addresses the following
research questions:

Research Question 3.1

Does the energy consumption overhead created by UI testing frameworks affect
the results of the energy efficiency of mobile applications?

1Tap is a gesture in which a user touches the screen with the finger.
2Joule (J) is the energy unit in the International System of Units.
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Figure 3.1: Two versions of the example app.

Research Question 3.2

What is the most suitable framework to profile energy consumption?

Research Question 3.3

Are there any best practices when it comes to creating automated scripts for
energy efficiency tests?

We measure the energy consumption of common user interactions: Tap, Long Tap,
Drag And Drop, Swipe, Pinch & Spread, Back button, Input text, Find by id, Find by
description, and Find by content.

Results show that Espresso is the framework with the best energy footprint, although
Appium, Monkeyrunner, and UIAutomator are also good candidates. On the other
side of the spectrum are AndroidViewClient and Calabash, which makes them not
suitable to test the energy efficiency of apps yet. We have further discovered that
methods that use content to look up UI components need to be avoided since they
are not energy savvy.

As main implication, overheads incurred by UI testing frameworks ought to be
considered when measuring the energy consumption of mobile apps.

To sum up, this chapter’s contributions are:
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Figure 3.2: Experimentation system to compare UI testing frameworks for Android.

• A comprehensive study on the energy consumption of user interactions mim-
icked by UI testing frameworks.

• Comparison of the state-of-the-art UI testing frameworks and their features in
the context of energy tests.

• Best practices regarding the API usage of the framework for energy tests.

• As a practical implication of our work, a decision tree to help choose the
framework which suits one needs.

3.2 Design of the Empirical Study

To answer the research questions (cf. RQs 3.1 to 3.3), we designed an experimental
setup to automatically measure energy consumption of Android apps. In particular,
our methodology consists of the following steps:

1. Preparation of an Android device to use with a power monitor.

2. Creation of a stack of UI interaction scripts for all frameworks.

3. Automation of the execution of tests for each framework to run in batch mode.

4. Collection and analysis of data.

The methodology is illustrated in Figure 3.2. There are three main components: a
desktop computer that serves as controller; a power monitor; and a mobile device
running Android, i.e., the Device Under Test (DUT). The desktop computer sends
interaction instructions to be executed in the mobile device. The power monitor
collects energy consumption data from the mobile device and sends it to the desktop
computer. Finally, the desktop computer analyzes data and generates reports back to
the user.
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3.2.1 Energy Data Collection

We have adopted a hardware-based approach to obtain energy measurements. We
use Monsoon’s Original Power Monitor with the sample rate set to 5000Hz, as used
in previous research [Di Nucci et al., 2017b; Linares-Vásquez et al., 2014; D. Li and
Halfond, 2014; D. Li et al., 2014b; Choudhary et al., 2015; Hindle, 2015; Banerjee
and Roychoudhury, 2016; Banerjee et al., 2016]. Measurements are obtained using
the Physalia toolset3, presented in Chapter 2. The steps described in Physalia’s
tutorial4 were followed to remove the device’s battery and connect it directly to
the Monsoon’s power source using a constant voltage of 3.8V. This is important to
ascertain that we are collecting reliable energy consumption measurements.

3.2.2 UI testing frameworks

The state-of-the-art UI testing frameworks for Android used in our study are An-
droidViewClient, Appium, Calabash, Espresso, Monkeyrunner, PythonUIAutomator,
Robotium, and UIAutomator. The frameworks were chosen following a systematic
criteria/review: freely available to the community, open source, featuring a realistic
set of interactions, expressed through a human-readable and writable format (e.g.,
programming language), and used by the mobile development industry. To assess
this last criterion StackOverflow and Github were used as a proxy. Some frameworks
have been discarded for not complying with these criteria. As an example, Ranorex5

is not free to the community, and RERAN [Gomez et al., 2013] is designed to be used
with a recording mechanism. MonkeyTalk has not been publicly released after being
acquired by Oracle6, and Selendroid is not ready to be used with the latest Android
SDK7. We decided not to include UI recording tools since they rely on the underlying
frameworks (e.g., Espresso Test Recorder, Robotium Recorder).

Although most frameworks support using screen coordinates to specify interactions,
we only study the usage by targeting UI components. Screen coordinates make the
tests cumbersome to build and maintain, and are not common practice.

An overview of the features of the frameworks is in Table 3.1. It also details the
frameworks as to whether the app’s source code is required, the ability to be used in
remote script-based, i.e., whether simple interaction commands can be sent in real
time to the DUT; WebView support, i.e., whether hybrid apps can also be automated;

3Physalia’s webpage: https://tqrg.github.io/physalia/ (visited on July 17, 2019).
4Tutorial’s webpage: https://tqrg.github.io/physalia/monsoon_tutorial (visited on July 17,

2019).
5Ranorex’s website available at https://www.ranorex.com (visited on July 17, 2019).
6More information about MonkeyTalk’s acquisition: https://www.oracle.com/corporate/

acquisitions/cloudmonkey/ (visited on July 17, 2019)
7Running Selendroid would require changing its source code: https://github.com/selendroid/

selendroid/issues/1116 and https://github.com/selendroid/selendroid/issues/1107
(visited on July 17, 2019)
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Table 3.1: Overview of the studied UI testing frameworks.

Framework Android Appium Calabash Espresso Monkeyrunner Python Ui Robotium UIAutomator
View Client Automator

Tap X X X X X X X X
Long Tap X X X X X X X X
Drag And Drop X X X × X X X X
Swipe X X X X X X X X
Pinch & Spread × × X × × X × X
Back button X X X X X X X X
Input text X X X X X X(*) X(*) X(*)
Find by id X X X X X X X X
Find by description X X X X × X × X
Find by content X X X X × X X X
Tested Version 13.2.2 1.6.3 0.9.0 2.2.2 n.a. 0.3.2 5.6.3 2.1.2
Min Android SDK All Recmd. ≥ 17 All ≥ 8 n.a. ≥ 18 ≥ 8 ≥ 18
Black Box Yes Yes Limited (**) No Yes Yes Yes Yes
Remote script-based Yes Yes Yes No Yes Yes No No
WebView Support Limited Yes Yes Yes Limited Limited Yes Limited
iOS compatible No Yes Yes No No No No No
BDD support No Yes Yes Yes No No Yes Limited
Integration test Yes Yes Yes No No Yes Yes Yes
Language Python Any WebDriver Gherkin/Ruby Java Jython Python Java Java

compatible lang.
License Apache 2.0 Apache 2.0 EPL 1.0 Apache 2.0 Apache 2.0 MIT Apache 2.0 Apache 2.0
SOverflow Qns � 164 3,147 569 292 437 0 1,012 438
Github Stars � 540 5,514 1,429 n.a. n.a. 719 2,165 n.a.
(*) Although it supports Input Text, it does not apply a sequential input of key events. This is more energy-efficient but it is more artificial, bypassing
real behavior (e.g., auto correct).
(**) Requires to manually enable Internet permission ("android.permission.INTERNET").

compatibility with iOS, and supported programming languages. The most common
languages supported by these frameworks are Python and Java.

3.2.3 Test cases
For each framework, a script was created for every interaction that was supported
by the framework, totaling 73 scripts. Scripts were manually and carefully crafted
and peer reviewed to ascertain similar behavior across all frameworks. Essentially,
each script calls a specific method of the framework that mimics the user interaction
that we pretend to study. To minimize overheads from setup tasks (e.g., opening the
app, getting app’s UI hierarchy), the method is repeated multiple times (up to 200
times, depending on the complexity of the interaction).

3.2.4 Setup and Metrics
We compare the overhead in energy consumption using as baseline the energy usage
of interactions when executed by a human. Baselines for each interaction were
measured by asking two Android users (one female and one male) to execute the
interactions as in the automated scripts. For instance, in one of the experiments
the participants had to click 200 times in the Back Button. All interactions were
measured except for Find by id, Find by description, and Find by content, as these are
helper methods provided by the UI testing frameworks and do not apply to human
interactions.

As mentioned above, energy measurements are prone to random variations due
to the nature of the underlying Operating System (OS). Furthermore, one can
also expect errors from the data collected from a power monitor [Saborido et al.,
2015]. To make sure energy consumption values are reliable and have enough data
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Table 3.2: Android device’s system Settings.

Setting Value
☼ Adaptive Brightness c Manual - 78%
Ü Bluetooth c Off
O WiFi d On
Cellular c No SIM card
´ Location Services c Off
Æ Auto-rotate screen c Off - Portrait
� Zen mode d On - Total Silence
µ Pin/Pattern Lock Screen c Off
× Don’t Keep Activities d On
è Account Sync c Off
ð Android Version 6.0.1

to perform significance tests, each experiment was identically and independently
repeated 30 times.

Since user interactions often trigger other tasks in a mobile device, tests have to
run in a controlled environment. Thus, an Android application was developed
by the authors for this particular study. The main goal of the app is preventing
any side-effect from UI interactions, which in real apps would result in different
behaviors, hence compromising measurements. The app prevents the propagation
of the system’s event created by the interaction, and no feedback is provided to the
user. Consequently, experiments only measure the work entailed by frameworks.
Measured energy consumptions generalize to real apps, given that frameworks
operate similarly regardless of the app under test.

The main settings used in the device are listed in Table 3.2. Android provides
system settings that can be useful to control system behavior during experiments.
Notifications and alarms were turned off, lock screen security was disabled, and the
“Don’t keep Activities” setting was enabled. This last setting destroys every activity
as soon as the user switches to another, erasing the current state of an app8.

WiFi is kept on as a requirement of our experimental setup. The reason lies in the fact
that Android testing frameworks resort to the Android Debug Bridge (ADB) to com-
municate with the mobile device. ADB allows to install/uninstall/open apps, send
test data, configure settings, lock/unlock the device, among other things. By default,
it works through USB, which interferes with energy consumption measurements.
Although Android provides settings to disable USB charging, we have verified that
measurements are not reliable in such setup. If the USB cable remains connected to
the device, despite not being used to charge the battery, it is still used to power the
device. Fortunately, ADB can be configured to be used through a WiFi connection,
which was leveraged in this work.

8More about “Don’t Keep Activities” setting available at: https://stackoverflow.com/questions/
22400859/dont-keep-activities-what-is-it-for/32427857#32427857 (visited on July 17,
2019).
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In addition to the energy consumption sources mentioned before, there is another
common one – the cost of having the device in idle mode. In this context, we
consider idle mode when the device is active with the settings in Table 3.2 but is not
executing any task. In this mode, the screen is still consuming energy. We calculate
the idle cost for each experiment to assess the effective energy consumption of
executing a given interaction. We measure the idle cost by collecting the energy
usage of running the app for 120 seconds without any interaction. In addition to
the mean energy consumption, we compare different frameworks using the mean
energy consumption without the corresponding idle cost, calculated as follows:

x̄′ =
∑N=30

i=1 (Ei − IdleCost ∗∆ti)
N

(3.1)

where N is the number of times experiments are repeated (30), Ei is the measured
energy consumption for execution i, IdleCost is the energy usage per second (i.e.,
power) of having the device in idle mode, expressed in watts (W), and ∆ti the
duration of execution i.

After removing idle cost, we compute overhead in a similar fashion as previous
work [Abdulsalam et al., 2015]:

Overhead(%) = ( x̄′

x̄′human

− 1)× 100 (3.2)

In other words, overhead is the percentage change of the energy consumption of
a framework when compared to the real energy consumption induced by human
interaction.

We also use x̄′ to compute the estimated energy consumption for a single interaction
(Sg) as follows:

Sg = x̄′

M
(3.3)

where M is the number of times the interaction was repeated within the same
execution (e.g., in Back Button, M = 200).

Experiments were executed using an Apple iMac Mid 2011 with a 2.7GHz Intel Core
i5 processor, 8GB DDR3 RAM, and running OS X version 10.11.6. Room temperature
was controlled for 24°C (75°F). DUT was a Nexus 5X manufactured by LG, running
Android version 6.0.1. All scripts, mobile app, and data are available in the Github
repository of the project9, which is released under the MIT open source license.

9The replication package is available on Github: https://github.com/luiscruz/
physalia-automators visited on July 17, 2019.
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Table 3.3: Descriptive statistics of Tap interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank Overhead
Human 5.56 1.61 12.84 3.14 78.44 — —
AndroidViewClient 19.71 0.21 42.10 11.75 293.86 6 274.6%
Appium 54.73 1.14 128.47 30.46 761.49 8 870.8%
Calabash 29.25 0.72 60.10 17.89 447.28 7 470.2%
Espresso 6.07 0.16 12.93 3.63 90.70 1 15.6%
Monkeyrunner 18.08 1.28 49.97 8.63 215.87 4 175.2%
PythonUiAutomator 9.15 0.54 18.93 5.57 139.32 3 77.6%
Robotium 14.59 4.00 25.63 9.74 243.57 5 210.5%
UiAutomator 7.64 0.55 17.77 4.28 107.03 2 36.5%

3.3 Results

Next, we report the results obtained in the empirical study.

3.3.1 Idle Cost

In a sample of 30 executions, the mean energy consumption of having the app
open for 120 seconds without any interaction is 22.67J. This translates into a power
consumption of 0.19W (in other words, the app consumes 0.19 joules per second in
idle mode). This value is used in the remaining experiments to factor out idle cost
from the results.

3.3.2 Tap

Table 3.3 presents results for the Tap interaction. Each row in the table describes a
framework as a function of the mean energy consumption (x̄); standard deviation of
energy consumption (s); duration of each execution of the script (∆t) in seconds;
the mean energy consumption without idle cost (x̄′, see Eq. 3.1); the estimated
energy consumption for a single interaction (Sg, see Eq. 3.3); the position in the
ranking (Rank), i.e., the ordinal position when results are sorted by the average
energy consumption; and the percentage overhead when compared to the same
interaction when executed by a human (as in Eq. 3.2). With the exception of the
results for Human which are placed in the first row, the table is sorted in alphabetical
order for the sake of comparison with results of other interactions.

From our experiments, we conclude that Espresso is the most energy efficient frame-
work for Taps, consuming 3.63J on average after removing idle cost, while a single
Tap is estimated to consume 0.09J. When compared to the human interaction,
Espresso imposes an overhead of 16%. The least efficient frameworks for a Tap are
Appium, and Calabash, with overheads of 871% and 470%, respectively. Using these
frameworks for taps can dramatically affect energy consumption results.
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Figure 3.3: Violin plot of the results for the energy consumption of Tap.

A visualization of these results is in Figure 3.3. The height of each white bar shows
the mean energy consumption for the framework. The height of each green or
yellow bar represents the energy consumption without the idle cost. The yellow
bar and the dashed horizontal line highlight the baseline energy consumption. In
addition, it shows a violin plot with the probability density of data using rotated
kernel density plots. The violin plots provide a visualization of the distribution,
allowing to compare results regarding shape, location, and scale.

3.3.3 Long Tap

Results for the interaction Long Tap are in Table 3.4 and Figure 3.4. Monkeyrunner
and Espresso are the most efficient frameworks, with overheads of 77% (x̄′ = 12.60J)
and 81% (x̄′ = 12.88J), respectively. PythonUIAutomator and Calabash are the most
inefficient (overhead over 300%).

A remarkable observation is the efficiency of Appium’s Long Tap (Sg = 0.40J) when
compared to its regular Tap (Sg = 0.76J). Common sense would let us expect Tap
to spend less energy than Long Tap, but that is not the case. This happens because
Appium’s usage of Long Tap requires a manual instantiation of a TouchAction
object10, while Tap creates it internally. Although creating such an object makes code
less readable, the advantage is that it can be reused for the following interactions,
making a more efficient use of resources.

3.3.4 Drag and Drop

Results for the interaction Drag and Drop are in Table 3.5 and Figure 3.5. UIAutoma-
tor is the best testing framework with an overhead of 185% (x̄′ = 14.48J). Espresso

10Appium’s documentation for Touch Actions: http://appium.io/docs/en/
writing-running-appium/touch-actions/ (Visited on July 17, 2019).
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Table 3.4: Descriptive statistics of Long Tap interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank Overhead
Human 13.33 2.21 32.86 7.12 177.92 — —
AndroidViewClient 49.18 5.24 119.21 26.66 666.40 6 274.6%
Appium 25.34 0.86 49.60 15.96 399.08 4 124.3%
Calabash 46.96 1.81 94.27 29.14 728.57 8 309.5%
Espresso 19.87 0.54 37.00 12.88 321.94 2 80.9%
Monkeyrunner 21.68 0.74 48.07 12.60 315.04 1 77.1%
PythonUiAutomator 48.19 12.63 101.13 29.08 727.02 7 308.6%
Robotium 39.35 1.82 99.97 20.46 511.40 5 187.4%
UiAutomator 22.39 0.75 45.40 13.81 345.20 3 94.0%
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Figure 3.4: Violin plot of the results for energy consumption of Long Tap.
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Table 3.5: Descriptive statistics of Drag and Drop interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank Overhead
Human 7.55 1.91 23.70 3.08 76.90 — —
AndroidViewClient 21.31 0.76 62.15 9.57 239.24 2 211.1%
Appium 43.71 1.14 85.00 27.65 691.27 6 798.9%
Calabash 134.08 3.55 336.33 70.53 1763.27 7 2193.0%
Monkeyrunner 28.50 1.29 52.97 18.49 462.22 4 501.1%
PythonUiAutomator 36.30 3.77 93.53 18.62 465.56 5 505.4%
Robotium 20.63 1.02 52.17 10.77 269.29 3 250.2%
UiAutomator 14.48 0.63 30.27 8.76 219.02 1 184.8%
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Figure 3.5: Violin plot of the results for energy consumption of Drag and Drop.

is not included in the experiments since Drag and Drops are not supported. The most
energy greedy framework is Calabash with an overhead of 2193%. When compared
to UIAutomator, one Drag and Drop with Calabash is equivalent to more than 11
Drag and Drops. Hence, Calabash should be avoided for energy measurements that
include Drag and Drops.

3.3.5 Swipe

Results for the interaction Swipe are presented in Table 3.6 and Figure 3.6. Espresso
is the best framework with an overhead of 29%, while Robotium, AndroidViewClient,
Monkeyrunner, and Calabash are the most energy greedy with similar overheads,
above 400%.

3.3.6 Pinch and Spread

Results for the interaction Pinch and Spread are presented in Table 3.7 and Figure 3.7.
Although this interaction is widely used in mobile applications for features such as
zoom in and out, only Calabash, PythonUIAutomator, and UIAutomator support it out
of the box. UIAutomator is the most efficient framework, spending less energy than
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Table 3.6: Descriptive statistics of Swipe interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank Overhead
Human 9.11 1.09 24.48 4.48 56.05 — —
AndroidViewClient 45.29 0.62 115.87 23.39 292.41 6 421.7%
Appium 17.09 0.46 30.00 11.42 142.80 2 154.8%
Calabash 43.27 0.81 93.73 25.56 319.46 8 469.9%
Espresso 10.35 0.26 24.10 5.79 72.43 1 29.2%
Monkeyrunner 36.63 1.49 68.67 23.65 295.69 7 427.5%
PythonUiAutomator 26.42 0.91 54.60 16.11 201.32 3 259.1%
Robotium 41.30 0.67 96.00 23.16 289.46 5 416.4%
UiAutomator 27.56 0.65 60.13 16.20 202.49 4 261.2%

H
um

an

An
dr

oi
dV

ie
w

Cl
ie

nt
Ap

pi
um

Ca
la

ba
sh

Es
pr

es
so

M
on

ke
yr

un
ne

r
Py

th
on

U
iA

ut
om

at
or

Ro
bo

tiu
m

U
iA

ut
om

at
or

0

10

20

30

40

50

E
ne

rg
y 

(J
)

Figure 3.6: Violin plot of the results for energy consumption of Swipe.
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Table 3.7: Descriptive statistics of Pinch and Spread interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank Overhead
Human 9.59 1.37 21.91 5.45 68.10 — —
Calabash 41.31 8.66 81.93 25.83 322.83 3 374.0%
PythonUiAutomator 26.39 1.23 58.77 15.29 191.09 2 180.6%
UiAutomator 9.19 1.66 21.23 5.17 64.67 1 −5.0%
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Figure 3.7: Violin plot of the results for energy consumption of Pinch and Spread.

the equivalent interaction performed by a human (−5%). The remaining frameworks,
PythonUiAutomator and Calabash were not as efficient, providing overheads of 181%
and 374%, respectively.

3.3.7 Back Button

Results for the interaction Back Button are presented in Table 3.8 and Figure 3.8. In
this case, human interaction was considerably less efficient than most frameworks,
being ranked fifth on the list. The main reason for this is that frameworks do not
realistically mimic the Back Button interaction. When the user presses the back
button, the system produces an input event and a vibration or haptic feedback
simultaneously. However, frameworks simply produce the event. Thus, results are
not comparable with the human interaction. Still, AndroidViewClient provided an
overhead of 440%, being the least inefficient framework.

Another remarkable result was that Robotium, despite being energy efficient after
removing idle cost, is the slowest framework. Thus, it is likely that Robotium is using
a conservative approach to generate events in the device: it suspends the execution
to wait for the back button event to take effect in the app.
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Table 3.8: Descriptive statistics of Back Button interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank Overhead
Human 17.90 2.56 43.94 9.60 47.98 — —
AndroidViewClient 85.75 2.11 179.73 51.79 258.94 8 439.7%
Appium 2.43 0.17 3.33 1.80 9.01 2 −81.2%
Calabash 30.95 0.77 80.57 15.73 78.63 7 63.9%
Espresso 8.89 0.29 35.17 2.25 11.25 4 −76.6%
Monkeyrunner 1.84 0.12 4.07 1.08 5.38 1 −88.8%
PythonUiAutomator 53.62 1.78 220.03 12.04 60.20 6 25.5%
Robotium 60.44 5.18 308.10 2.22 11.10 3 −76.9%
UiAutomator 49.87 1.03 208.20 10.53 52.64 5 9.7%
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Figure 3.8: Violin plot of the results for energy consumption of Back Button.
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Table 3.9: Descriptive statistics of Input Text interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank Overhead
Human 22.11 4.06 54.09 11.89 1189.37 — —
AndroidViewClient 222.08 4.31 523.37 123.18 12318.21 8 935.7%
Appium 44.43 1.89 105.27 24.54 2453.84 7 106.3%
Calabash 27.14 1.03 62.40 15.35 1534.70 6 29.0%
Espresso 6.83 0.18 14.03 4.18 417.96 3 −64.9%
Monkeyrunner 6.18 0.29 8.03 4.67 466.58 5 −60.8%
PythonUiAutomator 9.16 4.35 25.37 4.37 436.83 4 −63.3%
Robotium 4.64 0.86 12.50 2.27 227.34 2 −80.9%
UiAutomator 2.93 1.39 8.00 1.42 142.02 1 −88.1%

3.3.8 Input Text
Results for the interaction Input Text are presented in Table 3.9 and Figure 3.9. Each
iteration of Input Text consists in writing a pre-defined 17-character sentence in a
text field and then clearing it all back to the initial state. Thus, the value for a single
interaction (Sg) is the energy spent when this sequence of events is executed, but
can hardly be extrapolated for other input interactions.

UIAutomator is the framework with the lowest energy consumption (x̄′ = 1.42J). The
human interaction spends more energy than most frameworks. The reason behind
this is that frameworks have a different way to deal with text input. Most frameworks
generate a sequence of events that will generate the given sequence of characters.
On the contrary, the human interaction resorts to the system keyboard to generate
this sequence. Thus the system has to process a sequence of taps and match it to
the right character event. There are even other frameworks, namely UIAutomator,
PythonUIAutomator, and Robotium, that, as showed in the overview of Table 3.1,
implement Input Text more artificially. Instead of generating the sequence of events,
they directly change the content of the text field. This is more efficient but bypasses
system and application behavior—e.g., automatic text correction features.

Results showed that the AndroidViewClient is very inefficient and its overhead (936%)
is not negligible when measuring the energy consumption of mobile apps.

3.3.9 Find by id
Results for the task Find by id are presented in Table 3.10 and Figure 3.10. Find by id
is a method that looks up for a UI component that has the given id. It does not mimic
any user interaction, but it is necessary to create interaction scripts. Methods Find
by description and Find by content are used to achieve the same objective. For this
reason, we do not report the consumption of a human interaction in these cases.

For the sake of consistency with previous cases, we report tables and figures in the
same fashion. However, we consider that the overall cost of energy consumption
(without removing idle cost) should not be discarded in this case. These methods are
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Figure 3.9: Violin plot of the results for energy consumption of Input Text.

Table 3.10: Descriptive statistics of Find by id interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank
AndroidViewClient 37.52 1.64 129.91 12.97 46.34 7
Appium 5.94 0.51 12.73 3.53 12.62 5
Calabash 41.20 2.08 89.63 24.26 86.65 8
Espresso 1.37 0.11 2.03 0.99 3.54 2
Monkeyrunner 2.74 0.70 6.13 1.58 5.66 3
PythonUiAutomator 8.42 4.16 19.63 4.71 16.81 6
Robotium 27.97 0.46 143.03 0.94 3.37 1
UiAutomator 5.26 0.84 14.33 2.55 9.11 4

not required in manual interactions. Hence, we consider that a UI testing frameworks
that takes longer to execute these methods should not benefit from having its idle
cost removed. This approach is supported by our results, as we show below.

Robotium is the most energy-efficient, with an energy consumption without idle
cost of 0.94J . However, if we consider idle cost, Robotium is amongst the most
energy greedy frameworks (after Calabash and AndroidViewClient). It has an overall
energy consumption of 27.97J . When considering idle cost, Espresso is the most
energy-efficient framework.

This difference lies in the mechanism adopted by frameworks to deal with UI changes.
After user interaction, the UI is expected to change and the status of the UI can
become obsolete. Thus, frameworks need to wait until the changes the UI are
complete. Results show that Robotium uses a mechanism based on suspending the
execution to make sure the UI is up to date. On the other hand, Espresso uses a
different heuristic, which despite spending more energy on computation tasks, it
does not require the device to spend energy while waiting.
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Figure 3.10: Violin plot of the results for energy consumption of Find by id.

Table 3.11: Descriptive statistics of Find by description interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank

AndroidViewClient 36.85 0.78 127.45 12.77 45.59 5
Appium 6.41 0.58 13.93 3.77 13.48 4
Calabash 41.41 7.02 88.20 24.75 88.38 6
Espresso 1.37 0.10 2.10 0.97 3.46 1
PythonUiAutomator 6.62 0.49 15.10 3.76 13.44 3
UiAutomator 5.13 0.61 14.47 2.40 8.57 2

3.3.10 Find by description

Results for Find by description are presented in Table 3.11 and Figure 3.11. Find
by description and Find by id are very similar regarding usage and implementation,
which is confirmed by results. Espresso is the best framework regardless of idle
cost (x̄ = 1.37J and x̄′ = 0.97J). Android View Client and Calabash are distinctly
inefficient. All other frameworks show reasonable energy footprints, except for
Robotium and Monkeyrunner, which were not included since Find by description is
not supported.

3.3.11 Find by content

Results for Find by content are presented in Table 3.12 and Figure 3.12. After
removing idle cost, Robotium is the framework with best results (x̄′ = 0.14J).
However, in resemblance to Find by id, Robotium is very inefficient when idle
cost is not factored out (x̄ = 23.74J). In this case, Appium is the most efficient
framework (x̄ = 3.07J).

Unlike with Find by id and Find by description, Espresso did not yield good results in
this case (x̄ = 9.43J and x̄′ = 6.19J). This is explained by the fact that Espresso runs
natively on the DUT. Thus, finding a UI component by content entails additional
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Figure 3.11: Violin plot of the results for energy consumption of Find by description.

Table 3.12: Descriptive statistics of Find by content interaction.

x̄ (J) s ∆t (s) x̄′ (J) Sg (mJ) Rank
AndroidViewClient 36.89 1.65 127.62 12.77 106.43 6
Appium 3.07 0.31 6.07 1.92 16.02 4
Calabash 31.77 4.64 79.63 16.72 139.35 7
Espresso 9.43 0.99 17.13 6.19 51.58 5
PythonUiAutomator 3.10 0.19 6.90 1.79 14.93 3
Robotium 23.74 0.48 124.90 0.14 1.15 1
UiAutomator 3.50 0.62 9.40 1.72 14.37 2

processing: the DUT has to search for a pattern in all components’ text content.
Since remote script-based frameworks, such as Appium, can do such task using the
controller workstation, they can be more energy-efficient from the DUT’s perspective.
For the same reason, Find by content has consistently higher energy usage than the
other helper methods.

3.3.12 Statistical significance

Statistical significance of the mean difference of energy consumption between
frameworks was assessed using the parametric Welch’s t-test as used in previous
work [Cruz and Abreu, 2017]. All but a few tests (2 out 105) resulted in a small
p-value, below the significance level α = 0.05. For those pairs where there was no
statistical significance, we could not find any meaningful finding. Given the myriad
number of tests performed, results are not presented. Violin plots corroborate
statistical significance by presenting very distinct distributions among all different
frameworks. For further details, all results and data are publicly available11.

11The replication package is available on Github: https://github.com/luiscruz/
physalia-automators visited on July 17, 2019.
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Figure 3.12: Violin plot of the results for energy consumption of Find by content.

3.4 Discussion
By answering the research questions, in this section we discuss our findings from the
empirical evaluation, as well as outline their practical implications.

Research Question 3.1

Does the energy consumption overhead created by UI testing frameworks affect
the results of the energy efficiency of mobile applications?

Yes, results show that interactions can have a tremendous overhead on energy
consumption when an inefficient UI testing framework is used.

According to previous work, executing a real app during 100s yields an energy con-
sumption of 58J, on average [D. Li et al., 2014a]. Considering our results, executing
a single interaction such as Drag and Drop can increase energy consumption in 1.7J
(overhead of 3% in this case). However, given that mobile apps are very reactive to
user input [Joorabchi et al., 2013], in 100 seconds of execution, more interactions
are expected to affect energy. Although a fair comparison must control for different
devices and OS versions, this order of magnitude implies that overheads are not
negligible. Thus, choosing an efficient UI testing framework is quintessential for
energy tests.

Since all frameworks produce the same effect in the UI, the overhead of energy
consumption is created by implementation decisions of the framework and not by
the interaction itself. The main goal of a UI testing framework is to mimic realistic
usage scenarios, but interactions with such overhead can be considered unrealistic.

One practical implication of the results in this work is to drive a change in the
mindset of tool developers, bringing awareness of the energy consumption of their
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Figure 3.13: Selecting the most suitable framework for energy measurements.

frameworks. Thus, we expect future releases of UI testing frameworks to become
more energy-efficient.

AndroidViewClient and Calabash consistently showed poor energy efficiency among
all interactions. Despite providing a useful and complete toolset for mobile software
developers, they should be used with prudence while testing the energy consumption
of an app that heavily relies on user interactions. The work of Carette A. et al.
(2017) [Carette et al., 2017] was affected by a poor choice of framework: the authors
used Calabash to mimic between 136 and 325 user interactions per experiment. Our
work shows that results would be different if the overhead of the framework had
been factored out. Calabash was also used in other work [Cao et al., 2017] but,
on the contrary, its impact can be considered insignificant since the experiments
did not require much interaction, and the main source of energy consumption
came from Web page loads. In any case, we consider that using a more energy
efficient framework could corroborate the evidence or find new—even contradictory—
conclusions.

Research Question 3.2

What is the most suitable framework to profile energy consumption?

Choosing the right framework for a project can be challenging: there is no one
solution fits all. Based on our observations, Figure 3.13 depicts a decision tree to
help software developers making an educated guess about the most suited and
energy-efficient framework, given the idiosyncrasies of an app (that may restrict the
usage of a framework). For example, if the project to be tested requires WebView
support, one should use Appium rather than the other frameworks. Robotium is also
an option if the app requires Taps or Input Text only, and neither iOS support nor
remote script-based is required.

Remote script-based frameworks allow developers to easily create automation scripts.
The script can be iteratively created using a console while interactions take effect
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on the phone in real time. From our experience while doing this work, remote
script-based frameworks are easier to use and set up (i.e., gradual learning curve).
This is one of the reasons many frameworks decided to use scripting languages
(e.g., Python and Ruby) instead of the official languages for Android, Java or Kotlin.
Notwithstanding, remote script-based frameworks require an active connection
with the phone during measurements, which leads to higher energy consumption
(as is confirmed by results). Each step of the interaction requires communication
with the DUT; hence, the communication logic unavoidably increases the energy
consumption. On the contrary, other frameworks can transfer the interaction script
in advance to the mobile phone and run it natively on the phone, which is more
energy efficient.

There are, however, two scenarios where remote script-based frameworks exhibit the
best results: Back Button with Monkeyrunner (see Table 3.8), and Find By Content
with Appium (see Table 3.12). This is an interesting finding as it shows that remote
script-based frameworks can also be developed in an energy efficient way. As
such, this evidence shows that there is room for energy optimization in the other
frameworks.

In addition, USB communication is out of question for remote script-based frame-
works since it affects the reliability of measurements. Frameworks that do not
support remote scripting can be used with USB connection if unplugged during
measurements (using tools such as Monsoon Power Monitor).

Among remote script-based frameworks, Monkeyrunner is the most energy-efficient
framework. The only problem is that it does not support many of the studied
interactions. These results show that if energy consumption turns into a priority, it is
possible to make complex frameworks such as Appium more energy efficient.

Research Question 3.3

Are there any best practices when it comes to creating automated scripts for
energy efficiency tests?

One thing that stands out is the fact that looking up one UI component is expensive.
This task is exclusively required for automation and does not reflect any real-world
interaction. Taking the example of Espresso: a single Tap consumes 0.09J, while using
content to look up a component consumes 0.05J. Since a common Tap interaction
requires looking a component up, 36% of energy spent is on that task.

Looking up UI components is energy greedy because the framework needs to process
the UI hierarchy find a component that matches a given id, description, or content.
Since the app we use has a very simple UI hierarchy, the energy consumption is likely
to be higher in real apps. Hence, using lookup methods should be avoided whenever
possible. A naive solution could be using the pixel position of UI components instead
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of identifiers. Pixel positions could be collected using a recorder. However, this is a
bad practice since it brings majors maintainability issues across different releases
and device models. For that reason, state-of-the-art UI recorders used by Android
developers, such as Robotium Recorder, yield scripts based on UI identifiers. As an
alternative, we recommend caching the results of lookup calls whenever possible.

In addition, lookup methods Find by Id and Find by Description should be preferred
to Find by Content. Results consistently show worse energy efficiency when using
Find by Content. In Espresso, this difference gives an increase in energy consumption
from 1.4J to 9.4J (overhead of 600%).

3.5 Threats to validity
Construct validity Frameworks rely on different approaches to collect information
about the UI components that are visible on the screen. The app used in the
experiments has a UI that remains unchanged upon user interactions. In a real
scenario, however, the UI typically reacts to user interactions. Frameworks that
have an inefficient way of updating their UI model of components visible in the
screen, may entail a high overhead on energy consumption. However, as manually
triggering this update is not supported in most frameworks, it was unfeasible to
include it in our study.

In addition, the overheads are calculated based on the results collected from the
human interaction from two participants. Although results showed a small variance
between different participants, the energy consumption may vary with other humans.
Nevertheless, differences are not expected to be significant, and results still apply.

Moreover, energy consumption for a single interaction is inferred by the total con-
sumption of a sequence of interactions. Potential tail energy consumptions12 of a
single interaction are not being measured. This is mitigated by running multiple
times the same interaction.

Internal validity The Android OS is continuously running parallel tasks that affect
energy consumption. For that reason, system settings were customized as described
in Section 3.2 (e.g., disabled automated brightness and notifications). Also, each
experiment is executed 30 times to ensure statistical significance as recommended in
related work [Linares-Vásquez et al., 2014].

UI interactions typically trigger internal tasks in the mobile application running in
foreground. The mobile application used in experiments was developed to prevent
any side-effects to UI events. To ensure that scripts are interacting with the device as
expected, the application was set to a mode that is not affected by user interaction.

12Tail energy is the energy spent during initialization or closure of a resource.
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Thus, the behavior is equal across different UI testing frameworks and experiments
only measure their energy consumption.

External validity Energy consumption results vary upon different versions of An-
droid OS, different device models, and different framework version. However, unless
major changes are released, results are not expected to significantly deviate from
the reported ones. Note that testing different devices requires disassembling them
and making them useless for other purposes (that is to say that empirical studies
as the one conducted by us are expensive), which can be economically unfeasible.
Regardless, all the source code used in experiments will be released as Open Source
to foster reproducibility.

3.6 Related Work
In this section we summarize related work on testing frameworks for mobile app
testing and we differentiate our work regarding goals and methodology.

UI testing frameworks play an important role on the research of mobile software
energy efficiency. They are used as part of the experimental setup for the validation
of approaches for energy efficiency of mobile apps. Monkeyrunner has been used
to assess the energy efficiency of Android’s API usage patterns [Linares-Vásquez
et al., 2014]. It was found that UI manipulation tasks (e.g., method findViewById)
and database operations are expensive in terms of energy consumption. These
findings suggest that UI testing frameworks might as well create a considerable
overhead on energy consumption. Monkeyrunner has also been used to assess
benefits in energy efficiency on the usage of Progressive Web Apps technology in
mobile web apps [Malavolta et al., 2017], despite the fact that no statistically
significant differences were found. Android View Client has been used to assess
energy efficiency improvements of performance based optimizations for Android
applications [Cruz and Abreu, 2017; Cruz and Abreu, 2018b], being able to improve
energy consumption up to 5% in real, mature Android applications. Other works
have also used Robotium [Hecht et al., 2016], Calabash [Cao et al., 2017; Carette
et al., 2017], and RERAN [Gomez et al., 2013; Sahin et al., 2016]. Our work uses a
similar approach for assessing and validating energy efficiency, but it has distinct
goals as we focus on the impact of UI testing frameworks on energy efficiency
results.

Previous work studied five Android testing frameworks in terms of fragilities induced
by maintainability [Coppola et al., 2016; Coppola, 2017]. Five possible threats that
could break tests were identified: 1) identifier change, 2) text change, 3) deletion or
relocation of UI elements, 4) deprecated use of physical buttons, and 5) graphics
change (mainly for image recognition testing techniques). These threats are aligned
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with efforts from existing works [Z. Gao et al., 2016]. Our work differentiates itself
by focusing on the energy efficiency of Android testing tools.

In a study comparing Appium, MonkeyTalk, Ranorex, Robotium, and UIAutomator,
Robotium and MonkeyTalk stood out as being the best frameworks for being easy
to learn and providing a more efficient comparison output between expected and
actual result [Gunasekaran and Bargavi, 2015]. A similar approach was taken in
other works [Kulkarni and Soumya, 2016; K.-C. Liu et al., 2017] but although they
provide useful insights about architecture and feature set, no systematic comparison
was conducted. We compare different frameworks with a quantitative approach to
prevent bias of results.

Linares-Vásquez M. et al. (2017) have studied the current state-of-the-art in terms
of the frameworks, tools, and services available to aid developers in mobile test-
ing [Linares-Vásquez et al., 2017c]. It focused on 1) Automation APIs/Frameworks,
2) Record and Replay Tools, 3) Automated Test Input Generation Techniques, 4) Bug
and Error Reporting/Monitoring Tools, 5) Mobile Testing Services, and 6) Device
Streaming Tools. It envisions that automated testing tools mobile apps should ad-
dress development restrictions: 1) restricted time/budget for testing, 2) needs for
diverse types of testing (e.g., energy), and 3) pressure from users for continuous
delivery. In a similar work, these issues were addressed by surveying 102 developers
of Android open source projects [Linares-Vásquez et al., 2017b]. This work identified
a need for automatically generated test cases that can be easily maintained over
time, low-overhead tools that can be integrated with the development workflow, and
expressive test cases. Our work differs from these studies by providing an empirical
comparison solely on UI testing frameworks, and addressing energy tests.

Choudhary R., et al. (2015) compared Automated Input Generation (AIG) tech-
niques using four metrics [Choudhary et al., 2015]: ease of use, ability to work on
multiple platforms, code coverage, and ability to detect faults. It was found that
random exploration strategies by Monkey13 or Dynodroid [Machiry et al., 2013]
were more effective than more sophisticated approaches. Although our work does
not scope AIG tools, very often they use UI testing frameworks (e.g., UIAutomator
and Robotium) underneath their systems [Linares-Vásquez, 2015; Hao et al., 2014;
Mahmood et al., 2014; C.-H. Liu et al., 2014]. Results and insights about energy
consumption in our study may also apply to tools that build on top of UI testing
frameworks.

13UI/Application Exerciser Monkey also known as Monkey tool: https://developer.android.com/
studio/test/monkey.html (visited on July 17, 2019).
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3.7 Summary
In this chapter, we have analyzed eight popular UI testing frameworks for mobile
apps with respect to their energy footprint. This analysis is motivated by the fact
that UI frameworks are quintessential to reliably test energy efficiency in mobile
applications. Concretely, in this chapter:

• We design a methodology to measure the energy consumption of eight UI
testing frameworks within six typical interactions and three helper methods
(cf. Section 3.2).

• We show that the energy consumption of UI testing frameworks can affect
results of energy tests. As an example, we have observed the overhead of the
Drag and Drop interaction to go up to 2200% (cf. RQ 3.1).

• Espresso is observed to be the most energy-efficient framework (cf. RQ 3.2).
However, depending on the needs of the tester, Appium, Monkeyrunner, or
UIAutomator are good alternatives. We propose a decision tree (cf. Figure 3.13)
to help in the decision-making process.

• We show that helper methods to find components in the interface should be
minimized to prevent affecting energy results. In particular, lookup methods
based on the content of the UI component need to be avoided. They consis-
tently yield poor energy efficiency when compared to lookups based on id (e.g.,
in Espresso it creates an overhead of 600%) (cf. RQ 3.3).
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4Prevalence of Test Automation in
Android Apps

To the attention of mobile software developers: guess what, test your
app!
Luis Cruz, Rui Abreu, and David Lo
In: Empirical Software Engineering, 2019.

Abstract

Software testing is an important phase in the software development lifecycle
because it helps in identifying bugs in a software system before it is shipped into
the hand of its end users. There are numerous studies on how developers test
general-purpose software applications. The idiosyncrasies of mobile software
applications, however, set mobile apps apart from general-purpose systems (e.g.,
desktop, stand-alone applications, web services). In this chapter, we investigate
working habits and challenges of mobile software developers with respect to testing.
A key finding of our exhaustive study, using 1000 Android apps, demonstrates
that mobile apps are still tested in a very ad hoc way, if tested at all. However,
we show that, as in other types of software, testing increases the quality of apps
(demonstrated in user ratings and number of code issues). Furthermore, we find
evidence that tests are essential when it comes to engaging the community to
contribute to mobile open source software. We discuss reasons and potential
directions to address our findings. Yet another relevant finding of our study is that
Continuous Integration and Continuous Deployment (CI/CD) pipelines are rare in
the mobile apps world (only 26% of the apps are developed in projects employing
CI/CD) – we argue that one of the main reasons is due to the lack of exhaustive
and automatic testing.

4.1 Introduction
Mobile app developers can resort to several tools, frameworks and services to develop
and ensure the quality of their apps [Linares-Vásquez et al., 2017c]. However, it is
still a fact that errors creep into deployed software, which may significantly decrease
the reputation of developers and companies alike. Software testing is an important
phase in the software development lifecycle because it helps in identifying bugs
in the software system before it is shipped into the hand of end users. There are
numerous studies on how developers test general-purpose software applications.
The idiosyncrasies of mobile software apps, however, set mobile apps apart from
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general-purpose systems (e.g., desktop, stand-alone applications, web services) [Hu
and Neamtiu, 2011; Picco et al., 2014].

Therefore, the onset of mobile apps came with a new ecosystem where traditional
testing tools do not always apply [Moran et al., 2017; Wang and Alshboul, 2015;
Maji et al., 2010]: complex user interactions (e.g., swipe, pinch, etc.) need to
be supported [Zaeem et al., 2014]; apps have to account for devices with limited
resources (e.g., limited power source, lower processing capability); developers have
to factor in an ever-increasing number of devices as well as OS versions [Khalid et al.,
2014]; apps typically follow a weekly/bi-weekly time-based release strategy which
creates critical time constraints in testing tasks [Nayebi et al., 2016]. Moreover,
manual testing is not a cost-effective approach to ensure software quality and ought
to be replaced by automated techniques [Muccini et al., 2012].

This work studies the adoption of automated testing by the Android open source
community. We use the term “automated testing” as a synonym of “test automation”:
the process in which testers write code/test scripts to automate test execution. AIG
techniques were not considered in this study. We analyze the adoption of unit tests,
UI tests, cloud based testing services, and CI/CD. Previous work, in a survey with 83
Android developers, suggests that mobile developers are failing to adopt automated
testing techniques [Kochhar et al., 2015]. This is concerning since testing is an
important factor in software maintainability [Visser et al., 2016]. We investigate this
evidence by systematically checking the codebase of 1000 Android projects released
as FOSS. Moreover, we delve into a broader set of testing technologies and analyze
the potential impact they can have in different aspects of the mobile apps (e.g.,
popularity, issues, etc.).

As in related studies [Krutz et al., 2015], we opted to use open source mobile
applications due to the availability of the data needed for our analysis. In particular,
our work answers the following research questions:

Research Question 4.1

What is the prevalence of automated testing technologies in the FOSS mobile app
development community?

Why and How: It is widely accepted that tests play an important role in ensuring
the quality of software code. However, the extent to which tests are being adopted
amongst the Android FOSS community is still not known. We want to assess whether
developers have been able to integrate tests in their projects and which technologies
have gained their acceptance. We do that by developing a static analysis tool
that collects data from an Android project regarding its usage of test automation
technologies. We apply the tool to our dataset of 1000 apps and analyze the pervasion
of the different technologies.
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Main findings: FOSS mobile apps are still tested in a very ad hoc way, if tested at
all. Testing technologies were absent in almost 60% of projects in this study. JUnit
and Espresso were the most popular technologies in their category with an adoption
of 36% and 15%, respectively. Novel testing and development techniques for mobile
apps should provide a simple integration with these two technologies to prevent
incompatibility issues and promote test code reuse.

Research Question 4.2

Are today’s mature FOSS Android apps using more automated testing than
yesterday’s?

Why and How: We want to understand how the community of Android developers
and researchers is changing in terms of adoption of automated testing. In this study,
we compare the pervasion of automated tests in FOSS Android apps across different
years.

Main findings: Automated testing has become more popular in recent years. The
trend shows that developers are becoming more aware of the importance of auto-
mated testing. This is particularly evident in unit testing, but UI testing also shows a
promising gain in popularity.

Research Question 4.3

How does automated testing relates to popularity metrics in FOSS Android apps?

Why and How: One of the goals of mobile developers is to increase the popularity
of their apps. Although many different things can affect the popularity of apps,
we study how it can be related to automated tests. We run hypothesis tests over
five popularity metrics to assess significant differences between projects with and
without tests.

Main findings: Tests are essential when it comes to engaging the community to
contribute to mobile open source software. We found that projects using automated
testing also reveal a higher number of contributors and commits. The number of
Github Forks, Github Stars, and ratings from Google Play users does not reveal any
significant impact.

Research Question 4.4

How does automated testing affect code issues in FOSS Android apps?

Why and How: The collection of code issues helps developers assess whether their
code follows good design architecture principles. It can help developers avoid
potential bugs, performance issues, or security vulnerabilities in their software.
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We use the static analysis tool Sonar to collect code issues in our dataset of FOSS
Android apps and study whether automated testing brings significant differences.

Main findings: Automated testing is important to ensure the quality of software.
This is also evident in terms of code issues. Projects without tests have a significantly
higher number of minor code issues.

Research Question 4.5

What is the relationship between the adoption of CI/CD and automated testing?

Why and How: Previous work showed the adoption of CI/CD with automated testing
has beneficial results in software projects [Hilton et al., 2016; Zhao et al., 2017]. For
that reason, the adoption of CI/CD is getting momentum in software projects. We
want to study whether CI/CD technologies have been able to successfully address
the FOSS Android and whether developers are getting the most out of CI/CD in
their projects. We use static analysis to collect data regarding the adoption of CI/CD
technologies and compare it to the adoption of automated testing. In addition, we
discuss how numbers differ from desktop software.

Main findings: CI/CD adoption in open source mobile app development is not
as predominant as in other platforms — only 26% of apps are using it in their
development process. We argue that one of the main reasons is the lack of exhaustive
and automatic testing — results show evidence that open source projects with CI/CD
are more likely to automate tests.

In sum, our work makes the following contributions:

• We created a publicly available dataset with open source apps. The dataset was
built by combining data from multiple sources, including metrics of source code
quality, popularity, testing tools usage, and CI/CD services adoption. Dataset is
available here: https://github.com/luiscruz/android_test_inspector.

• We have studied the trends of the adoption of testing techniques in the Android
developer community and identified a set of apps that use automated tests in
their development cycle.

• We have developed a tool for static detection of usage of state-of-art test-
ing frameworks. Available here: https://github.com/luiscruz/android_
test_inspector.

• We have investigated the relationship of automated test adoption with quality
and popularity metrics for Android apps.

• We have investigated the relationship between automated tests and CI/CD
adoption.
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• We deliver a list of 54 apps that comply with testing best practices.

The remainder of this chapter is organized as follows. Related work is discussed in
Section 4.2. Section 4.3 outlines the methodology used to collect data in our study.
Following, Sections 4.4 to 4.8 describe our methodology and present and discuss
the results for each proposed research question. In Section 4.9, we present a Hall of
Fame with apps that comply with the criteria of testing best practices. Threats to the
validity are discussed in Section 4.10. Finally, a summary of the contributions in this
chapter is presented in Section 4.11.

4.2 Related Work
Studies based on data collected from app stores have become a powerful source of
information with a direct impact on mobile software teams [Martin et al., 2017].
More works have contributed with datasets of open source Android apps [Geiger
et al., 2018; Pascarella et al., 2018; Das et al., 2016]. Our work releases a dataset
that differentiates by containing information regarding testing practices in Android
projects.

Previous work collected 627 apps from F-Droid to study the testing culture of app
developers [Kochhar et al., 2015]. It was found that at the time of the analysis
(2015) only 14% of apps contained test cases and that only 41 apps had runnable
test cases from which only 4 had line coverage above 40%. In addition, the authors
conducted a survey on 83 Android app developers and 127 Windows app developers
to understand the common testing tools and the main challenges faced during
testing. The most used framework was JUnit, being used by 18 Android developers,
followed by Monkeyrunner and Espresso, with 8 and 7 developers, respectively.
According to developers in the survey, the main challenges while testing are time
constraints, compatibility issues, lack of exposure, cumbersome tools, emphasis on
development, lack of organization support, unclear benefits, poor documentation,
lack of experience, and steep learning curve. Our work extends and completes the
study by Kochhar et al. via a more extensive data sample (1000 Android apps) and
additional analyses. We adopt a comprehensive mining-software-repositories-cum-
static-analysis approach to collect mobile software code repositories and empirically
assess the benefits of having tests, rather than surveying developers. In addition,
we compare the presence of tests in the project with potential issues of the app,
satisfaction level of end users, among other popularity metrics. Moreover, we assess
the use of different testing tools using static analysis and provide insights into
observed trends on automated testing in the past years and compare the testing
culture with the adoption of CI/CD.

More works have attempted to capture the current picture of app testing. Silva et al.
have studied 25 open source Android apps in terms of test frameworks being used
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and how developers are addressing mobile-specific challenges [Silva et al., 2016].
Results show that apps are not being properly tested, and tests for app executions
under limited resource constraints are practically absent. It suggests that a lack of
effective tools is one of the reasons for this phenomena. Our work differentiates
itself by considering a more representative sample of apps and complements Silva
et al. by providing insights on how developers and researchers can help bring new
types of tests into the app development community.

Coppola et al. studied the fragility of UI testing in Android apps [Coppola et al.,
2017]. The authors collected 18, 930 open source apps available on Github and
analyzed the prevalence of five scripted UI testing technologies. However, toy apps
or forks of real apps were not factored out from the sample — we understand that
real apps were underrepresented [Cosentino et al., 2016; Bird et al., 2009]. Thus, we
restrict our study to apps that were published in F-Droid. In addition, we extend our
study to a broader set of testing technologies, while studying relationships between
automated testing and other metrics of a project.

Corral and Fronza have compared the success of apps with quality code metrics [Cor-
ral and Fronza, 2015]. They analyzed a sample of 100 apps and consider a number
of code metrics: Weighted Methods per Class, Depth of Inheritance Tree, Number of
Children, Response for a Class, Coupling between Objects, Lack of Cohesion in Methods,
Cyclomatic Complexity, and Logical Lines of Code. Results demonstrated that these
metrics only have a marginal impact on the success of the apps, showing that real
drivers of user satisfaction are beyond source code attributes. Given that mobile apps
are very different from traditional applications we find the above metrics too generic.
We extend Corral and Fronza’s work by focusing on the impact of test automation.
Furthermore, besides user satisfaction, we also analyze a number of code issues
detected using static analysis and popularity metrics important for the survival of an
open source project (e.g., number of contributors).

Previous work has studied the state-of-the-art tools, frameworks, and services for
automated testing of mobile apps [Linares-Vásquez et al., 2017c]. It revealed that
automated test tools should aid developers to overcome the following challenges: 1)
restricted time/budget for testing, 2) needs for diverse types of testing (e.g., energy),
and 3) pressure from users for continuous delivery. Related work surveyed developers
of open source apps to understand their main barriers to mobile testing [Linares-
Vásquez et al., 2017b]. Developers identified easy maintenance, low overhead in the
development cycle, and expressiveness of test cases as important aspects that should
be addressed by existing frameworks.

Previous work has compared different techniques and tools for AIG [Choudhary
et al., 2015; Amalfitano et al., 2017; Zeng et al., 2016]. Choudhary et al. have
compared AIG testing tools in terms of ease of use, ability to work on multiple
platforms, code coverage, and ability to detect faults [Choudhary et al., 2015]. A
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follow-up study showed that AIG techniques are not ready yet for an industrial
setting since activity coverage is dramatically low [Zeng et al., 2016]. Our work
does not scope AIG techniques — we focus on automated testing strategies that
require the creation of test cases. In addition, we differ by studying the prevalence
of testing tools and which test frameworks have actually gained the acceptance of
mobile developers.

Other works have empirically studied tests on open source software. Kochhar et al.
studied the correlation between the presence of test cases and project development
characteristics [Kochhar et al., 2013a; Kochhar et al., 2013b]. It was found that
tests increase the number of lines of code and the size of development teams. Our
work adds value to these contributions by providing insights in the context of mobile
app development, and by analyzing a broader set of metrics to study the potential
benefits of automated tests in mobile app development.

Hilton et al. analyzed 34, 000 open source projects on GitHub and surveyed 442
developers [Hilton et al., 2016] on the implications of adopting CI/CD in open
source software. Results showed that most popular projects are using CI/CD and its
adoption is continuously increasing. A similar approach showed that developers are
improving automated tests after the adoption CI/CD [Zhao et al., 2017]. Our work
only focuses on the relation between automated tests and CI/CD in the context of
mobile development, bringing some enlightenment on how the adoption of CI/CD
differs in mobile app development.

4.3 Data collection

Data was gathered from multiple sources, as presented in Figure 4.1. F-Droid,
a catalog that lists 2, 800 free and open source Android apps1, is used to obtain
metadata, package name, and source code repository. GitHub is used to collect
activity and popularity metrics about the development of the app: number of stars,
number of contributors, number of commits, and number of forks. Other popularity
metrics are also gathered from Google Play Store: rating, and the number of users
who rated the app. Test coverage information is obtained from the cloud services
Coveralls and Codecov.

We extended the data by running the static analysis tool Sonar2 to collect quality-
related metrics and potential bugs. We select Sonar because it integrates the results
of the state-of-the-art analysis tools FindBugs, Checkstyle, and PMD. Furthermore, it
has been used with the same purpose in previous work [Krutz et al., 2015].

1F-Droid’s website: https://f-droid.org (Visited on July 17, 2019).
2Sonar’s website: https://www.sonarqube.org (Visited on July 17, 2019).
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Figure 4.1: Flow of data collection in the study.

For each project, we gather the total number of code issues detected by Sonar.
We also count the number of code issues according to severity, labeled as blocker
(issue with severe impact on app behavior and that must be fixed immediately;
e.g., memory leak), critical (issue that might lead to an unexpected behavior in
production without impacting the integrity of the whole application; e.g., badly
caught exceptions), major (issue that might have a substantial impact on productivity;
e.g., too complex methods), and minor (issue that might have a potential and minor
impact on productivity; e.g., naming conventions).

Directly comparing the number of issues in different projects can be misleading:
small projects are more likely to have fewer issues than large projects, regardless of
projects’ code quality. To reduce this effect, we controlled for the size of the project
by normalizing the number of issues by the number of files in a project, as follows:

I ′(p) = I(p)
F (p) , (4.1)

where p is a given project, I(p) the number of issues of p, and F (p) the number of
files.

Since one of the main goals in this work is to assess how apps are being tested,
we developed a tool to infer which testing frameworks a given project is using3. It
works by fetching the source code of the app and looking for imported packages and

3Source code repository of the tool created to inspect automated testing technologies in Android
projects: https://github.com/luiscruz/android_test_inspector
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configuration files. The efficacy of this tool was validated with a random sample of
apps which was manually labeled.

Table 4.1 lists all supported tools and frameworks aside with the number of search
results in StackOverflow, as a proxy of popularity among the developers’ community.
Unit test tools, UI testing frameworks, and cloud based testing services were selected
based on a previous survey on tools that support mobile testing [Linares-Vásquez
et al., 2017c] and an online curated list of Android tools4.

Table 4.1: Android tools analyzed.

Name StackOverflow Mentions∗

Unit testing
JUnit 67, 153
AndroidJunitRunner 164
RoboElectric 245
RoboSpock 23

UI testing
AndroidViewClient 474
Appium 9, 687
Calabash 1, 856
Espresso 4, 374
Monkeyrunner 1, 299
PythonUIAutomator 0
Robotium 3, 019
UIAutomator 1, 918

Cloud testing services
Project Quantum 0
Qmetry 27
Saucelabs 1, 087
Firebase 100, 350
Perfecto 224
Bitbar[Kaasila et al., 2012] 16

CI/CD services
Travis CI 3, 662
Circle CI 377
AppVeyor 655
CodeShip 564
CodeFresh 6
Wercker 200
∗StackOverflow mentions as of January 26, 2018

We also collect information about the usage of CI/CD services in our study: Travis
CI, Circle CI, AppVeyor, Codeship, Codefresh, and Wercker. The selection is based on
CI/CD services that have a free plan for open source projects and which adoption
can be automatically assessed — i.e., either they save their configuration in the code
repository or have an open API that can be accessed with the GitHub organization and
project name. Self-hosted CI/CD platforms (e.g., GoCD, Jenkins) are not included

4List of Android tools curated by Furiya: https://github.com/wasabeef/awesome-android-tools
(Visited on July 17, 2019).
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in this list. Although this is a subset of CI/CD services that can be used in a project,
previous work found that Travis CI and Circle CI have more than 90% of share in
GitHub projects using CI/CD services [Hilton et al., 2016].

We analyzed Android apps that are open source and published in F-Droid. The most
popular version control repository is GitHub, being used by around 80% of projects.
To make data collection clean, only projects using GitHub were considered. No other
filtering was applied except in particular analyses that required data that was not
available for all apps (e.g., Google Play’s ratings).
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Figure 4.2: Categories of apps included in our study with the corresponding app count for
each category.
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Figure 4.3: Distribution of the number of apps by age (in years).

Although F-Droid’s documentation reports that it hosts a total 2, 800 apps5, only
1288 actually make it to the end user catalog. As we restrict our study to projects
using GitHub, in total we analyze 1000 Android apps, roughly 35GB of source code
collected between September 1–8, 2017. Apps in the dataset are spread amongst 17

5As reported in the F-Droid’s wiki page Repository Maintenance: https://f-droid.org/wiki/page/
Repository_Maintenance (Visited on January 26, 2018).

54 Chapter 4 Prevalence of Test Automation in Android Apps

https://f-droid.org/wiki/page/Repository_Maintenance
https://f-droid.org/wiki/page/Repository_Maintenance


categories, as presented in Figure 4.2, and are aged up to 9 years. The distribution
of apps by age is presented in Figure 4.3.

Since in a few projects the static analysis tool Sonar does not successfully run, we
collect code issues data for 967 apps, analyzing a total of 329, 676 files. Additional
data gathered from the Google Play store is available for 638 apps.

Reproducibility-oriented Summary

To foster reproducibility, based on previous guidelines for app store analyses [Martin
et al., 2017], our work is best described as follows:

App Stores used to gather collections of apps. We use apps available on F-Droid
and combine it with data available on Google Play store.

Total number of apps used. The study comprises 1000 apps.

Breakdown of free/paid apps used in the study. Only free apps are listed in
our dataset.

Categories used. Apps in this study are spread across 17 categories. The distribu-
tion of apps is illustrated with the bar chart of Figure 4.2.

API usage. We collect usage of APIs related to test automation exclusively.

Whether code was needed from apps. Source code was required given the
nature of analyses performed in the study.

Fraction of open source apps. Open source apps are used exclusively.

Static analysis techniques. We analyze source code with a self-developed tool
for detection of tools, frameworks, and services’ usage in the app’s project and the
static analysis techniques provided by SonarQube to gather code issues.

All scripts and tools developed in this work are publicly available with an open
source license: https://luiscruz.github.io/android_test_inspector/. The
same applies to the whole dataset, for the sake of reproducibility.

4.4 Prevalence of Automated Testing (RQ 4.1)

Testing is an essential task in software projects, and mobile apps are no different.
Given the specific requirements of mobile apps, conventional approaches do not
always apply. Thus, we want to assess how the FOSS mobile app development
community is addressing automated testing. In this section, we study which testing
approaches and technologies are most popular while discussing potential factors. In
particular, we answer the following research question:
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Research Question 4.1

What is the prevalence of automated testing technologies in the FOSS mobile app
development community?

We compare the frequency of the automated testing technologies employed in the
development of the apps in the dataset. The state-of-the-art technologies listed
earlier in Table 4.1 were included, dividing them into three different categories: Unit
testing, UI testing, and Cloud testing services. We resort to data visualizations and
descriptive statistics to analyze the frequency of technologies in the dataset.

4.4.1 Results
Figure 4.4 shows, out of 1000 apps, the number of projects using a test framework.
We include results for Unit Testing, UI Testing, and Cloud Testing frameworks. The
first bar shows the number of apps that use any test tool. About 41% of apps (406)
have tests. We can see that unit tests are present in 39% of projects (392) while JUnit
is the most popular tool, with 36% of projects (363) adopting it. This means that
89% of projects with automated tests are using JUnit.
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Figure 4.4: Number of projects per framework.

Only 15% of projects (154) have automated UI tests. Espresso is the most used
framework — almost every project with UI tests is using Espresso. UIAutomator,
Robotium, and Appium are used by a very small portion of projects in our dataset,
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while AndroidViewClient, Calabash, Monkeyrunner, and PythonUIAutomator are not
used in any project.

With less than 3% of projects (29) employing them, cloud testing services have not
found their way into the open source mobile app development community. In total,
28 projects use Google Firebase, whereas only 1 project uses Saucelabs. All the other
cloud test services in this study are yet to be adopted.

4.4.2 Discussion
Most mobile apps published in F-Droid do not have automated tests. Developers
are relying on manual testing to ensure proper functioning of their apps, which is
known to be less reliable and to increase technical debt [Stolberg, 2009; Bavani,
2012; Karvonen et al., 2017].

Given their simplicity, unit tests are the most common form of tests. JUnit is the main
unit testing tool and the reason lies in the official Android Developer documentation
for tests6, which introduces JUnit as the basis for tests in Android. Furthermore,
other test tools often rely internally on JUnit (e.g., AndroidJunitRunner).

Other unit testing tools such as AndroidJunitRunner and Roboelectric do not have a
substantial adoption. These tools help running unit tests within an Android envi-
ronment, instead of the desktop’s Java Virtual Machine (JVM). This is important
given the complexity of an Android app’s lifecycle, which might affect test results.
However, many apps still do not cross that limit, providing only unit tests for parts
of the software that can run absent from the mobile system. Since many apps follow
a similar structure, based on Android’s framework enforced design patterns, easily
customizable boilerplate tests should be delivered along with those patterns.

UI tests are not so popular (15%), which can be explained by their cumbersome
maintainability reported in previous work [Z. Gao et al., 2016; Coppola, 2017; X. Li
et al., 2017]. Although there are many UI testing frameworks available, Espresso
is the only one with substantial adoption. This is consistent with the phenomenon
of JUnit for unit tests: Espresso is also promoted in the official Android Developer
documentation. In fact, it is distributed with the Android SDK. Another strength is
that Espresso provides mechanisms to prevent flakiness and to simplify the creation
and maintenance of tests.

Previous work has considered Espresso as the most energy-efficient UI testing frame-
work. The fact that these projects are already using it, leaves an open door for the
creation of energy tests. On the other hand, Espresso still provides a limited set of
user interactions, which can be a barrier to high test coverage [Cruz and Abreu,
2018a].

6Getting Started with Testing Android guide available at: https://developer.android.com/
training/testing/fundamentals (Visited on July 17, 2019).
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Unfortunately, studied cloud testing services have not reached the open source
app community. This is probably due to the recency of the introduction of these
technologies and the lack of a testing culture in mobile app development, as shown
in our results.

The good news is that we observe an increasing adoption of unit and UI tests in the
last two years. This trend can be observed by comparing our findings with previous
work [Kochhar et al., 2015]; while the previous study highlights that the prevalence
of automated tests in mobile apps was merely 14%, in this work, we observe that
41% of FOSS apps are developed with automated testing tools.

These findings provide useful implications for the development of new testing tools
and techniques. Previous work has shown the importance of creating new types of
tests for mobile apps (e.g., energy tests, security tests) [Linares-Vásquez et al., 2017c;
Muccini et al., 2012; Wang and Alshboul, 2015]. Our results show the importance
of simplifying the learning curve and the project’s setup. Hence, new types of tests
should be compatible at least with JUnit and Espresso, avoiding reinventing the
wheel or complicating usage with new dependencies.

In addition, the adoption of these tools by the FOSS community is highly sensitive
to the quality and accessibility of documentation. The fact that Google has control
over the official documentation does not help third-parties to come aboard. Perhaps
the official documentation should feature more tools that are not delivered with
the Android SDK. The same concern applies to the academia that is developing
many interesting tools for mobile development and testing. Often the lack of
documentation is a big barrier to the adoption of innovative techniques by the
software industry [Gousios et al., 2016; Kochhar et al., 2015].

Only 41% of FOSS apps have automated tests. Unit testing frameworks are the most
popular, comprising 39% of projects. UI testing is being used by 15% of projects,
while the adoption of Cloud testing platforms is negligible (3%).

4.5 Evolution of the Testing Culture (RQ 4.2)
Android testing tools are in constant evolution to fit the ever-changing constraints
and requirements of mobile apps. Although we are currently far from having a
satisfactory prevalence of automated testing, the evolution from past years can
provide actionable information. We study which technologies and types of testing
have gained momentum, and which ones are still failing to be perceived as beneficial
in FOSS mobile app projects.

In particular, this section answers the following research question:
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Research Question 4.2

Are today’s mature FOSS Android apps using more automated testing than
yesterday’s?

We analyze how the adoption of automated testing relates to the age of an app and
the time of an app’s last update. We dig further and study the adoption of automated
testing in mature FOSS apps by years since the last update. Trends on automated
testing adoption over time are analyzed using scatter plots.

4.5.1 Results

The percentage of apps that are doing tests grouped by their age is presented in the
plot of Figure 4.5. The data is presented from older to newer projects (i.e., 9–0 years
old). The size of each circle is proportional to the number of apps with that age
(e.g., older projects have smaller circles, meaning that there are fewer projects for
those ages.). It is used to show the impact of results in each case. E.g., since projects
that are six or more years old have small circles, they comprise a small number of
projects. Hence, trends in those age groups are not significant.
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Figure 4.5: Percentage of Android apps developed in projects with test cases over the age
of the apps.

The timeline in Figure 4.5 shows that apps that are less than two years old have sig-
nificantly more tests than older apps. Moreover, the usage of UI testing frameworks
has increased among apps that are under two years old.

In addition, we present in Figure 4.6 how new apps have been changing the overall
test automation adoption. In the past two years (shaded region) the slope of projects
with tests is higher than projects without tests. However, this recent change is not

4.5 Evolution of the Testing Culture (RQ 4.2) 59



able to change the overall pervasion of test automation: most projects are not doing
it.
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Figure 4.6: Cumulated frequency of projects with and without tests (from 9 to 0 years old),
normalized by the total number of projects.

Finally, we present the timeline of the adoption for different kinds of testing tech-
niques in Figure 4.7. The aforementioned trend is observable for unit testing and UI
testing, which have a higher slope in the past two years (shaded region).
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Figure 4.7: Cumulated percentage of projects with tests (from 9 to 0 years old), normalized
by the total number of projects. All test categories are represented.

4.5.2 Discussion

Results show a significant increase in automated testing amongst new FOSS apps.
However, the fact that older apps have a lower adoption rate of automated testing can
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be explained by two phenomena: 1) automated testing is becoming more accessible
to developers, who are becoming more aware of its benefits, 2) at some point
during the lifespan of a project, developers realize that the overhead of maintaining
automated testing is not worth the benefits and decide to remove it. While the
first phenomenon reveals a positive trend, the latter is quite alarming — automated
testing does not provide a long-term solution.

Giving a better sense of which phenomenon is more likely to happen, Figure 4.6
reveals that automated testing has been gaining popularity in the last two years.

It is worth noting that this increase is happening in both unit testing and UI testing.
The fact that UI testing is gaining popularity is important — unit testing per se
does not provide means to achieve high test coverage in mobile apps. This increase
provides more case studies for researchers to study new types of mobile testing (e.g.,
energy, security, etc.).

Open source mobile developers are becoming more aware of the importance of using
automated tests in their apps. This is observed more for apps that are updated
recently than those updated several years ago.

4.6 Automated Testing vs Popularity (RQ 4.3)
In this section, we compare popularity metrics with the adoption of automated
testing practices in FOSS Android apps. In other words, we answer the following
research question:

Research Question 4.3

How does automated testing relates to popularity metrics in FOSS Android apps?

For this purpose, the following popularity metrics were selected:

Number of Stars. The number of Github users that have marked the project as
favorite.

Number of Forks. The number of Github users that have created a fork of the
repository.

Number of Contributors. The number of developers that have contributed to the
project.

Number of Commits. The number of commits in the repository.

Average Rating. The average user rating from Google Play store.

Number of Ratings. The number of users rated the app on Google Play.
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These metrics depend on a myriad of factors, which do not necessarily relate to
mobile app development processes. Yet, they are notable metrics that developers do
care about. Typically, developers need to drive their development process based on
multiple sources of feedback [Nayebi et al., 2018]. We want to investigate whether
there is any kind of relationship between these features and automated testing.
Relationships can help motivate mobile app developers employing tests in their
projects.

To remove atypical cases, we perform an outlier detection using the Z-score method
with a threshold of three standard deviations. In addition, we perform the normal-
ity test Shapiro-Wilk, which tests the null hypothesis that data follows a normal
distribution.

Then we apply hypothesis testing, using the non-parametric test Mann-Whitney U,
with a significance level (α) of 0.05. We may also consider a parametric test (e.g.,
the standard t-test), in case we find variables that follow a Normal distribution. In
addition, since we are conducting multiple comparisons, the Benjamini-Hochberg
procedure is used to correct p-values and control false discovery rate.

The independent variable is whether an app has tests in its project source code while
the dependent variables are the popularity metrics.

The hypothesis test is formulated as follows, with populations WO and W as the
population of apps without tests and the population of apps with tests, respec-
tively:

H0 : P (W > WO) = P (WO > W )

H1 : P (W > WO) 6= P (WO > W )

In other words, we test the null hypothesis (H0) that a randomly selected value from
population W is equally likely to be less than or greater than a randomly selected
value from sample WO.

We perform hypothesis testing for each of the aforementioned metrics, formulated
as follows:

Number of Stars
H0 : a project with tests (W ) has the same number of Github stars as a project
without tests (WO).
H1 : the number of Github Stars in projects with tests is different from the number
of stars in a project without tests.

Number of Forks
H0 : a project with tests (W ) has the same number of forks as a project without tests
(WO).
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H1 : the number of forks in projects with tests is different from the number of stars
in a project without tests.

Number of Contributors
H0 : projects with tests (W ) have the same number of contributors as a project
without tests (WO).
H1 : the number of forks in projects with tests is different from the number of
contributors in a project without tests.

Number of Commits
H0 : a project with tests (W ) has the same number of commits as a project without
tests (WO).
H1 : the number of commits in projects with tests is different from the number of
commits in a project without tests.

Average Rating
H0 : a project with tests (W ) has the same rating as a project without tests (WO).
H1 : the rating of a randomly selected project with tests is different from the rating
in a project without tests.

Number of Ratings
H0 : a project with tests (W ) has the same number of rating as a project without
tests (WO).
H1 : the number of ratings of a randomly selected project with tests is different from
the number of ratings in a project without tests.

In addition, we perform effect size analyses for variables showing statistical sig-
nificance. We compute the mean difference (∆x̄ = x̄W − x̄W O), the difference
of the medians (∆Md = MdW − MdW O), and the Common Language Effect
Size (CL) [McGraw and Wong, 1992].

The mean difference (∆x̄) measures the difference between the means of apps
with tests (W ) and apps without tests (WO) for a particular popularity metric.
We compute it for being a conventional effect-size metric. In addition, since the
distribution is not necessarily normal, we compute the difference of the medians
(∆Md) between apps with tests (W ) and apps without tests (WO). Given that
the median of a sample is the value that separates the higher half from the lower
half of the sample, ∆Md measures how different this median value is in the two
distributions.

There are nonetheless a few cases in which ∆Md does not capture differences in the
two distributions [Kerby, 2014]. We complement the effect size analysis with the
CL measure. CL is the recommended measure when there is no assumption on the
shape of the distributions of the two samples being tested and it is commonly used in
tandem with Mann-Whitney U test [Leech and Onwuegbuzie, 2002]. One advantage
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of using CL to measure effect size is that it can be easily interpreted [Brooks et al.,
2014]: it is the probability that the value from an individual randomly extracted
from one sample will be higher than the value from an individual randomly extracted
from another.

4.6.1 Results

The distributions of the popularity metrics are depicted in the boxplots of Figure 4.8.
The medians are represented by the orange solid lines, while the means are by green
dashed lines. The results of the normality tests Shapiro-Wilk yielded a low p-value
(p < 0.001) for all metrics. Thus, none of the metrics follows a normal distribution,
which highlights the suitability of using the Mann-Whitney U test over the standard
t-test.

Stars

10

100

1000

Forks

10

100

1000

Contributors
1

10

100

Commits
1

10

100

1000

Rating Value
1

2

3

4

5

Rating Count

10

1000

100000

Figure 4.8: Boxplots with the distributions of the popularity metrics. Note that the y-axis is
in log-scale for all metrics but ratings.

Hypothesis testing results are shown in Table 4.2 along with the effect size analysis:
mean difference (∆x̄), difference of median (∆Md), and CL expressed in percentage.
The bigger the effect size is, the bigger is the metric for apps with tests. The effect size
analysis is only relevant in cases with statistical significance, which are highlighted
in bold text.

There is statistical evidence that FOSS Android apps with tests are expected to have
more commits and more contributors. Note, however, that this evidence does not
imply that tests boost these variables. Conclusions must analyze the causality of this
relationship (i.e., whether tests are cause or consequence) and the fact that there
are many external variables that are expected to have a significant impact (e.g.,
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Table 4.2: Statistical analysis of the impact of tests on the popularity of apps.

p-value ∆x̄ ∆Md CL (%)
Stars 0.2130 54.78 3.00 52.74%
Forks 0.4525 11.39 1.00 51.40%
Contributors 0.0052 2.17 0.00 55.80%
Commits 0.0008 247.58 49.00 57.13%
Rating Value 0.0835 0.05 0.05 54.77%
Rating Count 0.2465 −894.26 −56.00 47.03%

target users, originality of idea, design, marketing, etc.). Nonetheless, no statistical
significance was found between having automated tests and the number of GitHub
stars, forks and ratings on Google Play.

Projects with tests have on average more 248 commits in the whole project. The
CL measure is small but substantial: the probability of a project with tests having
more commits than a project without tests is 57%. Although the number of commits
increases, one can argue that the number of commits can be related to overhead
created by tests maintenance.

Projects with tests have a small but substantial CL for the number of contributors: the
probability that a project with tests will have more contributors is 56%. Nevertheless,
the direction of this relationship cannot be assessed with these results — i.e., there
is no evidence of whether the presence of tests is a consequence of the high number
of contributors in the project or, in contrary, it is a way of attracting more developers
to contribute.

Tests and Contributors: developers’ perception? We decided to conduct a follow-
up study to assess the developers’ perception of whether tests can lead to more
contributors. We contacted 343 mobile open source developers to answer a survey
with two close-ended questions:

1. Do you think that more tests benefit/attract newcomers?
Possible answers were: Yes; No; and Maybe.

2. Is the presence of tests a reason or a consequence of a big community of contribu-
tors?
Possible answers were: Most likely a reason; Most likely a consequence; Both
equally; and No impact.

Respondents had an additional box where they could optionally leave their comments
or feedback on the subject. Developers were selected by being active in an open
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source mobile application available on GitHub. In the end, we had 44 responses.
Data collected was anonymized and it is available online7.

As shown in the pie chart of Figure 4.9, 45.5% of our respondents believe that
tests help new developers to contribute in a project, while 38.6% are not sure, and
only 15.9% disagree with the statement. The pie chart of Figure 4.10 shows that,
despite the recognized improvement from having tests, the majority of respondents
believe that the presence of tests is more likely a consequence from having a big
community of contributors (43.2%). A smaller part of respondents (25%) believe
that the presence tests and the size of the community do not affect each other — i.e.,
they both depend on a different variable. Other respondents believe both variables
affect each other (22.7%), while only 9.1% reckon tests as the cause.

Yes

45.5%

No
15.9%

Maybe

38.6%

Figure 4.9: Do tests attract newcomers?

Most likely a reason
9.1%

Most likely a consequence

43.2%

Both equally

22.7%

No impact

25%

Figure 4.10: Tests: cause or consequence of a big community?

Feedback submitted by some developers provided some insights on their personal
experience. Some developers pointed out that the adoption of CI/CD is probably
“more influential than the actual tests”. Other developers emphasized the importance
of having tests as “a good starting point for newcomers to get familiar with the
project’s code and its features”. Finally, some developers state that the “maintenance
burden of automated tests is really high” and that they can block major refactorings
in software projects.

7Questionnaire responses are available online: https://docs.google.
com/spreadsheets/d/e/2PACX-1vS39pRfJ7AZLXFVsqZvqZqEkJwg88AqxUTN_
kKC6t2ay0JBTQByhnuVAFtoGPO93yyjsCGX7FU3uON1/pubhtml?gid=1063568719&single=true
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4.6.2 Discussion

Results show that FOSS Android projects with tests have more commits and more
contributors. The increase in the number of commits can be explained by an
overhead of commits induced by the maintenance and configuration of tests.

Responses to the questionnaire show that the presence of tests is more likely a
consequence of having a big community. In addition, tests can help new developers
contribute to the project. Since one of the main concerns in open source projects
is to foster the community to contribute8, the importance of tests for this purpose
cannot be discarded. Conventionally, maintainers of open source projects target this
goal by inviting contributors, providing social and communication tools, and making
sure that instructions on how to contribute are well documented. These results show
that tests should also be part of their agenda.

This relationship is consistent with previous work. Automated tests help new de-
velopers be more confident about the quality of their contributions [Gousios et al.,
2016]. Contributors are able to create PRs to a project with a reasonable level of
confidence that other parts of the software will not break. The same applies to the
process of validating a PR. Integrators usually have some barriers when accepting
contributions from newcomer developers [Gousios et al., 2016]. The presence of
automated tests helps reduce that barrier, and contributions with tests are more
likely to be accepted [Gousios et al., 2016]. Another aspect of automated tests that
contributes to this trend is the reported ability to provide up-to-date documentation
of the software [Van Deursen, 2001; Beck, 2000].

Previous work that shows that app store’s ratings are not able to capture the quality
of apps [de Langhe et al., 2016; Ruiz et al., 2017]. Our results show that this is also
the case for tests: there is no relationship between using tests and rating on Google
Play.

Our findings have direct implications for different stakeholders of mobile software
projects. Developers have to start using automated tests in their code in order to
ensure quality in their contributions. Open source project maintainers must promote
a testing culture to engage the community in their projects.

Automated testing is important to foster the community to contribute. There is
statistical evidence that FOSS Android projects with tests have more contributors
and more commits. Number of GitHub Stars, Github Forks and ratings on Google
Play did not reveal any significant impact.

8Five best practices in open source: external engagement by Ben Balter: https://ben.balter.com/
2015/03/17/open-source-best-practices-external-engagement/ (Visited on July 17, 2019).
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4.7 Code Issues and Test Automation (RQ 4.4)
Code issues are related to potential vulnerabilities of software. It is a major concern
of developers to ship software with a minimal number of code issues. We study
whether automated testing can help developers deploy mobile app software with
fewer code issues. In other words, we aim at answering the following research
question:

Research Question 4.4

How does automated testing affect code issues in FOSS Android apps?

We use the issues detected by the static analysis Sonar tool as a proxy of software
code issues. We apply Sonar to our dataset of 1000 Android apps. As mentioned in
Section 4.3, Sonar issues are divided into four categories, based on the severity of
their impact. We evaluate the number of issues normalized for the number of files in
the project (I ′(p)).

We apply the same approach used in Section 4.6: we use hypothesis testing with
the Mann-Whitney U test using a significance level (α) of 0.05. Benjamini-Hochberg
procedure is used to correct p-values since four tests are performed in the same
sample. Mean difference (∆x̄), difference of median (∆Md), relative difference
( ∆Md

MdW
), and CL are used to analyze effect size.

4.7.1 Results

We successfully collected code issue reports from 967 apps. It was not possible to
collect data from 33 apps: Sonar failed due to characters invalid with UTF-8 encoding.
This was the case of the reading app FBReaderJ and its file ZLConfigReader.java
that contained characters that not even Github is able to render9. Since these apps
consisted of a small portion of our dataset (3%), we decided to leave them out of
this part of the study.

Table 4.3 presents descriptive statistics of the number of code issues per file I ′(p)
for each level of severity — size of the sample (N), median (Md), mean (x̄), and
standard deviation (s). The table also presents the results of normality tests with the
p-values for Shapiro-Wilk tests (X ∼ N), showing that none of the metrics follows a
normal distribution. Statistics are presented for both apps with tests (W ) and apps
without tests (WO).

Figure 4.11 illustrates the distribution of the I ′(p) in projects with tests (blue line,
hatch fill) and without tests (red line, empty fill) for different types of issues. The

9Example of a source code file incompatible with Sonar tool: https://git.io/fxNg9 (Visited on
July 17, 2019).
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Table 4.3: Descriptive statistics of code issues on apps with (W ) and without (WO) tests.

Tests N Md x̄ s X ∼ N

Blocker
W 398 0.00 0.02 0.04 p < 0.0001
WO 569 0.00 0.05 0.59 p < 0.0001

Critical
W 398 0.24 0.34 0.39 p < 0.0001
WO 569 0.26 0.48 0.90 p < 0.0001

Major
W 398 0.50 0.73 0.80 p < 0.0001
WO 569 0.52 0.84 1.09 p < 0.0001

Minor
W 398 0.61 0.87 0.93 p < 0.0001
WO 569 0.73 1.27 2.12 p < 0.0001

mean for each group is depicted with a dashed green line, while the median with a
solid orange line. Types of issues with a statistically significant difference between
W and WO are highlighted with thicker lines. Results show that projects with tests
have significantly less minor code issues than projects without tests.
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Figure 4.11: Comparison of the number of issues per file in projects with and without tests.
Green dashed lines in each box represent the mean value, while orange solid
lines represent the median.

Table 4.4 reports the resulting p-values and computes the effect-size metrics: mean
difference (∆x̄), difference of median (∆Md), relative difference ( ∆Md

MdW
), and CL.

The number of minor issues per file increases significantly in projects without tests.
The difference of median shows that projects without tests are expected to have
0.11 more minor issues per file (increase of 18%). Furthermore, as reported with
the CL, projects without tests have more minor issues than projects with tests with a
probability of 54%. The number of issues for higher severity levels is not significantly
affected.
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Table 4.4: Statistical analysis of the impact of tests in mobile software code issues.

Severity p-value ∆x̄ ∆Md ∆Md
MdW

(%) CL (%)
Blocker 0.1643 0.0337 0.0014 48 52.09%
Critical 0.1150 0.1337 0.0234 9 52.97%
Major 0.2939 0.1130 0.0157 3 51.02%
Minor 0.0440 0.3940 0.1127 18 54.32%

4.7.2 Discussion

Results show that there is a statistically significant and substantial relationship
between using automated testing and the number of minor code issues that appear
in the project. FOSS Android projects without automated testing have significantly
more minor code issues. Given that only 41% of apps in this study have automated
tests, mobile developers need to be aware of the importance of testing their apps.

On the other hand, although the normalized number of blocker, critical, and major
bugs is higher for apps without tests than those with tests, the difference is not
statistically significant. Other alternatives, such as manual testing, code inspection,
or static analysis, are probably preventing such issues. Our sample size may also not
be large enough to make the result to be statistically significant.

There is statistical evidence that FOSS Android projects without tests have 18%
more minor code issues per file. In our sample, projects without tests also had
more code issues for other severity levels: major (3%), critical (9%), and blocker
(48%).

4.8 CI/CD vs Test Automation (RQ 4.5)
CI/CD has been proved to be beneficial in software projects and to have even better
results when employed along with automated testing [Hilton et al., 2016; Zhao
et al., 2017]. Thus, we study whether mobile app developers are using CI/CD in
its full potential. Moreover, we delve into how mobile app projects set themselves
apart from conventional software projects in terms of CI/CD adoption. In sum, this
section answers the following research question:

Research Question 4.5

What is the relationship between the adoption of CI/CD and automated testing?

To answer this research question, we start by comparing the adoption of the different
studied CI/CD technologies in Android FOSS projects. In addition, we compare the
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frequency of projects that have adopted one of the studied CI/CD tools with the
frequency of projects using automated testing.

For this analysis, we resort to data visualizations. To validate the relationship
between automated testing and CI/CD we use Pearson’s chi-squared test with a
significance level of 0.05. This test was selected for being commonly used to compare
binary variables.

4.8.1 Results
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Figure 4.12: Android apps using CI/CD platforms.

We first analyze which apps are using CI/CD pipelines in their development practices.
The distribution of CI/CD pipelines among these platforms is given in Figure 4.12.
Travis CI is the most popular platform with 249 apps using it (25%), followed by
Circle CI, being used by 2% of apps. However, in total, only 27% have adopted
CI/CD.

The relationship between the prevalence of CI/CD and prevalence of tests is depicted
by the mosaic plot in Figure 4.13. The size of each area is proportional to the number
of apps in each group. Nearly 50% of apps are not having tests nor adopting CI/CD
(region A). 26% of apps, despite having tests, are not using CI/CD (region B). 12%
of apps are using CI/CD but are not doing any automated tests (region C). Only 15%
of apps are using CI/CD effectively, with automated tests (region D). In addition,
the mosaic plot suggests that automated testing is more prevalent in projects with
CI/CD than projects without. This is confirmed by the Pearson’s chi-squared test:
χ2 = 31.48, p = 2.009e-8.

Online coverage trackers are useful tools that play well with CI/CD platforms. They
help ensure that the code is fully covered. Nevertheless, only 19 projects are using
it — 9 use Coveralls and 12 use Codecov, having 2 projects using both platforms.
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Figure 4.13: Relationship between apps using CI/CD and apps using tests.

However, only 4 have line coverage above 80%, and no meaningful results can be
extrapolated.

4.8.2 Discussion

CI/CD is not as widely adopted by mobile app developers as compared to developers
of general FOSS projects — only 26% of apps have adopted CI/CD services while
the adoption in general open source software hosted by GitHub is 40% [Hilton et al.,
2016].

There are 12% of apps that, despite using CI/CD, do not have automated tests. In
practice, these projects are only using CI/CD tools to run static analyses. Yet, they
rely on a pipeline that requires an approver to manually build and test the app.

The fact that there are projects that have tests but did not adopt CI/CD (26%) is also
concerning. One of the main strengths of adopting CI/CD is improving software
quality through test automation [Zhao et al., 2017]. Although CI/CD services have
made a good work in simplifying the configuration of Android specific requirements
(e.g., SDK version, emulator, dependencies, etc.), developers have reported that
the main obstacle in adopting CI/CD in a project is having developers who are not
familiar with it [Hilton et al., 2016]. Nevertheless, since these projects are already
using automated tests, they could potentially benefit from a CI/CD pipeline with
little effort. More research needs to be conducted to assess why mobile developers
are not adopting CI/CD in their projects.

Travis CI and Circle CI are the most used CI/CD services, as expected from previous
results for other types of software [Hilton et al., 2016]. Although the other platforms
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have a well documented support for Android, they are not being used by the
community.

Even more surprising is the fact that, from the 147 apps with both CI/CD and tests,
only 19 are actually promoting full test coverage with coverage tracking services.
This suggests that coverage is not a top priority metric for mobile developers, which is
in sync with concerns by Gao et al. who have reported the need for coverage criteria
to meet the idiosyncrasies of mobile app testing [J. Gao et al., 2014]. In particular,
Coverall and Codecov platforms only report line coverage. Different coverage criteria,
such as event/frame coverage, would be more suitable in the context of mobile
apps.

More education and training is needed to get full benefits of CI/CD for mobile apps.
Developers that are already performing automated tests in their apps should explore
the integration of a CI/CD pipeline in their projects. This is also a good opportunity
for newcomer developers willing to start contributing to open source projects.

CI/CD in mobile app development is not as prevalent as in other platforms; Auto-
mated testing is more prevalent in projects with CI/CD.

4.9 Hall of Fame

We have selected a set of apps from our dataset that we consider good candidates for
studying best practices from the mobile app development community. We perform a
systematic selection by choosing projects that perform unit tests, UI tests and are
using CI/CD. In total, 54 apps satisfy these requirements10. We present in Table 4.5
one app for each category based on the popularity of that app among developers,
using the number GitHub Stars as a proxy. Some categories, namely Games, Money,
and Phone & SMS, did not have any app that meets the requirements.

Note, however, that although these projects follow best practices, they are not
necessarily the ones with the highest ratings (e.g., rating in Google Play, number
of Forks in Github). The success of apps also depends on a myriad of other factors.
Nevertheless, the impact of best practices is not negligible and for that reason, these
projects can be used as role models for new projects or subjects for case studies for
further research.

10The whole set of apps in the Hall of Fame can be accessed online: https://luiscruz.github.io/
android_test_inspector/.
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Table 4.5: Hall of fame.

Category Organization Project Name
Internet k9mail k-9
Multimedia TeamNewPipe NewPipe
Writing federicoiosue Omni-Notes
Theming Neamar KISS
Time fossasia open-event-android
Sports & Health Glucosio android
Navigation grote Transportr
System d4rken reddit-android-appstore
Reading raulhaag MiMangaNu
Security 0xbb otp-authenticator
Science & Education EvanRespaut Equate
Connectivity genonbeta TrebleShot
Development Adonai Man-Man
Graphics jiikuy velocitycalculator

4.10 Threats to validity
Construct validity Code issues collected with SonarQube are used to measure the
quality of code. Some projects might not follow common development guidelines
due to specific requirements. Thus, generic static rules might not be able to capture
the quality of such projects. Nevertheless, we expect that this is the case of a minimal
number of apps and results are not affected. Metrics from Google Play and GitHub
are used as proxies to measure user satisfaction, and popularity of apps. These
metrics are affected by a number of factors and not always are sufficiently dynamic
to cope with changes in the app [Ruiz et al., 2017].

Furthermore, the online coverage trackers investigated in this study only support
line coverage. Coverage metrics for events or UI frames are more suitable for mobile
applications. These metrics were not evaluated as they are not available in the state-
of-the-art online coverage trackers. Finally, we did not consider AIG techniques since
they are more advanced and thus are not popularly used in mobile app development
yet.

Internal validity The usage of a test framework or service was assessed through a
self-developed automatic tool based on static analysis and Web requests to service’s
APIs. To validate the accuracy of our tool we have manually labeled a random
sample of 50 apps and compared the results. Our tool has successfully passed our
validation with no false positives and no false negatives, but we understand that
some corner cases may not have been checked yet. The same applies to the static
analysis tool SonarQube used to collect code issues — it provides an approximation
of the actual set of code issues in a project. Some issues detected by SonarQube may
be false positives or may not generalize to other, distinct projects. Nevertheless, we
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argue such cases are rare and they are not expected to have a significant effect in
results.

External validity Our work has focused on free and open source apps. Our 1000-app
dataset comprises a good proportion of these apps that are currently available for
Android users. Findings in this work are likely to generalize to types of apps with
a caveat: private companies usually have a different approach from open source
organizations on software testing [Joorabchi et al., 2013]. We did not include
testing services without a free plan for open source projects; Paid apps have different
budgets and might be more willing to use paid services in their projects. Legal
and copyright restrictions do not allow us to scope apps with commercial licenses.
This is a known barrier for research based on app store analysis [Krutz et al., 2015;
Nagappan and Shihab, 2016; Martin et al., 2017].

The adoption of CI/CD is based on a subset of CI/CD services available, as described
in Section 4.3. This subset is equivalent to the one used by Hilton et al. to study
CI/CD adoption in general software projects [Hilton et al., 2016].

4.11 Summary
Testing is a crucial activity during the software development lifecycle to ascertain the
delivery of high quality (mobile) software. In this chapter, we study testing practices
in the mobile development world. In particular, we investigated working habits and
challenges of mobile app developers with respect to testing.

Concretely, in this chapter:

• We present a software tool that uses static analysis to identify the testing
technologies being used in Android projects (cf. Section 4.3). Available here:
https://github.com/luiscruz/android_test_inspector.

• We conduct a large-scale study with 1000 FOSS Android apps aiming at under-
standing the testing culture in mobile applications. Our results show that:

– FOSS mobile apps are still tested in a very ad hoc way, if tested at all.
Testing technologies were absent in almost 60% of projects in this study.
JUnit and Espresso were the most popular technologies in their category
with an adoption of 36% and 15%, respectively (answering RQ 4.1).

– Although automated testing is far from being used, it has become more
popular in recent years. This is particularly evident for unit testing and
UI testing (answering RQ 4.2).

– Testing activities play an important role in engaging contributors to a
FOSS Android project. Moreover, projects with tests also reveal a higher
number of commits. The number of Github Stars, Github Forks, and
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ratings on Google Play did not reveal any significant relationship with the
adoption of automated testing (answering RQ 4.3).

– Projects without tests have a higher number of minor code issues. Thus,
automated testing plays an important role in ensuring the quality of the
code of FOSS Android apps (answering RQ 4.4)

– CI/CD is not being effectively used by FOSS Android apps. Besides, results
show that projects using CI/CD are more likely to adopt test automation
(answering RQ 4.5).

• We select 54 FOSS Android apps that have adopted best testing practices (cf.
Section 4.9). Since measuring energy consumption requires the usage of UI
automation (cf. Chapter 2), these apps are a useful resource for future work
on energy efficiency.

76 Chapter 4 Prevalence of Test Automation in Android Apps



5Energy Impact of Performance
Anti-Patterns in Android Apps

Performance-based Guidelines for Energy Efficient Mobile
Applications
Luis Cruz and Rui Abreu
In: IEEE/ACM International Conference on Mobile Software Engineering and
Systems, MobileSoft, 2017.

Abstract

As a result of the advent of mobile computing, a number of best practices have
been delivered to optimize the performance of Android applications. However,
these guidelines fall short to address energy consumption. As mobile software
applications operate in resource-constrained environments, guidelines to build
energy-efficient applications are of utmost importance. In this chapter, we study
whether eight best performance-based practices recommended by Google have an
impact on the energy consumption of Android applications. In an experimental
study with six popular mobile applications, we observed that the battery of the
mobile device can last up to approximately an extra hour if the applications are
developed with energy-aware practices. This work paves the way for a set of
guidelines for energy-aware automatic refactoring techniques.

5.1 Introduction
A number of tools have been designed to help developers build high-performance
Android apps [Hecht et al., 2015; Palomba et al., 2017]. For instance, Google ships
the static analysis tool lint as part of the Android SDK. The tool detects typical
structural problems that may lie in the codebases of Android applications — also
known as anti-patterns or code smells.

A common anti-pattern is Overdraw, as illustrated in Figure 5.1. UI views in Android
are described using several nested layouts that will be drawn on top of each other.
If each of these layouts has a background color, the same pixel has to be drawn
several times on each refresh. This leads to extraneous graphics processing, which is
a potential source of unnecessary energy consumption [Pinto et al., 2014].

In this chapter, we analyze the impact of eight Android performance-based anti-
patterns in terms of energy consumption in real, mature Android applications.
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LinearLayout
BgColor=white

LinearLayout
BgColor=blue

TextView

TextView TextView
BgColor=white

The same pixel 
is writen 3 times

Figure 5.1: Example of a tree with the hierarchy of UI components in an Android app. Pixels
in the white TextView had to be painted with white and blue and finally white.

Aiming at providing a methodology to help developing energy efficient Android
applications, this work answers the following research questions:

Research Question 5.1

Do best practices for performance improvement also improve energy efficiency?

Research Question 5.2

Do these best practices actually have an impact on real, mature Android applica-
tions?

The main contributions of this work are:

• We provide a set of best practices to develop energy efficient mobile applica-
tions.

• We study and discuss the impact of each practice on energy consumption.

• We pave the way for a toolset to automatically detect and refactor energy
inefficiencies in mobile applications.

In particular, the takeaway message of this chapter is

Fixing anti-patterns, viz. ViewHolder, DrawAllocation, WakeLock, ObsoleteLay-
outParam and Recycle, lead to more energy-efficient mobile application, saving up
to an hour of battery life.

As a side contribution, and to foster reproducibility, a benchmark suite containing
all subjects and test suites used in the experiments is freely available from https:
//www.github.com/luiscruz/greenbenchmark.
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This chapter is structured as follows. Section 5.2 describes how the experiments
were conducted and the tools that were used. Section 5.3 presents the achieved
results, followed by a discussion in Section 5.4. Threats to the validity are presented
in Section 5.5. Finally, we present the related work in Section 5.6 and summarize
main contributions in Section 5.7.

5.2 Empirical Study
We conducted a study in which energy consumption was our dependent variable,
while Android optimizations were the independent variable. In this section we
describe our methodology and empirical study:

A. Android application selection

B. Static analysis and refactoring

C. Generation of automatic UI tests

D. Energy measurement tools setup

E. Experiments execution

F. Data analysis

5.2.1 Android Application Selection
The technique proposed in this work, hence the empirical evaluation, needs the
source code of the applications under analysis. For that matter, we use F-droid,
a free and open source software catalog of Android applications. Currently, F-
droid offers over 2, 300 open source applications1. The Google Play Store was used
to obtain further details about the popularity of the application in the Android
community. Applications were selected according to the following criteria: 1) open
source, 2) active development, 3) not using heavy network operations, since we are
not optimizing them. Applications were randomly selected and filtered when no
performance issue was found by lint. Given the complexity of the experiments for
each application we have limited our study to six applications:

Loop - Habit Tracker An application to track habits. Users’ rating for version 1.4.1
is 4.7 out of 5.

Writeily Pro A note editor with markdown support. Users’ rating for version 1.3.2
is 4.3 out of 5.

Talalarmo Alarm Clock A minimalist alarm clock. Users’ rating for version 3.9 is
4.4 out of 5.

1https://f-droid.org/wiki/page/Repository_Maintenance visited in July 17, 2019
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Table 5.1: Metrics of applications used in experiments.

Application Installs Rating # ratings LOC (Java) LOC (XML) Classes CC
Loop - Habit Tracker 50,000–100,000 4.7 1,252 28,295 7,302 193 2,471
Writeily Pro 1,000–5,000 4.3 84 3,251 2,612 86 498
Talalarmo Alarm Clock 1,000–5,000 4.4 63 1,043 192 26 131
GnuCash 50,000–100,000 4.3 2,460 26,532 20,757 286 2,846
Acrylic Paint n.a. n.a. n.a. 961 384 18 119
Simple Gallery 1,000–5,000 4.7 18 2,227 685 37 434

GnuCash A finance application to keep track of personal expenses. Rating for
version 2.0.7 is 4.3.

Acrylic Paint A basic drawing application. This application is only available
through the F-droid application store.

Simple Gallery Application to view pictures stored in the mobile device. Rating for
version 1.15 is 4.7.

Table 5.1 shows information regarding the complexity of the applications as well as
statistics from Google Play store. It presents number of installs, rating, and number of
users that rated the application at Google Play Store, as well as Lines of Code (LOC)
in Java, LOC in XML, number of classes, and McCabe’s Cyclomatic Complexity (CC).
Loop - Habit Tracker and GnuCash are the most complex applications, with over
25, 000 LOC. Besides having a large number of LOC in Java, GnuCash also has a large
number of LOC in XML, more than 20, 000, which in Android is used for specification
of the UI and other resources. It also has the highest CC value, 2, 846. Talalarmo
Alarm Clock is the simplest application with approximately 1, 000 lines of Java code,
1, 043 of XML, and a CC of 131. This was expected since it provides a small set of
features.

5.2.2 Static Analysis and Refactoring

In order to measure the impact of performance-based guidelines in Android appli-
cations it is necessary to systematically detect parts of code that did not comply
with those guidelines. We perform static code analysis to automatically detect code
smells, such as Overdraw, mentioned in Section 5.1. The Android SDK provides a
tool for this purpose, lint2, which detects problems related with the structural quality
of the code.

Code smells were chosen by considering performance-related suggestions given
by lint that (1) are common in Android applications, and (2) potentially modify
important parts of the application to fix the problem. Eight patterns resulted from
this selection. Below we detail the eight patterns, including a rough estimation of
priority provided by lint documentation. In lint, priority is an integer between 1 and

2Lint documentation: http://developer.android.com/tools/debugging/improving-w-lint.
html (Visited on July 17, 2019).
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10, with 10 being the most important — this is merely used to sort issues relative to
each other.

DrawAllocation: Allocations within drawing code It is a bad practice allocating
objects during a drawing or layout operation. Allocating objects can cause
garbage collection operations that will slow down the operation and create a
nonsmooth UI. The recommended fix is allocating objects upfront and reusing
them for each drawing operation. Lint priority: |||||||||| 9/10.

WakeLock: Incorrect wake lock usage Wake locks are mechanisms to control
the power state of the mobile device. This can be used to wake up the screen
or the CPU when the device is in a sleep state in order to perform tasks. If
an application fails to release a wake lock or uses it without being strictly
necessary, it can drain the battery. As an example, some applications use a
wake lock to keep the screen on. This requires developers to properly release
the wake lock when it is no longer necessary. Alternatively, the application can
set the flag FLAG_KEEP_SCREEN_ON and the system will properly manage the
wake lock, being less prone to errors. Lint priority: |||||||||| 9/10.

Recycle: Missing recycle() calls There are collections such as TypedArray that
are implemented using singleton resources. Thus, they should be released
so that calls to different TypedArray objects can efficiently use these same
resources. Lint priority: |||||||||| 7/10.

ObsoleteLayoutParam: Obsolete layout params During development, UI views
might be refactored several times. In this process, some parameters might be
left unchanged even when they have no effect on the view. This causes useless
attribute processing at runtime. Lint priority: |||||||||| 6/10.

ViewHolder: View Holder Candidates This pattern is used to make a smoother
scroll in List Views. When in a List View, the system has to draw each item. To
make this process more efficient, data from the previous drawn item can be
reused. The number of calls to the method findViewById, which is known for
being a very expensive method, decreases with this technique. Lint priority:
|||||||||| 5/10.

Overdraw: Painting regions more than once Another common inefficiency in
Android applications is when views are being overdrawn. This means that the
same pixel has to be written several times, leading to unnecessary processing
(see Figure 5.1). This can be improved by removing the background of views,
or by clipping drawing, when possible. The recommended fix is adding a
statement in the view creation that removes the background of the parent
view:
getWindow().setBackgroundDrawable(null);. Lint priority: |||||||||| 3/10.
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Table 5.2: Anti-patterns found in open source applications.

Anti-Pattern Loop - Habit Tracker Writeily Pro Talalarmo GnuCash Acrylic Paint Simple Gallery
DrawAllocation n.a. n.a. 2o 8+ 3- n.a. 3o 7+ 2- n.a.
WakeLock n.a. n.a. 1o 11+ 4- n.a. n.a. n.a.
Recycle n.a. n.a. n.a. 1o 1+ n.a. n.a.
ObsoleteLayoutParam n.a. n.a. n.a. 2o 2- n.a. n.a.
ViewHolder n.a. 1o 37+ 21- n.a. n.a. n.a. n.a.
Overdraw 5o 5+ 2- 3o 7+ 8- n.a. n.a. 3o 10+ 7- 4o 6+ 3-
UnusedResources 3o 0+ 231- 67o 1+ 318- n.a. n.a. n.a. n.a.
UselessParent n.a. 2o 3+ 14- n.a. n.a. n.a. n.a.
Each refactoring is reported with the number of files changed (o), number of insertions (+),
and number of deletions (-). A “n.a.” is present when a given anti pattern was not found in
the application.

UnusedResources Resources, such as icons or UI elements, may become obsolete
due to changes in the software. However, developers may forget to remove
them from the project which makes applications larger, consequently slowing
down builds. Lint priority: |||||||||| 3/10.

UselessParent: Useless parent layout Since interface layouts suffer several
changes throughout the development process, layouts frequently become
useless. The latter can eventually be replaced by a descendant layout. Lint
priority: |||||||||| 2/10.

Static code analysis is performed to automatically detect these patterns in the
applications. For each detected pattern, the application was manually refactored
and a new version of the application was produced. In addition, a version complying
with all the practices was also created. For the sake of comparison, the original
version was also used during the experiments. Table 5.2 shows the anti-patterns that
were found in each of the analyzed applications. Writeily Pro resulted in five new
versions, Simple Gallery in one version, and the others in three versions.

5.2.3 Generation of Automatic UI tests
The energy consumption of a mobile phone while running an application depends
on several conditions (e.g., services that are running in the device, background
tasks). To obtain meaningful results, the same execution needs to be replicated
several times. The applications used in our study, unfortunately, do not provide test
suites that mimic user interaction with the app. Thus, automatic UI test scripts were
manually created to replicate user interaction in these applications.

The scripts were built using the Python library Android View Client3. This library
allows the interaction with UI components by querying a view id, description or
content, which makes tests compatible across different devices.

o As seen in Chapter 3, Android View Client is not the most advisable framework for

energy measurements. However, at the time this study was conducted, there was no

3https://github.com/dtmilano/AndroidViewClient visited in July 17, 2019.
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evidence of this limitation. Still, in this case, as pointed out in Chapter 3, results were

not affected by the poor-choice of UI testing framework.

Tests mimic the usual interaction of a user. Algorithms 1 to 6 describe the interaction
for the applications Loop - Habit Tracker, Writeily Pro, Talalarmo, GnuCash, Acrylic
Paint, Simple Gallery, respectively.

Algorithm 1 Loop - Habit Tracker interaction script
1: SkipIntroductoryTips()
2: for i← 1 to 10 do
3: for i← 1 to 7 do
4: CreateNewHabit(i)
5: CheckHabitDetails(i)
6: ScrollThroughTheReport()
7: GoBack()
8: end for
9: DeleteAllHabits()

10: end for

Algorithm 2 Writeily Pro interaction script
1: GoToSettings()
2: GoBack()
3: for i← 1 to 20 do
4: folderOne← CreateFolderWithFoldersInside()
5: folderTwo← CreateFolderWithNotesInside()
6: MoveAllNotesToFirstFolder()
7: CreateNote()
8: folderThree← CreateFolder()
9: MoveItemToFolder(folderOne, folderThree)

10: DeleteFolder(folderThree) . Removes all files
11: end for

Algorithm 3 Talalarmo interaction script
1: SetAlarmOn() . Starts next minute tick
2: Sleep(5.minutes)
3: StopAlarm()
4: for i← 1 to 200 do
5: SwitchAMAndPM()
6: end for
7: for i← 1 to 12 do
8: SetAlarmOn()
9: SetAlarmOff()

10: SwitchAMAndPM()
11: GoToSettings()
12: SwitchBetweenDarkAndLightTheme()
13: GoBack()
14: end for

For each execution of the test, the application was uninstalled and installed with the
APK of the version under analysis. Thus, all user data was erased at the beginning of
the experiment, making sure each execution of the test would have a similar initial
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Algorithm 4 GnuCash interaction script
1: SkipIntroductionSteps()
2: for i← 1 to 10 do
3: for all account ∈ {”Assets”, ”Equity”} do
4: for i← 1 to 20 do
5: SelectAccount(account)
6: EditAccount()
7: GoBack()
8: end for
9: end for

10: end for

Algorithm 5 Acrylic Paint interaction script
1: SkipIntroduction()
2: for i← 1 to 20 do
3: for i← 1 to 10 do
4: DrawLine()
5: end for
6: GoToColorMenu()
7: for i← 1 to 10 do
8: SetColor()
9: end for

10: GoBack()
11: end for

Algorithm 6 Simple Gallery interaction script
1: for i← 1 to 100 do
2: SelectAlbum()
3: SelectPicture()
4: GoBack()
5: GoBack()
6: end for
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Figure 5.2: Experiments’ workflow.

state. On the other hand, cleaning user data requires the application to setup in
every experiment. This initial setup is not a real use case scenario, since it would
happen only once after installing the app. To ensure that such scenario does not
have a significant impact on results, we repeat subsequent scenarios a reasonable
number of times — between 10 and 200 — depending on the complexity of the
interaction.

5.2.4 Energy measurement tools setup

To measure the energy consumed in each execution, we use the bare-board computer
ODROID-XU running Android version 4.2.2 - API level 17.

This device is known for having an architecture similar to a smartphone. Components
such as cellular, location, accelerometer, and screen can be separately integrated.
Nevertheless, these components are not being evaluated since the provided power
sensors only report data for the main CPU, the secondary CPU, memory, and GPU.

Power sensors provide data with a sample period of 263, 808 microseconds. Since
the clock provided by ODROID in this setup has a precision of one second, data was
down sampled. I.e., different samples with the same timestamp were aggregated
using the average to a period of one second.
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5.2.5 Experiments Execution

Each experiment was designed to be independent of previous experiments. The
execution of a single experiment is illustrated by Figure 5.2. In every experiment,
before running the UI interaction script, the energy logger is uploaded to the ODROID
and set ready to start. The application, if existing, is uninstalled, the given APK is
installed and finally the application is automatically opened.

After the execution of the UI interaction script, the energy logger is stopped and the
data is collected from ODROID storage. This process is repeated 30 times for each
different version of the application, as recommended in Chapter 2.

In addition, we measured interaction scripts with a blank application that we devel-
oped. The application does nothing and aims to give an idea of the energy consumed
with the same UI interaction when the application is in an idle state. This gives an
approximate measure of the overhead of energy consumed by the experiment setup
and by the Android framework.

5.2.6 Data Analysis

Downsampling As described in Section 5.2.4, data was downsampled to one sample
per second in order to synchronize energy logs with ODROID timestamps.

Outlier Removal Execution of experiments is prone to failures. This can happen due
to a system dialog that popped up during the experiment, or due to a nontrivial bug
that stopped the application, or to a slower response of the application that was not
expected by the test script. Thus, there are executions that consumed considerably
more or less energy. In order to reduce the effect of outliers, experiments with
energy consumption outside the range [x̄− 2s, x̄+ 2s], where x̄ is the sample mean
and s is the sample standard deviation, were discarded.

5.3 Results
In the end, 18 different APKs were tested with a total of 900 executions. It took 94
hours (roughly 4 days) and 75MB of raw data was collected.

For each app, Table 5.3 presents the sample size (n), i.e., the number of executions
of the interaction script after outlier removal, mean (x̄) and standard deviation (s)
of energy consumption, and the p-value for the Shapiro-Wilk test. Shapiro-Wilk test
for normality is a statistical test for detecting if the experiments follow a normal
distribution. Column Pattern expresses the code smell that is fixed in that particular
fixed version. Original is a version of the application that was not modified, serving
as baseline. All stands for a version of the application in which all code smells
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Table 5.3: Descriptive statistics of experiments

Application Pattern n x̄ (J) s p-value

Loop - Habit
Tracker

Original 28 335.6 35.3 0.76
Overdraw 29 340.8 34.4 0.34
UnusedResources 30 343.1 32.9 0.17
All 29 336.4 34.7 0.58
Blank 29 86.7 1.5 0.31

Writeily Pro

Original 30 119.7 7.2 0.42
Overdraw 30 119.8 6.4 0.63
UnusedResources 30 119.7 6.4 0.43
ViewHolder 30 114.3 6.7 0.16
UselessParent 30 119.3 7.1 0.10
All 30 114.2 7.2 0.06
Blank 30 87.2 9.9 0.20

Talalarmo

Original 29 58.2 0.8 0.28
DrawAllocation 28 57.3 0.8 0.29
WakeLock 28 57.4 0.7 0.59
All 29 57.7 0.9 0.53
Blank 29 41.8 0.5 0.78

GnuCash

Original 30 195.6 2.3 0.40
ObsoleteLayoutParam 29 194.1 2.5 0.89
Recycle 28 194.3 1.4 0.32
All 30 194.0 2.5 0.89
Blank 29 71.4 0.8 0.56

Acrylic Paint

Original 30 62.7 1.0 0.68
DrawAllocation 29 62.5 1.1 0.12
Overdraw 28 64.1 0.7 0.36
All 29 64.0 0.8 0.85
Blank 28 52.9 0.6 0.71

Simple Gallery
Original 30 145.9 3.7 0.28
Overdraw 29 149.0 1.9 0.88
Blank 29 45.1 0.6 0.71

were fixed. Results for the executions using the blank application, described in
Section 5.2.5, are also shown.

Figures 5.3 to 5.8 plot the results for each of the tested applications. As the violin
plots show a bell-shaped curve and Shapiro-Wilk test’s p-value is greater than 0.05,
we conclude that data follows a normal distribution.

To validate changes in energy consumption, we tested the following hypotheses:

H0 : µfixed − µoriginal = 0

H1 : µfixed − µoriginal 6= 0

where µoriginal stands for the mean of the energy consumption for the original
version, and µfixed of the fixed versions. Considering the samples as independent
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Figure 5.3: Energy consumption for Loop - Habit Tracker.
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Figure 5.4: Energy consumption for Writeily Pro.

and since we have non-paired data in which the standard deviation of populations is
not known, we used Welch’s two-sample t-test as the most appropriate test for our
analysis. A two-tail p-value was used with the critical value of α = 0.05. Results are
shown in Table 5.4.

Table 5.5 presents the effect size results for the patterns with significant impact
on energy. It presents the mean difference (MD) (x̄fixed − x̄original), Cohen’s d
( x̄fixed−x̄original

s ), a method to indicate a standardized difference between means,
improvement (IMP) compared to the original consumption ( x̄fixed−x̄original

x̄original
), and the

column Savings, which provides the number of minutes of battery life saved after
repeating the same usage of the application during 24 hours.

For example, the application GnuCash in Table 5.3 is assigned to five rows, each
for a different tested version of the application and for the blank application. The
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Figure 5.5: Energy consumption for Talalarmo.
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Figure 5.6: Energy consumption for GnuCash.

fixed version for the Recycle pattern has 28 experiments (n) which on average
(x̄) consumed 194.3J with a standard deviation (s) of 1.44 and a p-value for the
normality test of 0.32. Significance tests presented in Table 5.4, show that this
version of GnuCash can significantly reduce energy consumption, since the p-value
obtained with the Welch’s t-test is 0.0140 which is lower than our significance level
α = 0.05. All fixed versions that passed the significance level were reported in
Table 5.5. The table shows that this version of the application provided an MD of
−1.28J, which means that it saved 1.28J, providing an improvement of 0.65% over
the original version. This means that after 24 hours of using the app, the battery
could last approximately 9 more minutes. The same analysis can be made with the
other applications.
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Figure 5.7: Energy consumption for Acrylic Paint.
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Figure 5.8: Energy consumption for Simple Gallery.

5.4 Discussion
Results show that ViewHolder, DrawAllocation, WakeLock, ObsoleteLayoutParam, and
Recycle are patterns that need to be taken into account to develop an energy-efficient
mobile application. ViewHolder is the pattern with the greatest impact, with an
improvement of approximately 5% in Writeily Pro. The original version consumed
119.7J while it consumed 114.3J after being modified. This translates into 65 minutes
of savings after 1 day of usage (see Table 5.5). When considering a usage of 3.75
hours, this would translate in extra 10 minutes, without affecting user experience.

DrawAllocation also provides an interesting improvement. Although it occurred in a
tiny part of the user interaction in Talalarmo, we observed an improvement of 1%.
DrawAllocation was also tested with Acrylic Paint but it did not have a statistically
significant improvement. The fix affected the color picker redraw routine. Using the
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Table 5.4: Significance Welch’s t-test results.

Application Pattern Test p-value

Loop - Habit Tracker
Overdraw −0.56 0.5784
UnusedResources −0.83 0.4121
All −0.08 0.9362
Overdraw −0.10 0.9180
UnusedResources −0.03 0.9790
ViewHolder 3.02 0.0038
UselessParent 0.20 0.8434

Writeily Pro

All 2.93 0.0049
DrawAllocation 4.18 0.0001
WakeLock 4.43 < 0.0001Talalarmo
All 2.16 0.0353
ObsoleteLayoutParam 2.57 0.0127
Recycle 2.55 0.0140GnuCash
All 2.47 0.0164
DrawAllocation 0.64 0.5221
Overdraw 45.88 < 0.0001AcrylicPaint
All −5.84 < 0.0001

Simple Gallery Overdraw −4.04 0.0010

Table 5.5: Effect size of significant patterns.

Application Pattern MD Cohen’s d IMP (%) Savings (min)

Writeily Pro
ViewHolder ↓ −5.39 −0.78 4.50 65
All ↓ −5.42 −0.76 4.53 65

Talalarmo
DrawAllocation ↓ −0.86 −1.11 1.47 21
WakeLock ↓ −0.85 −1.17 1.46 21
All ↓ −0.48 −0.57 0.82 12

GnuCash
ObsoleteLayoutParam ↓ −1.41 −0.67 0.72 10
Recycle ↓ −1.28 −0.66 0.65 9
All ↓ −1.53 −0.64 0.78 11

Acrylic Paint
Overdraw ↑ 1.42 1.64 −2.26 −33
All ↑ 1.37 1.51 −2.18 −31

Simple Gallery Overdraw ↑ 3.08 1.04 −2.11 −30

Android developer options to debug view updates, we can see that redraw is only
happening a single time when a new color is chosen. The impact of this fix in the
overall execution was minimal, which might have been the reason for not having
significant changes in energy consumption.

Fixing incorrect WakeLock usage also provided an improvement of 1%. In the original
version of Talalarmo, the wake lock was not being properly released which could
have lead to energy drain in particular cases. For instance, when the application is
no longer in the alarm mode and the wake lock was not properly released, the device
cannot activate a lower power state. This would consume energy unnecessarily but,
given the nature of our tests, such a scenario is not being effectively tested. Thus,
the effect size is expected to be higher in a real case scenario.

ObsoleteLayoutParam and Recycle anti-patterns were found in the application Gnu-
Cash. Although results showed a small effect size, with improvements of less than
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1% (see Table 5.5), they were statistically significant, as shown in Table 5.4. After
analyzing the changes made to fix ObsoleteLayoutParam, we saw that it only required
removing two obsolete view attributes. One in a list view and another in a list item.
Thus, a big effect was not expected from fixing this anti-pattern. Still, for a more
energy-efficient practice, this issue should be considered. UI changes during the
application development and obsolete attributes can be easily forgotten. This is a
common issue, since it does not affect the UI appearance. Regarding Recycle, the
issue occurred when accessing the color of an account. GnuCash allows the user to
create several accounts. Each account can be customized with a different color. To
get the account’s color options a TypedArray needs to be accessed. The issue lay
in the fact that TypedArray was not being closed after it had been accessed. This
only happens when a user opens the settings of an account. Regardless, it was able
to have significant impact on energy consumption, according to the results of the
Welch’s t-test in Table 5.4.

Surprisingly, after fixing Overdraw, applications ended up consuming more energy.
Although Overdraw can create a laggy UI, fixing it can lead to more energy con-
sumption. In the applications Acrylic Paint and Simple Gallery, it decreased battery
life approximately 30 minutes after one day of usage. Having a simple UI layout
hierarchy is always a good practice, but adding extra code to avoid Overdraw requires
processing, which might not be worth it, depending on the scenario.

When the application has a view that remains active for a considerable amount
of time, this view will have to redraw itself several times. In this case, having an
efficient redraw is important, and fixing Overdraw is expected to create interesting
results. On the other hand, if a view is being created several times but does not
remain active for a reasonable amount of time, fixing Overdraw might be creating an
unnecessary overhead during the creation of the view. Since modeling user behavior
is not a trivial task, in our experiments the time a user spends in a view is not being
considered. Thus, views with long lifetime were not explored.

UnusedResources and UselessParent did not have any significant effect, as showed by
the Welch’s t-test in Table 5.4. UnusedResources was tested in the applications Loop
- Habit Tracker and Writeily Pro. Having unused resources in the application can
increase build time, APK size, and complexity of project maintenance. Thus, it is still
an anti-pattern to be considered, although it does not affect energy consumption.
UselessParent was tested in the application Writeily Pro. Since the test is focusing
in common use case scenarios rather than a particular anti-pattern, it is possible
that UselessParent was not a relevant issue in this scenario. In other words, although
the optimization was not necessary in this particular case, it may be useful in other
applications and scenarios.

It is interesting to note that in a few cases, improvements were higher after fixing a
single anti-pattern than after fixing all of them (e.g., Talalarmo). The main reason
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for this lies in the fact that experiences are prone to random variations related with
the power meter and the mobile device. Thus, results may change from experiment
to experiment, and effect size measures are not very precise. Nevertheless, this does
not affect statistical significance, which shows that energy consumption reduces
after using these patterns.

The results for the blank application show that in some experiments a great part
of energy is consumed in the experimental setup. Analyzing Table 5.3, regarding
the application Acrylic Paint, the interaction script running with the original version
consumed on average 62.68J, whereas on the blank application consumed 52.93J on
average. This means that the interaction script consumed 84% of the total energy
consumption, leaving only 16% for optimization. The least affected application by
the interaction script was Loop - Habit Tracker, consuming only 26% of the total
energy consumption.

Research Question 5.1

Do best practices for performance improvement also improve energy efficiency?

Our results show that there are performance optimizations that also have an impact
on energy consumption. Concretely, energy efficiency was improved after fixing
ViewHolder (4.5%), DrawAllocation (1.5%), WakeLock (1.5%), ObsoleteLayoutParam
(0.7%), and Recycle (0.7%). Developers should consider performance anti-patterns
when developing energy-efficient applications. This does not conform with previous
work [Sahin et al., 2016], which found that mainly because we have studied Android
specific optimizations. However, UnusedResources and UselessParent did not provide
any significant change in energy consumption, while Overdraw was found to consume
more energy (2.2%). Nevertheless, the impact of these patterns depends on the case
in which it is being applied, as it was shown with the Overdraw pattern. Different
applications and use cases might have better or worse results. Further research need
to be made to identify optimal or worst-case scenarios for these patterns.

Optimizations analyzed in this work do not affect the feature set of the application.
This means that they can be applied without having to deal with tradeoffs between
user experience and energy consumption. Furthermore, the instrumentation used
for the applications in this study did not require previous knowledge about the
project.

Research Question 5.2

Do these best practices actually have an impact on real, mature Android applica-
tions?

Six open source Android applications were included in this study. They are available
on F-Droid and, with the exception of Acrylic Paint, they can also be downloaded
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from Google Play Store. From these six, we were able to improve energy efficiency
in three applications. We observed improvements in Writeily Pro (4.5%), Talalarmo
(1.4%), and GnuCash (0.8%). This evidence suggests that any application with
patterns ViewHolder, DrawAllocation, WakeLock, ObsoleteLayoutParam, and Recycle
can have improvements in energy efficiency. More applications should however be
evaluated to corroborate with this intuition. As said in the Introduction, the test
cases used in the study are available online to foster reproducibility.

5.5 Threats to the Validity
Internal Validity The validation of the code changes that were applied in the An-
droid apps in this study is limited to our perception of the application’s features and
to the impact we expect from our code changes.

Results obtained from energy measurements can be affected by several factors that
are not easily controlled. Different devices and different versions of Android may
respond in a different way to these optimizations. Background tasks performed by
other applications affect energy consumption and are hard to control. Although the
performed outlier removal intends to discard these cases, some of them may still
have impacted some experiments.

In addition, we did not measure energy consumption of the whole device. Other
components such as GPS and accelerometer are known to have a significant impact
on energy consumption. The same happens with network operations and screen
usage. However, the later is expected to have the same energy consumption in all
cases. The automatic interaction with the UI , used in our experiments, may also
create overhead on the energy spent. This might affect results in terms of effect size
but we do not expect it to affect statistic significance.

External factors, such as temperature can also affect experiment results. If a CPU
has a higher temperature, it will consume more energy. However, if a CPU has to do
more processing, it will increase its temperature, which means that temperature can
also be an effect and not the cause. We have repeated 30 times the experiment for
each fixed version in order to have a fairer comparison, although this can still be a
threat. In addition, the experiments were alternatively executed with other versions
of a given app to ensure similar external factors for all versions.

External Validity Patterns were studied in a small set of applications (six). Since
the impact of these patterns heavily depends upon the case in which it is being
applied, further experiments should be conducted to understand overall effects.
Nevertheless, this study is an initial exploration of the impact of anti-patterns in
energy consumption.
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5.6 Related Work
Previous work showed that there is a large set of code smells that are appearing in
Android applications [Mannan et al., 2016; Hecht et al., 2015]. The analysis was
performed by checking the application’s source code, bytecode, and metadata but no
refactor was performed, and the impact on energy consumption was not studied.

Energy efficiency might be improved by offloading heavy tasks to the cloud [Kwon
and Tilevich, 2015; Qian and Andresen, 2015; D. Li and Halfond, 2015]. Network
components often lead to high energy consumption but depending on the complexity
of the task, there is a tradeoff between CPU and network operations. Making such
optimization would require structural changes in applications. In this chapter, we do
not follow the same principles and network operations were not studied.

Previous work identified common energy-greedy sequences of Android API calls
in 55 mobile applications [Linares-Vásquez et al., 2014]. Most energy-greedy API
calls were found to be related to UI manipulation and database tasks. We take
another step further by identifying alternative sequences that might lead to less
energy consumption.

Other approaches have used visualization tools to help developers spot high energy-
consuming I/O events, guiding developer to fix those events to reduce energy
consumption [Pathak et al., 2011b]. Debugging energy-related defects has also been
done by relating user reported defects with common energy-inefficient API calls
patterns using log files [Banerjee et al., 2016]. Internet, Camera, Database, and UI
operations were considered the most energy-intensive components in 405 real-world
mobile applications [D. Li et al., 2014a]. Our approach lies on finding common
inefficient patterns and providing standard optimizations. Ideally this can help
developing energy-efficient applications before having to profile energy bundles.

Some works suggest changing the application’s feature set (e.g., reducing third-party
advertisements, different UI colors in Organic Light-Emitting Diode (OLED) dis-
plays [Chen et al., 2013], etc.) as a solution to optimize energy consumption [Pathak
et al., 2011b; Pathak et al., 2012a; D. Li et al., 2015; Linares-Vásquez et al., 2015].
Such optimizations have to be considered when designing an energy-efficient ap-
plication. Nevertheless, our work intends to preserve original functionality of
applications.

Energy efficiency has been improved at UI level by removing unnecessary display
updates [Kim et al., 2015]. This approach is slightly different from ours since it
requires modifications at the operative system level.

The idea of having energy code smells, plus refactoring fixes, for mobile applica-
tions has been studied before. Directed graphs were used to describe and analyze
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applications at the source code level, and a graph repository query language was
proposed to detect code smells [Gottschalk et al., 2012]. However, the effect of
these code smells on energy consumption was not evaluated. Our work presents
results of the optimization of mobile application along with statistical significance
tests and effect sizes. Previous work reported that, depending on the application,
code smells could have opposite impacts on energy consumption [Sahin et al., 2014].
However, as opposed to the work presented in this chapter, the study did not include
mobile applications. Other work has used a similar approach to measure the impact
of performance tips in Android applications [Sahin et al., 2016]. However, these tips
focus on internal aspects of the way Java is assembled in Android, which is expected
to have impact in heavy processing tasks rather than in normal android applications.
Our work takes it to another level and focuses on the way applications consume the
Android framework’s APIs.

Previous works have studied the influence of the pattern Internal Getter/Setter [Sahin
et al., 2016; D. Li and Halfond, 2014; Mundody and Sudarshan, 2014; Tonini et al.,
2013; Hecht et al., 2016; Carette et al., 2017] but it has been reported by Google as
not having any effect in performance since Android 2.345. Thus, we considered this
optimization obsolete and left it out of our study.

Making an efficient use of the resources of a mobile device (e.g., GPS, Camera, Wifi)
is a good way of saving energy. The use of these resources can be optimized by
creating an Event-flow Graph (EFG) that represents UI states of a given Android
app [Banerjee and Roychoudhury, 2016]. Defects are detected and refactored
by matching expressions with a deterministic finite automaton based on the EFG.
Although our work has similar goals, we have focused instead on code smells that
directly affect CPU usage, including UI optimizations. In addition, significance tests
were performed to consolidate the relevance of our results.

5.7 Summary
In this chapter, motivated by the existing efforts to build efficient mobile applications,
we have measured the impact of eight performance-based optimizations on energy
efficiency. In sum, in this chapter:

• We design a methodology to measure the impact of eight performance-based
anti-patterns on the energy consumption of five real-world Android applica-
tions (cf. Section 5.2, page 79).

• We show that the anti-patterns ViewHolder, DrawAllocation, WakeLock, Obso-
leteLayoutParam, and Recycle have a positive impact on the energy efficiency

4Clarification on the Android compiler’s optimizations from a Google engineer: http://
stackoverflow.com/q/4912695/ (Visited on July 17, 2019).

5Description of the Internal Getter/Setter optimization and why it is disabled: http://tools.android.
com/tips/lint-checks (Visited on July 17, 2019).
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of Android apps (answering RQ 5.1, page 78). Mobile developers should take
take these code smells into account when building their mobile apps.

• We show that there is no evidence of the impact of the anti-patterns Overdraw,
UnusedResources, and UselessParent in the energy consumption of mobile apps.

• We validate the impact of anti-patterns on the energy efficiency of five real-
world mobile applications, using typical use case scenarios (answering RQ 5.2,
page 78). With this approach we prevented exploiting the usage of anti-
patterns in our experimentation without yielding any practical impact in a real
context.

• We motivate the importance of having tools to automatically refactor mobile
applications to avoid these code smells. Such tools would improve energy
efficiency of already deployed mobile applications (as we will show later in
Chapter 6).
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Abstract

Although energy efficiency is a valuable requirement, developers often lack knowl-
edge to deliver energy-efficient mobile applications. In this chapter, we study how
automatic refactoring can aid developers ship energy-efficient apps. We leverage
an automatic refactoring tool, Leafactor, with five energy code smells that tend
to go unnoticed in Android applications. To evaluate Leafactor, we conduct an
empirical study comprehending 140 free and open source apps. Results evince the
importance of having tools to help developpers adopt energy best practices mobile
applications. Code smells in 45 apps were detected and fixed, from which 40%
have been successfully merged into the official repositories.

6.1 Introduction
In the past decade, the advent of mobile devices has brought new challenges and
paradigms to the existing computing models. One of the major challenges is the
fact that mobile phones have limited battery life. As a consequence, users need
to frequently charge their devices to prevent their inoperability. Hence, energy
efficiency is an important non-functional requirement in mobile software, with a
valuable impact on usability.
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A study in 2013 reported that 18% of apps have feedback from users that is related
to energy consumption [Wilke et al., 2013b]. Other studies have nonetheless found
that most developers lack the knowledge about best practices for energy efficiency
in mobile applications (apps) [Pang et al., 2016; Sahin et al., 2014]. Hence, it is
important to provide developers with actionable documentation and toolsets that
aim to help deliver energy-efficient apps.

In Chapter 5, we have identified code optimizations with significant impact on the
energy consumption of Android apps. Five code optimizations were found to yield
a significant improvement in the energy consumption of mobile apps: View Holder,
Draw Allocation, Wake Lock, Recycle, and Obsolete Layout Parameter. However, certify
that code is complying with these optimizations is time-consuming and prone to
errors. Thus, in this chapter we study how automatic refactor can help develop code
that follows energy best practices.

There are state-of-the-art tools that provide automatic refactoring for Android and
Java apps (for instance, AutoRefactor1, Walkmod2, Facebook pfff3, Kadabra4). Al-
though these tools help developers create better code, they do not feature energy-
related patterns for Android. Thus, we leverage five energy optimizations in an
automatic refactoring tool, Leafactor, which is publicly available with an open source
license. In addition, the toolset has the potential to serve as an educative tool to
aid developers in understanding which practices can be used to improve energy
efficiency.

In this chapter, we answer the following research questions:

Research Question 6.1

What is the the prevalence of energy code smells in FOSS Android applications?

We analyze the prevalence of five energy code smells in a dataset of 140 FOSS
Android apps. We have found that a considerable part (32%) is released with energy
inefficiencies.

Research Question 6.2

Is automatic refactoring a feasible approach to improve the energy efficiency of
mobile applications?

We study how an automatic refactoring tool would help ship more energy efficient
mobile software. While applying Leafactor to our dataset of Android apps we
have fixed 222 anti-patterns in 45 apps. We have used the results of our tool to

1AutoRefactor: http://autorefactor.org (July 17, 2019).
2Walkmod: http://walkmod.com (July 17, 2019).
3Facebook pfff : https://github.com/facebookarchive/pfff (July 17, 2019).
4Kadabra: http://specs.fe.up.pt/tools/kadabra/ (July 17, 2019).
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contribute to projects of Android apps, validating the value of adopting an automatic
refactoring tool in the development stack of mobile apps. In the end, we have
successfully merged our changes into the official branch of 18 projects. Results show
that automatic refactoring tools can be very helpful to improve the energy footprint
of apps.

In sum, our work makes the following contributions:

• An automated refactoring tool, Leafactor, to improve energy efficiency of
Android applications.

• An empirical study of the prevalence of five energy-related code smells in FOSS
Android applications.

• The submission of 59 PRs to the official code bases of 45 FOSS Android appli-
cations, comprehending 222 energy efficiency refactorings.

The remainder of this chapter is organized as follows: Section 6.2 details energy
refactorings and corresponding impact on energy consumption; in Section 6.3, we
present the automatic refactor toolset that was implemented; Section 6.4 describes
the experimental methodology used to validate our tool, followed by Sections 6.5
and 6.6 with results and discussion; in Section 6.7 we present the related work in
this field; and finally Section 6.8 summarizes our findings and contributions.

6.2 Energy Refactorings
We use static code analysis and automatic refactoring to apply Android-specific
optimizations of energy efficiency. In this section, we revisit the anti-patterns studied
in Chapter 5 that yielded a significant improvement in the energy efficiency of
Android apps. In addition to the expected energy efficiency improvement (¨) and
the lint priority, we provide code examples with step-by-step instructions that show
how code refactoring can be applied to fix these code smells.

All refactorings are in Java with the exception ObsoleteLayoutParam which is in XML
— the markup language used in Android to define the UI.

6.2.1 ViewHolder: View Holder Candidates

Energy efficiency improvement (¨): 4.5%. Lint priority: |||||||||| 5/10.

This pattern is used to make a smoother scroll in List Views, with no lags. When
in a List View, the system has to draw each item separately. To make this process
more efficient, data from the previous drawn item should be reused. This technique
decreases the number of calls to the method findViewById(), which is known for
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being a very inefficient method [Linares-Vásquez et al., 2014]. The following code
snippet provides an example of how to apply ViewHolder.

// ...
@Override
public View getView(final int position , View convertView , ViewGroup parent) {

convertView = LayoutInflater.from(getContext ()).inflate( ¶

R.layout.subforsublist , parent , false
);
final TextView t = (( TextView) convertView.findViewById(R.id.name)); ·

// ...

Optimized version:

// ...
private static class ViewHolderItem { ¸

private TextView t;
}

@Override
public View getView(final int position , View convertView , ViewGroup parent) {

ViewHolderItem viewHolderItem;
if (convertView == null) { ¹

convertView = LayoutInflater.from(getContext ()).inflate(
R.layout.subforsublist , parent , false

);
viewHolderItem = new ViewHolderItem ();
viewHolderItem.t = (( TextView) convertView.findViewById(R.id.name));
convertView.setTag(viewHolderItem);

} else {
viewHolderItem = (ViewHolderItem) convertView.getTag ();

}
final TextView t = viewHolderItem.t; º

// ...

¶ In every iteration of the method getView, a new LayoutInflater object is instan-
tiated, overwriting the method’s parameter convertView.

· Each item in the list has a view to display text — a TextView object. This view is
being fetched in every iteration, using the method findViewById().

¸ A new class is created to cache common data between list items. It will be used to
store the TextView object and prevent it from being fetched in every iteration.

¹ This block will run only in the first item of the list. Subsequent iterations will
receive the convertView from parameters.

º It is no longer needed to call findViewById() to retrieve the TextView object.

One might argue that the version of the code after refactoring is considerably less
intuitive. This is, in fact true, which might be a reason for developers to ignore
optimizations. However, regardless of whether this optimization should be taken
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care of by the system, it is the recommended approach, as stated in the Android
official documentation5.

6.2.2 DrawAllocation: Allocations within drawing code

¨ 1.5%. Lint priority: |||||||||| 9/10.

Draw operations are very sensitive to performance. It is a bad practice allocating
objects during such operations since it can create noticeable lags. The recommended
fix is allocating objects upfront and reusing them for each drawing operation, as
shown in the following example:

public class DrawAllocationSampleTwo extends Button {
public DrawAllocationSampleTwo(Context context) {

super(context);
}
@Override
protected void onDraw(android.graphics.Canvas canvas) {

super.onDraw(canvas);
Integer i = new Integer (5);¶

// ...
return;

}
}

Optimized version:

public class DrawAllocationSampleTwo extends Button {
public DrawAllocationSampleTwo(Context context) {

super(context);
}
Integer i = new Integer (5);·

@Override
protected void onDraw(android.graphics.Canvas canvas) {

super.onDraw(canvas);
// ...
return;

}
}

¶ A new instance of Integer is created in every execution of onDraw.

· The allocation of the instance of Integer is removed from the drawing operation
and is now executed only once during the app execution.

6.2.3 WakeLock: Incorrect wakelock usage

¨ 1.5%. Lint priority: |||||||||| 9/10.

5ViewHolder explanation in the official documentation: https://developer.android.com/guide/
topics/ui/layout/recyclerview visited in July 17, 2019.
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Wakelocks are mechanisms to control the power state of a mobile device. This can be
used to prevent the screen or the CPU from entering a sleep state. If an application
fails to release a wakelock or uses it without being strictly necessary, it can drain the
battery of the device.

The following example shows an Activity that uses a wake lock:

extends Activity { private WakeLock wl;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

PowerManager pm = (PowerManager) this.getSystemService(
Context.POWER_SERVICE

);
wl = pm.newWakeLock(

PowerManager.SCREEN_DIM_WAKE_LOCK | PowerManager.ON_AFTER_RELEASE ,
"WakeLockSample"

);
wl.acquire ();¶

}
}

¶ Using the method acquire() the app asks the device to stay on. Until further
instruction, the device will be deprived of sleep.

Since no instruction is stopping this behavior, the device will not be able to enter a
sleep mode. Although in exceptional cases this might be intentional, it should be
fixed to prevent battery drain.

The recommended fix is to override the method onPause() in the activity:

//...
@Override protected void onPause (){

super.onPause ();
if (wl != null && !wl.isHeld ()) {

wl.release ();
}

}
//...

With this solution, the lock is released before the app switches to background.

6.2.4 Recycle: Missing recycle() calls
¨ 0.7%. Lint priority: |||||||||| 7/10.

There are collections such as TypedArray that are implemented using singleton
resources. Hence, they should be released so that calls to different TypedArray
objects can efficiently use these same resources. The same applies to other classes
(e.g., database cursors, motion events, etc.).
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The following snippet shows an object of TypedArray that is not being recycled after
use:

public void wrong1(AttributeSet attrs , int defStyle) {
final TypedArray a = getContext ().obtainStyledAttributes(

attrs , new int[] { 0 }, defStyle , 0
);
String example = a.getString (0);

}

Solution:

public void wrong1(AttributeSet attrs , int defStyle) {
final TypedArray a = getContext ().obtainStyledAttributes(

attrs , new int[] { 0 }, defStyle , 0
);
String example = a.getString (0);
if (a != null) {

a.recycle ();¶

}
}

¶ Calling the method recycle() when the object is no longer needed, fixes the
issue. The call is encapsulated in a conditional block for safety reasons.

6.2.5 ObsoleteLayoutParam (OLP): Obsolete layout params

¨ 0.7%. Lint priority: |||||||||| 6/10.

During development, UI views might be refactored several times. In this process,
some parameters might be left unchanged even when they have no effect in the view.
This causes useless attribute processing at runtime. As an example, consider the
following code snippet (XML):

<LinearLayout >
<TextView android:id="@+id/name"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"> ¶

</TextView >
</LinearLayout >

¶ The property android:layout_alignParentBottom is used for views inside a
RelativeLayout to align the bottom edge of a view (i.e., the TextView, in this
example) with the bottom edge of the RelativeLayout. On contrary, LinearLayout
is not compatible with this property, having no effect in this example. It is safe to
remove the property from the specification.
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Figure 6.1: Architecture diagram of the automatic refactoring toolset.

6.3 Automatic Refactoring Tool

In the scope of our study, we developed a tool to statically analyze and transform
code, implementing Android-specific energy efficiency refactorings — Leafactor. The
toolset receives a single file, a package, or a whole Android project as input and
looks for eligible files, i.e., Java or XML source files. It automatically analyzes those
files and generates a new compilable and optimized version.

The architecture of Leafactor is depicted in Figure 6.1. There are two separate
engines: one to handle Java files and another to handle XML files. The refactoring
engine for Java is implemented as part of the open-source project AutoRefactor — an
Eclipse plugin to automatically refactor Java code bases.

6.3.1 AutoRefactor

AutoRefactor is an Eclipse plugin that delivers automatic refactoring in Java code-
bases. It is created as a complement to existing static analyzers such as SonarQube,
FindBugs, CheckStyle and PMD. Although they provide insightful warnings to de-
velopers, they do little in helping developers fixing all the issues lying in legacy
codebases.

It provides a comprehensive set of 103 common code cleanups to help deliver
“smaller, more maintainable and more expressive code bases”6. The list goes from
simple rules, such as enforcing the use of the method isEmpty() to check whether
a collection is empty, instead of checking its size (rule IsEmptyRatherThanSize), to
more complex ones, such as SetRatherThenList choosing a more adequate collection
type for specific use cases. In addition, AutoRefactor also supports cleanups for code
comments, such as removing auto-generated or empty Javadocs from the codebase
(rule named by AutoRefactor as Comments).

6As described in the AutoRefactor’s official website: http://autorefactor.org (Visited on July 17,
2019).
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Figure 6.2: Developers can apply refactorings by selecting the “Automatic refactoring” op-
tion or by using the key combination + + Y .

Eclipse Marketplace7 — reported 4459 successful installs of AutoRefactor.

A common use case of AutoRefactor is presented in the screenshot of Figure 6.2.
Developers can apply refactorings in single files, packages, or entire projects.

Under the hood, AutoRefactor integrates a handy and concise API to manipulate Java
Abstract Syntax Trees (ASTs). We contributed to the project by implementing the
Java refactorings mentioned in Section 6.2.

6.3.2 XML refactorings

Since XML refactorings are not supported by AutoRefactor, a separate refactoring en-
gine was developed and integrated into Leafactor. The engine features a Command
Line Interface (CLI), that can be integrated with continuous integration environ-
ments. Optionally, the tool can be set to simply flag warnings, without performing
any refactoring transformation. As detailed in the previous section, only a single
XML refactoring is offered — ObsoleteLayoutParam.

6.4 Empirical evaluation
We designed an experiment with the following goals:

7Eclipse Marketplace — an interface for browsing and installing plugins for the Java Integrated
Development Environment (IDE) Eclipse https://marketplace.eclipse.org (Visited on July
17, 2019).
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Figure 6.3: Experiment’s procedure for a single app.

• Study the benefits of using an automatic refactoring tool within the Android
development community.

• Study how FOSS Android apps are adopting energy efficiency optimizations.

• Improve energy efficiency of FOSS Android apps.

We adopted the procedure explained in Figure 6.3. Starting with step 1, we collect
data from the F-droid app store8 — a catalog for FOSS applications for the Android
platform. For each mobile application, we collect the git repository location which is
used in step 2 to fork the repository and prepare it for a potential contribution to
the project’s official code repository. Following, in step 3 we select one refactoring to
be applied and consequently initiate a process that is repeated for all refactorings
(steps 4–8): the project is analyzed and, if any transformation is applied, a new PR
is submitted to be considered by the project’s integrator. Since we wanted to engage
the community and get feedback about the refactorings, we manually created each
PR with a personalized message, including a brief explanation of committed code
changes.

We analyze 140 free and open-source Android apps collected from F-droid9. Apps
are selected by date of publish (i.e., it was given priority to newly released apps),
considering exclusively Java projects (e.g., Kotlin projects are filtered out) with a
Github repository. We select only one git service for the sake of simplicity. Apps in
the dataset are spread in 17 different categories, as depicted in Figure 6.4.

Table 6.1 presents descriptive statistics for the source code and repository of the mo-
bile applications in the dataset: number of lines of code LOC, McCabe’s Cyclomatic
Complexity (CC), mean Weighted Methods per Class10 (WMC), Lack of Cohesion
of Methods11 (LCOM) [Etzkorn et al., 1998], number of Java files, number of XML
files, number of Github Forks, Github Stars, and contributors. These metrics were
collected using the static analysis tool Designite12 and the GitHub API v313.

8F-droid repository is available at https://f-droid.org (Visited on July 17, 2019).
9Data was collected on Nov 27, 2016, and it is available here: https://doi.org/10.6084/m9.

figshare.7637402.
10Weighted Methods per Class (WMC) is the sum of the complexity of methods in a class.
11Lack of Cohesion of Methods (LCOM) is a software code metric that measures the correlation

between class members and methods. Values fall between 0, indicating perfect cohesion, and 1,
indicating a complete lack of cohesion.

12Designite’s website: http://www.designite-tools.com visited in July 17, 2019.
13GitHub API v3’s website:https://developer.github.com/v3/ visited in July 17, 2019.
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Figure 6.4: Number of apps per category in the dataset.

Table 6.1: Descriptive statistics of projects in the dataset.

LOC CC WMC LCOM Java Files XML Files Github Forks Github Stars Contributors
Mean 20350 3532 17.41 0.29 103 102 65 179 15
Min 13 2 1.00 0.00 0 4 0 0 1
25% 1444 271 11.14 0.23 13 23 3.75 7.75 2
Median 4641 946 15.20 0.27 38 48 9 24 3
75% 14795 3007 21.50 0.34 106 97 39 111 10
Max 388853 77889 82.82 0.67 1678 2109 1483 4488 323
Total 2869394 – – – 15308 15103 9547 26484 2162

The dataset comprehends very diverse mobile applications. It goes from very simples
apps, such as Storage-USB14, with 13 LOC and complexity CC of 2, to large apps,
such as Slide15 with almost 400k LOC and complexity CC of 14631, or Osmand16,
with over 300k LOC and complexity CC of 77889. The largest project in terms of Java
files is TinyTravelTracker (1878), while NewsBlue is the largest in terms of XML files
(2109). Most apps in the dataset have reasonable cohesion, with LCOM below 0.34
for 75% of the apps; apps with low/moderate cohesion were also analyzed, having
LCOM values up to 0.67.

In total, we analyzed 2.8M lines of Java code (LOC) in 6.79GB of Android projects in
4.5 hours — 15103 XML files, and 15308 Java files.

6.5 Results
Our experiment yielded a total of 222 refactorings, which were submitted to the
original repositories as PRs. Multiple refactorings of the same type were grouped

14Storage-USB basically launches Storage Settings directly from the apps drawer. Github repository:
https://github.com/enricocid/Storage-USB visited in July 17, 2019.

15Slide is a browser for the social news forum Reddit. Github Repository: https://github.com/
ccrama/Slide visited in July 17, 2019.

16Osmand is a navigation app. Github repository: https://github.com/osmandapp/Osmand visited
in July 17, 2019.
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Figure 6.5: An example of a PR containing code changes authored using Leafactor that was
submitted to the Github project of the Android app Slide. The PR was accepted
and successfully merged into the app.

Table 6.2: Summary of refactoring results.

Refactoring ViewHolder DrawAllocation Wakelock Recycle OLP∗ Total
Total Refactorings 7 0 1 58 156 222
Total Projects 5 0 1 23 30 45
Percentage of Projects 4% 0% 1% 16% 21% 32%
Incidence per Project 1.4× - 1.0× 2.5× 5.2× 4.8×
∗OLP — ObsoleteLayoutParam

in a single PR to avoid creating too many PRs for a single app. It resulted in 59
PRs spread across 45 apps. This is a demanding process since each project has
different contributing guidelines. Nevertheless, by the time of writing, 18 apps had
successfully merged our contributions for deployment.

An example of the PR submitted to the projects is illustrated in Figure 6.5. Leafactor
performed the refactoring ViewHolder in the app Slide17, and developers successfully
merged our PR. The full thread can be found in the Github project ccrama/Slide
with reference #234618.

17Slide’s website: http://trikita.co/slide/ (Visited on July 17, 2019).
18PR of the ViewHolder of app Slide: https://github.com/ccrama/Slide/pull/2346 (Visited on

July 17, 2019).
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Figure 6.6: Number of apps affected per refactoring.

Table 6.2 presents the results for each refactoring. It shows the total number of
applied refactorings, the total number of projects that were affected, the percentage
of affected projects, and the average number of refactorings per affected project. In
addition, the table presents the combined results for the occurrence of any type of
refactoring (Total).

ObsoleteLayoutParam was the most frequent pattern. It was applied 156 times in a
total of 30 projects out of the 140 in our dataset (21%). In average, each affected
project had 5 occurrences of this pattern. Recycle comes next, occurring in 23 projects
(16%) with 58 refactorings. DrawAllocation and Wakelock only showed marginal
impact.

In addition, Figure 6.6 presents a plot bar summarizing the number of projects
affected amongst all the studied refactorings.

The mobile application with a bigger incidence of refactorings was the Android
application for the cloud platform NextCloud19. Leafactor has refactored two occur-
rences of Recycle, two of ViewHolder, and six of ObsoleteLayoutParam. In terms of
the total number of refactorings, QR Scanner20 was the app with a higher number of
occurrences, with 35 occurrences of ObsoleteLayoutParam.

For reproducibility and clarity of results, all the data collected in this study is publicly
available21. In addition, all the PRs are public and can be accessed through the
official repositories of the apps.

19NextCloud’s website: https://nextcloud.com (Visited on July 17, 2019).
20QR Scanner’s entry on Google Play:

https://play.google.com/store/apps/details?id=com.secuso.
privacyFriendlyCodeScanner (Visited on July 17, 2019).

21Spreadsheet with all experimental results: https://doi.org/10.6084/m9.figshare.7637402.
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6.6 Discussion

In this section, we answer the proposed research questions, i.e., RQs 6.1 and 6.2,
and discuss potential implications of our results.

Research Question 6.1

What is the the prevalence of energy code smells in FOSS Android applications?

We have found energy efficiencies in a considerable number of Android apps (45),
representing 32% of the apps in this study.

The code smell Obsolete Layout Param was found in 21% of the projects. This relates
to the fact that app views are often created in an iterative process with several rounds
of trial and error. Since some parameters have no effect under certain contexts,
useless UI specification statements can go unnoticed by developers.

Recycle is frequent too, being observed in 16% of projects. This pattern is found
in Android API objects that can be found in most projects (e.g., database cursors).
Although a clean fix is to use the Java try-with-resources statement22, it requires
version 19 or earlier of Android SDK (introduced with Android 4.4 Kitkat). However,
developers resort to a more verbose approach for backward compatibility which
requires explicitly closing resources, hence prone to mistakes.

Our DrawAllocation checker did not yield any result. It was expected that developers
were already aware of DrawAllocation. Still, we were able to manually spot alloca-
tions that were happening inside a drawing routine. Nevertheless, those allocations
are using dynamic values to initialize the object. In our implementation, we scope
only allocations that will not change between iterations. Covering those missed
cases would require updating the allocated object in every iteration. While spotting
these cases is relatively easy, refactoring would require better knowledge of the class
that is being instantiated. Similarly, WakeLocks are very complex mechanisms and
fixing all misuses still requires further work.

In the case of ViewHolder, although it only impacted 4% of the projects, we believe it
has to do with the fact that 1) some developers already know this pattern due to
its performance impact, and 2) many projects do not implement dynamic list views.
ViewHolder is the most complex pattern we have in terms of LOC — a simple case
can require changes in roughly 35 LOC. Although changes are easily understandable
by developers, writing code that complies with ViewHolder pattern is not intuitive.

22Documentation about the Java try-with-resources statement: https://docs.oracle.com/javase/
tutorial/essential/exceptions/tryResourceClose.html (Visited on July 17, 2019).
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Research Question 6.2

Is automatic refactoring a feasible approach to improve the energy efficiency of
mobile applications?

We were able to improve energy efficiency in the official release of 18 Android apps.
Results show that an automatic refactoring tool can help developers ship more energy-
efficient apps. Since the identified code smells are only visible after long periods of
app activity they can easily go unnoticed. From the feedback developers provided
in the PRs, we have noticed that developers are open to recommendations from an
automated tool. Only in a few exceptions, developers expressed being unhappy with
our contributions. Most developers were curious about the refactorings and they
recognized being unaware of their impact on energy efficiency. This is consistent
with previous work [Pang et al., 2016; Sahin et al., 2014].

In a few cases, code smells were found in code that does not affect the energy con-
sumption of the app itself (e.g., test code). In those cases, our PRs were not merged.
Nevertheless, we recommend consistently complying with these optimizations in
all types of code since new developers often use tests to help understand how to
contribute to a project.

Gainings on energy efficiency may vary depending on the application and the use
cases in which they occur. Measuring the effective impact on energy consumption is
not trivial as it requires a complex setup. In Chapter 5, we found these refactorings
to improve energy efficiency up to 5% in real use case scenarios. Nonetheless,
these refactorings are recommended by the official Android documentation23 as best
practices for performance.

A visible side effect of the refactorings featured by Leafactor is the questionable
maintainability of the code introduced. Although the refactorings are implemented
based on the official Android documentation, the resulting code is considerably
longer and less intuitive for patterns such as ViewHolder and Recycle. This is a
threat to the adoption of energy-efficient practices in Android applications. Mobile
frameworks should feature coding mechanisms aiming to improve energy efficiency
without hindering code maintainability.

6.7 Related Work
Energy efficiency of mobile apps is being addressed with many different approaches.
Some works opt by simplifying the process of measuring the energy consumption
of mobile apps [Zhang et al., 2010; Pathak et al., 2012a; Pathak et al., 2011b;

23ViewHolder is documented here: https://developer.android.com/training/
improving-layouts/smooth-scrolling (Visited on July 17, 2019).
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Hao et al., 2013; Di Nucci et al., 2017a; Couto et al., 2014]. Alternatively, other
works study the energy footprint of software design choices and code patterns that
will prevent developers from creating code with poor energy efficiency [D. Li et al.,
2014a; D. Li and Halfond, 2014; D. Li and Halfond, 2015; Linares-Vásquez et al.,
2017a; Malavolta et al., 2017; R. Pereira et al., 2017a].

The frequency of anti-patterns in Android apps was studied in previous work [Hecht
et al., 2015]. Patterns were automatically detected in 15 apps using the tool Paprika
which was developed to perform static analysis in the bytecode of apps. Although
Paprika provides valuable feedback on how to fix their code, developers need to
manually apply the refactorings. Our study differs by focusing on energy-related
anti-patterns and by applying automatic refactoring to resolve potential issues.

Previous work has also studied the importance of providing a catalog of bad smells
that negatively influence the quality of Android applications [Reimann et al., 2014;
Reimann and Aβmann, 2013]. Although the authors motivate the importance of
using automatic refactoring, their approach lacks an extensive implementation of
their catalog. Related work has implemented 15 code-smells from this catalog
proposed Reimann et al. (2013) in an automatic refactoring tool, aDoctor [Palomba
et al., 2017]. In our work, we use this approach to improve the energy efficiency of
Android applications.

Another work has focused exclusively on patterns to improve energy efficiency of
iOS and Android mobile applications [Cruz and Abreu, 2019a]. However, no efforts
were made regarding the automatic refactoring of the cataloged energy patterns. In
our work, we implement automatic refactoring for five energy patterns. In addition,
we validate our refactorings by applying Leafactor in a large dataset of real Android
apps. Moreover, we assess how automatic refactoring tools for energy can positively
impact the Android FOSS community.

Other works have detected energy-related code smells by analyzing source code as
TGraphs [Gottschalk et al., 2012; Ebert et al., 2008]. Eight different code smell
detectors were implemented and validated with a navigation app. Fixing the code
with automatic refactoring was discussed but not implemented. In addition, although
studied code smells are likely to have an impact on energy consumption, no evidence
was presented.

Previous work has used the EFG of the app to optimize resource usage (e.g., GPS,
Bluetooth) [Banerjee and Roychoudhury, 2016]. Results show significant gains in
energy efficiency. Nevertheless, although this process provides details on how to fix
the code, it is not fully automated yet.

Other works have studied and applied automatic refactorings in Android applica-
tions [Sahin et al., 2014; Sahin et al., 2016]. However, these refactorings were not
mobile specific.
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Besides refactoring source code, other works have focused on studying the impact of
UI design decisions on energy consumption [Linares-Vásquez et al., 2017a]. Agolli,
T., et al. have proposed a methodology that suggests changes in the UI colors of apps.
The new UI colors, despite being different, are almost imperceptible by users and
lead to savings in the energy consumption of mobile phones’ displays [Agolli et al.,
2017]. In our work, we strictly focus on changes that do not change the appearance
of the app.

6.8 Summary
In this chapter, we use automatic refactoring to improve the energy efficiency of
Android applications. Concretely, in this chapter:

• We present the architecture of the automatic refactoring tool Leafactor for Java
codebases and XML specifications.

• We provide examples of code changes to fix the energy code smells studied in
Chapter 5 and implement them as refactoring rules in the Leafactor.

• We use Leafactor on 140 FOSS Android apps to study how automatic refactoring
can help developers ship energy-efficient applications.

– We found that a considerable percentage of the Android apps in the
dataset (32%) is released with energy code smells (answering RQ 6.1,
page 100).

– As a result, we fixed 222 energy-related anti-patterns and improved the
energy footprint of 45 Android applications (answering RQ 6.2, page 100).

• We identified maintainability as a potential issue when improving energy
efficiency.
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Abstract

Software engineers make use of design patterns for reasons that range from
performance to code comprehensibility. Several design patterns capturing the body
of knowledge of best practices have been proposed in the past, namely creational,
structural and behavioral patterns. However, with the advent of mobile devices, it
becomes a necessity a catalog of design patterns for energy efficiency. In this work,
we inspect commits, issues and pull requests of 1027 Android and 756 iOS apps to
identify common practices when improving energy efficiency. This analysis yielded
a catalog, available online, with 22 design patterns related to improving the energy
efficiency of mobile apps. We argue that this catalog might be of relevance to
other domains such as Cyber-Physical Systems and Internet of Things. As a side
contribution, an analysis of the differences between Android and iOS devices shows
that the Android community is more energy-aware.

7.1 Introduction
Design patterns have been formalized to provide general, reusable solutions to recur-
rent problems in software design. According to their main purpose, design patterns
were originally categorized in creational, structural, and behavioral patterns [Vlis-
sides et al., 1995]. Further efforts have leveraged domain-specific catalogs of design
patterns to meet non-functional requirements such as security [Yskout et al., 2015].
Design patterns also play an important role in educating developers, since they tend
to learn by looking at code examples or using boilerplate code following well defined
solutions [Pham et al., 2015; Pham et al., 2013].

There is a number of practices from experienced developers that lie in the history of
mobile app projects [Negara et al., 2014; Palomba et al., 2018]. In this work, we
collect the set of patterns that developers adopt to improve the energy efficiency of
their apps. We analyze 1783 apps from Android (1027) and iOS (756) and compare
practices of developers towards energy efficiency amongst the two most popular
mobile platforms.
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In particular, we aim to answer the following questions:

Research Question 7.1

Which design patterns do mobile app developers adopt to improve energy effi-
ciency?

We describe a catalog of 22 patterns that mobile app developers resort to when
addressing energy efficiency. We document these patterns so that other developers
can learn more about energy best practices and reuse them in their projects.

Research Question 7.2

How different are mobile app practices addressing energy efficiency across differ-
ent platforms?

We found that Android developers have higher awareness towards energy efficiency
improvement than iOS developers. We show the prevalence of each energy pattern
in the two platforms and discuss potential causes.

In this chapter, we make the following contributions:

• We propose a catalog of energy patterns with a detailed description and
instructions for mobile app developers and designers. It is available on-
line: https://tqrg.github.io/energy-patterns, and we welcome contri-
butions from the community as pull request.

• We provide a dataset with 1563 commits, issues, and pull requests in which
mobile app development practitioners address the energy efficiency of their
apps. The dataset and collection tools are available online: https://github.
com/TQRG/energy-patterns.

• We compare energy efficiency awareness in mobile app development in differ-
ent platforms (viz. Android and iOS).

The remainder of this chapter is organized as follows. Related work is discussed in
Section 7.2. Section 7.3 outlines the methodology used to collect data and extract
energy patterns in our study, followed by Section 7.4 describing the collection of en-
ergy patterns. Section 7.5 summarizes the collected data and discusses implications
of the list of proposed patterns. Threats to the validity are discussed in Section 7.6.
Finally, we summarize the main contributions in Section 7.7.

7.2 Related Work
Improving energy efficiency of mobile apps has gained the attention of the research
community recently, which addressed the challenge in different ways: identifying
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energy bugs [Pathak et al., 2011a; Banerjee et al., 2014; Vekris et al., 2012],
profiling energy consumption [Wilke et al., 2013a; Y. Liu et al., 2013; Hao et al.,
2013; Behrouz et al., 2015; Pathak et al., 2011b; Zhang et al., 2010; S. Chowdhury
et al., 2018a; Di Nucci et al., 2017b; Hindle et al., 2014; Romansky et al., 2017], or
understanding best coding practices for energy efficiency [Sahin et al., 2016; Cruz
and Abreu, 2017; Cruz and Abreu, 2018b; Linares-Vásquez et al., 2014; Pathak et al.,
2012a].

In previous work, Moura et al., 2015 have mined 290 energy-saving software com-
mits, identifying 12 categories of source code modification to improve energy us-
age [Moura et al., 2015]: Frequency and voltage scaling, Use power efficient library/de-
vice, Disabling features or devices, Energy bug fix, Low power idling, Timing out, Avoid
polling, Pin management, Display and UI tuning, Avoid unnecessary work, Miscella-
neous, and Outlier. The programming languages used to implement the software
systems used in this study were diverse: programming C (158 projects), Java (25
projects), Bourne Shell (17 projects), Arduino Sketch (15 projects), and C++ (12
projects). They found that roughly 50% of energy-saving commits target lower levels
of the software stack (e.g., kernels and drivers), which is not a level of abstraction
commonly considered during the design of mobile apps. Our work extends this
approach to the ecosystem of mobile apps by compiling a set of coding practices that
can be used by practitioners across mobile apps on different platforms. Thus, our
dataset of apps also includes projects written in Swift, Objective-C, Java, Kotlin, and
any other language used for mobile app development in iOS or Android. In addition,
we detail these and other energy-saving categories with a context and guidelines to
help developers decide on the most appropriate pattern. Moreover, we compare the
prevalence of these patterns across different mobile platforms.

With a similar approach, Bao et al., 2016 have mined 468 power management
commits to find coding practices in Android apps [Bao et al., 2016]. Using a hybrid
card sort approach, six different power management practices were identified: Power
Adaptation, Power Consumption Improvement, Power Usage Monitoring, Optimizing
Wake Lock, Adding Wake Lock and Bug Fix & Code Refinement. The study shows that
power management activities are more prevalent in navigation apps. Conversely,
our work focuses on energy-saving commits, pull requests, and issues. Using the
same taxonomy, our work concentrates exclusively on coding practices for Power
Adaptation, and Power Consumption Improvement. Moreover, rather than analyzing
the prevalence of power management activities amongst different app categories, we
emphasize on providing actionable findings for mobile app practitioners. Finally, we
extend this work to the iOS mobile platform, which shares a big part of the mobile
app market.
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Previous work studied the views of mobile app developers on energy efficiency
improvement by mining StackOverflow1 posts [Pinto et al., 2014]. It was found that
developers make interesting questions about energy efficiency problems. However,
the answers provided on this topic are often flawed or vague. Our work analyses
mobile app projects to collect recurrent solutions adopted by developers.

There is work that studied the impact of performance optimizations on the energy
efficiency of mobile apps [Hecht et al., 2016; Cruz and Abreu, 2017; Linares-Vásquez
et al., 2014; Sahin et al., 2016]. However, only platform-specific optimizations were
addressed – e.g., in early versions of Android using get/set methods internally was
less energy-efficient than accessing fields directly. In our work, we focus on patterns
that can be applied regardless of the mobile platform being used.

Furthermore, related work studied the impact of high-level coding and design prac-
tices. E.g., the use of advertisement increases energy usage of mobile apps [Pathak
et al., 2012a], bundling small HyperText Transfer Protocol (HTTP) requests can be
used to enhance energy efficiency [D. Li and Halfond, 2014]. We assess how mobile
app developers are using these and other patterns to improve energy efficiency in
real mobile apps. Measuring the effective impact of these optimizations on energy
efficiency is out of the scope of our work.

Reimann et al. have published a catalog of quality smell patterns for Android
apps [Reimann et al., 2014]. Our work differentiates by focusing on energy efficiency
improvements and including iOS apps. Still, there is one pattern that is common in
the two catalogs: Reimann et al.’s Early Resource Binding and our’s Open Only When
Necessary (cf. Section 7.4.5).

The impact of general purpose software design patterns on energy efficiency has
been studied in previous work [Sahin et al., 2012]. It was shown that design patterns
may have different impacts on energy consumption. Related work has also evaluated
the impact of different machine learning algorithms [McIntosh et al., 2018]. The
most efficient technique algorithm depends on properties such as the size of the
dataset, and the number of data attributes. Our work differs as we exclusively focus
on patterns that are applied to improve the energy efficiency of mobile apps.

Most of the works described above focus on a single platform, notably Android. In
this study, we also consider iOS. Coding practices for iOS development have seldom
been studied in related work. In a study with 279 iOS apps and 1551 Android apps,
no significant distinction was found in the prevalence of code smells between iOS and
Android apps [W. Oliveira et al., 2017]. A different work has studied error handling
practices of Swift2 [Cassee et al., 2018]. Nearly half of the 2733 Swift projects did

1StackOverflow is a collaborative Web platform for questions and answers on a wide range of topics
in computer programming.

2Swift is the official programming language for iOS apps.
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Catalog of Energy Patterns

Figure 7.1: Methodology used to extract energy patterns from mobile apps.

not exhibit any error handling code. Our work provides more enlightenment on
practices of developers amongst the iOS ecosystem.

7.3 Methodology
We designed a methodology to extract energy patterns from existing mobile apps.
In total, we collect a total of 1027 Android apps and 756 iOS apps, including apps
designed for smartphones, tablets, wearables, or e-paper devices. Essential to our
analysis, apps from both platforms are open source and have their git repositories
available on GitHub3. Our methodology is illustrated in Figure 7.1 and comprised
the following four main tasks:

• App dataset collection

• Automatic gathering of subjects with potential interest (i.e., commits, issues,
and pull requests)

• Manual refinement of subjects of interest

• Thematic analysis (infer energy patterns) according to the solution encoun-
tered to improve energy efficiency

7.3.1 App Dataset Collection

Multiple open source mobile app catalogs were combined to collect Android and iOS
mobile apps. For Android, we resort to F-Droid, a catalog that lists 2800 free and open
source Android apps4. There are open source apps that are not available in F-droid
for not fulfilling free software requirements (e.g., Signal app5). Although these are
just a minority of apps we argue that they can provide relevant input on energy
efficiency practices. Thus, we included Android apps listed in community-curated

3GitHub is a social coding platform with a git web interface.
4F-droid’s website: https://f-droid.org/ (Visited on July 17, 2019).
5Signal is an open source messaging app: https://signal.org (Visited on July 17, 2019).
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Figure 7.2: Distribution of categories in Android apps.

collections of Android open source apps6. This resulted in 1027 apps – 1001 from
F-droid and 26 from curated lists.

For iOS we use the Collaborative List of Open-Source iOS Apps 7, amounting to 829
apps listed with the help of a community of 195 collaborators. Given our constraint
of having a publicly available GitHub repository, we ended up including 756 iOS
apps in our study.

The apps used in this study are from a wide range of categories for Android and
iOS, as depicted in Figure 7.2 and Figure 7.3, respectively. In addition, Table 7.1
shows the dispersion of apps in terms of popularity metrics: GitHub stars, GitHub
forks, number of reviews, and rating. The number of reviews and the ratings are
from the apps in the dataset that are published in the Google Play Store or the iOS
App Store. Thus, we only provide these metrics for a subset of the apps in this study:
64% of Android apps and 20% of iOS apps. GitHub stars go up to roughly 15K in
both platforms, while GitHub forks up to 8K in Android and 5K in iOS. On average,
the apps have a rating of 4 out of 5.

7.3.2 Automatic gathering of commits, issues, and pull
requests

In this step, we collect from all GitHub repositories in our dataset any commit, issue
or pull request that potentially contains energy improvement practices. As done

6Amazing open source Android apps curated list available here: https://github.com/Mybridge/
amazing-android-apps (Visited on July 17, 2019).

7The list is available here: https://github.com/dkhamsing/open-source-ios-apps (Visited on
July 17, 2019)
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Figure 7.3: Distribution of categories in iOS apps.

Table 7.1: Descriptive statistics of the popularity metrics of the Android and iOS apps in
the dataset.

Platform Mean Std Min 25% Median 75% Max

Stars
Android 145 608 0 6 20 68 15159
iOS 486 1272 0 18 71 329 15318

Forks
Android 75 302 0 4 14 46 7811
iOS 118 354 0 7 20 71 4820

Number of Reviews*
Android 31855 529676 1 24 138 1087 13080790
iOS 3241 12597 5 18 75 1038 115011

Rating*
Android 3.8 0.5 1.0 4.0 4.0 4.0 5.0
iOS 4.1 0.7 2.0 3.6 4.0 4.5 5.0

*as in Google Play Store and iOS App Store.
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in previous work [Bao et al., 2016], any instance that mentions the words energy,
battery, or power is selected. The following regular expression is used:

.*(energy|battery|power).*

The GitHub API v3 was used to automatically collect data from public repositories.
Note that we only include commits that were merged in the default branch of the
projects. In total, we gathered 6028 entries that matched this regular expression.

7.3.3 Manual Refinement

We understand that the regular expression used in the automatic data collection
yields many false positives. As an example, consider the following entries collected
in the previous step:

• “Adding a link to the app’s device settings in iOS Settings.app would be great for
power users.” (False positive found in the app WordPress for iOS8).

• “(. . . ) recently a lot of issues that the core team does not have the energy
to implement themselves have been closed.” (False positive found in the app
Minetest for Android9).

• “One thing is really important on mobile devices, and that is power consumption”
(True positive found in the app ChatSecure for iOS10).

Although the first two examples match with the regular expression, they are not
expected to deal with energy-related practices. On contrary, the last example is
referring to the topic of power consumption. Thus, it is likely to provide useful
insights on energy improvement practices.

To filter out unrelated entries, we resort to a manual analysis of each instance,
comprising two iterations:

1. Check the line where a match with the regular expression was found. If the
sentence does not mention anything related to energy consumption, the subject
is discarded from the dataset.

8The whole thread can be found here: https://github.com/wordpress-mobile/WordPress-iOS/
issues/6057 (Visited on July 17, 2019).

9The whole thread can be found here: https://github.com/minetest/minetest/issues/6394
(Visited on July 17, 2019).

10The whole thread can be found here: https://github.com/ChatSecure/ChatSecure-iOS/
issues/31 (Visited on July 17, 2019).
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2. Check the whole thread in which the mention was found. I.e., open the GitHub
page where the commit, issue, or pull request is documented and analyze the
context in which the energy topic is being discussed. This step removes cases
in which contributors are discussing the topic of energy for contexts that are
not related to energy efficiency improvement. E.g., cases were found in which
developers were talking about the battery of their own laptops, or in which
the app actually had a feature in which it displayed the status of the battery11.

After this step, we ended up with a total of 1563 subjects: 332 commits, 1089 issues,
and 142 pull requests.

7.3.4 Thematic Analysis

We resort to a methodology based on Thematic Analysis [Fereday and Muir-Cochrane,
2006] to derive design patterns from commits, issues and pull requests. Thematic
Analysis is a widely-used qualitative data analysis method, that focuses on identifying
patterned meaning in a dataset. Its hybrid process of deductive and inductive analysis
has been successfully used in previous work to categorize software commits [Moura
et al., 2015]. We follow a similar approach by adopting a four-stage process:

Familiarization with data We have carefully read the information provided in com-
mits, issues or pull-requests, including comments and descriptions. Relevant
advice and reasoning are collected and studied using online documentation.

Generating initial labels For each commit, issue, and pull request, we describe
the change in a generic short sentence – i.e., without resorting to specific
properties of the app. This process was split into several iterations to discuss
amongst both authors in order to refine the labels.

Reviewing themes After having all subjects spread in different labels, we discuss
and review them to find themes that should be merged or split. Some themes
were discarded for not being present in a sufficient number of subjects. In
particular, we filter out themes that did not occur in at least three different
apps. In addition, we corroborate and legitimate coded themes, by finding
evidence in the literature that supports or discards themes.

Defining and naming themes In this stage, we make a structured description of
each theme to provide a set of straight-forward guidelines that can be reused
in the design of different mobile app projects. Each theme is now converted
into an Energy Pattern. Each pattern includes a name, a brief description, a
context or problem in which the pattern can be applied, and a solution with
instructions on how to apply the pattern. The solutions provided are based

11An example can be found here: https://github.com/hrydgard/ppsspp/issues/7765 (Visited on
July 17, 2019).
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on a combination of authors’ experience, logical arguments, literature, mobile
platform documentation, and the data itself.

In total 332 commits, 1089 issues, and 142 pull requests were analyzed using this
approach. As a result, we identify and document 22 energy patterns that appear in
431 of the analyzed subjects.

7.3.5 Reproducibility-Oriented Summary
Based on previous guidelines for app store analyses [Martin et al., 2017], we
describe ours as follows to help repeat the experimental procedure and reproduce
the results:

App Stores used to gather collections of apps We use apps available on F-
Droid, and on the list Collaborative List of Open-Source iOS Apps.

Total number of apps used The study comprises 1783 apps.

Breakdown of free/paid apps used in the study Only non-paid apps are listed
in our dataset.

Categories used All categories were included in this study.

API usage GitHub Representational State Transfer (REST) API v312.

Whether code was needed from apps Source code was required to analyze code
changes in commits.

Fraction of open source apps Open source apps are used exclusively.

Static analysis techniques No static analysis was performed. In some tasks, the
code was analyzed manually by the authors.

All scripts and tools developed in this work are publicly available with an open
source license: https://github.com/TQRG/energy-patterns.

7.4 Energy Patterns
In this section, we present the energy patterns collected in this study. As mentioned
before, each energy pattern is described by the following entries: context, solution,
and an example illustrating a practical usage of the pattern. All these patterns are
also available online: https://tqrg.github.io/energy-patterns. The website
also provides links to the occurrences in the apps, disclosing the discussion performed
by developers and practical examples of the patterns in this catalog.

12Documentation of GitHub REST API v3 available here: https://developer.github.com/v3/ (Vis-
ited on July 17, 2019).
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We summarize the occurrences of these patterns in Table 7.2, presenting their
frequency in Android and iOS platforms along with an indication of their prevalence
in related work and grey literature (as listed in the Appendix 7.A).

Table 7.2: Energy patterns’ occurrences and related work.

Pattern Android iOS Related Work Grey Literature
Dark UI Colors 28 2 [Agolli et al., 2017;

Linares-Vásquez et al.,
2017a; D. Li et al., 2014b;

D. Li et al., 2015]

-

Dynamic Retry Delay 10 2 - -
Avoid Extraneous
Work

32 9 - [1]

Race-to-idle 27 5 [Y. Liu et al., 2016;
Banerjee and

Roychoudhury, 2016; Cruz
and Abreu, 2017; Pathak

et al., 2012b]

-

Open Only When
Necessary

4 3 [Banerjee and
Roychoudhury, 2016;
Reimann et al., 2014]

-

Push over Poll 13 3 - [2, 3]
Power Save Mode 24 5 - [4]
Power Awareness 35 6 [Bao et al., 2016] [4]
Reduce Size 3 0 [Boonkrong and Dinh,

2015]
[5]

WiFi over Cellular 13 2 [Metri et al., 2012] [6, 7, 8]
Suppress Logs 7 1 [S. Chowdhury et al.,

2018b]
-

Batch Operations 17 1 [D. Li and Halfond, 2014;
Corral et al., 2015; Cai

et al., 2015]

[9, 10, 11]

Cache 14 4 [Gottschalk et al., 2014] [10]
Decrease Rate 27 10 - -
User Knows Best 33 11 - -
Inform Users 6 4 - -
Enough Resolution 10 7 - -
Sensor Fusion 12 3 [Shafer and Chang, 2010] [12]
Kill Abnormal Tasks 11 1 - -
No Screen Interaction 8 2 - -
Avoid Extraneous
Graphics and
Animations

11 8 [Kim et al., 2016] [1]

Manual Sync, On
Demand

4 5 - -

7.4.1 Dark UI Colors

Provide a dark UI color theme to save battery on devices with devices using display
technology Active Matrix Organic Light-Emitting Diode (AMOLED) [Agolli et al.,
2017; Linares-Vásquez et al., 2017a; D. Li et al., 2014b; D. Li et al., 2015].
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Figure 7.4: UI themes with dark colors are more energy-efficient.

Context Screen is one of the major sources of power consumption in mobile devices.
Apps that require heavy usage of screen (e.g., reading apps) can have a
substantial negative impact on battery life.

Solution Provide a UI with dark background colors, as illustrated in Figure 7.4.
This is particularly beneficial for mobile devices with AMOLED screens, which
are more energy-efficient when displaying dark colors. In some cases, it might
be reasonable to allow users to choose between a light and a dark theme. The
dark theme can also be activated using a special trigger (e.g., when battery is
running low).

Example In a reading app, provide a theme with a dark background using light
colors to display text. When compared to themes using light backgrounds, a
dark background will have a higher number of dark pixels.

7.4.2 Dynamic Retry Delay
Whenever an attempt to access a resource fails, increase the time interval before
retrying to access the same resource.

Context Mobile apps that need to collect or send data from/to other resources
(e.g., update information from a server). Commonly, when the resource is
unavailable, the app will unnecessarily try to connect the resource for a number
of times, leading to unnecessary power consumption.

Solution Increase retry interval after each failed connection. It can be either a
linear or exponential growth. Update interval can be reset upon a successful
connection or a given change in the context (e.g., network status).

Example Consider a mobile app that provides a news feed and the app is not able
to reach the server to collect updates. Instead of continuously polling the
server until the server is available, use the Fibonacci series13 to increase the
time between attempts.

13Fibonacci series is a sequence of numbers in which each number is the sum of the two preceding
numbers (e.g., 1, 1, 2, 3, 5, 8, etc.).
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7.4.3 Avoid Extraneous Work

Avoid performing tasks that are either not visible, do not have a direct impact on the
user experience to the user or quickly become obsolete. This has been documented
in the iOS online documentation14.

Context Mobile apps have to perform a number of tasks simultaneously. There are
cases in which the result of those tasks is not visible (e.g., the UI is presenting
other pieces of information), or the result is not necessarily relevant to the
user. This is particularly critical when apps go to the background. Since the
data quickly becomes obsolete, the phone is using resources unnecessarily.

Solution Select a concise set of data that should be presented to the user and
enable/disable update and processing tasks depending on their effect on the
data that is visible or valuable to the user.

Example Consider a time series plot that displays real-time data. The plot needs to
be constantly updated with the incoming stream of data – however, if the user
scrolls up/down in the UI view making the plot hidden, the app should cease
drawing operations related with the plot.

7.4.4 Race-to-idle

Release resources or services as soon as possible (such as wake locks, screen) [Y. Liu
et al., 2016; Banerjee and Roychoudhury, 2016; Cruz and Abreu, 2017; Pathak et al.,
2012b].

Context Mobile apps use a number of resources that can be manually closed after
use. While active, these resources are ready to respond to requests from the
app and require extra power consumption.

Solution Make sure resources are inactive when they are not necessary by manually
closing them.

Example Implement handlers for events that are fired when the app goes to back-
ground, and release wake locks accordingly.

14Energy Efficiency Guide for iOS Apps – Avoid Extraneous Graphics and Animations available here:
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/
EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html (Visited on July 17, 2019).
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7.4.5 Open Only When Necessary

Open/start resources/services only when they are strictly necessary.

Context Some resources require to be opened before use. It might be tempting
to open the necessary resources at the beginning of some task (e.g., upon
the creation of an activity). However, resources will be actively waiting for
requests, and consequently consuming energy.

Solution Open resources only when necessary. This also avoids activating resources
that will never be used [Banerjee and Roychoudhury, 2016].

Example In a mobile app for video calls, only start capturing video at the moment
that it will be displayed to the user15 .

7.4.6 Push over Poll

Use push notifications to receive updates from resources, instead of actively querying
resources (i.e., polling).

Context Mobile apps need to get updates from resources (e.g., from a server).
One way of checking for updates is by periodically query those resources.
However, this will lead to several requests that will return no update, leading
to unnecessary energy consumption.

Solution Use push notifications to get updates from resources. Note – this is a big
challenge amongst FOSS apps since there is no good open source alternative
for Firebase Cloud Messaging (former Google Cloud Messaging).

Example In a messaging app, instead of actively check for new messages, the app
can subscribe push notifications.

7.4.7 Power Save Mode

Provide an energy-efficient mode in which user experience can drop for the sake of
better energy usage.

Context Whenever the device battery is running low, users want to avoid losing
connectivity before they reach a power charging station. If the device shuts
down, users might miss important calls or will not be able to do an important
task. Still, apps might be running unimportant tasks that will reduce battery
life in this critical context.

15This is a real example that can be found here: https://github.com/signalapp/Signal-Android/
commit/cb9f225f5962d399f48b65d5f855e11f146cbbcb (Visited on July 17, 2019).
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Figure 7.5: Power Save Mode allows to run the app in two different modes: a fully-featured
mode and an energy-efficient mode.

Solution The app provides a power save mode in which it uses fewer resources
while providing the minimum functionality that is indispensable to the user.
It can be activated manually or upon some power events (e.g., when battery
reaches a given level). User experience can drop for the sake of energy
efficiency. Note, this is enforced in iOS for some use cases if the apps use the
BackgroundSync APIs.

Example Deactivate features, reduce update intervals, or deactivate animated
effects in the UI.

7.4.8 Power Awareness
Have a different behavior when the device is connected/disconnected to a power
station or has different battery levels.

Context There are some features that are not strictly necessary to users although
they improve user experience (e.g., UI animations). Moreover, there are opera-
tions that do not have high priority and do not need to execute immediately
(e.g., backup data in the cloud).

Solution Enable or disable tasks or features according to power status. Even when
the device is connected to power, the battery might still be running low, it
might be advisable to wait until a pre-defined battery level is reached (or the
power save mode is deactivated).

Example Delay intensive operations such as cloud syncing or image processing
until the device is connected to a charger.

7.4.9 Reduce Size
When transmitting data, reduce its size as much as possible.

Context Data transmission is a common operation in mobile apps. However, such
operations are energy greedy and the time of transmission should be reduced
as much as possible.
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Solution Exchange only what is strictly necessary, avoiding sending unnecessary
data. Use data compression when possible.

Example When performing HTTP requests, use gzip content encoding to compress
data.

7.4.10 WiFi over Cellular

Delay or disable heavy data connections until the device is connected to a WiFi
network.

Context Data needs to be synchronized with a server but it is not urgent and can
be postponed.

Solution Data connections using cellular networks are usually more battery inten-
sive than connections using WiFi [Metri et al., 2012]. Low priority operations
that require a data connection to exchange considerable amounts of data
should be delayed until a WiFi connection is available.

Example Consider a mobile app to organize photos that allows users to backup
their photos in a cloud server. Use an API to check the availability of a WiFi
connection and postpone cloud synchronizing in case it cannot be reached.

7.4.11 Suppress Logs

Avoid using intensive logging. Previous work has found that logging activity at rates
above one message per second significantly reduces energy efficiency [S. Chowdhury
et al., 2018b].

Context Developers resort to logging in their mobile apps to ensure their correct
behavior and simplify bug reporting. However, logging operations create
overhead on energy consumption without creating value to the end user.

Solution Avoid using intensive logging, keeping rates below one message per
second.

Example Disable logging when processing real-time data. If necessary enable only
during debugging executions.

7.4.12 Batch Operations

Batch multiple operations, instead of putting the device into an active state many
times.
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Figure 7.6: Illustration of the energy pattern Batch Operation. Energy usage can be reduced
by combining the execution of different tasks.

Context Executing operations separately leads to extraneous tail energy consump-
tions [D. Li and Halfond, 2014; Corral et al., 2015; Cai et al., 2015]. As
illustrated in Figure 7.6, executing a task often induces tail energy consump-
tions related with starting and stopping resources (e.g., starting a cellular
connection).

Solution Bundle multiple operations in a single one. By combining multiple tasks,
tail energy consumptions can be optimized. Although background tasks can
be expensive, very often they have flexible time constraints. I.e., a given task
needs to be eventually executed, but it does not need to be executed in a
specific time.

Example Use Job Scheduling APIs (e.g., ‘android.app.job.JobScheduler’, ‘Firebase
JobDispatcher’) that manage multiple background tasks occurring in a device.
These APIs will guarantee that the device will exit sleep mode only when
there is a reasonable amount of work to do or when a given task is urgent. It
combines several multiple tasks to prevent the device from constantly exiting
sleep mode (or doze mode). Other examples: execute low priority tasks only if
another task is using the same required resources; try to collect location data
when other apps are collecting it as well.

7.4.13 Cache
Avoid performing unnecessary operations by using cache mechanisms.

Context Typically mobile apps present data to users that is collect from a remote
server. However, it may happen that the same data is being collected from the
server multiple times.

Solution Implement caching mechanisms to temporarily store data from a
server [Gottschalk et al., 2014]. In addition, verify whether there is an update
before downloading all data.

Example Considering a social network app that shows other users’ profiles. Instead
of downloading basic information and profile pictures every time a given
profile is opened, the app can use data that was locally stored from earlier
visits.
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7.4.14 Decrease Rate

Increase time between syncs/sensor reads as much as possible.

Context Mobile apps have to periodically perform operations. If the time between
two executions is small, the app will be executing operations more often. In
some cases, even if operations are executed more often, it will not affect users’
perception.

Solution Increase the delay between operations to find the minimal interval that
does not compromise user experience. This delay can be manually tuned by
developers or defined by users. More sophisticated solutions can also use
context (e.g., time of the day, history data, etc.) to infer the optimal update
rate.

Example Consider a news app that collects news from different sources, each one
having its own thread. Some news sources might have new content only once
a week, while others might be updated every hour. Instead of updating all
threads at the same rate, use data from previous updates to infer the optimal
update rate of these threads. Connect to the news source only if new updates
are expected.

7.4.15 User Knows Best

Allow users to enable/disable certain features in order to save energy.

Context Energy efficiency solutions often provide a tradeoff between features and
power consumption. However, this tradeoff is different for different users –
some users might be okay with fewer features but better energy efficiency, and
vice versa.

Solution Allow users to customize their preferences regarding energy critical fea-
tures. Since this might be more intuitive for power users, mobile apps should
provide optimal preferences by default for regular users.

Example Consider a mail client for POP3 accounts as an example. In some cases,
users are not expecting any urgent message and may find acceptable checking
for new mail in no less than 10 minutes for the sake of energy efficiency. On
the other hand, there are cases in which users are waiting for urgent messages
and would like to check for messages every two minutes. Since there is no
automatic mechanism to infer the optimal update interval, the best option is
to allow users to define it.
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7.4.16 Inform Users
Let the user know if the app is doing any battery intensive operation.

Context There are specific use cases in mobile apps that can be energy greedy. On
the other hand, some features might be dropping user experience in order
to improve energy efficiency. If users do not know what to expect from the
mobile app, they might think it is not behaving correctly.

Solution Let users know about battery intensive operations or energy management
features. Properly flag this information in the user interface (e.g., alerts).

Example Alert users when a power saving mode is active, or alert when a battery
intensive operation is about to be executed.

7.4.17 Enough Resolution
Collect or provide high accuracy data only when strictly necessary.

Context When collecting or displaying data, it is tempting to use high resolutions.
The problem of using data with high resolution is that its collection and
manipulation require more resources (e.g., memory, processing capacity, etc.).
As a consequence, energy consumption increases unnecessarily.

Solution For every use case, find the optimal resolution value that is required to
provide the intended user experience.

Example Consider a running app that is able to record running sessions. While
the user is running, the app presents the current overall distance in real-time.
While calculating the most accurate value of the total distance would provide
the correct information, it would require precise real-time processing of GPS
or accelerometer sensors, which can be energy greedy. Instead, a lightweight
method could be used to estimate this information with lower but reasonable
accuracy. At the end of the session, the accurate results would still be processed,
but without real-time constraints.

7.4.18 Sensor Fusion
Use data from low power sensors to infer whether new data needs to be collected
from high power sensors

Context Mobile apps provide features that require reading data or executing op-
erations in different sensors or components. Such operations can be energy
greedy, causing high power consumption. Thus, they should be called as fewer
times as possible.
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Solution Use complementary data from low power sensors to assess whether a
given energy-greedy operation needs to be executed.

Example Use the accelerometer to infer whether the user has changed location. In
the case that the user is in the same location, data from GPS does not need to
be updated.

7.4.19 Kill Abnormal Tasks
Provide means of interrupting energy greedy operations (e.g., using timeouts, or
users input).

Context Mobile apps might feature operations that can be unexpectedly energy
greedy (e.g., taking a long time to execute).

Solution Provide a reasonable timeout for energy greedy tasks or wake locks.
Alternatively, provide an intuitive way of interrupting those tasks.

Example In a mobile app that features an alarm clock, set a reasonable timeout for
the duration of the alarm. In case the user is not able to turn it off it will not
drain the battery.

7.4.20 No Screen Interaction
Whenever possible allow interaction without using the display.

Context There are apps that require a continuous usage of the screen. However,
there are use cases in which the screen can be replaced by less power intensive
alternatives.

Solution Allow users to interact with the app using alternative interfaces (e.g.,
audio).

Example In a navigation app, there are use cases in which users might be only
using audio instructions and do not need the screen to be on all the time. This
pattern is commonly adopted by audio players that use the earphone buttons
to play/pause or skip songs.

7.4.21 Avoid Extraneous Graphics and Animations
Graphics and animations are really important to improve the user experience. How-
ever, they can also be battery intensive – use them with moderation [Kim et al., 2016].
This is also a recommendation in the official documentation for iOS developers16

16Energy Efficiency Guide for iOS Apps – Avoid Extraneous Graphics and Animations available here:
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/
EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html (Visited on July 17, 2019).
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Context Mobile apps often feature impressive graphics and animations. However,
they need to be properly tuned in order to prevent battery drain of users’
devices. This is particularly critical in e-paper devices.

Solution Study the importance of graphics and animations to the user experience.
The improvement in user experience may not be sufficient to cover the over-
head on energy consumption. Avoid using graphics animations or high-quality
graphics. Resort to low frame rates for animations when possible.

Example For example, a high frame rate may make sense during game play, but a
lower frame rate may be sufficient for a menu screen. Use a high frame rate
only when the user experience calls for it.

7.4.22 Manual Sync, On Demand

Perform tasks exclusively when requested by the user.

Context Some tasks can be energy intensive, but not strictly necessary for some use
cases of the app.

Solution Provide a mechanism in the UI (e.g., button) that allows users to trigger
energy intensive tasks.

Example In a beacon monitoring app, there are occasions in which the user does
not need to keep track of her/his beacons. Allow the user to start and stop
monitoring manually.

7.5 Data Summary and Discussion

In this section, we report and discuss findings regarding the presence of energy
patterns in the studied mobile applications. In particular, we study differences
between Android and iOS platforms and how often energy patterns co-occur within
the same app.

7.5.1 Energy Patterns: Android vs. iOS

Next, we assess whether energy efficiency is addressed in a different way in Android
and iOS environments.

7.5 Data Summary and Discussion 137



Energy Efficiency Changes Per mobile app

From the 1783 apps used in this study, we have found 332 (19%) with at least one
commit, issue, or pull request related to energy efficiency. In Android we have found
256 out of the 1021 apps (25%), while in iOS we have found 76 out of 756 apps
(10%). Congruent results are observed in the extraction of energy patterns: we were
able to extract energy patterns in 133 Android apps (13%) and 28 iOS apps (4%). In
general, Android developers put more effort into improving the energy efficiency of
their mobile apps than iOS developers.

However, research is necessary to explain why this is the case. First, our data com-
prises only development activities that consciously address energy efficiency. We
understand that there are many factors that can affect these results: power manage-
ment mechanisms implemented by the system, documentation of the frameworks,
differences in targeted users, differences in targeted devices, etc. For instance, the
iOS platform provides APIs with more strict power management rules, and develop-
ers are enforced to use energy best practices beforehand even though they were not
addressing energy efficiency per se.

Developers even express their concern on not having their apps accepted in the
iOS App store for certain practices such as having tasks periodically running in
background17. Although in this case the main goal is having the app accepted in the
app store, energy efficiency is addressed indirectly. On the contrary, Google Play store,
the official store for Android apps, is known to have less strict policies [Cuadrado
and Dueñas, 2012].

Prevalence of Patterns in Android and iOS

We compare the prevalence of each energy pattern in the two platforms, Android
and iOS. Since our app dataset comprises a different number of apps for the two
platforms, we use the ratio of the number of occurrences Np|X of a given pattern p
divided by the total number of apps (MX) studied for a given platform X:

R(p,X) =
Np|X
MX

, X = {iOS,Android} (7.1)

Figure 7.7 shows the values of R for every pattern and platform. In general, energy
patterns are more prevalent in Android rather than iOS apps. Only two energy
patterns were more frequent in iOS: Open Only When Necessary and Manual Sync,
On Demand. In addition, Inform Users, Enough Resolution, and Avoid Extraneous

17An example of developers dealing with the strict policy of the iOS app store: https://github.com/
owncloud/ios/issues/13 (Visited on July 17, 2019).
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Figure 7.7: Comparison of the usage of energy patterns between Android and iOS mobile
apps.

Graphics And Animations had a similar ratio of occurrences in both platforms. The
remaining 18 patterns were notably more frequent in Android apps.

The two platforms differ in the patterns that have the highest number of occurrences.
In Android, the most frequent patterns were Power Awareness, User Knows Best,
Dark UI Colors, and Race-to-idle. In iOS, the most frequent patterns were Avoid
Extraneous Work, Decrease Rate, User Knows Best, and Avoid Extraneous Graphics And
Animations. These patterns are being mentioned in the official iOS documentation
for developers, reinforcing the importance of documentation to help developers
build energy-efficient software [Manotas et al., 2016; Sousa et al., 2018].

The pattern Dark UI Color is considerably more popular amongst Android apps than
in iOS apps. This is an expected observation: only recently, iOS devices started
to feature AMOLED displays that reduce energy consumption when using dark
colors18.

7.5.2 Co-occurrence of Patterns

We analyze which patterns tend to appear together within the same mobile app.
We resort to the chord diagram in Figure 7.8. Each pattern is connected to another

18Until mid 2018, iPhone X was the only iOS smartphone with an AMOLED screen.
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Figure 7.8: Co-occurrence of energy patterns in the same mobile application.

pattern if found in the same app. The thicker the edge the more frequent the pair of
patterns co-occur.

To improve the interpretability of the chord diagram we have filtered out cases
in which two patterns co-occur less than five times. An interactive version of the
diagram containing all data is available in the online catalog: https://tqrg.github.
io/energy-patterns.

The chord diagram of Figure 7.8 reveals the following relationships between pat-
terns:

• Dark UI Colors and Race-to-idle are the most prevalent patterns (28 occurences),
followed by Avoid Extraneous Work (27 occurrences), User Knows Best (25
occurences), and Decrease Rate (24 occurences).

• User Knows Best is a dominant pattern. It co-occurs with Power Save Mode,
Power Awareness, Decrease Rate, Avoid Extraneous Work, and Race To Idle.
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• Avoid Extraneous Work is also a dominant pattern. It appears in apps that also
use Race-to-Idle, Push Over Poll, Decrease Rate, and User Knows Best.

• Power Save Mode, Power Awareness, and User Knows Best are typically used
together.

7.5.3 Implications

This catalog wraps up the techniques used by developers of open source mobile apps
to address energy efficiency. It helps developers understand how to design energy-
efficient mobile apps by looking at solutions from other projects. Most techniques
are spread out in the literature, making energy efficiency a problem that requires
specialized developers. We mitigate this barrier by providing common approaches to
solve typical problems in the energy efficiency of mobile apps.

Although we create energy patterns as a platform to share knowledge from experi-
enced developers, it can also serve as the base to future work on automated tools to
improve energy efficiency. Patterns such as Enough resolution may be challenging,
requiring developers to have a deep understanding of the devices they are targeting.
Tools or APIs aiding to address this issue would significantly decrease the efforts to
adopt this pattern. This is already the case for patterns such as Batch Operations
that are featured in the platform’s API: Android provides the JobScheduler that
schedules the jobs to execute at the most efficient times. We understand that similar
approaches should be leveraged to other patterns. For instance, Power Save Mode is
a common pattern that often requires re-implementing existing features.

We also find some remarks of interest to the research community. While some
techniques have been widely studied in previous work (e.g., Dark UI Colors and
Race-to-idle), many remain unnoticed. Patterns such as Dynamic Retry Delay or Kill
Abnormal Tasks can be argued based on logical arguments. However, there is no
empirical study that has evaluated the cost and benefit of applying these patterns.

This catalog can also help educators include the topic of energy efficiency in Mobile
Software Engineering courses. Students can reach to this catalog to seek more
information on energy patterns and find examples of their application in real Android
and iOS apps.

7.6 Threats to validity

In this section, we now outline the potential threats to the validity of the experiment
detailed above.
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Internal validity We select all commits, issues and pull requests that contain the
words energy, battery, or power. While we understand that this covers the large
majority of mentions of improvements in energy usage, some mentions may have
been missed. There are commits that may have been created to improve energy
efficiency, but the message may not mention it explicitly. Moreover, we only use
mentions written in English, which is the most common language amongst developer
communities.

In our methodology, we adopt a manual filtering of collected commits, issues, and
pull requests. While we understand that this was the safest approach to avoid
missing important mentions, human error can be expected from this process. False
positives may have been left in the dataset – we argue that during the thematic
analysis these subjects are easily discarded. False negatives (i.e., subjects of interest
that were filtered out) may also occur due to misinterpretation of subjects by authors
during the selection. However, we expect this to comprise a negligible number of
cases.

Only commits merged with the default branch of projects were considered. Energy
improvements that were implemented in different branches of the project were not
considered in our study. Although some interesting patterns may lie in some of these
branches we cannot guarantee their quality: changes that have not been merged are
still lacking the validation from the development team.

In addition, we only collect energy patterns that were used by mobile app devel-
opment practitioners and are available on open source projects. There might be
other patterns that improve energy efficiency but that are not being used by the
community. Those patterns are out of the scope of this study and are left for future
work. Moreover, patterns that also improve other properties besides energy usage
might occur in the projects in this study.

We solely list cases that occur with the main goal of improving energy efficiency. In
this study, we only address energy improvements that are clearly described in the
description of the respective commit, issue, or pull request. However, the classifica-
tion of developers’ intent in code changes is a non-trivial open problem [Pascarella
et al., 2018]. Thus, less obvious energy improvements were not studied. In addition,
this catalog is based on developers common approaches to address energy efficiency.
We do not measure the magnitude of potential gains of these patterns work. An
empirical study would help to assess these gains, as done in previous work [Carette
et al., 2017; Palomba et al., 2019].

Finally, we have discarded less significant patterns by filtering out patterns with less
than three occurrences. We understand that some of them may hide interesting
energy efficiency strategies. However, no literature was found to support these
patterns, and assessing their impact is out of the scope of this work.
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External validity The data analyzed in this work is typically private for commercial
apps. Thus, we focus exclusively on open source mobile apps. Development of
commercial apps is usually driven by different goals and budgets. Hence, energy
usage may be targeted in a different way in these apps. However, energy patterns
collected in this study can be applied in any mobile app project regardless of its
license.

We only analyze iOS and Android mobile apps. While this comprises most of the
mobile apps in the market, other mobile platforms also have their share (Windows
Phone, BlackBerry OS, Firefox OS, Ubuntu Touch, etc.). We discarded coding
practices for energy efficiency that we understood being specific to the platform in
which they were implemented (e.g., using certain API methods). Unless the mobile
operative system or the hardware device deals with the contexts identified in our
work under the hood, we expect these patterns to be useful in other platforms.

7.7 Summary
In this chapter, we have studied typical solutions that developers resort to when
improving the energy efficiency of their apps. Concretely, in this chapter:

• We conducted an empirical study on 1021 Android apps and 756 iOS apps to
identify design practices that improve the energy efficiency of mobile apps
(replying RQ 7.1, page 118).

• We catalogued the most common practices in a set of 22 design patterns,
coined as Energy Patterns.

• We identified related work from academic and grey literature that validate the
efficacy of the energy patterns.

• We compared how developers address energy efficiency in Android and iOS
– energy efficiency activities are more common amongst Android projects
(replying RQ 7.2, page 118).

7.A Grey Literature
[1] Apple Developer Documentation Archive. Energy Efficiency Guide for

iOS Apps – Avoid Extraneous Graphics and Animations. URL: https:
//developer.apple.com/library/archive/documentation/Performance/
Conceptual/EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.html

[2] Daniel Gultsch. The State of Mobile XPP in 2016. URL: https://gultsch.de/xmpp_
2016.html

[3] Alternative Push Notification Transport. URL: https://github.com/matrix-org/
GSoC/blob/master/IDEAS.md#alternative-push-notification-transport
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[4] Apple Developer Documention Archive. Energy Efficiency Guide for iOS Apps –
React to Low Power Mode on iPhones. URL: https://developer.apple.com/
library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/
LowPowerMode.html

[5] Stackoverflow. Is gzip compression useful for mobile de-
vices?. URL: https://stackoverflow.com/questions/3065920/
is-gzip-compression-useful-for-mobile-devices

[6] Mitch Bartlett. Does Wi-Fi Consume More Battery Power
Than 3G or 4G/LTE?. URL: https://www.technipages.com/
does-wi-fi-consume-more-battery-power-than-3g-or-4glte

[7] Android SDK Documentation. Modifying your Download Patterns Based
on the Connectivity Type. URL: https://developer.android.com/training/
efficient-downloads/connectivity_patterns

[8] Apple Developer Documentation Archive. Energy Efficiency Guide for iOS
Apps – Energy and Networking. URL: https://developer.apple.com/
library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/
EnergyandNetworking.html

[9] Android SDK Documentation. Optimizing for Doze and App Standby. URL: https:
//developer.android.com/training/monitoring-device-state/doze-standby

[10] Android SDK Documentation. Android Developer Guides — Optimizing for Battery
Life. URL: https://developer.android.com/topic/performance/power/

[11] Android Developers Youtube Channel. DevBytes: Efficient Data Transfers - Batch-
ing, Bundling, and SyncAdapters. URL: https://www.youtube.com/watch?v=
5onKZcJyJwI

[12] Apple’s Core Location Documentation. CLLocationManager. URL: https://
developer.apple.com/documentation/corelocation/cllocationmanager

144 Chapter 7 Catalog of Energy Patterns for Mobile Apps

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/LowPowerMode.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/LowPowerMode.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/LowPowerMode.html
https://stackoverflow.com/questions/3065920/is-gzip-compression-useful-for-mobile-devices
https://stackoverflow.com/questions/3065920/is-gzip-compression-useful-for-mobile-devices
https://www.technipages.com/does-wi-fi-consume-more-battery-power-than-3g-or-4glte
https://www.technipages.com/does-wi-fi-consume-more-battery-power-than-3g-or-4glte
https://developer.android.com/training/efficient-downloads/connectivity_patterns
https://developer.android.com/training/efficient-downloads/connectivity_patterns
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/EnergyandNetworking.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/EnergyandNetworking.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/EnergyandNetworking.html
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/topic/performance/power/
https://www.youtube.com/watch?v=5onKZcJyJwI
https://www.youtube.com/watch?v=5onKZcJyJwI
https://developer.apple.com/documentation/corelocation/cllocationmanager
https://developer.apple.com/documentation/corelocation/cllocationmanager


8Impact of Energy Patterns on
Mobile App Maintainability

Do Energy-oriented Changes Hinder Maintainability?
Luis Cruz, Rui Abreu, John Grundy, Li Li, and Xin Xia
Submitted to ICSME, 2019.

Abstract

Energy efficiency is a crucial quality requirement for mobile applications. However,
improving energy efficiency is far from trivial as developers lack the knowledge
and tools to aid in this activity. In this chapter we study the impact of changes
to improve energy efficiency on the maintainability of Android applications. Us-
ing a dataset containing 539 energy efficiency-oriented commits, we measure
maintainability – as computed by the Software Improvement Group’s web-based
source code analysis service Better Code Hub (BCH) – before and after energy
efficiency-related code changes. Results show that in general improving energy
efficiency comes with a significant decrease in maintainability. This is particularly
evident in code changes to accommodate the Power Save Mode and Wakelock
Addition energy patterns. In addition, we perform manual analysis to assess how
real examples of energy-oriented changes affect maintainability. Our results help
mobile app developers to 1) avoid common maintainability issues when improving
the energy efficiency of their apps; and 2) adopt development processes to build
maintainable and energy-efficient code. We also support researchers by identifying
challenges in mobile app development that still need to be addressed.

8.1 Introduction
Modern mobile applications, popularly known as apps, provide users with a number
of features in multi-purpose mobile computing devices – smartphones. The conve-
nience of using smartphones to pervasively accomplish important daily tasks has a
big limitation: smartphones have a limited battery life. Apps that drain battery life
of smartphones can ruin user experience, and are likely to be uninstalled unless they
offer a key feature.

Thus, it is critically important that apps efficiently use the battery of smartphones.
However, many developers still lack knowledge about best practices to deliver energy-
efficient mobile applications [Pang et al., 2015; Sahin et al., 2014]. Important efforts
have been carried out to help developers ship energy-efficient mobile apps [Kong
et al., 2018]. Novel tools have been built to suggest energy improvements to the
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codebases of mobile apps [Cruz and Abreu, 2018b; Cruz and Abreu, 2018a; Linares-
Vásquez et al., 2018; D. Li et al., 2016] and to help developers measure the energy
consumption of their apps [S. Chowdhury et al., 2018a; Boonkrong and Dinh, 2015;
S. A. Chowdhury and Hindle, 2016; Di Nucci et al., 2017a; L. Li et al., 2017].

Despite these efforts, improving the energy efficiency of mobile applications is
not a trivial task. It requires implementing new features and refactoring existing
ones [Cruz and Abreu, 2019a], only for the sake of better energy usage, i.e., pre-
dominantly a non-functional rather than functional change. However, the extent to
which these changes affect the maintainability of the mobile app software has not
yet been studied. In this work, we are interested in studying the trade-off between
the energy efficiency and the maintainability of mobile applications.

The International Standards on software quality ISO/IEC 25010 define software
maintainability as “the degree of effectiveness and efficiency with which a software
product or system can be modified to improve it, correct it or adapt it to changes
in environment, and in requirements” [International Organization for Standardiza-
tion, 2011]. The standard defines five core sub-characteristics of maintainability:
modularity, reusability, analyzability, modifiability, and testability. The Software
Improvement Group (SIG) has developed a web-based source code analysis toolset
Better Code Hub (BCH) [Visser et al., 2016] that maps the ISO/IEC 25010 standard
on maintainability into a set of 10 guidelines, such as write short units of code and
write code once, derived from static analysis [Kuipers et al., 2007; Baggen et al., 2012;
Visser et al., 2016; Olivari, 2018]. The code metrics used by the SIG model were
empirically validated in previous work [Bijlsma et al., 2012]. We use this toolset in
our work to provide an assessment of maintainability in mobile app codebases.

Specifically, we want to explore whether there is a trade-off between applying energy
patterns and keeping the maintainability of the apps, i.e., does improving energy
efficiency have a negative impact on code maintainability? In this chapter, we
present the results of our analysis on the maintainability using 539 energy commits
harvested from open source Android applications.

The key contributions of this work are:

• An empirical investigation of the impact of energy patterns in code maintain-
ability.

• A dataset of energy commits and respective impact on maintainability.

• A software package with all scripts used in our experiments and a dataset of
energy commits with respective impact on maintainability, for reproducibility.
Available here: https://figshare.com/s/989e5102ae6a8423654d.
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Our empirical study finds evidence that energy efficiency-oriented code changes
have a negative impact on code maintainability. In particular, careful thinking is
required to implement the energy patterns Power Save Mode and Wakelock Addition.
Furthermore, we show that energy patterns are more likely to require maintenance
than regular code changes.

This chapter is structured as follows. In Section 8.2, we introduce an example of
an energy improvement from a real-world mobile application. Section 8.3 describes
the methodology we use to answer the research questions. We present the results
in Section 8.4 and discuss their implications in Section 8.5. In section 8.6, we enu-
merate the threats to the validity of our work. Section 8.7 describes the differences
between our work and existing literature. Finally, in Section 8.8 we summarize the
main contributions.

8.2 Motivating Example & Research Questions
Improving energy efficiency of apps revolves around changing their codebases.
Previous work has studied existing energy patterns for mobile applications [Cruz
and Abreu, 2019a]. It cataloged typical coding practices developers adopt to address
energy efficiency. An example of an energy pattern is the Power Save Mode: the app
features a mode that can be activated upon low battery and uses fewer resources
while providing the minimum functionality that is indispensable to the user.

An instance of this pattern can be found in the app NetGuard1 – an Android app that
provides a firewall and monitors network traffic across other apps.

To improve energy efficiency, NetGuard’s developers decided to implement the
pattern Power Save Mode [Cruz and Abreu, 2019a]. The following snippet presents
the code changes that were implemented2:

public class SinkholeService extends VpnService {
private boolean powersaving = false;

// [ snip ]

public void handleMessage(Message msg) {
+ if (powersaving) return;¶

switch (msg.what) {
case MSG_PACKET:
log(( Packet) msg.obj , msg.arg1 , msg.arg2 > 0);

// [ snip ]
}

}

// [ snip ]

1More information about the app NetGuard on Google Play app store: https://play.google.com/
store/apps/details?id=eu.faircode.netguard&hl=en (Visited on July 17, 2019) .

2Commit taken from NetGuard project’s Github repository, available at: https://github.com/M66B/
NetGuard/commit/2e70a038970d6efe9f74e5719e7648f91de30498 (Visited on July 17, 2019)
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private BroadcastReceiver interactiveStateReceiver =
new BroadcastReceiver () {
@Override
public void onReceive(Context context , Intent intent) {

// [ snip ]
statsHandler.sendEmptyMessage(

- Util.isInteractive(this) ? STATS_START : STATS_STOP
+ Util.isInteractive(this) && !powersaving ?
+ STATS_START : STATS_STOP ·

);
}

};

// [ snip ]

+ private BroadcastReceiver powerSaveReceiver = new BroadcastReceiver () { ¸

+ @Override
+ @TargetApi(Build.VERSION_CODES.LOLLIPOP) ¹

+ public void onReceive(Context context , Intent intent) {
+ Log.i(TAG , "Received␣" + intent );
+ Util.logExtras(intent );
+ PowerManager pm = getSystemService(
+ Context.POWER_SERVICE );
+ powersaving = pm.isPowerSaveMode ();
+ Log.i(TAG , "Power␣saving=" + powersaving );
+ statsHandler.sendEmptyMessage(
+ Util.isInteractive(this) && !powersaving ?
+ STATS_START : STATS_STOP º

+ );
+ };

// [ snip ]

@Override
public void onCreate () {

// [ snip ]
+ if (VERSION.SDK_INT >= VERSION_CODES.LOLLIPOP) { »¼

+ PowerManager pm = getSystemService(POWER_SERVICE );
+ powersaving = pm.isPowerSaveMode ();
+ IntentFilter ifPower = new IntentFilter ();
+ ifPower.addAction(ACTION_POWER_SAVE_MODE_CHANGED );
+ registerReceiver(powerSaveReceiver , ifPower );
+ }
// [ snip ]

}

// [ snip ]

@Override
public void onDestroy () {

// [ snip ]
+ if (VERSION.SDK_INT >= VERSION_CODES.LOLLIPOP) ½

+ unregisterReceiver(powerSaveReceiver ); ¾

// [ snip ]
}

}

¶ Suppress the behavior of data logging methods to suppress output.
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· Deactivate network speed statistics when Power Save Mode is activated.

¸ An instance of BroadcastReceiver is created to implement the handler of Power
Save Mode events.

¹ A decorator is used to make sure Power Save Mode changes are only applied to a
compatible Android version.

º Network speed statistics have to be deactivated upon different events. This is a
duplicate of ·.

» Subscribe event to be notified when Power Save Mode is activated.

¼½ A conditional statement is used to make sure Power Save Mode changes are only
applied to a compatible Android version.

¾ Subscribe Power Save Mode event.

Although the concept of creating a Power Save Mode is relatively simple, this example
illustrates that a number of code changes have to be made that have an adverse
impact on code maintainability. For instance, it requires adding duplicated code and
adding conditional statements to check the version of Android, increasing cyclomatic
complexity. This form of coding goes against some of the guidelines for building
maintainable software [Visser et al., 2016].

We are concerned that, while improving energy efficiency, developers are decreasing
the maintainability of their projects, and consequently increasing technical debt. In
this work, we use a dataset of energy efficiency-oriented changes to measure the
difference in maintainability incurred in Android applications when those changes
were applied. Therefore, in this work, we want to answer the following research
questions.

Research Question 8.1

What is the impact of making code changes to improve energy efficiency on the
maintainability of mobile apps?

Why: Energy efficiency often requires to change codebases and even the features of
a mobile application. If maintainability is not addressed, these improvements may
significantly increase technical debt and require rework during the lifetime of the
project.

How: We analyze a combination of previous datasets with 539 energy-oriented
commits. We compute the maintainability score of these commits using the online
tool BCH. We apply the same approach to a dataset of regular commits to use as
baseline and compare results.
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Research Question 8.2

Which energy efficiency-oriented code change patterns are more likely to affect
the maintainability of mobile apps?

Why: Some energy patterns might be more complex to implement than others. By
understanding which patterns are more likely to introduce maintainability issues,
we bring awareness to mobile app and mobile SDK developers of code changes that
require more attention.

How: We use the classification of developers activities made in previous work [Cruz
and Abreu, 2019a; Moura et al., 2015; Bao et al., 2016; Cruz and Abreu, 2018b] to
group energy-oriented commits and analyze maintainability independently.

Research Question 8.3

What are typical maintainability issues introduced by energy-oriented code
changes?

Why: By using examples of typical maintainability issues in real energy-oriented
commits, practitioners and researchers will have a more tangible concept of how
energy efficiency may hinder maintainability.

How: First, we select energy-oriented commits that yielded low maintainability.
Then, we manually inspect these commits and discuss the potential issues entailed
by energy efficiency improvements.

8.3 Methodology
We use the approach illustrated in Fig. 8.1 to analyze how energy commits affect the
maintainability of Android applications. It comprises the following steps:

1. Combine the datasets from related work that classifies the activities of develop-
ers addressing energy efficiency in mobile apps [Bao et al., 2016; Moura et al.,
2015; Cruz and Abreu, 2018b; Cruz and Abreu, 2019a].

2. Collect regular commits from Android apps to be used as baseline.

3. Compute the impact of energy-oriented commits on maintainability, using
BCH.

8.3.1 Dataset

Our work uses the data collected in four previous studies [Cruz and Abreu, 2019a;
Moura et al., 2015; Bao et al., 2016; Cruz and Abreu, 2018b] to assess the impact of
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(2018)
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Figure 8.1: Methodology for data collection.

Table 8.1: Datasets of energy-oriented changes that were combined from previous work.

Authors Ref. # Commits Platforms
Moura et al. (2015) [Moura et al., 2015] 2188 Android, iOS, non-mobile
Bao et al. (2016) [Bao et al., 2016] 468 Android
Cruz et al. (2018) [Cruz and Abreu, 2018b] 59 Android
Cruz et al. (2019) [Cruz and Abreu, 2019a] 431 Android, iOS

energy management-oriented changes on the maintainability of Android software.
The datasets are summarized in Table 8.1 and explained below.

Moura et al. (2015) mined more than 2000 commits to understand energy manage-
ment activities in general-purpose applications [Moura et al., 2015]. Their findings
suggest that energy efficiency techniques have to be carefully chosen to ascertain
that the correctness of the software remains intact. In an extension of this work [Bao
et al., 2016], Bao et al. (2016) used a similar approach to focus exclusively on
Android apps, having mined 468 energy management commits. They found that apps
in different categories typically have different approaches to energy efficiency.

Cruz et al. (2018) have provided energy patterns in an automatic refactoring
tool [Cruz and Abreu, 2018b]. The tool was used to analyze 140 open-source
Android apps. As an outcome, the authors submitted 59 pull-requests containing
energy improvements to the official repositories of open-source Android applications.
In another work, Cruz et al. (2019) proposed a catalog with 22 energy patterns to
help developers design energy-efficient mobile applications [Cruz and Abreu, 2019a].
The authors mined the commits, issues, and pull requests of 1027 Android apps and
726 iOS apps to understand how developers address energy efficiency issues. The
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catalog can be used to help novice developers learn advanced energy management
techniques from existing practices.

From all the data collected, we only select commits from Android projects. Changes
from other platforms, such as iOS and Desktop software, were filtered out. Moreover,
we cleansed the dataset by filtering out projects that have been deleted and by
updating projects that have moved their repositories to a different location. In
addition, datasets [Moura et al., 2015] and [Bao et al., 2016] include commits
that have not been manually validated – we only include commits that the authors
manually ascertained as proper energy changes.

In addition, we reuse the categorization of the energy changes defined in the origi-
nal datasets. Despite similar, different datasets use different labels to indicate the
same pattern. For example, the same pattern is labeled as PowerConditionalStrat-
egy:PowerSaveMode by Bao et al. (2016) [Bao et al., 2016] and as Power Save Mode
by Cruz et al. (2019) [Cruz and Abreu, 2019a]. We map these and other identical
categories into unique labels3. In sum, energy commits are classified into seven
categories:

• Bug Fix & Code Refinement. Changes related to fixing energy bugs, or
refactoring code that already implements energy management features.

• Power Awareness. Have a different behavior when the device is connect-
ed/disconnected to a power station or has different battery levels.

• Power Save Mode. Implementation of an energy-efficient mode in which
some features are deactivated to improve better energy usage.

• Power Usage Monitoring. Developers add UIs or configurations to inform
users about the status of the battery and let them make informed decisions
about their interaction with the application.

• Wakelock Addition. Wakelocks are used when apps execute tasks that may
take longer to execute and need to prevent resources from getting into a sleep
state (e.g., screen, network, audio, etc.).

• Wakelock Optimization. Inappropriate usage of wakelocks may incur into
unnecessary energy usage. Thus, often developers have to optimize wakelock
behavior, or even replace them with other techniques (e.g., event handlers).

• Miscellaneous. This comprises several categories of energy commits. Since
we perform hypothesis tests to statistically validate results, we need to have at
least 20 commits per category. Thus, when a category comprises less than 20
commits, we label it as Miscellaneous.

3The whole set of identical categories can be found in the replication package:https://figshare.
com/s/16397140e8183708d248 (Visited on July 17, 2019).
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8.3.2 Baseline Commits
Although we want to assess the maintainability of energy commits, there is no
evidence in previous work on how regular commits affect the maintainability of
Android projects. E.g., if energy-oriented commits hinder maintainability, we need
to understand whether this result is in fact different from general purpose commits.
Thus, in parallel with energy commits, we also analyze the maintainability of all
other commits and use these as a baseline to answer RQ8.1 and RQ8.2.

The baseline dataset is collected as follows: for each energy commit, we obtain all the
commits of the respective project and randomly select one. In addition, we randomly
select 20 commits to validate that commits are similar in terms of complexity. By
using the dataset of energy commits as input for our baseline dataset we make sure
that differences in maintainability in the two datasets are not originated by the
specificities of different Android projects (e.g., different contribution policies, coding
guidelines, app categories, etc.).

8.3.3 Maintainability Analysis
We make use of the Software Improvement Group’s web-based source code analysis
service Better Code Hub (BCH for short4) to collect maintainability reports of the
projects. BCH delivers a maintainability model based on 10 guidelines [Visser et al.,
2016]:

1. Write short units of code. Long units are hard to test, reuse, and understand.

2. Write simple units of code. Keeping the number of branch points low makes
units easier to modify and test.

3. Write code once. When code is duplicated, bugs need to be fixed in multiple
places, which is inefficient and prone to errors.

4. Keep unit interfaces small. Keeping the number of parameters low makes
units easier to understand and reuse.

5. Separate concerns in modules. Changes in a loosely coupled codebase are
much easier to oversee and execute than changes in a tightly coupled codebase.
This is computed based on the total fan-in of all methods in a module. Note
that a module in Java and other object-oriented languages translates to a class.

6. Couple architecture components loosely. Independent components ease
isolated maintenance.

7. Keep architecture components balanced. Balanced components ease locat-
ing code and foster isolation, improving maintenance activities.

4Better Code Hub’s website available at https://www.bettercodehub.com/ (Visited on July 17, 2019)
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Threshold Marks

Figure 8.2: BCH’s maintainability report of the app NetGuard for the guideline Write short
units of code. The app does not comply with the guideline because the bars are
not reaching the threshold marks.

8. Keep your codebase small. Small systems are easier to search through,
analyze, and understand code.

9. Automate tests. Automated testing makes development predictable and less
risky.

10. Write clean code. Code without code smells is less likely to bring maintain-
ability issues.

For each guideline, BCH evaluates the compliance against a particular guideline
by setting boundaries for the percentage of code allowed to fall in each of the four
risk severity categories (low risk, medium risk, high risk, and very high risk). If
the thresholds are not violated, the project is considered to be compliant with the
guideline. According to BCH, the guideline thresholds are calibrated yearly based
on a representative benchmark of closed and open source software systems. Being
compliant with a guideline means that the project under analysis is at least better
than 65% of the software systems in BCH’s benchmark.
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Table 8.2: Example of a BCH report for a non-compliant case.

Level Threshold LOC Percentage of Code
(%) (%)

(Low) (56.3) (1353) (18.6)
Medium 43.7 1683 23.2
High 22.3 1622 22.4
Very High 6.9 2588 35.7

The BCH report of the app NetGuard for a non-compliant guideline can be seen
in Fig. 8.2. This was extracted from the report of the app NetGuard, used in the
motivating example of Section 8.2. The green bar represents the percentage of
compliant lines of code. These lines of code are considered to be compliant with
ISO 25010 standard for maintainability [internationale de normalisation, 2011]. The
yellow, orange and red bars represent non-compliant lines of code with medium, high,
and very high severity levels, respectively. Along the bars, there are also marks that
refer to the compliance thresholds for each severity level. The report is equivalent
to the information reported in Table 8.2: a set of thresholds, number of lines of
code (LOC), and percentage of the project for each severity level. Nonetheless,
thresholds provided by BCH do not sum to 100%: non-compliant levels are provided
in a cumulative way (e.g., the threshold for the medium level includes high and very
high levels); the compliant-level threshold is the complement of the medium-level
threshold.

Since we want to analyze maintainability regression, we use BCH to compute
maintainability in two different versions of the Android app: a) the version of the
project before the energy commit (vE−1) and b) the version immediately after the
energy commit (vE). This is illustrated in Fig. 8.3.

Although BCH provides a detailed report of the maintainability of the project, it
does not compute a final score that we can use to compare maintainability amongst
different projects. Thus, based in previous work [Olivari, 2018], we designed
an equation to capture the distance between the current state of the project and
the standard thresholds. We have adjusted the equation to meet the following
requirements:

• The maintainability difference between two versions of the same project
is not affected by its size. In this work, we want to evaluate the identical
energy patterns occurring in different projects. Thus, the metric cannot use
normalization based on its size – we convert percentage data to the respective
number of lines of code.

• Distance to the thresholds in high severity levels is more penalized than
in low severity levels. We use weights based on the severity level to count
lines of code that violate maintainability guidelines.
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We compute the mean average of the maintainability score M(v) for all the selected
guidelines, as follows:

M(v) =
∑
g∈G

Mg(v) (8.1)

where:

G = selected maintainability guidelines from BCH (e.g., Write short units of code,
etc.)

v = version of the app under analysis.

The maintenance M based on the guideline g for a given version of a project is
computed with the following equation:

Mg = 1
|L|

∑
l∈L

C(l), L = {medium, high, veryHigh} (8.2)

where:

C = compliance with the maintainability guideline for the given severity level
(medium, high, and very high)

L = severity levels of maintainability infractions.

The compliance C for a given severity level l is derived by:

C(l) = LOCcompliant(l)− w(l) · LOC¬compliant(l) (8.3)

where:

LOCcompliant(l) = lines of code that comply with the guideline at the given
severity level l

LOC¬compliant(l) = lines of code that do not comply with the guideline at the
given severity level l

w(l) = weight factor to boost the impact of non-compliant lines in
comparison to compliant lines.

Finally, the term w(l) is calculated as follows:

w(l) = 1− T (l)
T (l) (8.4)

where:
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Figure 8.3: Maintainability difference for the energy commit vE .

T (l) = threshold in percentage of the lines of code that are accepted to be
non-compliant with the guideline for the severity level l. This is a
standard value defined by BCH, as illustrated in Fig. 8.2 and Table 8.2.

In other words, the factor w is used in Eq. 8.3 to highlight the lines of code that are
not complying with the guideline. For instance, the threshold for the severity level
veryHigh is defined in Table 8.2 as T (veryHigh) = 6.9%, which derives to a weight of
w(veryHigh) = 13.5. This means that, in this example, one non-compliant guideline
is decreasing maintainability score by 13.5 points while a compliant guideline is
increasing by 1.0 point. In addition, a version that is perfectly aligned with the
standard thresholds has a maintainability score of zero.

Then, we compute the difference of maintainability (∆M) between the energy
commit (vE) and its parent commit (vE−1), as illustrated in Fig. 8.3.

Statistical validation To validate the maintainability differences in different groups
of commits (e.g., baseline and energy commits) we use the Paired Wilcoxon signed-
rank test with the significance level α = 0.05. In other words, we test the null
hypothesis that the maintainability difference between pairs of versions vE−1, vE

(i.e., before and after an energy-commit) follows a symmetric distribution around
0. This test does not capture the absolute value of the maintainability differences.
Thus, it is not affected by confounding factors, such as the size of the code changes
in different groups.

To understand the effect-size, as advocated by the Common-language effect sizes [Mc-
Graw and Wong, 1992], we compute the mean difference, the median of the differ-
ence, and the percentage of cases that reduce maintainability.

8.3.4 Typical Maintainability Issues

From the results collected in our dataset, we select the most evident examples of
maintainability issues that arise from improving energy efficiency. We manually
analyze these energy-oriented commits by examining its message and code changes.
The most evident cases are then discussed and presented to illustrate common
maintainability issues and bring awareness on how to avoid common issues.
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Figure 8.4: Categories of apps included in our study with the corresponding app count for
each category.

8.4 Results

We evaluated a total of 539 energy commits and 539 baseline commits. These
commits comprise 306 apps distributed among 22 categories, as depicted in Fig. 8.4.
In this section, we present the results for each proposed research question.

Research Question 8.1

What is the impact of making code changes to improve energy efficiency on the
maintainability of mobile apps?

The results on the impact of different categories of commits in software maintainabil-
ity are present in the plot bar of Fig. 8.5. The plot presents the results for two groups
of software changes: energy commits, and baseline commits. For each group,
the figure provides three bars with the percentage of commits which 1) decrease
maintainability (on top, colored in red), 2) do not change maintainability (in the
middle, colored in yellow), and 3) increase maintainability (in the bottom, colored
in green). In addition, the figure provides, for each group, the mean (x̄) and the
median (Md) of the maintainability difference, and the p-value of the Wilcoxon
signed-rank test (p).
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Figure 8.5: Maintainability differences for energy commits and baseline commits.

In the case of the regular commits, used as a baseline, 33.0% decrease maintainability
(183 cases), 38.7% do not change maintainability (215 cases), and 28.3% improve
maintainability (157 cases). Since the p-value of the Wilcoxon signed-rank test
(p = 0.139) is not below the significance level (α = 0.05), there is no statistical
significance of the impact of regular commits on maintainability.

On contrary, we observe clear changes for energy commits: 57.1% (310 cases) de-
crease software maintainability, 10.7% do not change maintainability (61 cases), and
31.2% improve maintainability (168 cases). The results for the Wilcoxon signed-rank
test show statistical significance that energy commits decrease the maintainability of
Android applications (p < 0.001).

Research Question 8.2

Which energy efficiency-oriented code change patterns are more likely to affect
the maintainability of mobile apps?

Results of the maintainability impact per category of energy changes are presented in
Fig. 8.6. The Wilcoxon signed-rank test yields statistical evidence that the categories
Miscellaneous (p = 0.021), Power Save Mode (p = 0.012), and Wakelock Addition
(p = 0.003) significantly decrease the maintainability of Android projects.

The remaining patterns, (i.e., Bug Fix & Code Refinement, Power Awareness, Power
Usage Monitoring, and Wakelock Optimization) yielded more cases in which main-
tainability was negatively affected. However, for these patterns, results are not
statistically significant.

In the category Miscellaneous, 53.1% of changes (77 cases) have decreased maintain-
ability, while 15.9% (23 cases) did not bring any impact, and 31.0% (45 cases) have
improved maintainability. The impact is more evident in the category Power Save
Mode, decreasing maintainability in 78.3% of changes (18 cases), leaving 4.3% unaf-
fected (1 case), and 17.4% (4 cases) with an observed improvement in maintainability.
Finally, in the category Wakelock Addition, 65.5% have hindered maintainability (55
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Figure 8.6: Maintainability differences among different types of energy commits.

cases), 6.0% (5 cases) have not yielded any difference, and 28.6% (24 cases) have
registered an improvement.

Research Question 8.3

What are typical maintainability issues introduced by energy-oriented code
changes?
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The following examples illustrate a subset of the maintainability issues we encounter
that originate from energy-oriented changes (Maintainability Instances 1–5).5

MAINTAINABILITY INSTANCE 1

Git Repository: https://github.com/ccrama/Slide
Commit: 070c2c6
Change: Merge two different categories of notifications in the same oper-
ation. This is a common approach to improve energy efficiency, coined as
Batch Operations6 [Cruz and Abreu, 2019a].
Maintainability issue (∆M = −949): While coalescing different tasks,
methods ended up being extremely large. As a best practice, Java
methods should not go over 15 lines of code [Visser et al., 2016].
Thus, the guideline Write Short Units of Code was violated in method
SubredditView.onOptionsItemSelected(), which ended with 209 lines
of code. Several small helper methods should have been implemented to
keep this method short.

Maintainability Instance 1 shows an example of maintainability issues that were
likely introduced by the lack of awareness by developers on best practices for
maintainability. Before applying the code change, the project already had 30 methods
with over 200 lines of code. Extracting issues that are strictly related to energy-
efficiency improvements is not straightforward. Thus, we skip examples in which
this distinction was not clear and opted for selecting maintainability issues that arise
from improving energy efficiency in projects with a positive maintainability score.

MAINTAINABILITY INSTANCE 2

Git Repository: https://github.com/mozilla/MozStumbler
Commit: 37819d9
Change: New behavior to update the current GPS location. When the user
is not moving – i.e., the accelerometer is not sensing any movement – the
GPS is turned off and the location is assumed to be constant. When the user
moves again, the GPS location updater is reactivated. This instance is an
example of energy pattern and Sensor Fusion [Cruz and Abreu, 2019a].
Maintainability issue (∆M = −60): Although this new behavior for GPS
updates was added by default in the mobile application, the previous be-
havior remained as an option in the codebase. This entailed some code
duplications: the logic needed to read data from GPS satellites is exactly the
same in both behaviors. This violates the Write Code Once guideline.

5The whole instances can be found in the replication package: https://figshare.com/s/
16397140e8183708d248 (Visited on July 17, 2019)

6More information about Batch Operations and other energy patternhttps://tqrg.github.io/
energy-patterns/#/patterns/Batch_Operation (Visited on July 17, 2019).
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MAINTAINABILITY INSTANCE 3

Git Repository: https://github.com/mozilla/MozStumbler
Commit: 6ea0268
Change: Added support for a power save mode [Cruz and Abreu, 2019a], in
which the app stops scanning cell towers and Wi-Fi networks. This change
required adding extra logic in the onCreate method of MainActivity class.
In short, the method was changed to verify whether the battery level was
low and whether the Power Save Mode was enabled in the app.
Maintainability issue (∆M = −20): Although the idea seems trivial,
developers had to add 18 extra lines of code to the already existing
MainActivity.onCreate() method. The method ended up with 45 lines of
code, violating the Write Short Units of Code guideline.

MAINTAINABILITY INSTANCE 4

Git Repository: https://github.com/einmalfel/PodListen
Commit: 2ed5a65
Change: Add a preference in which users can opt to download new content
(i.e., podcasts) only when the smartphone is connected to the charger. This
is an implementation of the energy patterns User Knows Best and Power
Awareness [Cruz and Abreu, 2019a].
Maintainability issue (∆M = −20): By adding this new user-defined
setting, conditional logic was added to the beginning of the affected meth-
ods (e.g., method DownloadReceiver.updateDownloadQueue) to verify the
preferences and the phone charging status. This leads to a higher number
of branch points per method (maximum recommended of four [Visser et al.,
2016]), violating the maintainability guideline Write Simple Units of Code. In
these cases, the recommended approach is to split the method into simpler
ones.

MAINTAINABILITY INSTANCE 5

Git Repository: https://github.com/horn3t/PerformanceControl
Commit: cb3080e
Change: Based on the battery level of the smartphone, adjust the power
leveraged to CPU and GPU cores. This a very low level code change that
resorts to the execution of bash commands to control the hardware of a
smartphone device. This example does not implement a documented energy
pattern.
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Maintainability issue (∆M = −37): Although the nature of the change
implies adding code with poor readability, there are other maintainability
issues that should have been avoided. In particular, the class GPUClass,
which was added to control GPU power, violates the guideline Separate
Concerns in Modules. The methods of this class have a high number of
references through the code (i.e., high fan-in). A typical approach to address
this issue is to split the class in separate concerns [Visser et al., 2016].

8.5 Discussion
In this section, we answer our research questions, discussing the implications of the
analysis of results.

Research Question 8.1

What is the impact of making code changes to improve energy efficiency on the
maintainability of mobile apps?

The majority of energy efficiency-oriented changes hinder the maintainability of
Android projects. Results presented in Fig. 8.5 shows a decrease in maintainability
in 57% of the cases. This raises a new tradeoff when developers need to address
energy efficiency in their projects.

Previous work found evidence that developers struggle to improve the energy effi-
ciency of their software, lacking the knowledge and tools to aid in this problem [Pang
et al., 2015]. Our work corroborates by showing that developers may have to reduce
maintainability for the sake of energy efficiency.

In our perspective, developers need to be able to create energy-efficient code without
potentially ruining the maintainability of their projects. Otherwise, they may not
apply such fixes or come with too many negative code maintenance consequences.
We understand that this problem needs to be addressed at several levels:

• Mobile frameworks need to feature energy patterns out-of-the-box without
requiring too many changes in the software codebases.

• Documentation of mobile libraries and frameworks need to provide develop-
ers with the best practices to implement energy patterns.

• Programming languages should provide coding mechanisms to easily imple-
ment energy patterns without compromising maintainability. Previous work
has already started addressing energy-efficiency concerns in programming
languages [R. Pereira et al., 2017b; W. Oliveira et al., 2017]. Hopefully, these
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efforts can be ported to the official mobile programming languages (e.g., Java,
Kotlin, Swift, etc.).

• Mobile Developers have to look out for maintainability issues when imple-
menting energy patterns. Online services such as BCH, that play well in a
continuous integration pipeline, can help developers to be more aware of the
maintainability issues introduced by their changes. By bringing awareness,
developers can put more effort on improving the maintainability of their code
and avoid common issues (e.g., code duplication).

Research Question 8.2

Which energy efficiency-oriented code change patterns are more likely to affect
the maintainability of mobile apps?

Energy patterns Power Save Mode, and Wakelock Addition significantly de-
crease the maintainability of Android projects. The same is observed for small
energy patterns grouped as Miscellaneous. Although the remaining patterns Bug
Fix & Code Refinement, Power Awareness, Power Usage Monitoring, and Wakelock
Optimization seem to reduce maintainability, no statistical evidence was found.

This is particularly disconcerting because Power Save Mode and Wakelock Addition are
recommended as power management solutions in the official documentation of the
Android SDK7. However, it seems that more support is needed in order to implement
patterns without compromising the maintainability of Android projects.

Documentation should be enriched with more examples and best practices to im-
plement these patterns. We were not able to find those in the official Android
documentation. Moreover, the documentation does not consistently refer to the
Power Save Mode pattern by this name, referring to it as Battery Saver in a few
cases8.

In addition, different Android versions feature different mechanisms to these patterns.
However, developers need to make sure their software runs efficiently in different
versions of Android [Muccini et al., 2012; An et al., 2018]. Thus, this requires
adding specific logic for each API level, adding more complexity to the code and
making it less maintainable.

Along with the implications from RQ8.1, we find that improving support to Power
Save Mode and Wakelock Addition would immediately help developers ship main-
tainable and energy-efficient mobile software. Actually, tools providing support to

7Documentation for Power Save Mode and Wakelocks: https://developer.android.com/
reference/android/os/PowerManager (Visited on July 17, 2019).

8Android documentation using inconsistent names for Power Save Mode: https://developer.
android.com/about/versions/pie/power#battery-saver (Visited on July 17, 2019).

164 Chapter 8 Impact of Energy Patterns on Mobile App Maintainability

https://developer.android.com/reference/android/os/PowerManager
https://developer.android.com/reference/android/os/PowerManager
https://developer.android.com/about/versions/pie/power#battery-saver
https://developer.android.com/about/versions/pie/power#battery-saver


automatically apply these patterns while preserving maintainability would be of
great benefit.

Research Question 8.3

What are typical maintainability issues introduced by energy-oriented code
changes?

Although cases with the highest maintainability difference have clear examples of
bad maintainability, they are not entirely affected by the energy improvement per se.
That is, other factors, such as the low experience level of the developer, may be the
cause of the maintainability issues. This problem is illustrated in the Maintainability
Instance 1.

On the contrary, the examples presented in Maintainability Instances 2–5 reveal
maintainability issues that are intrinsically related to the strategy used to improve
energy efficiency. E.g., in the Maintainability Instance 2, developers created an
additional approach to collect sensor data but left the original one as an option.
Since the efficacy of the two approaches is different, developers decided to feature
both approaches in their app: one more effective but less efficient and the other less
effective but more efficient. Given that the app needs to run under many different
scenarios with different constraints, mobile apps often support different approaches
to the same feature. While this decision may be necessary, the nature of these
changes is prone to maintainability issues.

In the Maintainability Instance 4, a number of contextual pre-conditions related to
the battery level of the smartphone were checked before granting the execution of
particular actions. Mobile development frameworks should provide mechanisms
to support typical battery-level scenarios out of the box. For instance, using Java
annotations, particular actions could be postponed until power-related requirements
are met. This would help keep the codebase small and easy to read.

Preliminary related work has proposed programming environments that address
energy efficiency [Yıldırım et al., 2018; Zhu et al., 2015]. We show that such
solutions are relevant in the context of mobile app development. Moreover, related
work has improved the specification of data types to select the most energy-efficient
type for a given context [Cohen et al., 2012; Sampson et al., 2011]. Nevertheless,
these solutions address energy efficiency decisions at low-level, lacking support for
typical design patterns to address the energy efficiency of mobile apps [Cruz and
Abreu, 2019a].

The analyzed examples show that maintainability issues lie mainly on the lack of
awareness by developers and the insufficient support of energy-efficiency patterns
from mobile platforms. New approaches ought to be delivered to help developers
assess the maintainability of their code changes when tackling energy-efficiency
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requirements. For instance, CI/CD is a promising approach to address this issue.
Although it is known to promote software best practices [Zhao et al., 2017], they are
rare in the mobile app world [Cruz et al., 2019b; Kochhar et al., 2015]. In addition,
results suggest that energy-related changes ought to be tackled by developers with
additional care (e.g., code reviews).

8.6 Threats to Validity

In this section, we discuss potential threats to the validity of our work.

Construct Validity We use metrics derived from static code analysis to assess soft-
ware maintainability. However, this is a broad-scoped attribute that may not be fully
capture maintainability in its five sub-characteristics: modularity, reusability, ana-
lyzability, modifiability, and testability. Nonetheless, previous work has found high
correlation between maintainability sub-characteristics and BCH guidelines [Bijlsma
et al., 2012].

In addition, different projects and contexts may require different maintainability
standards. Nonetheless, we use statistical hypothesis testing to mitigate confound-
ing factors. Moreover, BCH uses a representative benchmark of closed and open
source software systems to compute the thresholds used in each maintainability
guideline [Visser et al., 2016; Baggen et al., 2012]. This benchmark is updated every
year [Visser et al., 2016].

Internal Validity Maintainability may be affected by different coding styles and
experience level from developers of the same project. We do not evaluate differences
at that level. In addition, we do not evaluate the maintainability difference for all
regular commits in a project. Evaluating all the commits in a project would not be
feasible using our methodology. Thus, we assume that the size of the dataset (539
commits) is enough to mitigate random variations in the maintainability differences
of the baseline.

The nature of baseline commits scopes general-purpose commits that may be different
to energy-oriented commits in a number of characteristics (e.g., lines of code). We
ensure the two datasets are comparable by collecting the baseline set using a random
selection. Moreover, we do not analyze the maintainability difference in terms of
absolute values. In other words, we only evaluate whether the maintainability was
improved, not changed, or worsen. In future work, we plan to address specific
categories of changes in mobile apps.
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External Validity The collection of energy-oriented commits used in this work
comprises open source apps. Our methodology requires access to data that is
not publicly available for commercial apps. The extent to which this findings
generalize to commercial apps with non-open source licenses is not assessed. Still,
the maintainability challenges pinpointed in our work are relevant to mobile app
projects regardless of their license.

We only analyze Android apps. Different platforms and programming languages may
require different coding practices to address energy efficiency. We did not study how
our findings generalize to other mobile platforms.

We resort to a set of energy changes that were collected from four previous
works [Moura et al., 2015; Bao et al., 2016; Cruz and Abreu, 2018a; Cruz and Abreu,
2019a]. These works use the commit message provided by developers to classify a
given commit as an energy change. This approach discards energy changes that did
not have a commit message describing them as such. Since extending our datasets
to these commits is not trivial, we limit the scope of this study to energy-oriented
commits with an explicit commit message. Finally, all the energy commits in this
work are described in English.

8.7 Related Work
In this section, we discuss related works on code maintainability, energy patterns,
and anti-pattern detection.

8.7.1 Code maintainability

Previous work has studied the evolution of maintainability issues during the devel-
opment of Android apps [Malavolta et al., 2018]. The authors have observed that
maintainability decreases over time, being code duplication the most common main-
tainability issue. In addition, they found evidence for the fact that maintainability
issues in Android apps occur independently of the type of development activities
performed by developers. Their work uses a dataset from related work [Pascarella
et al., 2018] with an under-represented sample of energy activities, counting with
only 12 occurrences. In this work, we focus on a larger sample, counting with
539 energy activities to analyze how energy activities affect the maintainability of
Android projects.

A use case study on the Java framework JHotDraw suggests that the adoption of
design patterns is highly correlated with the maintainability of a project – i.e., the
usage of design patterns do improve code maintainability [Hegedűs et al., 2012].
On contrary, related work shows that some design patterns should be used with
caution, since they may bring maintainability and evolution issues to software
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projects [Khomh and Gueheneuce, 2008]. Our work studies how these findings
apply in the case of energy patterns, for open-source Android apps.

Previous work studied the effect of programming languages in the quality of code
found [Ray et al., 2014]. It was found that language design has a significant yet
moderate impact on software quality. The authors have used the number of defects
as a construct of software quality. Our work analyzes software quality in terms
of code maintainability to study how it is affected by energy efficiency-oriented
commits.

8.7.2 Energy patterns
Previous works have studied the impact of different energy patterns on mobile apps.
Offloading heavy computation tasks to a cloud server was found to reduce energy
consumption up to 50% in mobile apps [Kwon and Tilevich, 2013]. Other patterns
comprise featuring dark user interface themes achieve better energy usage on mobile
devices [Agolli et al., 2017; Linares-Vásquez et al., 2017a]. Other approaches
have improved energy efficiency by finding the optimal number of display updates
in a mobile app [Kim et al., 2016]. Another work has used regular expression
representations to ensure an optimal usage of the energy intensive resources of
mobile devices [Banerjee and Roychoudhury, 2016].

The impact of logging practices of developers on the energy consumption of Android
apps has also been studied [S. Chowdhury et al., 2018b]. From the 24 Android apps
in this study, 19 exhibited at least one version in which logging statements had a
medium or large effect size on energy consumption.

Energy patterns for mobile apps have been widely studied in the literature [Cruz
and Abreu, 2019a; Bao et al., 2016; Moura et al., 2015]. Our work acknowledges
the importance of using energy patterns to improve energy efficiency. However, we
take a step further and study the impact of these patterns on the quality of the app in
terms of code maintainability. In addition, we study the change-proneness of these
techniques in mobile app codebases.

8.7.3 Detecting Anti-patterns in Mobile Apps
Related work has studied how anti-patterns affect the overall energy consumption
of Android apps. Previous work on 60 Android apps have studied the influence of 9
Android-specific code smells on energy efficiency. Results showed energy savings
up to 87 times after fixing all code smells [Palomba et al., 2019]. Another work has
studied the impact of eight performance-based code smells on the energy efficiency
of mobile apps [Cruz and Abreu, 2017]. It was found significant differences, up
to 5%, on energy consumption by fixing five of the studied code smells. Not only
code smells have been studied in this context. The impact of picture smells on
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energy usage has also been assessed [Carette et al., 2017]. It was found evidence
that significant energy savings incur from using an optimal image compression and
format.

These works endorse the importance of using refactoring techniques to improve
energy efficiency. In fact, anti-pattern detectors and automatic refactoring tools
have been delivered to help developers ship energy-efficient code [Morales et al.,
2018]. Cruz et al. have implemented an automatic refactoring tool for Android
apps to fix five performance issues that also increase energy usage [Cruz and Abreu,
2018b]. Palomba et al. proposed an automated tool to identify 15 Android-specific
code smells [Palomba et al., 2017]. These code smells had been flagged by previous
work as a potential threat to the maintainability and the efficiency of Android
apps [Reimann et al., 2014]. Our work differs by 1) identifying code changes that
hinder maintainability and 2) using code changes that already been labeled has an
energy improvement.

8.8 Summary
In this chapter, we have studied what is the impact of improving energy efficiency in
the maintainability of mobile software projects. Concretely, in this chapter:

• We merged a dataset of Android app energy commits.

• We investigated the impact of applying energy patterns in the code maintain-
ability of open-source Android apps.

– We have found evidence that energy-oriented commits significantly de-
crease software maintainability in open source Android apps: 57% of
energy commits were observed to reduce code maintainability.

– We show that the change on maintainability is more evident for the
patterns Power Save Mode and Wakelock Addition, in which maintainability
decreases in 78% and 66% of cases.

• We perform manual analysis to assess how real examples of energy-oriented
changes affect maintainability.

• We discuss practical implications of the maintainability issues entailed by
energy changes.

• We delivered a reproducibility package, available here: https://figshare.
com/s/989e5102ae6a8423654d.
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9Conclusions

„One never notices what has been done; one can
only see what remains to be done.

— Marie Curie

Throughout this thesis, we have studied and extended the state-of-the-art approaches
to create energy-efficient mobile software. We have detailed existing energy mea-
surement techniques, defined energy efficiency best practices, developed tools to
help practitioners and researchers, and studied potential shortcomings of delivering
energy-efficient software. Our contributions in this thesis were motivated by the
lead research question proposed in (cf. Section 1.2):

Main Research Question

What are the inherent limitations of state-of-the-art approaches to improving the
energy efficiency of mobile applications, and what can be done to help developers
address it?

We have found that existing mobile apps lack adequate testing strategies, implying
extra challenges for energy tests. In addition, we leveraged new best practices to
develop energy-efficient mobile software and delivered tools to aid developers in
adopting them.

We answer the main research question by dividing it into the five research goals
presented earlier in this thesis (cf. Section 1.2). In this chapter, we summarize the
work performed for each research goal, with respective main findings. Then, we
outline the main contributions of this thesis. Finally, based on the main implications
of our work, we make recommendations on future work that is worth investigating.

9.1 Research Goals
In this section, we go over each proposed research goals and summarize our main
findings with respective implications.

Research Goal I

Describe the state-of-the-art approaches to measure the energy efficiency of mobile
applications
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Measuring the energy consumption of mobile apps is a complex task that requires
a thorough analysis to ensure the reliability of results. In Chapter 2 we describe
the state-of-the-art approaches to accomplish this task. We pinpoint the benefits
and drawbacks of using energy profilers or alternatively power monitors. As a
contribution, this chapter aims to be a guide to researchers and practitioners that
need to create energy tests. In addition, we use this guide to design the experimental
setup throughout this thesis.

Research Goal II

Study which UI testing frameworks can provide reliable energy efficiency assess-
ments and check if existing mobile application projects are ready for automated
energy testing approaches

In Chapter 3, we present a thorough analysis of the limitations of the state-of-
the-art UI frameworks when used to measure the energy consumption of mobile
apps. Despite being a fundamental tool for energy tests, we have found that most
frameworks are not ready yet. Significant overheads are being imposed by UI
frameworks in the energy consumption collected during measurements. This is a
fundamental threat to energy test results. As a rule of thumb, we recommend using
the framework Espresso. Nevertheless, we show that an analysis of the characteristics
of the project should be considered before selecting a framework.

As a side contribution, in Chapter 4, we study how existing FOSS Android apps
are testing their apps. We assess what practices these apps use, to understand how
energy testing can be integrated into these projects. We have found that these
apps lack adequate testing practices. Roughly 60% of the apps are not being tested.
The upside is that the most popular UI framework is Espresso, being used by 15%
of the projects. Moreover, we show that, as in other types of software, testing
increases the quality of apps (demonstrated in the number of code issues). Amongst
the implications of these findings, we highlight the importance of providing clear
up-to-date documentation of testing frameworks, and the influence of Google on the
technologies adopted by Android developers.

Research Goal III

Study and document best practices and recurrent solutions that can be reused to
improve the energy efficiency of mobile apps.

We address this research goal with two different strategies: 1) we study existing
best practices to improve the performance of mobile apps (cf. Chapter 5), and 2) we
empirically assess recurrent strategies created by experienced developers to manage
the energy efficiency of their apps (cf. Chapter 7).
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In Chapter 5, we analyze the impact of eight performance-based code smells in the
energy efficiency of Android apps. We show that fixing five of these code smells, viz.
ViewHolder, DrawAllocation, WakeLock, ObsoleteLayoutParam, and Recycle, leads to
more energy-efficient mobile applications. Savings go up to an hour of battery life.

In Chapter 7, we create a catalog of 22 energy patterns, as a result of ana-
lyzing recurrent fixes for energy efficiency in 1027 Android and 756 iOS apps.
This catalog will help mobile app designers and developers make educated de-
cisions when building (energy-efficient) apps, regardless of the target platform.
As a side contribution, we have found that the Android community is more
energy-aware. The catalog is available online for all the community: https:
//tqrg.github.io/energy-patterns/.

Research Goal IV

Develop static analysis and automatic refactoring tools to help practitioners
create energy-efficient mobile apps

In Chapter 6, we propose the automatic refactoring tool Leafactor to apply energy-
efficiency refactorings. We implement refactorings for the five code smells discovered
in Chapter 5 and validate Leafactor with 140 FOSS apps. Results show the importance
of using tools to aid developers in complying with energy best practices: using
Leafactor we were able to fix energy code smells in 45 out of the 140 (32%) Android
apps in the dataset.

Research Goal V

Assess the impact of improving energy efficiency in the maintainability of mobile
software projects

In Chapter 8, we study the potential effect of addressing energy efficiency in code
maintainability. We have found that, while improving energy efficiency, practitioners
tend to decrease the maintainability of their projects. This is particularly evident
for the patterns Power Save Mode and Wakelock Addition. We manually investigate
and discuss typical maintainability issues entailed by improving the energy efficiency
of their apps. Our findings show that mobile frameworks ought to feature energy
patterns without entangling difficult code changes. In addition, we suggest that code
auditing tools should be used during development activities to prevent such issues.
For instance, we recommend adopting a CI/CD pipeline.

9.2 Recommendations for Future Research
Energy Measurements as a Service In Chapter 2, we presented the challenges of
creating reliable energy tests. It serves as clarification of the methodology used in
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the energy measurements performed throughout this thesis. Moreover, it provides
a self-contained guide for researchers and developers that want to test the energy
consumption of their apps. As future research, we propose a cloud-based service to
simplify energy tests for developers and researchers. The idea is to use peer-to-peer
cloud computing to deliver reliable energy measurements as a service.

The system would allow users with power monitors to share their setup with other
developers through the cloud. To make efficient use of power monitors, the system
would also resort to estimations from energy profilers. Power monitors would only
be used whenever the estimations were found to be unreliable. In other words, the
system would combine energy models with power monitors to provide the most
accurate energy measurements without requiring a cumbersome setup of power
tools. We provide more details about this research direction in our ICSE paper [Cruz
and Abreu, 2019b].

Mobile Testing Culture In Chapter 4 we studied the prevalence of automated tests
in Android FOSS projects. As future work, our empirical study can be expanded in
several ways: 1) study how mobile app projects address tests for particular types
of requirements (e.g., security, privacy, energy efficiency, etc.); 2) based on the test
practices collected from mobile app repositories, provide a set of best practices to
serve as rule of thumb for other developers; and 3) verify that these findings also
hold for other platforms.

Automatic Refactoring for Energy Efficiency The automatic refactoring approach
used in Chapter 6 showed great potential to help developers improve the energy
efficiency of their apps. As future work, it would be interesting to support energy
patterns from related work [Reimann et al., 2014; Reimann and Aβmann, 2013].
In addition, we plan to study how the energy patterns studied in Chapter 7 can be
applied using automated tools.

Moreover, we would like to explore how automatic refactoring can be applied using
CI/CD pipelines. The integration would require two distinct steps: 1) one for the
detection and 2) another for the code refactoring which would only be applied upon
a granting action by a developer. This idea could also be applied for educational
purposes. A detailed explanation of the code transformation along with its impact
on energy efficiency would be provided whenever a developer pushes new changes
to the repository.

Energy Patterns A substantial contribution of this thesis is the catalog of 22 energy
patterns. We would like to study these patterns in the context of Cyber-Physical
Systems and Internet of Things (IoT) applications, in which power consumption
has been identified as a challenge to be addressed [White et al., 2010; Palattella
et al., 2016]. Finally, we plan to continuously extend the catalog with a broader set
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of energy patterns. We welcome contributions from the mobile app development
community as pull requests in our online repository.

Impact of Energy Patterns in Software Quality Our empirical study on 539 energy-
oriented changes of open source Android apps shows that these types of changes can
hinder maintainability (cf. Chapter 8). As future work, this study can be extended
in different ways: analyze which maintainability guidelines are more affected from
energy commits; analyze how results stand for different categories of mobile apps;
expand our methodology with other software quality properties (e.g., reliability).
Furthermore, it would be interesting to validate our findings with other mobile
platforms (e.g., iOS), and also with desktop and server applications.
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