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Abstract. We present a simple proof of the fairly general fact that an invariant right-weak
Gibbs probability measure is an equilibrium state, using a generalization of the formula of
Brin and Katok for the local metric entropy. This new formula also allows us to clarify the role
of the topological pressure on the standard definition of the Gibbs property.

1. Introduction

Let (X, d) be a compact metric space, f : X→ X a continuous transformation andϕ : X→ R
a continuous potential. The topological pressure Ptop( f , ϕ) of f and ϕ is a topological invariant
that generalizes the notion of topological entropy of f , we denote by htop( f ), in the sense
that Ptop( f , 0) = htop( f ). A Borel f -invariant probability measure µ is said to be an equilibrium
state for f and the potential ϕ if

Pµ( f , ϕ) = sup
{ν : f∗(ν) = ν}

Pν( f , ϕ)

where Pν( f , ϕ) stands for the sum hν( f ) +
∫
ϕ dν and the supremum is taken over all the

Borel f -invariant probability measures. According to the Variational Principle ([9, Theorem
9.10]), the previous least upper bound coincides with the supremum evaluated on the set of
ergodic probability measures, and is equal to Ptop( f , ϕ). We refer the reader to [9] for precise
definitions and proofs of these results.

Given γ ∈ R and a continuous potential ϕ, we say that a Borel probability measure µ is
(γ, ϕ)-weak Gibbs for the dynamical system f if there exist an ε0 > 0 and a subset Λ ⊂ X with
full µ-measure such that, for every 0 < ε < ε0 and every x ∈ Λ, there is a sequence of positive
constants

(
δn(ε, x)

)
n∈N

satisfying

lim
ε→ 0+

lim sup
n→+∞

log δn(ε, x)
n

= 0 (1)
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and, for every n ∈N (or for every n large enough),

δn(ε, x)−1 6
µ
(
B f

n(x, ε)
)

exp
(
− nγ + S f

nϕ(x)
) 6 δn(ε, x) (2)

where
B f

n(x, ε) =
{
y ∈ X : d( f i(x), f i(y)) < ε, ∀ 0 6 i 6 n − 1

}
is the nth dynamical ball of f at x with radius ε. We note that the assumption (2) obliges the
maps δn to satisfy δn(ε, x) > 1 for every n, x, ε, and therefore the equality (1) implies that

lim
ε→ 0+

lim inf
n→+∞

log δn(ε, x)
n

= 0.

In case µ satisfies only the right inequality of the condition (2), then µ is said to be (γ, ϕ)-
right-weak Gibbs. One defines (γ, ϕ)-left-weak Gibbs measure similarly. A (γ, ϕ)-weak Gibbs
measure is called ϕ-weak Gibbs if γ = Ptop( f , ϕ). Whenever Λ = X and instead of (1) one has

lim
ε→ 0+

lim sup
n→+∞

sup
x∈X

log δn(ε, x)
n

= 0 (3)

then µ is said to be (γ, ϕ)-quasi Gibbs. Finally, µ is called aϕ-Gibbs measure if it isϕ-weak Gibbs
on Λ = X and each map (ε, x) 7→ δn(ε, x) remains unchanged when x varies, depending only
on ε (as happens, for instance, if δn is constant for each n).

Our first result provides a conceptual and easy proof of the following connection between
right-weak Gibbs measures and equilibrium states.

Theorem A. Let f : X→ X be a continuous map on a compact metric space (X, d) whose topological
entropy htop( f ) is finite and which preserves a Borel probability measure µ. Consider a continuous
potential ϕ : X→ R. If µ is a ϕ-right-weak Gibbs probability measure for f , then µ is an equilibrium
state for ϕ.

The most used γ in the condition (2) is Ptop( f , ϕ), though we notice that a wider choice of
γ values is receiving more attention nowadays (see, for instance, [8]). Yet, exploring further
the proof of Theorem A we became aware of the most accurate choices of γ, and slightly
improved [6, Proposition 3].

Theorem B. Let f : X → X be a continuous map on a compact metric space (X, d) which preserves
a Borel probability measure µ. Consider a continuous potential ϕ : X→ R.

(a) If µ is (γ, ϕ)-weak Gibbs for f , then Ptop( f , ϕ) > γ.

(b) If µ is (γ, ϕ)-quasi Gibbs for f , then Ptop( f , ϕ) = γ.

2. A formula for the local metric pressure

The main ingredient in the proof of Theorem A is a formula to estimate the local metric
pressure of a continuous potential which generalizes Brin-Katok local entropy formula (cf.
[2]). More precisely, having fixed a Borel f -invariant probability measure µ and a continuous
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potential ϕ, we consider the sums S f
nϕ

def
=

∑n−1
j=0 ϕ ◦ f j and, for x ∈ X, we define the local

metric pressure of ϕ at x with respect to µ by

Pµ(x, f , ϕ) = lim
ε→ 0+

lim sup
n→+∞

− logµ
(
B f

n(x, ε)
)

+ S f
nϕ(x)

n

if this limit exists. Note that Pµ(x, f , 0) evaluates the local metric entropy of f at x as defined
by Brin and Katok. Regarding this notion, we refer the reader to [7] and [3]. (We thank the
anonymous referee for calling our attention to these references.)

Proposition 2.1. Let (X, d) be a compact metric space and f : X→ X be a continuous transformation.
Given a Borel f -invariant probability measure µ and a continuous potential ϕ : X→ R, there exists
a full µ-measure set B ⊂ X such that the map x ∈ B 7→ Pµ(x, f , ϕ) is well defined, µ-integrable,
f -invariant and satisfies ∫

Pµ(x, f , ϕ) dµ = Pµ( f , ϕ).

In particular, if µ is ergodic then Pµ(x, f , ϕ) = Pµ( f , ϕ) for µ-almost every x.

Proof. Brin-Katok’s result asserts that, given a compact metric space X, a continuous map
f : X → X and a Borel f -invariant probability measure µ, there exists a full µ-measure set
BK ⊂ X such that:

(a) For every x ∈ BK,

lim
ε→0+

lim sup
n→+∞

− logµ
(
B f

n(x, ε)
)

n
= lim
ε→0+

lim inf
n→+∞

− logµ
(
B f

n(x, ε)
)

n
.

(b) If hµ(x, f ) stands for the previous common limit, then the map x ∈ BK 7→ hµ(x, f ) is
f -invariant and µ-integrable.

(c)
∫

hµ(x, f ) dµ = hµ( f ).

Fix now a continuous potentialϕ and a Borel f -invariant probability measureµ. Birkhoff’s
Ergodic Theorem provides a full µ-measure set Bϕ and an f -invariant map

x ∈ Bϕ 7→ ϕ̃(x) def
= lim

n→+∞

1
n

n−1∑
i=0

ϕ( f i(x))

satisfying
∫
ϕ̃ dµ =

∫
ϕ dµ. Therefore, for every x in the set B def

= BK ∩Bϕ, we have

lim inf
n→+∞

− logµ
(
B f

n(x, ε)
)

n
+ ϕ̃(x) = lim inf

n→+∞

− logµ
(
B f

n(x, ε)
)

+ S f
nϕ(x)

n
6

6 lim sup
n→+∞

− logµ
(
B f

n(x, ε)
)

+ S f
nϕ(x)

n
= lim sup

n→+∞

− logµ
(
B f

n(x, ε)
)

n
+ ϕ̃(x).
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Taking the limit when ε goes to 0, we conclude that, for every x ∈ B,

lim
ε→ 0+

lim inf
n→+∞

− logµ
(
B f

n(x, ε)
)

+ S f
nϕ(x)

n
= lim
ε→ 0+

lim sup
n→+∞

− logµ
(
B f

n(x, ε)
)

+ S f
nϕ(x)

n
.

So Pµ(x, f , ϕ) is well defined, f -invariant, µ-integrable and

Pµ(x, f , ϕ) = hµ(x, f ) + ϕ̃(x)

at µ almost every x ∈ X. Using the previous item (c) of Brin-Katok’s result, we obtain∫
Pµ(x, f , ϕ) dµ =

∫ [
hµ(x, f ) + ϕ̃(x)

]
dµ = hµ( f ) +

∫
ϕ dµ

as claimed. To complete the proof of Proposition 2.1, we are left to remark that, if µ is
ergodic, then the f -invariant map x 7→ Pµ(x, f , ϕ) is constant in the setB, and so Pµ(x, f , ϕ) =

hµ( f ) +
∫
ϕ dµ at µ almost every x ∈ X. �

3. Proof of Theorem A

Firstly recall that, given a compact metric space X and a continuous map f : X → X, the
pressure map Ptop( f , .) : C0(X,R) → R ∪ {+∞}, defined on the space C0(X,R) of continuous
potentials, is either finite valued or constantly +∞ (cf. [9, §9.2]).

Consider a continuous potential ϕ and a ϕ-right-weak Gibbs measure µ for the dynamics
f , and gather the corresponding ε0, Λ and

(
δn(ε, x)

)
n∈N

satisfying equation (1) and the right
inequality of (2) for every x ∈ Λ and every n ∈N (or every large enough n), that is

µ
(
B f

n(x, ε)
)

exp
(
− n Ptop( f , ϕ) + S f

nϕ(x)
) 6 δn(ε, x). (4)

As we are assuming that htop( f ) < +∞, we know that Ptop( f , ϕ) is finite. Rewriting (4), we
obtain

Ptop( f , ϕ) −
log δn(ε, x)

n
6
− logµ

(
B f

n(x, ε)
)

+ S f
nϕ(x)

n
.

For every x ∈ BK∩Bϕ∩Λ, taking lim supn→+∞ (or lim infn→+∞) and afterwards evaluating
the limit of the last inequality as ε goes to 0+, we get

Pµ(x, f , ϕ) > Ptop( f , ϕ) at µ − a.e. x ∈ X.

Thus, applying Proposition 2.1, we conclude that

hµ( f ) +

∫
ϕ dµ =

∫
Pµ(x, f , ϕ) dµ >

∫
Ptop( f , ϕ) dµ = Ptop( f , ϕ).

Therefore µ is an equilibrium state for ϕ.
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4. Proof of Theorem B

With a simple computation we turn the inequalities (2), for every x ∈ BK ∩Bϕ ∩Λ, into

γ −
log δn(ε, x)

n
6
− logµ

(
B f

n(x, ε)
)

+ S f
nϕ(x)

n
6 γ −

log δn(ε, x)−1

n
.

Since µ is f -invariant, taking lim supn→+∞ (or lim infn→+∞) and afterwards the limit as ε goes
to 0, Proposition 2.1 yields

Pµ(x, f , ϕ) = γ at µ − a.e. x ∈ X

and

hµ( f ) +

∫
ϕ dµ =

∫
Pµ(x, f , ϕ) dµ = γ. (5)

Therefore, Ptop( f , ϕ) > γ.

We are left to show that Ptop( f , ϕ) 6 γ if µ is (γ, ϕ)-quasi Gibbs. We start observing that µ
is (γ, ϕ)-quasi Gibbs if only if it is (0, ϕ − γ)-quasi Gibbs. Moreover:

Lemma 4.1. Given a continuous potential ψ, if f admits a (0, ψ)-quasi Gibbs probability measure,
then Ptop( f , ψ) 6 0.

Proof. If the potential ψ is Hölder continuous, then the lemma is a consequence of the
following assertion, whose proof is a straightforward adaptation of Bowen’s argument to
show Proposition 4.8 (a) of [1].

Claim: If ν is a (0, ψ)-left-quasi Gibbs probability measure for f and a Hölder continuous potential
ψ, then there exists ε0 > 0 such that, for every 0 < ε < ε0, one has

Ptop( f , ψ) 6 lim inf
n→+∞

1
n

log ν
(
B f

n(ε)
)

= 0

where B f
n(ε) stands for the union

⋃
x∈X B f

n(x, ε).

Regarding more general potentials, the lemma is a particular case of [5, Proposition 3.1],
whose proof simply requires a further adjustment of Bowen’s reasoning. This proposition
ensures that:

Claim: If ν is a (0, ψ)-left-quasi Gibbs probability measure for f and a continuous potential ψ, then
for every f -invariant ergodic Borel probability measure θ on X one has

hθ( f ) +

∫
ψ dθ 6 0.

Consequently, by the Variational Principle,

Ptop( f , ψ) = sup
{ f -invariant ergodic θ}

{
hθ( f ) +

∫
ψ dθ

}
6 0.

�
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We are ready to complete the proof of Theorem B since, by Lemma 4.1,

Ptop( f , ϕ) = Ptop( f , ϕ − γ) + γ 6 γ.

In particular, due to (5), µ is an equilibrium state for ϕ.

5. Non-invariant Gibbs measures

As far as we know it is still an open question under what additional conditions, other than
invariance, is a weak Gibbs measure either an equilibrium state (even if for another potential
somehow related to the original one) or equivalent to an equilibrium state. Considering
a stronger definition of the Gibbs property and assuming that the dynamical system is a
homeomorphism satisfying expansiveness and specification, the answer to this question
is positive (cf. [4]). We may also ask whether the presence of a Gibbs measure for some
potential prompts the existence of an equilibrium state for that potential.

The next three examples evince the distinction between being a Gibbs measure, an invari-
ant measure, an equilibrium state or else equivalent to an equilibrium state.

Example 5.1. In the context of Ruelle-expanding maps, the transfer operator provides Gibbs
measures which are not invariant. So they are not equilibrium states, despite being equiva-
lent to them (cf. [1]).

Example 5.2. While constructing equilibrium states for Hölder potentials on basic sets of C2

diffeomorphisms acting on Riemannian manifolds (cf. [1]), Bowen shows a Volume Lemma
which asserts that the volume measure on the manifold is a (0, ϕu)-Gibbs measure, where
ϕu = − log Jac Df|Eu , though it may be non-invariant and not equivalent to the equilibrium
state of ϕu.

Example 5.3. Consider a Markov unilateral chain Σ+
A ⊂ {0, 1}

N associated to an irreducible
2-dimensional matrix A. The measure of maximal entropy µ of the shift map acting on
Σ+

A, which is the equilibrium state of ϕ ≡ 0, is a 0-Gibbs measure (cf. [1, Theorem 1.16])
determined by a probability vector (p0, p1) which is fixed under the action of a stochastic
matrix P =

(
pi j

)
i, j∈ {0,1}

(cf. [9, Theorem 8.10]), that is, pP = p. Accordingly, the µ-measure of

a cylinder

C(k; a0, a1, · · · , an) :=
{
(xn)n∈N ∈ Σ+

A : xk = a0, · · · , xn+k = an
}

where k, n ∈ N and a j ∈ {0, 1} for every 0 6 j 6 n, is given by pa0 pa0 a1 · · · pan−1 an . Take
now a probability vector (q0, q1) such that qP , q. Then the corresponding ν is not σ-
invariant, though it is a Markov measure and 0-Gibbs as well. Indeed, for every cylinder
C(k; a0, a1, · · · , an), one has

ν
(
C(k; a0, a1, · · · , an)

)
= qa0 pa0 a1 · · · pan−1 an =

(
qa0

pa0

)
pa0 pa0 a1 · · · pan−1 an

and so

αµ
(
C(k; a0, a1, · · · , an)

)
6 ν

(
C(k; a0, a1, · · · , an)

)
6 βµ

(
C(k; a0, a1, · · · , an)

)
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where α = min06 j61

{ q j

p j

}
> 0 and β = max06 j61

{ q j

p j

}
> 0.
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