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Abstract—The task of coreference resolution has attracted a
great deal of attention in the literature due to its importance
in deep language understanding, and its potential as a subtask
in a variety of complex natural language processing problems.
We experiment with different methods for generating training
data and architectures for extracting meaningful mention repre-
sentations. Coreference resolution in lesser-resourced languages
is challenging, and transfer learning is a promising technique
to overcome the comparatively smaller available corpora. We
explore direct transfer learning from Spanish to Portuguese. We
present state-of-the-art systems on both Spanish and Portuguese,
and report promising results in a cross-language setting.

I. INTRODUCTION

Coreference resolution is a natural language processing
(NLP) task that comprises determining all linguistic expres-
sions — or referring expressions — that refer to the same real-
world entity. A referring expression (i.e. a mention) is either a
noun phrase (NP), a named entity (NE), or a pronoun whose
meaning is a reference to an entity or event in the real world
— the referent. A grouping of referring expressions with the
same referent is called a coreference chain or cluster [1].

The goal of a coreference resolution system is to output all
the coreference chains of a given text. Addressing this problem
typically requires addressing previous language processing
tasks, such as parsing, named-entity recognition and part-of-
speech tagging. Coreference resolution has a high-impact on
several other NLP tasks, including textual entailment, summa-
rization, information extraction, and question answering.

Figure 1 shows examples of sentences and their corre-
sponding coreference chains. A classification algorithm could,
for instance, use the hyponym/hypernym semantic relation
between “bee” and “insect” to classify the two mentions as
co-referent, and use world-knowledge to infer a strong relation
between ‘“Barack Obama” and “president”. The handicaps
machines exhibit when dealing with coreference resolution
is evidenced by the use of this task in tests of machine
intelligence, such as the “Winograd Schema Challenge” [2].

Despite some attempts to solve this problem with unsu-
pervised methods [3], state of the art has consistently been
driven by supervised machine learning [4], which presents a
problem for low-resource languages (e.g. Portuguese). This
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predicament is sometimes tackled with transfer learning from
models trained on large datasets of another language [5], and
has been addressed in recent research tasks [6], [7].

The remainder of the paper is organized as follows. In
Section II we explore the state of the art. In Section IIT we
address the resources we use and the associated challenges.
In Section IV we explore our experimental setup and method-
ology, as well as detail baselines, evaluation settings, and the
performed experiments. In Section V we detail and discuss
the results obtained by the systems described in this work. In
Section VI we draw conclusions and discuss future work.

II. RELATED WORK

With its roots in the 1960s, there have been numerous works
on coreference resolution over time [4]. Additionally, it has
been addressed in several tasks dating back to the sixth [8]
and seventh [9] Message Understanding Conferences.

The typical architecture of a coreference resolution system
includes a data preparation phase and a resolution phase (as
seen in Fig. 2). Data preparation consists in the detection
of mentions in the input text, followed by a feature extrac-
tion step that converts each data instance into an expressive
feature-vector. The resolution phase consists in the binary
classification of these instances as coreferent or not (or, in
ranking systems, in the attribution of coreference scores),
followed by the linking/clustering of mentions into the final
coreference chains. These two steps of the resolution phase
can be addressed either simultaneously or separately.

1. [Bees]y are critical to safeguarding [food supplies
worldwide];. [These interesting insects]y have been hit
hard by [climate change],.

2. [Barack Obamal, [the former US president],, has told
[the country]; [he]y’s ready for [a long vacation],.

3. [The city councilmen], refused [the demonstrators]; [a
permit], because [they]; advocated violence.

Fig. 1. Coreference resolution examples. The third example was extracted
from the “Winograd Schema Challenge” [2].

290



2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS)

P " Resoluion )
Data Preparation -
\I'cat\un Coreference
[ Mention Detecuon Feature Exlracuun Annotations
L unklng

Fig. 2. Typical architecture of a coreference resolution system. Figure based
on one by Sapena et al. [1].

Performing classification and linking as two separate steps
enables the use of global-optimization techniques in the
linking phase, such as path-finding [10], clustering [11] or
graph-partitioning algorithms [1]. In linking/clustering, it is
also common to use heuristic-based approaches to link a
mention with the best instance from a pool of positively
identified antecedents (e.g. closest antecedent) [4]. Conversely,
performing classification and linking simultaneously may lead
to more informed decisions in the classification phase, as
one can use features from a partially-formed coreference
cluster to restrict future classifications (e.g. if the cluster has
a well defined gender, only link new mentions with that same
gender). Systems that use features related to the whole entity to
make mention-wise linking decisions are called entity-mention.

In contrast, mention-pair models use only local information
to classify mentions as coreferring or not. Similarly, mention-
ranking models use mention-wise features to impose a ranking
of candidate antecedents, determining a mention-pair score
instead of classifying it as coreferring or not. Besides being
simpler, these types of models can be followed by a clustering
process that introduces global information into the problem.

Regarding the classification phase, traditional approaches
were based on training linear models based on a set of hand-
engineered features (e.g. string match among the two men-
tions, gender match, number match). More recently, Wiseman
et al. [12] pioneered the use of a neural network to learn non-
linear representations of raw data, improving the state-of-the
art in this task. Following this trend towards deep learning
models, Clark and Manning [13] and Wiseman et al. [14]
further improved the state-of-the-art by incorporating global-
level entity-based features into the non-linear model.

More recently, research has moved in the direction of end-
to-end systems to solve the problem as a whole, with Lee
et al. [15] jointly modeling mention-detection, coreference
assessment, and a head-finding mechanism with impressive
results, cutting reliance on external syntactic parsers. Although
achieving state-of-the-art results, this model did still make
locally informed mention-pair decisions. At the core of this
work were vector embeddings representing spans of text in the
document. These embeddings proved capable of representing
the span’s meaning, but still suffered from the fact that a single
word’s embedding was the same regardless of the context it
was in [16]. In 2018, contextualized word embeddings were
introduced by Peters el al. [17], improving state-of-the-art in
several NLP tasks, including coreference resolution.

Following their own previous work, Lee et al. [18] tack-
led the lack of global information when assessing mention
coreference by introducing an approximation to higher-order

inference for coreference resolution, thus enabling the model
to “softly consider multiple hops in the predicted clusters” [18]
through an iterative process, and achieving the current highest
score in the coreference CoNLL-2012 task [19].

Regarding coreference resolution in the Portuguese lan-
guage, state-of-the-art has lacked behind more resourced lan-
guages, but direct comparison is complex as evaluation is
obviously performed in different corpora. To the best of our
knowledge, the coreference resolution systems reporting best
results in an unrestricted Portuguese dataset are the works of
Fonseca et al. [20] and of Rocha and Lopes Cardoso [21]. Both
use hand engineered features and linear models for mention-
pair classification with promising results.

Cross-lingual coreference resolution has been tackled by
recent tasks, but these do not include the Portuguese language.
Approaches in literature focus on projection-based coreference
resolution [6], [7] and, most recently, direct transfer [5].

III. RESOURCES

When using supervised machine learning techniques, as
customary in the state-of-the-art for coreference resolution
(see Section II), the availability of annotated corpora is an
important requirement. Although large-scale corpora have
been built for the English language, the most prominent being
the OntoNotes 5.0 dataset [19], this type of corpora is not
so mature for other languages. This scarcity poses a barrier
to improving coreference resolution for lower-resourced lan-
guages, which we aim to overcome with transfer learning.
A collection of available corpora for several languages is
included in Table I, in chronological order.

The largest Portuguese dataset annotated with coreference
information is Corref-PT [26], from late 2017. Corref-PT is
approximately 8 times the size of the Summ-it++ corpus [25],
a widely used resource in the Portuguese and Brazilian NLP
communities. It is important to note that all Portuguese corpora

TABLE I
COREFERENCE RESOLUTION CORPORA.
Corpus Language #Tokens  #Docs
MUC-6 [8] English 25K 60
MUC-7 [9] English 40K 67
English 960K -
ACE (2000-2004) [22]  Chinese 615K -
Arabic 500K -
English 120K 353
Catalan 345K 1138
Dutch 104K 240
SemEval-2010 [23] German 455K 1235
Italian 140K 143
Spanish 380K 1183
English 1.6M 2,384
OntoNotes v5.0 [19] Chinese 950K 1,729
Arabic 300K 447
Portuguese 51K 97
Garcia et al. [24] Galician 42K 57
Spanish 46K 39
Summe-it++ [25] Portuguese 20K 50
Corref-PT [26] Portuguese 124K 182
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discussed in this paper correspond to the Brazilian variant of
this language, as European Portuguese corpora is even rarer.

For Spanish, another Latin language, the largest corpus
available is the AnCora dataset [27], used as the Spanish
section of the SemEval-2010 task [23], which resulted in the
proposal of several coreference resolution systems [1], [28].

We use the AnCora corpus [27] for the Spanish language
and the Corref-PT corpus [26] for the Portuguese language,
which feature 380K and 124K tokens, respectively.

In addition to corpora resources, we use pre-trained word
embeddings. This type of resources is widely used in the
literature, serving as features to most recent state-of-the-art
systems [13], [15], [17], [18]. In order to minimize traction
in the model’s context change (between datasets in different
languages), we chose to use FastText multilingual word vec-
tors [29]. These are 300-dimensional pre-trained word vectors
whose vector spaces were aligned after training, meaning the
Spanish and the Portuguese versions of a given word will
have close vector representations in their respective embedding
spaces. An additional advantage of FastText word vectors is
their ability to predict representations for out-of-vocabulary
words, which were not found frequently enough in the training
phase but are found in the evaluation phase.

IV. METHODOLOGY

To tackle the task of coreference resolution we train deep
neural networks with a variety of architectures. This section
describes the training data generation, the linking algorithm
used, the features used by the different models and their
architectures, as well as the challenges faced in training.
Furthermore, we discuss the direct transfer of learned model
weights between Spanish and Portuguese.

Our experiments focus on the classification phase of the
coreference resolution pipeline. We supply the model with
gold-standard mention boundaries, and use a deterministic but
proven linking algorithm: closest antecedent [30]. The closest
antecedent algorithm consists in linking each mention with its
closest positively identified antecedent, if one exists [30].

We follow the mention-pair model (described in Section II),
as it is used in several recent state-of-the-art systems [15], and
even more so in Portuguese [20], [21].

A. Training Set Creation

To transform the provided coreference annotations into a
set of training instances suitable for the learning process,
we create pairwise combinations of mentions by pairing each
mention m; with all its candidate antecedents m; (mentions
which appear before m;). A learning instance is created for
every pair (m;, m;): (m;, m;, P) if positively coreferent, or
(mi,mj, N) if not coreferent.

This procedure generates a highly unbalanced dataset. On
the Spanish AnCora dataset, 7,101,670 mention-pairs were
generated from the 1183 documents, 190,834 of which were
positive learning instances and 6,910,836 were negative learn-
ing instances, corresponding to a 2.7%/97.3% split. On the
Portuguese Corref-PT dataset, 923,566 mention-pairs were

generated, 45,659 of which were positive learning instances
and 877,907 were negative learning instances, corresponding
to a 4.9%/95.1% split. This class imbalance problem has been
extensively studied in literature, and is usually tackled by using
random undersampling of the majority class [20], [31]. We
chose to perform our own study using one of the proposed
architectures, aiming to identify which undersampling percent-
age is able to maximize performance on specific coreference
metrics. Results are reported in Section V-A.

B. Evaluation

For comparison with SemEval-2010 systems, we report
performance on SemEval-2010 metrics evaluated with the
official SemEval scorer: MUC [32], B® [33], CEAF, [34],
and BLANC' [35]. We also report performance on the official
CoNLL metric [19]: the unweighted average of Fl-scores of
MUC, B? and CEAF.. Additionally, due to using a recent
corpus for Portuguese coreference resolution [26], we report
the first coreference-specific results on the Corref-PT corpus.
Direct comparison of our system with the works of Fonseca
et al. [20] or Rocha and Lopes Cardoso [21] is not possible,
as the performance of these systems on model-independent
metrics is not reported, besides using a different corpus.

All results on the Spanish AnCora corpus are reported on
the test portion of the dataset (as partitioned in SemEval-2010),
using the development data for validation. Conversely, as
the Corref-PT corpus is not split in training/test/development
portions, we randomly select approximately 60% of documents
for training, 20% for testing, and 20% for validation.

Since reporting single scores is insufficient to compare
non-deterministic learning approaches [36], we report average
scores of 5 runs with different random seeds. The performance
on the mention-pairs test set corresponds to the sum of all
experiments confusion matrices, reporting on precision, recall
and F1 of the summed confusion matrix [37].

C. Feature Selection

All models receive as input a pair of 50-dimensional vectors,
representing indexes in the embedding matrix of the words on
both mentions (m;,m;), up to a maximum of 50 words per
mention, as mentions can span multiple words. This way, in or-
der to keep a constant-sized input, mentions which span more
than 50 tokens/words (representing 0.10% of the total) are
cropped, and mentions spanning less than 50 tokens are padded
with a special embedding filled with zeros. Additionally, the
distance in sentences and tokens between both mentions is
also passed as input, binned into the buckets [1, 2, 3, 4, 5-7,
8-15, 16-31, 32-63, 64+], following Clark and Manning [13].

Despite having access to other useful features in the AnCora
dataset (arguments and thematic roles, predicate semantic
classes, and WordNet nominal senses), the Corref-PT dataset
does not provide these features, and their use would mean
employing error-inducing syntactic parsers on the latter cor-
pus. As such, we chose to use only language-agnostic features
that could be determined without errors at train and test-time:
word-embeddings and distance features.
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D. Architectures

In our experiments, we subdivide the models in two steps:
the first concerns extracting representative features from men-
tions; the second focuses on assessing coreference affinity. The
first is performed either using CNNs, LSTMs, or dense layers,
following recent successes with these types of neural networks
in NLP [38]; and the latter is performed using traditional dense
layers. We experimented with 5 different model variations:

1) Archl, composed by the following layers:

a) an embedding layer whose vectors were obtained
from a pre-parsed FastText file, containing the most
common words found at training [29];

b) the mentions embeddings are summed along the
word axis, transforming (50, 300) tensors into (1,
300) tensors, 50 being the mention length, and 300
being the embedding dimensions;

¢) tensors from both mentions are stacked into a (2,
300) tensor and passed through a standard 1-D con-
volutional layer, with 64 output filters and window
size of 2, outputting (1, 64) shaped tensors;

d) this 64-dimensional representations are concate-
nated with the scalar distance features, then passed
through a standard fully-connected layer (with
64 neurons), and a final sigmoid-activated fully-
connected layer (with 1 neuron).

2) Arch2: this model’s embedding layer was created by
tokenizing the texts from the entire input dataset, load-
ing the entire embeddings model, and leveraging Fast-
Text’s ability to predict embeddings of out-of-vocabulary
words [29] (not seen when learning the embeddings),
thus ensuring that all words have some sort of represen-
tation, even though words seen during training will have
a more representative embedding; remaining layers are
the same as the previous architecture, Archl.

3) Arch2-dense: embedding layer is the same as Arch2, and
resulting embeddings are similarly summed into a pair
of (1, 300) tensors, but these are then concatenated along
with the distance features; these 602-dimensional tensors
are then passed through two hidden layers (with 150
neurons, following Lee ef al. [15]), and the final output
layer (similar to the previous architectures).

4) Arch-deep-CNN: embedding layer is the same as Arch2,
but instead of simply summing the word embeddings to
form a mention embedding, the (50, 300) shaped tensors
are passed through two 1-dimensional convolutional
layers with 128 output filters each and windows size of
3; these tensors are then max-pooled along the whole
time steps axis (1% axis), outputting 128-dimensional
tensors, and followed by two hidden layers (with 150
neurons [15]), and the final output layer.

5) Arch-biLSTM: in order to better represent the time-
dimension along the mention’s tokens, this architecture
feeds the (50, 300) tensors into a bidirectional LSTM
layer [39]; the last state of this LSTM is then extracted

and passed through two hidden layers (with 150 neu-
rons), and the final output layer.

All hidden layers and convolutional layers are activated by a
relu function [40]; all embedding layers, convolutional layers
and LSTM units have a 40% dropout rate, and hidden layers
have a 20% dropout rate [41]. These hyperparameters fit the
problem well, and were based on Lee et al. [15], which uses
an architecture with similar input, and then fine-tuned to our
problem through extensive experimentation.

E. Baselines

To attest to our models’ performance on popular coreference
metrics, we developed 2 different random baseline approaches,
and 1 deterministic baseline. Random baseline scores were
averaged over 5 runs. Results are shown in Table II.

e Randl: for every mention m;, with 50% probability
choose a random antecedent mention m;, uniformly
distributed between antecedents of m;; otherwise select
no antecedent for that mention.

e Rand2: for every mention m;, with x probability, =
being the percentage of coreferent mentions in the cor-
pus, select a random antecedent mention m;, uniformly
distributed between antecedents of m;; otherwise select
no antecedent for that mention.

e AlwaysNo: set all mentions as having no antecedent
(singleton mentions).

Additionally, we compare our models with the best reported
systems on the Spanish AnCora dataset [1], [28]. Note that we
only use the first column (token data) of the SemEval dataset,
unlike reported systems which could use all columns.

F. Training

We use ADAM [42] for training, with learning rate starting
at 0.001, and a batch size of 32 samples. The learning rate is
reduced by a factor of 5 once learning stagnates for more than
3 epochs, based on the accuracy on validation data. Models
are trained for up to 25 epochs, with early stopping after 6
epochs of non-improving performance on validation loss.

V. RESULTS

This section outlines and explores the results from the
experiments described in Section IV.

A. Undersampling

Aiming to improve model performance, we use the Arch2
architecture, described in Section IV-D, to study which un-
dersampling percentage is best suited for this task. Despite
Fonseca et al. [20] using one-to-one undersampling (equal
sampling of both classes), and measuring satisfactory results
with this method [31], performance was reported on sampled
mention-pairs, not model-independent coreference metrics. We
train the model on the AnCora corpus, and report performance
on macro-F1 of the mention-pairs test set (with original
sampling) and the CoNLL metric.

Figure 3 presents the results of training the model on differ-
ent undersampling percentages. We conclude that training the
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TABLE II
RESULTS OF DIFFERENT ARCHITECTURES AND BASELINES ON ANCORA (ES) TEST SET, AND CORREF-PT TEST SET, WITH GOLD ANNOTATIONS.

MUC B3 CEAF, BLANC CoNLL Official
5 et
Prec. Rec. FI! Prec. Rec. F1?> | Prec. Rec. FI® | Prec. Rec. Blanc M
Randl 10.7 8.2 9.3 63.7 521 573 | 455 558 50.1 502 50.1 50.1 38.9
Rand?2 25 4.7 32 62.5 809 705 | 735 570 642 | 501 504 49.8 46.0
AlwaysNo 0 0 0 62.2 100 76.7 | 89.2 555 684 50 48.8 49.4 48.4
Relax [1] 148 738 247 65.3 975 782 | 666 66.6 666 | 534 818 55.6 56.5
Sucre [28] 527 583 553 75.8 790 774 | 698 698 69.8 | 673 625 64.5 67.5
ES Archl 252 627 360 670 919 775 | 8.2 654 755 | 555 68.1 58.1 63.0
Arch2 547 442 518 85.3 72.1 781 732 863 792 | 639 632 63.5 69.7
Arch2-dense 374 699 487 71.5 902 798 | 889 693 77.8 | 634 640 63.6 68.8
Arch-deep-CNN | 377 664 48.1 70.9 88.1 785 | 879 696 777 | 620 659 63.6 68.1
Arch-biLSTM 427 652 516 72.2 86.6 788 | 875 723 792 | 615 64.6 62.8 69.9
Randl 137 205 165 30.5 542 39.0 | 462 241 31.7 | 504 507 50.4 29.1
Rand?2 3.6 11.7 5.4 272 79.5 406 | 51.7 176 262 | 50.1 51.4 49.2 24.1
AlwaysNo 0 0 0 26.4 100  41.7 | 522 138 21.8 50 473 48.6 21.2
PT Archl 43.8 554 489 460 576 512 | 495 312 383 | 57.6 557 56.4 46.1
Arch2 46.8 59.7 525 | 4697 626 53.7 | 55.1 345 424 | 583 609 59.3 49.5
Arch2-dense 46.7 59.2 521 48.1 593 529 | 512 2.6 39.7 | 60.1  58.6 59.1 482
Arch-deep-CNN | 41.8  53.0 46.7 44.7 580 504 | 508 320 392 | 646 65.1 57.1 45.5
Arch-biLSTM 46.8 582 518 484 589 53.1 514 334 405 | 59.1 58.5 58.7 48.4
Direct Archl 0.6 46.7 1.2 26.7 99.5 421 52.5 140 221 50.1 66.4 48.7 21.8
Tranes?er Arch2 569 609 58.7 58.6 39.7 458 | 33.0 28.0 29.7 | 523 50.6 41.2 44.8
(ES to PT) Arch2-dense 272 468 332 39.7 68.8 495 48.1 212 292 | 53.1 53.2 51.7 37.3
Arch-deep-CNN 0.2 33.1 0.3 26.5 99.7 418 | 522 138 219 | 500 59.6 48.7 21.4
Arch-biLSTM 5.4 40.0 9.6 28.1 92.0 43.1 51.9 152 235 | 50.8 56.2 50.5 25.4
10 ” class distributions. Despite this, and the considerably smaller
__,,——x-""'f_f ...... ...’ét.mx‘ dataset for Portuguese, we achieved promising results (see
659  _—-="" > g \;< Table II). No cited baselines are shown because, to the best
© 604 g SRR Ve of our knowledge, none exists for this corpus.
= ‘3"‘5 Then, we experiment with the direct transfer of model
g 551 I weights from Spanish to Portuguese. Although results lack
§ 504 ‘* behind models trained directly on Portuguese data, knowledge
] 1 transfer is clearly occurring, as the resulting models perform
s 451 '|| considerably better than random baselines, with special focus
20 4 ! on good identification of positive coreference links, evidenced
--e- Mention-pairs macro-F1 \ by the results on the MUC metric (58.7 F1 for Arch2 versus
357 7%~ CoNLL metric x 16.5 F1 for Randl). Interestingly, the best performing models
0 20 40 60 80 100 on this setting are the simplest architectures — Arch2 and
Undersampling of Majority Class (%) Arch2-dense, which have approximately an order of magnitude
Fig. 3. Effects of undersampling of majority class on model performance. less parameters than the remaining two architectures. We

model with 70% undersampling of the majority class improves
the model’s performance considerably, boosting it from 59.67
to 68.1 Macro-F1, and from 63.7 to 69.7 on the CoNLL metric,
when compared to training with no undersampling.

B. Results

Using the best undersampling value from the previous
experiment (70%), we train all proposed architectures on
the Spanish AnCora corpus and report test-set results in
Table II. The Arch2 and Arch-biLSTM architectures have the
best performance, clearly improving over the cited baselines.

Next, we select the most promising architectures and train
them on the Portuguese Corref-PT corpus. It is important to
note that random baselines perform substantially worse on the
Corref-PT corpus than the AnCora corpus, due to the different

associate these findings to the capability of more complex
models to capture Spanish-specific characteristics (overfitting
the training data), and the need for the simpler models to learn
broader and more general characteristics.

VI. CONCLUSIONS AND FUTURE WORK

We have reported on a new state-of-the-art coreference
resolution system on Spanish and the first, to the best of our
knowledge, for Portuguese exploring the Corref-PT corpus.
Additionally, we have studied the effect of undersampling on
standard coreference metrics, providing a considerable boost
to the system’s performance.

We have also presented a first attempt at leveraging a Span-
ish corpus for coreference resolution in Portuguese. We show
competitive results compared to an in-language model, which
provides good indications towards further exploring transfer
learning techniques to address less-resourced languages.
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In future work, we expect to improve our results using a
more context-aware architecture, more sophisticated clustering
algorithms, and improved mention-wise representations. We
will also deepen our research on the usage of transfer learning
on coreference resolution.
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