
  

  

Abstract— Early detection of liver cancer, whether from 

primary occurrence or from metastization is highly important 

to establish informed treatment decisions. Accurate delineation 

of the liver tissues of interest facilitates quantitative assessment 

of the regions of interest, treatment application, and prognosis. 

Segmentation of the liver in Computer Tomography (CT) 

images allows the extraction of the three-dimensional (3D) 

structure of the liver tissues in which the observation of their 

relative position to one another is particularly important in 

treatment scenarios of radiation therapy or interventional 

surgery planning. The adequate receptive field for the 

segmentation of such a big organ in CT images, from the 

remaining neighbouring organs was very successfully improved 

by the use of the state-of-the-art Convolutional Neural 

Networks (CNN) algorithms, however, certain issues still arise 

and are highly dependent of pre- or post- processing methods 

to refine the final segmentations. Here, the effects of Dilated 

Convolutional Networks is proposed, for the purpose of 

improving segmentation of liver tissues in CT. The introduction 

of a dilation module allowed the concatenation of feature maps 

with a richer contextual information. The hierarchical learning 

process given by different dilated convolutional layers is 

analysed quantitatively. Experiments on the MICCAI Lits 

challenge dataset are described achieving segmentations with a 

mean Dice coefficients of 95.57% and 59.36% for the liver and 

liver tumour, using a total number 30 CT test volumes. 

I. INTRODUCTION 

Computed Tomography (CT) is the preferred imaging 
modality for assessment, detection, diagnosis and follow-up 
of liver diseases [1]. Automatic segmentation of different 
medically relevant liver tissues is an active research topic in 
medical image analysis. Liver segmentation in computed 
tomography (CT) challenges current computer-aided 
diagnosis (CAD) systems that aim to support clinicians and 
improve their diagnosis and treatment performance. Such 
segmentations can provide doctors with meaningful and 
reliable quantitative information of the structure of the liver, 
which subsequently enable the identification of 
abnormalities. Precise quantitative diagnosis of the liver 
structure becomes particularly relevant in individuals 
diagnosed with liver cancer. Liver cancer has an alarming 
prevalence in a global scale and is the second most lethal 
cancer worldwide, accountable for more than 788,000 deaths 
in 2015 [2]. Liver cancer is characterized by the development 
of abnormal cell accumulations, commonly referred as 
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lesions that will appear represented differently within the 
anatomy of the liver, in structural images such as CT. In this 
clinical scenario, an informed decision on the treatment 
course entails the assessment of the estimated prognosis and 
surgical or intra-operative treatment planning. Factors such as 
tumour precise and relative location, shape and size are taken 
into account when deciding the type of treatment adopted. 
Liver cancer treatment may include chemo- or radio- therapy, 
hepatectomy (liver resection) or in very specific cases 
transplantation. Manual segmentation, however, varies from 
practitioner to practitioner, must be performed slice-by-slice, 
and requires large amounts of time and labour. Performing 
liver segmentation on CT scans may take up to 90 minutes 
for a single patient [3]. There is thus a need for reliable 
automatic or semi-automatic segmentation tools. The 
segmentation of these structures is not trivial due to the great 
variability in liver and liver lesions shape, location and 
boundary definition. Several classes of segmentation methods 
are proposed in the literature to tackle this subject, such as 
deformable models, probabilistic atlases, intensity-based 
methods such as level-sets and region growing. However, the 
literature was highly enhanced when machine learning 
algorithms were introduced in segmentation tasks, and more 
recently the state-of-the-art results were achieved with the 
application of Fully Convolutional Neural Network (FCNs) 
methods. CNNs have become appealing to address this task 
in coming years since (i) they have achieved the most state-
of-the-art results in several fields of computer vision and 
medical image analysis and (ii) they discover classification-
suitable representations directly from the input data, unlike 
conventional machine-learning strategies that are dependent 
of hand-generated representations of the input data. However, 
the success of such methods is dependent firstly, of the 
availability of sufficient amounts of labelled data and 
secondly, of the generalization capacity and wide-domain 
capacity of the resulting models. Interest in the specific task 
of liver analysis in medical images was highly enhanced by 
the proposal of the 2007 MICCAI Sliver [4] and the 2017 
MICCAI Lits [5] challenges, providing a well-established 
image dataset to benchmark different segmentation 
algorithms. In the literature 2D and 3D FCNs have been 
proposed. Ben-Cohen et al. (2016) proposed a VGG-16-
based architecture adapted with only convolutional layers, 
trained on full CT images, using adjacent (above and below) 
images as input to the model, validated on 43 image slices 
[6]. Such methodology provides added 3D contextual 
information to the network. Christ et al. (2017) proposed also 
a fully convolutional (FCN) method, known as the U-net 
architecture. The authors propose the addition of a post-
processing step using the widely established Conditional 
Random Field algorithm to further refine the CNN resulting 
segmentations [7], and validate their method on the 
3DIRCAD public dataset. Under the scope of the 2017 
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MICCAI LiTS challenge, Bi et al. (2017) presented the 
performance of the deep Residual Network (ResNet) for liver 
segmentation. Such architectures provide residual skip 
connections with the objective of avoiding the occurrence of 
vanishing gradients, especially in very deep architectures [8]. 
Recognizing the drawbacks of previous methods used for 
liver segmentation and the great ability of CNNs in learning 
richer features, we designed our approach to medical image 
segmentation that leverages the power of convolutional 
neural networks, trained end-to-end, to process CT volumes. 
We propose the usage of a Dilated Spatial Pooling module as 
the encoding portion of the explored CNN on CT slices, in a 
method that segments liver and lesions sequentially, leading 
to significantly higher segmentation quality, as demonstrated 
on a public challenge dataset. 

II. MATERIALS AND METHODS 

A. Dataset 

The presented approach was validated in the 2017 MIC-
CAI Lits dataset, consisting of 130 publicly available 
contrast-enhanced CT scans. The image dataset contains 
scans acquired from different scanner models, and acquisition 
protocols, and preserves a common image-resolution of 
512x512 pixels, comprising a varying resolution in the axial 
plane that varies from 94 to 910 image slices, with slice 
thicknesses ranging from 0.7 to 5 mm. The dataset was 
divided into a training, validation and test non-overlapping 
groups composed of 92, 8 and 30 scans, respectively. 

B. Pre-Processing 

Image contrast and intensity normalization are 
fundamental techniques when it comes to the analysis of the 
intensity content present in abdominal CT. Under this 
context, abdominal CT images of a patient depict several 
organs such as liver, spleen, gal bladder, etc. CT images 
acquisition outputs a quantification of X-rays by tissues at a 
pixel wise level, which is outputted according to the known 
scale of Hounsfield units (HU), proportional to the degree of 
tissue attenuation suffered. Although different HU intervals 
characterize different organs, these values often overlap, 
making the discrimination of the present tissues, particularly 
difficult. To eliminate the noise effect of other ranges of HU 

values, a technique named CT windowing is often applied. 
Thus, all CT slices were thresholded with a window range of 
[–200,250] recommended for the liver, removing the 
irrelevant tissue intensities. We enhanced the contrast of 
images at a certain level by performing histogram stretching 
of the obtained pixel values. Ground truth delineations of the 
liver and liver tumor are available for each exam, used to 
develop the CNN methods proposed in a supervised manner, 
and against which the performances of the developed 
methods were compared. 

C. Segmentation method 

This section describes a two-step segmentation 
framework with no need of user interaction. The hierarchical 
segmentation approach has two main stages: whole liver 
binary segmentation, followed by intra hepatic liver tumor 
segmentation. The approach is cascaded since the first step 
aims at identifying the complete liver anatomy, which is 
used in the following step as region of interest. The 
implemented FCN is based on the well-known U-net 
architecture, proposed by Ronneberger et al. [7], hence it is 
comprised of a contracting and expanding paths. However, 
certain changes in this structure were studied, to analyse the 
resulting effects in the segmentation results. In the classical 
U-net implementation, several feature maps are extracted in 
the contracting portion capturing increasingly more intra-
slice contextual information, by pooling of the features 
extracted. The network is characterized by addition-based 
connections between the shape-corresponding feature maps 
of the contracting to the expanding paths. This architecture 
allows the transfer of finer intensity and boundary details 
into the deeper operations of the network, which were 
roughly lost by the previous downsampling of the 
contracting path. 

 

• Dilated Convolution 
 

Dilated convolutions are proposed in the literature as 
operations that intend to effectively expand receptive field 
without losing resolution. Such effect occurs by the usage of 
standard pooling operations in the encoding path of U-net, as 
proposed by the authors [7]. However, the pooling operation 
makes the model invariant to local image transform, and 

 

Figure 1. Architecture implemented. Dilated convolutions are indicated with reference to the dilation rate implemented. indicates 

concatenation and + indicates addition of feature maps. 



  

downsizes the pictures as well as losing voxel-wisely 
resolution. To tackle such loss of resolution, in the proposed 
architecture we introduce a first operation of each block to 
systematically aggregate multi-scale contextual information. 
Very recently, Yu and Koltun [8] adopted this operation for 
semantic segmentation to increase the receptive field of deep 
CNNs, as alternative to down-sampling feature maps. The 
concept is based on the use of convolution kernels that have 
been dilated by inserting zero holes between the non-zero 
positions of a kernel. Given the signal 𝑥[𝑖], the 𝑦[𝑖] output 
of a dilated convolution with the dilation rate r and a filter 
𝑤[𝑠] with size 𝑆 is formulated as: 

 

𝑦[𝑖]  = 𝑆 ∑ 𝑥[𝑖 + 𝑟 · 𝑠]𝑤[𝑠]

𝑆

𝑠=0

 

 

Such type of convolutional kernel is also rotation 
invariant. The dilations can be mentally conceptualized as 
the introduction of discrete intervals of pixel that are used 
for the convolution kernel, and are dictated by the dilation 
rate 𝑟.  

 
In this context the proposed architecture, depicted in 

Figure 1, makes use of dilated kernels in the contracting path 
of the network, with a total of 8 dilated convolutional layers. 
Moreover, in the present study we intended to explore the 
effects of the dilations sequence in an exponential manner 
(here after referred to as Method 1)  and non-exponential 

(here after referred to as Method 2), given that these may 
have an effect in the results that may result in gridding of the 
output probability maps as reported in previous studies of 
the literature [9]. 

As non-linear activation, we use Rectifier Linear Units 
(ReLU) in the convolutional operations. The contracting 
path of the network intends to extract higher order feature 
representations of the images. The expanding path follows, 
and upsamples the information retrieved in the feature maps 
towards the original resolution. Input images and the 
corresponding liver segmentation masks provided by human 
experts were used to train the network. Examples of ground 
truth masks are latter presented in the Results section. To 
learn the whole liver supervised features an FCN model was 
trained. Such model was formulated taking into account the 
several sizes of receptive fields that can allow the network to 
learn the most discriminative feature maps. Such methods 
require also the kernelized image context to correctly 
identify the liver voxels. The size of receptive field roughly 
indicates the amount of context information that is used in 
each feature map. The networks were trained iteratively, 
using the Adam optimizer [10], a learning rate of 0.0001 and 
the minimization of the class weighted cross-entropy. The 
hyperparameters were tuned so as to give best performance 
on validation set. The neural networks were implemented 
using Keras [11] with Tensorflow backend and trained using 
one NVIDIA Titan Xp GPU. The dataset was augmented 
using rotation and horizontal flipping to increase 
generalizability of the model. 

III. RESULTS AND DISCUSSION 

 The described method was used to segment the 2017 

MICCAI Lits Challenge dataset. The proposed architecture 

was analysed with different dilation rate sequences to 

analyse certain issues and uncertainties introduced by this 

operation. All the presented variants of the method used that 

are being investigated in this paper were evaluated in the 

same test set. Training took from 9 to 12 hours for each 

model. The performance results are reported in terms of 

quantitative segmentation accuracy metrics. Quantitative 

evaluation of the developed methods is assessed by the Dice 

Score Coefficient (DSC), and sensitivity between the 

segmentation by one method and the ground truth. The 

obtained results are shown in Table I, along with a 

comparison towards other top performing methods presented 

in the literature. As baseline, we started by training the U-net 

network, as defined by [14], thus comprising convolutional, 

pooling, and upsampling operations along with short and 

long skip connections. The approach proposed attempts to 

overcome the drawbacks of data imbalance and boundary 

clarity. Results were highly enhanced by the combination of 

a CNN and the and the dilation-based encoding step 

implemented in the arquitecture. Moreover, the positive 

difference in performance derived from the analysis of the 

non-exponential dilation pyramid sequence was highly 

enhanced in particular for the segmentation of such small 

objects such as the liver lesions. To the best of our 

knowledge, no previous method taking advantage of the 

positive performance aspects of dilated convolutions was 

Figure 2. Examples of segmentations obtained on 30 CT scans 

of the 2017MICCAI Lits dataset. From top to bottom are 

shown the original CT, the liver segmentation (green) and 

tumour segmentation (yellow), of each method variant tested, 

to be compared against ground truth segmentations, 

represented in the last row. 
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previously proposed for the task of liver segmentation in 

abdominal CT images.  

 The proposed method achieves similar performance 

scores relative to the three top performing methods, as 

shown in Table I (example segmentation in Figure 2). We 

trained the model on slice-wise CT data for both liver tissues 

segmentation. A total 15051 image slices, corresponding to a 

total of 30 3D CT scans, not previously used for model 

training, were used to test the performance of the proposed 

model. Results obtained in this work, particularly regarding 

the segmentation of liver lesions, were also enhanced from 

the non truncation of HU intensities of the CT images after 

liver ROI selection from the first segmentation step of the 

cascaded approach used. For the specific task of lesion 

segmentation the truncation according to liver-specific HU 

values did not apply, and could potentially create the loss of 

local texture differences. Qualitatively, the segmentation 

results can be evaluated through Figure 2. In the two 

example results, the complex and heterogeneous structures 

of the liver were detected in the shown images. Overall, the 

model predictions were accurate in the classification of true 

positives. However, from the analysis of the entire dataset, 

the fuzziness of the liver boundaries in some scans leaked to 

the neighboring tissues, depicted in similar intensities. This 

is observable in Figure 2, in the example C. 

In this work, we devise a simple, but efficient and end-to-

end method that achieves state-of-the-art results in both 

quantitative metrics when compared to the three top 

performing methods of the literature. 

IV. CONCLUSION  

 Segmentation of the liver in Computer Tomography (CT) 

images allows the extraction of the three-dimensional (3D) 

structure of the liver. The adequate receptive field for the 

segmentation of such a big organ in CT images, from the 

remaining neighboring organs was very successfully 

improved by the use of the state-of-the-art Convolutional 

Neural Networks (CNN) algorithms, however, certain issues 

still arise and are highly dependent of pre- or post- 

processing methods to refine the final segmentations.  

Here, a Fully Convolutional Network is investigated as a 

potential method to improve the segmentations results of 

liver tissues in CT. The introduction of a dilation module has 

allowed the concatenation of feature maps with a richer 

contextual information. The hierarchical learning process of 

such feature maps allows the decoder module of the model 

to have an improved capacity to analyze more internal pixel 

areas of the liver, with additional contextual information, 

given by different dilation convolutional layers. 
 

TABLE I. RESULTS OBTAINED FOR THE 

SEGMENTATION USING THE DIFFERENT CNN VARIANTS 

EXPLORED (DSC – DICE SCORE COEFFICIENT, SE -

SENSITIVITY).  

The obtained results are preliminary, of a deeper study of the 

role of dilated convolutions and the adequate aggregation of 

context for the purpose of object segmentation in future 

work. Specifically, further exploration of the advantages of 

the usage of dilated FCN approaches for the segmentation of 

small object, such as liver tumours will be investigated. 

ACKNOWLEDGMENT 

 The authors gratefully acknowledge the funding from 

Project NORTE-01-0145-FEDER- 000022 - SciTech - 

Science and Technology for Competitive and Sustainable 

Industries, cofinanced by ”Programa Operacional Regional 

do Norte (NORTE2020), through ”Fundo Europeu de 

Desenvolvimento Regional (FEDER). The authors also 

kindly thank Nvidia, for the contribution with one Nvidia 

Titan XP GPU, that was used in this work. 

REFERENCES 

[1] A. Gotra, Sivakumaran, L., Chartrand, G., Vu, K. N., 

Vandenbroucke- Menu, F., Kauffmann, C., Tang, A. (2017). 

Liver segmentation: indications, techniques and future 

directions. Insights into imaging,8(4), 377-392. 

[2] World Health Organization. Fact sheet: Cancer, 2015.URL: 

http//www.who.int/mediacentre/factsheets/fs297/en/. 

[3] Dawant, B. M., Li, R., Lennon, B., Li, S. (2007). Semi-

automatic segmentation of the liver and its evaluation on the 

MICCAI 2007 grand challenge data set. 3D Segmentation in 

The Clinic: A Grand Challenge, 215-221. 

[4] Lits - liver tumor segmentation challenge, 2017. 

[5] A. Ben-Cohen, I. Diamant, E. Klang, M. Amitai, and H. 

Greenspan. Fully convolutional network for liver 

segmentation and lesions detec-tion. In G et. al Carneiro, 

editor,Deep Learning and Data Labeling for Medical 

Applications, pages 7785, Cham, 2016. Springer International 

Publishing. ISBN 978-3-319-46976-8. 

[6] P. F. Christ et al. (2017) Automatic liver and tumor 

segmentation of ct and mri volumes using cascaded fully 

convolutional neural networks. arXiv preprint 

arXiv:1702.05970. 

[7] Ronneberger O, et al. U-Net: Convolutional Networks for 

Biomedical Image Segmentation. In: MICCAI 2015. vol. 9351 

of LNCS. Springer; 2015. p. 234241. 

[8] F. Yu and V. Koltun. (2015) Multi-scale context aggregation 

by dilated convolutions, arXiv preprint arXiv: 1511.07122. 

[9] Wang, P., Chen, O., Yuan, Y., Liu, D., Huang, Z., Hou, X., 

Cottrell, G. Understanding convolution for semantic 

segmentation. WACV 2017, 2018, 1451-1460. 

[10] Diederik P Kingma and Jimmy Ba. (2014) Adam: A method 

for stochastic optimization, arXiv preprint arXiv:1412.6980. 

[11] Chollet, F. URL: https://github.com/keras-team/keras 

[12] Lei Bi, Jinman Kim, Ashnil Kumar, and Dagan Feng. (2017) 

Automatic liver lesion detection using cascaded deep residual 

networks. URLhttp://arxiv.org/abs/1704.02703. 

[13] Yading Yuan. (2017) Hierarchical convolutional-

deconvolutional neural net-works for automatic liver and 

tumor segmentation. URL- http://arxiv.org/abs/1704.02703. 

[14] Chlebus, G., Schenk, A., Moltz, J. H., van Ginneken, B., 

Hahn, H. K., Meine, H. (2018) Automatic liver tumor 

segmentation in CT with fully convolutional neural networks 

and object-based postprocessing. Scientific reports, 8(1), 

15497. 


