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Resumo 

 

Este estudo foi realizado com o objetivo principal de avaliar a possível presença de 

hidrocarbonetos aromáticos policíclicos (PAHs) e bifenilos policlorados (PCBs) na zona da 

costa de Vila do Conde, onde se encontra uma área de reserva protegida designada por 

“Reserva Ornitológica de Mindelo”.  

Esta zona, que foi uma das primeiras em Portugal a receber o estatuto de área protegida, 

é detentora de uma grande biodiversidade principalmente de aves. 

No entanto, apesar deste estatuto, esta Reserva esta encontra-se inserida a escassos km 

da foz do Rio Ave que além de banhar uma zona muito urbanizada e reconhecidamente 

industrializada tem também o porto de Vila do Conde. 

Neste sentido, procedeu-se à análise em amostras de água do mar de 16 PAHs (compostos 

considerados como prioritários pela sua toxicidade, potencial de exposição e frequência) e 

de 7 PCBs sugeridos como indicadores ambientais de contaminação pela Comissão 

Internacional para a Exploração do Mar (CIEM).  

As amostras (2 L) foram recolhidas em oito pontos distanciados entre si cerca de 500 m ao 

longo de aproximadamente 5 km de costa. Nestas colheitas, realizadas no inverno e na 

primavera de 2018, foram abrangidas quatro praias, incluindo na Reserva natural, de modo 

a cobrir os locais a norte e a sul da mesma.  

A presença dos micropoluentes supracitados foi quantificada após a sua extração em fase 

sólida (SPE). Este procedimento envolveu o uso de cartuchos OASIS HLB (Waters) 

seguido de cromatografia gasosa com deteção de massas (GC-MS/MS). 

Os resultados demonstraram a presença de PAHs e PCBs em todos os pontos de colheita. 

De um modo muito sucinto, observou-se que concentração média obtida para ∑16 PAHs 

foi de  79 ng/L e para os ∑7 PCBs foi de  50 ng/L, o que em comparação com outros 

locais a nível mundial nos deixa sérias preocupações sobre os riscos potenciais destes 

compostos em zonas de reserva e também usadas para lazer, não só dos habitantes locais 

mas também de turistas. 

Estes resultados são reportados em primeira mão nesta área e pode constituir um começo 

para construção de um melhor controlo destes poluentes, como também enriquecer o 

conhecimento geral sobre estes nas águas marinhas europeias. 

 

Palavras-chave: PAHs, PCBs, SPE, GC-MS/MS, TEQs   
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Abstract 

 

This study was carried out with the main objective of evaluating the possible presence of 

polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the 

coastal zone of Vila do Conde, where exists the natural reserve designated by "Reserva 

Ornitológica de Mindelo". 

This zone, which was one of the first in Portugal to receive the status of protected area, 

holds a great biodiversity, mainly of birds. 

However, despite this status, this reserve is located just a few km away from the mouth of 

Rio Ave, which besides bathing a very urbanized and recognized industrial zone also holds 

the Vila do Conde harbour. 

In this sense, 16 PAHs (compounds considered as priority because of their toxicity, 

exposure potential and frequency) and 7 PCBs suggested as environmental indicators of 

contamination by the International Commission for the Exploration of the Sea (ICES) were 

analysed in seawater samples. 

The samples (2 L) were collected at eight points spaced from each other about 500 m along 

approximately 8 km of seacoast. In these harvests, held in the winter and spring of 2018, 

four beaches were included, including in the Natural Reserve, to cover the sites to the north 

and south of the same. 

The presence of the aforementioned micropollutants was quantified after extraction in solid 

phase (SPE). This procedure involved the use of OASIS HLB (Waters) cartridges followed 

by gas chromatography tandem mass spectrometry (GC-MS/MS). 

The results demonstrated the presence of PAHs and PCBs at all harvest points. Briefly, it 

was observed that the mean concentration obtained for Σ16 PAHs was  79 ng/L and for 

Σ7 PCBs  50 ng/L, which compared with other sites worldwide leaves us serious concerns 

about the potential risks of these compounds in reserve areas and also in beaches used for 

leisure, not only for the locals but also for tourists. 

These results are the first reported in this area and can be a start to building better control 

of these pollutants as well as enriching the general knowledge about these pollutants in 

European marine waters. 

 

Keywords: PAHs, PCBs, SPE, GC-MS/MS, TEQs 
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1. Introduction 

 

It is of common knowledge that persistent pollutants are being released into the 

environment for many decades. This observation has originated many studies to prove that 

at least several compounds are having a negative influence in several species health, 

including in humans. 

In this sense, compounds as Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated 

Biphenyls (PCBs) were investigated since their presence in the aquatic environment has 

been linked as the surge of toxic influences that, in the most severe situations, can conduct 

to endocrine disorders and even cancer (Rojo-Nieto et al., 2013; Sinaei & Mashinchian, 

2014). In spite of this knowledge, unfortunately, the environmental levels of these 

compounds are still very high, mainly in highly inhabited/industrial districts (Nwaichi & 

Ntorgbo, 2016). 

So, it is safe to say that biomonitoring the levels of both PAHs and PCBs is an important 

task (Srogi, 2007). 

In Portugal exists few studies concerning the presence of PAHs and PCBs in surface waters 

(Rocha et al., 2017). In this vein, studies concerning compounds belonging to these two 

groups of organic pollutants are urgent.  

Therefore, this particular study had its main focus in studying the presence of 16 European 

Protection Agency (EPA) priority PAHs and seven PCBs in Vila do Conde coastal line, an 

area never before investigated for the presence of these pollutants. 

 

1.1 Polycyclic Aromatic Hydrocarbons (PAHs) 

 

1.1.1 PAHs physicochemical properties 

 

PAHs are a group of organic compounds that are constituted majorly by hydrogen and 

carbon with two or more fused benzene/aromatic rings (IARC, 2010).  

They are frequently colourless, white or pale yellow solids with high melting and boiling 

points, low vapor pressures and low aqueous solubility (Masih et al., 2012) (Figure 1). 
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Naphthalene  

(N) 

log Kow = 3.30 

VP = 0.085 mm Hg 

Acenaphthene  

(AcP) 

log Kow = 3.92 

VP = 0.0022 mm Hg 

 

Acenaphthylene 

(AcpY) 

log Kow = 3.93 

VP = 0.0048 mm Hg 

 

Fluorene  

(Flu) 

log Kow = 4.18 

VP = 6.0x10-4 mm Hg 

 

Phenanthrene 

(Phe) 

log Kow = 4.46 

VP = 1.2 x10-4 mm Hg 

 

 

Anthracene 

(A) 

log Kow = 4.45 

VP = 6.56x10-6 mm Hg 

 

Fluoranthene  

(FL) 

log Kow = 5.16 

VP = 9.22x10-6 mm Hg 

 

Pyrene  

(Pyr) 

log Kow = 4.88 

VP = 4.5 x10-6 mm Hg 

 

 

Chrysene  

(Chr) 

log Kow = 5.73 

VP = 6.23x10-9 mm Hg 

 

Benz[a]anthracene  

(BaA) 

log Kow = 5.76 

VP = 2.1x10-7 mm Hg 

 

Benzo[b]fluoranthene  

(BbFL) 

log Kow = 5.78 

VP = 5.0x10-7 mm Hg 

 

 

Benzo[k]fluoranthene  

(BkFL) 

log Kow = 6.11 

VP = 9.65x10-10 mm Hg 

 

Benzo[a]pyrene  

(BaP) 

log Kow = 6.13 

VP = 5.49x10-9 mm Hg 

 

Indeno[1,2,3-cd]pyrene  

(Ind) 

log Kow = 6.70 

VP = 1.25x10-10 mm Hg 

 

 

Dibenz[a,h]anthracene  

(DBA) 

log Kow = 6.50 

VP = 9.55x10-10 mm Hg 

 

Benzo[g,h,i]perylene   

(BP) 

log Kow = 6.63 

VP = 1.0x10-10 mm Hg 

 

Kow - n-octanol-water partition coefficient; VP – Vapour pressure at 25 ºC. 

 

Figure 1 – Chemical structure and some physicochemical properties of the 16 EPA priority 

PAHs which will be studied herein. Accessed on September 15th, 2018 

(pubchem.ncbi.nlm.nih.gov). 
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It is important to refer that PAHs can differentiate in their interaction behaviour with organic 

matter mainly because of their physicochemical properties, namely log Kow and vapor 

pressure (Figure 1). Generally, PAHs are divided in two categories which are light PAHs 

that contain up to four rings, and heavy PAHs, that have more than four rings, making them 

more stable and determine their degree of toxicity (Lawal, 2017). 

 

1.1.2 PAHs origins 

 

The PAHs can appear from natural or anthropologic processes (Lung & Liu, 2015). The 

anthropologic origins remain mainly in the production or combustion of fossil fuels (Abdel-

Shafy & Mansour, 2016; Abrajano et al., 2003). They are classified accordingly to their origin 

as pyrogenic, petrogenic or diagenic (Abdel-Shafy & Mansour, 2016; Abrajano et al., 2003). 

The pyrogenic PAHs are the result of a short-duration incomplete combustion at high 

temperatures of petroleum derivate or biomass, e.g., forest fires. On the contrary, the ones 

with petrogenic cause aren’t formed by the combustion, but instead are the result of the low 

temperature maturation from crude oil or others similar processes from coal and the by-

products of both. The diagenic ones are the result of biogenic precursors, such as plant 

terpenes (Bastami et al., 2013).  

Although these compounds aren’t synthetized for the industry, they can be used as 

intermediates for several processes. For this reason they are present in pigments, plastic, 

preserving diluents, paints and others. 

 

1.1.3 PAHs toxicity 

 

The PAHs physicochemical properties, as referred before, allow them to be transported 

over large territorial expanses and, furthermore reach the atmosphere (Malik et al., 2011). 

In this way their presence occurs in all terrestrial environments, even in the most remote 

and uninhabited areas, like the Artic (Ma et al., 2013). 

The ecological risks of these contaminants in aquatic environments are associated with 

their intrinsic toxicity, environmental persistence, bioaccumulation and trophic transfer 

(Bastami et al., 2013). In general, the toxic effects of contaminants are listed as acute and 

chronic, mutagenic, carcinogenic and immune suppressors (Rajendran et al., 2013).  
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Of all the PAHs, the BaP, is classified as carcinogenic for humans, but other seven, BaA, 

Chr, BbFL, BkFL, DBA, Ind and BP, are classified as possible carcinogens (IARC, 2010).  

It’s already proved that PAHs are hydrophobic and tend to bond with organic matter. When 

this happens they normally bond with sediments and in contact with animals they 

accumulate in their fate tissue (IARC, 2010; Qiu et al., 2009). 

So, in consequence they tend to accumulate in the food chain and for that reason are a risk 

to aquatic ecosystems and latter to human health (Malik et al., 2011).  

Humans are exposed to this contaminants in several ways such as, daily and occupational 

activities, tobacco smoke, some pharmaceutical products and even food (Abdel-Shafy & 

Mansour, 2016; IARC, 2010). For example, since there are result from incomplete 

combustion they can be present in meat when it suffers grilling process (Malik et al., 2011) 

and can also be present in species with a shell since they are in permanent contact with 

water and sediments because they filtered them (Nwaichi & Ntorgbo, 2016). 

 

1.2 Polychlorinated biphenyls (PCBs) 

 

1.2.1 PCBs physicochemical properties 

 

PCBs are made by the chlorination of biphenyl and compress a list of 209 individual 

chemicals, but is important to refer that each one can have different interaction behaviours 

with organic matter. In this case, the less-chlorinated is the congener, more soluble will be 

in water, as well as more volatile and easier to biodegrade (Beyer & Biziuk, 2009).   

In this list of 209 congeners, the molecular configuration can variate (Figure 2), given them 

different toxicity and behaviour depending upon the chlorine position in the phenyl ring 

(WHO, 2016). 

In terms of chemical structure they all possess the same two rings configuration and are 

differentiated by congeners because of the position and number of the chlorine atoms. In 

each congener a “BZ number” was attributed and because of that there nominated from 

PCB1 to PCB209 (IARC, 2016) (Table 1).  
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Figure 2 – General structure of PCBs, explaining the number and denomination of the 

possible substitutions in the phenyl rings. Image extracted from WHO (2016). 

In this study will be considered seven PCBs (Figure 3), which taken together with the above 

referred 16 PAHs will give precious informations about the water quality of marine 

environments (Elia et al., 2005; Keith, 2015).  

Kow - n-octanol-water partition coefficient; VP – Vapour pressure at 25 ºC 

Figure 3 – Chemical structure and some physicochemical properties of the seven PCBs 

which will be studied herein (IARC, 2016). 

This seven PCBs tagged as regulation-relevant congeners are the 28, 52, 101, 118, 138, 

153 and 180 PCBs and constitute the non-dioxin-like PCBs (NDL-PCBs) group (Elia et al., 

2005). 

 

PCB28 

log Kow =  5.67 

VP = 4.1x10-4 mm Hg 

 

PCB52 

log Kow =  5.84 

VP = 9.0x10-5 mm Hg 

 

PCB101 

log Kow =  6.38 

VP = 2.0x10-5 mm Hg 

 

PCB118 

log Kow =  6.74 

VP = 2.0x10-5  mm Hg 

 

PCB138 

log Kow =  6.83 

VP = 4.4x10-6 mm Hg 

 

PCB153 

log Kow =  6.92 

VP = 4.4x10-6 mm Hg 

 

 

 

 
 

PCB180 

log Kow =  7.36 

VP = 9.8x10-7 mm Hg 
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Table 1 – Correspondence between the number of benzene rings (BZ) and position of chlorine atoms on each phenyl ring of the PCBs. Adapted 

from IARC (2016). 

Position of  
chlorine  

atom on each  
ring 

2 3 4 2,3 2,4 2,5 2,6 3,4 3,5 2,3,4 2,3,5 2,3,6 2,4,5 2,4,6 3,4,5 2,3,4,5 2,3,4,6 2,3,5,6 2,3,4,5,6 

None 1 2 3 5 7 9 10 12 14 21 23 24 29 30 38 61 62 65 116 

2' 4 6 8 16 17 18 19 33 34 41 43 45 48 50 76 86 88 93 142 

3'   11 13 20 25 26 27 35 36 55 57 59 67 69 78 106 108 112 160 

4'     15 22 28 31 32 37 39 60 63 64 74 75 81 114 115 117 166 

2',3'       40 42 44 46 56 58 82 83 84 97 98 122 129 131 134 173 

2',4'         47 49 51 66 68 85 90 91 99 100 123 137 139 147 181 

2',5'           52 53 70 72 87 92 95 101 103 124 141 144 151 185 

2',6'             54 71 73 89 94 96 102 104 125 143 145 152 186 

3',4'               77 79 105 109 110 118 119 126 156 158 163 190 

3',5'                 80 107 111 113 120 121 127 159 161 165 192 

2',3',4'                   128 130 132 138 140 157 170 171 177 195 

2',3',5'                     133 135 146 148 162 172 175 178 198 

2',3',6'                       136 149 150 164 174 176 179 200 

2',4',5'                         153 154 167 180 183 187 203 

2',4',6'                           155 168 182 184 188 204 

3',4',5'                             169 189 191 193 205 

2',3',4',5'                               194 196 199 206 

2',3',4',6'                                 197 201 207 

2',3',5',6'                                   202 208 

2',3',4',5',6'                                     209 

 

Note: Dioxin-like PCBs are highlighted. 
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This seven indicators are recommended to characterize the contamination of PCBs 

because they are found in high concentrations in the environment, in food and 

consequently in humans (WHO, 2016). In Table 2 are highlighted the homologue groups 

where the above referred PCBs are included. 

 

Table 2 – Physical and chemical properties of PCBs according to homologue group. 

Adapted from IARC (2016). 

Homologue group 
Nº of 

isomers 
BZ Nº 

Chlorine  
(% w/w) 

Vapour 
pressure    

(Pa at 25 °C) 

Melting 
point (°C) 

Boiling 
point (°C) 

Monochlorobiphenyl 3 1–3 18.79 1.1 25 – 77.9 285 

Dichlorobiphenyl 12 4–15 31.77 0.24 24.4 – 149 312 

Trichlorobiphenyl 24 16–39 41.30 0.054 28 – 87 337 

Tetrachlorobiphenyl 42 40–81 48.65 0.012 47 – 180 360 

Pentachlorobiphenyl 46 82–127 54.30 2.6.10−3 76.5 – 124 381 

Hexachlorobiphenyl 42 128–169 58.93 5.8.10−4 77 – 200 400 

Heptachlorobiphenyl 24 170–193 62.77 1.3.10−4 83 – 149 417 

Octachlorobiphenyl 12 194–205 65.98 2.8.10−5 159 – 162 432 

Nonachlorobiphenyl 3 206–208 68.73 6.3.10−6 182.8 – 206 445 

Decachlorobiphenyl 1 209 71.10 1.4.10−6 305.9 456 

 

1.2.2 PCBs origins 

 

After the end of World War II, PCBs were intentionally produced because they were 

considered stable molecules with low chemical reactivity (Beyer & Biziuk, 2009; EPA, 

2009). These were used as fluid insulators, in high-voltage electric transformers, in high-

capacity condensers, as heat exchangers, pesticide extenders, and adhesives, 

dedusting agents, components of cutting oils, flame retardants, hydraulic lubricants, and 

components of plasticizers in paints, inks, toners, and printing inks (Henry et al., 2003). 

This compounds were banned in 1985, making their use and production very restricted 

in Europe (EC, 2001).   
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1.2.3 PCBs toxicity 

 

PCBs major structure is based in carbon atoms, fact that allow them to easily interact 

and bound with organic matter present in the soil, water and air. 

Once in the environment, PCBs are of great concern because of their persistence, 

easiness of transportation, bioaccumulation capacity in the trophic chain, and high 

toxicity (Huang et al., 2014).  

Actually it is known that can cause damage such as cancer, allergies and 

hypersensitivity, damage to the central and peripheral nervous systems, reproductive 

disorders, and disruption of the immune system (Stockholm Convention, 2009).  

 

1.3 Presence of PAHs and PCBs in marine environment  

 

Presently, the coastal marine environments are being a target of major concern in terms 

of ecological risk from these compounds (Wu et al., 2011). 

Until now, few measures have been taken in order to control the presence and release 

of both PAHs and PCBs in the environment, namely in the aquatic compartment, as it 

can be shown in Tables 3 and 4. 

It is observed that PAHs are found in surface waters in higher concentrations (Table 3) 

when compared to PCBs. This can be explained because PAHs are continuously 

released from several sources, as reported above (item 1.1.2).  

Briefly, the PAHs presence in aquatic systems is mainly due to anthropogenic actions 

such as industrial wastewaters, atmospheric emissions, oil spills and pyrolytic sources 

(incomplete combustion of fossil fuels or organic matter) (Rojo-Nieto et al., 2013).  

Thereafter, since PAHs are highly hydrophobic, they are rapidly adsorbed by the 

particulate matter present in the surface water, which makes them able to easily 

propagate to worldwide (Tiwari et al., 2017).  
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Table 3 – Environmental concentrations (minimum – maximum) of PAHs in superficial marine 

waters worldwide (continues in the next pages). DL – detection limit; ND – not detected. 

PAHs Localization Concentration (ng/L) Reference 

N 

Leça e Matosinhos (Portugal) 4.2 - 4.7 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL - 183 Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) ND Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 4.3 - 7.2 Agah et al. (2016) 

Thane Creek (India) 34.0 - 170 Tiwari et al. (2017) 

Bohai Bay (China) 8.8 -  437 Jia & Tian (2017) 

East Asia (China) 0.001 - 0.03 Ma et al. (2013) 

North Pacific (China) 0.003 - 0.01 Ma et al. (2013) 

High Artic (Artic) ND - 0.004 Ma et al. (2013) 

AcpY 

Leça e Matosinhos (Portugal) < 0.2 - 0.5 Rocha et al. (2017) 

Bay of Algeciras (Spain) 0.8 - 30.9 Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) 810 - 2634 Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 4.2 - 5.3 Agah et al. (2016) 

Thane Creek (India) 4.1 - 12.4 Tiwari et al. (2017) 

Bohai Bay (China) 0.1 - 2.2 Jia & Tian (2017) 

East Asia (China) 0.00001 - 0.003 Ma et al. (2013) 

North Pacific (China) 0.0001 - 0.002 Ma et al. (2013) 

High Artic (Artic) 0.0001   0.001 Ma et al. (2013) 

AcP 

Leça e Matosinhos (Portugal) < 0.7 - 0.9 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL - 3.1 Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) ND Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 2.9 - 3.0 Agah et al. (2016) 

Thane Creek (India) 2.5 - 5.6 Tiwari et al. (2017) 

Bohai Bay (China) 0.7 - 25.0 Jia & Tian (2017) 

East Asia (China) 0.0003 - 0.05 Ma et al. (2013) 

North Pacific (China) 0.0009 - 0.01 Ma et al. (2013) 

High Artic (Artic) 0.002 - 0.01 Ma et al. (2013) 

Flu 

Leça e Matosinhos (Portugal) < 0.3  - < 0.9 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) 286 - 1123 Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 3.7 - 3.8 Agah et al. (2016) 

Thane Creek (India) 21.3 - 50.0 Tiwari et al. (2017) 

Bohai Bay (China) 2.7 - 53.2 Jia & Tian (2017) 

East Asia (China) 0.003 - 0.06 Ma et al. (2013) 

North Pacific (China) 0.004 - 0.01 Ma et al. (2013) 

High Artic (Artic) 0.002 - 0.007 Ma et al. (2013) 
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PAHs Localization Concentration (ng/L) Reference 

Phe 

Leça e Matosinhos (Portugal) 1.9 - 8.9 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) 373 - 11104 Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 2.9 - 17.5 Agah et al. (2016) 

Thane Creek (India) 100.1 - 250.0 Tiwari et al. (2017) 

Bohai Bay (China) 5.2 - 108 Jia & Tian(2017) 

East Asia (China) 0.004 - 0.09 Ma et al. (2013) 

North Pacific (China) 0.004 - 0.02 Ma et al. (2013) 

High Artic (Artic) 0.002 - 0.01 Ma et al. (2013) 

A 

Leça e Matosinhos (Portugal) < 2.6 - 6.5 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) ND Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 11.1 - 14.0 Agah et al. (2016) 

Thane Creek (India) 20.1 - 40.2 Tiwari et al. (2017) 

Bohai Bay (China) 0.9 - 11.5 Jia & Tian (2017) 

East Asia (China) 0.0008 - 0.01 Ma et al. (2013) 

North Pacific (China) 0.0008 - 0.002 Ma et al. (2013) 

High Artic (Artic) 0.0003 - 0.001 Ma et al. (2013) 

FL 

Leça e Matosinhos (Portugal) < 0.5 - < 1.6 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) 734 - 2818 Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 16.5 - 23.9 Agah et al. (2016) 

Thane Creek (India) 18.2 - 21.0 Tiwari et al. (2017) 

Bohai Bay (China) 2.1 - 27.6 Jia & Tian (2017) 

East Asia (China) 0.003 - 0.06 Ma et al. (2013) 

North Pacific (China) 0.002 - 0.02 Ma et al. (2013) 

High Artic (Artic) 0.0002 - 0.004 Ma et al. (2013) 

Pyr 

Leça e Matosinhos (Portugal) 3.1 - 4.8 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) 125 - 348 Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 7.7 - 35.3 Agah et al. (2016) 

Thane Creek (India) 90.2 - 107 Tiwari et al. (2017) 

Bohai Bay (China) 5.1 - 45.0 Jia & Tian (2017) 

East Asia (China) 0.002 - 0.1 Ma et al. (2013) 

North Pacific (China) 0.004 - 0.02 Ma et al. (2013) 

High Artic (Artic) 0.001 - 0.01 Ma et al. (2013) 
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PAHs Localization Concentration (ng/L) Reference 

BaA 

Leça e Matosinhos (Portugal) 3.6 - 7.2 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) 308 - 565 Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 22.6 Agah et al. (2016) 

Thane Creek (India) 10.2 - 16.5 Tiwari et al. (2017) 

Bohai Bay (China) 0.1 - 1.8 Jia & Tian (2017) 

East Asia (China) 0.0004 - 0.01 Ma et al. (2013) 

North Pacific (China) 0.0003 - 0.002 Ma et al. (2013) 

High Artic (Artic) 0.0001 - 0.0009 Ma et al. (2013) 

Chr 

Leça e Matosinhos (Portugal) 3.1 - 5.2 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL - 202.8 Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) 26360 Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 3.8 Agah et al. (2016) 

Thane Creek (India) 9.6 - 10.5 Tiwari et al. (2017) 

Bohai Bay (China) 0.2 - 4.4 Jia & Tian (2017) 

East Asia (China) 0.0005 - 0.05 Ma et al. (2013) 

North Pacific (China) 0.001 - 0.01 Ma et al. (2013) 

High Artic (Artic) 0.0003 - 0.002 Ma et al. (2013) 

BbFL 

Leça e Matosinhos (Portugal) 10.0 - 10.2 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) ND Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 4.1 - 7.0 Agah et al. (2016) 

Thane Creek (India) 1.4 - 4.2 Tiwari et al. (2017) 

Bohai Bay (China) 0.5 - 2.1 Jia & Tian (2017) 

East Asia (China) 0.0002 - 0.01 Ma et al. (2013) 

North Pacific (China) 0.0001 - 0.001 Ma et al. (2013) 

High Artic (Artic) 0.0001 - 0.0011 Ma et al. (2013) 

BkFL 

Leça e Matosinhos (Portugal) 6.6 - 6.8 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL - 154.1 Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) ND Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 23.8 - 107 Agah et al. (2016) 

Thane Creek (India) 10.2 - 10.8 Tiwari et al. (2017) 

Bohai Bay (China) < 0.24 - 1.1 Jia & Tian (2017) 

East Asia (China) 0.0002 - 0.01 Ma et al. (2013) 

North Pacific (China) 0.0001 - 0.001 Ma et al. (2013) 

High Artic (Artic) 0.0001 - 0.001 Ma et al. (2013) 
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PAH Localization Concentration (ng/L) Reference 

BaP 

Leça e Matosinhos (Portugal) 2.3 - 2.9 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL - 122 Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) 741 Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 2.6 Agah et al. (2016) 

Thane Creek (India) 5.1 - 6.2 Tiwari et al. (2017) 

Bohai Bay (China) 0.2 - 1.5 Jia & Tian (2017) 

East Asia (China) 0.0001 - 0.002 Ma et al. (2013) 

North Pacific (China) 0.000004 - 0.0004 Ma et al. (2013) 

High Artic (Artic) 0.000003 - 0.0002 Ma et al. (2013) 

Ind 

Leça e Matosinhos (Portugal) < 1.8 - 1.9 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) ND Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 875 Agah et al. (2016) 

Thane Creek (India) 1.7 - 1.8 Tiwari et al. (2017) 

Bohai Bay (China) < 0.15 - 1.6 Jia & Tian (2017) 

East Asia (China) 0.0001 - 0.001 Ma et al. (2013) 

North Pacific (China) 0.00003 - 0.0005 Ma et al. (2013) 

High Artic (Artic) ND - 0.0002 Ma et al. (2013) 

DBA 

Leça e Matosinhos (Portugal) 1.7 - 2.3 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL - 85.3 Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) ND Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 0.2 Agah et al. (2016) 

Thane Creek (India) 1.2 - 1.9 Tiwari et al. (2017) 

Bohai Bay (China) <0.03 - 1.1 Jia & Tian (2017) 

East Asia (China) 0.0001 - 0.001 Ma et al. (2013) 

North Pacific (China) ND - 0.001 Ma et al. (2013) 

High Artic (Artic) ND - 0.0003 Ma et al. (2013) 

BP 

Leça e Matosinhos (Portugal) 4.8 Rocha et al. (2017) 

Bay of Algeciras (Spain) <DL - 101 Rojo-Nieto et al. (2013) 

Persian Gulf (Iraq) ND Sinaei & Mashinchian (2014) 

Persian Gulf (Iran) 4.2 Agah et al. (2016) 

Thane Creek (India) 2.1 - 3.1 Tiwari et al. (2017) 

Bohai Bay (China) <0.14 - 1.3 Jia & Tian (2017) 

East Asia (China) 0.00004   0.001 Ma et al. (2013) 

North Pacific (China) 0.00002 - 0.0004 Ma et al. (2013) 

High Artic (Artic) 0.00001 - 0.001 Ma et al. (2013) 
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In the case of PCBs, one of the major reason for their persistency in the environment is 

in part because they possess chlorine atoms (Beyer & Biziuk, 2009). As mentioned 

above (item 1.2.2.), PCBs were banned from the industry many years ago and continue 

to persist in the environment, even though in lower levels than before (Table 4).  

The possible present releases in the environment of this pollutants could be explain by 

illegal disposal of PCBs waste or poorly maintenance of waste hazardous (municipal or 

other), that could still contain electrical transformers that leaks PCBs (EPA, 2018). 

Therefore, this can also explain their transportation into the marine environments.   

 

Table 4 – Environmental concentrations (minimum – maximum) of PCBs in superficial marine 

waters worldwide (continues in the next pages). DL – detection limit; ND – not detected. 

PCBs Localization Concentration (ng/L) Reference 

PCB28 

North Atlantic  (Azores region) 0.004 - 0.005 Lammel et al. (2017) 

North Atlantic, (between Azores 

and Jamaica) 
0.003 - 0.004 Lammel et al. (2017) 

Barcelona (Spain) 0.03 - 0.1 García-Flor et al. (2009) 

Banyuls-sur-Mer (France) 0.06 - 0.1 García-Flor et al. (2009) 

Aegean Sea (Greece) < 0.005 Lammel et al. (2015) 

Atlantic Ocean (Germany to South 

Africa) 
0.0001 - 0.0004 Gioia et al. (2008) 

Equatorial Indian Ocean (between 

India and Indonesia) 
0.001 - 0.01 Huang et al. (2014) 

PCB101 

North Atlantic  (Azores region) 0.003 - 0.005 Lammel et al. (2017) 

North Atlantic, (between Azores 

and Jamaica) 
0.003 - 0.004 Lammel et al. (2017) 

Barcelona (Spain) 0.28 - 0.32 García-Flor et al. (2009) 

Banyuls-sur-Mer (France) 0.25 - 0.52 García-Flor et al. (2009) 

Aegean Sea (Greece) < 0.0008 Lammel et al. (2015) 

Atlantic Ocean (Germany to South 

Africa) 
ND - 0.0004 Gioia et al. (2008) 

Equatorial Indian Ocean (between 

India and Indonesia) 
ND - 0.0007 Huang et al. (2014) 
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PCBs Localization Concentration (ng/L) Reference 

PCB52 

North Atlantic  (Azores region) 0.004 - 0.006 Lammel et al. (2017) 

North Atlantic, (between Azores and 

Jamaica) 
0.0026 - 0.0031 Lammel et al. (2017) 

Barcelona (Spain) 0.28 - 0.32 García-Flor et al. (2009) 

Banyuls-sur-Mer (France) 0.61 - 0.96 García-Flor et al. (2009) 

Aegean Sea (Greece) 0.0007 Lammel et al. (2015) 

Atlantic Ocean (Germany to South 

Africa) 
0.00002 - 0.0004 Gioia et al. (2008) 

Equatorial Indian Ocean (between 

India and Indonesia) 
ND - 0.002 Huang et al. (2014) 

PCB138 

North Atlantic  (Azores region) 0.003 - 0.004 Lammel et al. (2017) 

North Atlantic, (between Azores and 

Jamaica) 
0.001 - 0.004 Lammel et al. (2017) 

Barcelona (Spain) 0.07 - 0.1 García-Flor et al. (2009) 

Banyuls-sur-Mer (France) 0.33 - 0.67 García-Flor et al. (2009) 

Aegean Sea (Greece) < 0.001 Lammel et al. (2015) 

Atlantic Ocean (Germany to South 

Africa) 
ND - 0.0002 Gioia et al. (2008) 

Equatorial Indian Ocean (between 

India and Indonesia) 
ND - 0.0001 Huang et al. (2014) 

PCB118 

North Atlantic  (Azores region) 0.001 - 0.002 Lammel et al. (2017) 

North Atlantic, (between Azores and 

Jamaica) 
0.0007 - 0.002 Lammel et al. (2017) 

Barcelona (Spain) 0.07 - 0.12 García-Flor et al. (2009) 

Banyuls-sur-Mer (France) 0.22 - 0.55 García-Flor et al. (2009) 

Aegean Sea (Greece) < 0.0006 Lammel et al. (2015) 

Atlantic Ocean (Germany to South 

Africa) 
ND - 0.0001 Gioia et al. (2008) 

Equatorial Indian Ocean (between 

India and Indonesia) 
ND - 0.0006 Huang et al. (2014) 
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PCBs Localization Concentration (ng/L) Reference 

PCB153 

North Atlantic  (Azores region) 0.0040 - 0.0041 Lammel et al. (2017) 

North Atlantic, (between Azores and 

Jamaica) 
0.001 - 0.005 Lammel et al. (2017) 

Barcelona (Spain) 0.07 - 0.118 García-Flor et al. (2009) 

Banyuls-sur-Mer (France) 0.25 - 0.52 García-Flor et al. (2009) 

Aegean Sea (Greece) < 0.001 Lammel et al. (2015) 

Atlantic Ocean (Germany to South 

Africa) 
ND - 0.0002 Gioia et al. (2008) 

Equatorial Indian Ocean (between 

India and Indonesia) 
ND - 0.0005 Huang et al. (2014) 

PCB180 

North Atlantic  (Azores region) < 0.002 - 0.001 Lammel et al. (2017) 

North Atlantic (between Azores and 

Jamaica) 
< 0.004 - 0.0003 Lammel et al. (2017) 

Barcelona (Spain) 0.01 - 0.008 García-Flor et al. (2009) 

Banyuls-sur-Mer (France) 0.035 - 0.09 García-Flor et al. (2009) 

Aegean Sea (Greece) < 0.0042 Lammel et al. (2015) 

Atlantic Ocean (Germany to South 

Africa) 
ND - 0.0001 Gioia et al. (2008) 

Equatorial Indian Ocean (between 

India and Indonesia) 
ND Huang et al. (2014) 

 

1.4 Gas chromatography as a form of PAHs and PCBs quantification 

  

In the examples shown in the Tables 3 and 4 noticed that these two groups of 

micropollutants are in seawaters in extremely small amounts, in the order of the ng/L. 

This means that it is important to use a analysis technique that allow to detect accurately 

the low amounts of these compounds and provide a solid evidence of their identity and 

magnitude (Pitarch et al., 2007). 

Since the marine matrix shows large complexity, this can set difficulties in the detection 

and quantification of the target compounds (Sánchez-Avila et al., 2011). 

Therefore, since both PAHs and PCBs are volatile compounds, the analytic method that 

is usually used is the Gas Chromatography (GC) (Dewulf et al., 2002). This method 

provides high selectivity and resolution, good accuracy and precision, wide dynamic 

concentration range and high sensitivity and is still innovating in the past years in order 
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to satisfy the wide variety of compounds present in the environment (Santos & Galceran, 

2002). 

In fact, GC coupled to mass spectrometry (MS) has proven that is a very advantageous 

methodology in the study of organic pollutants, however now there is a higher tendency 

to use tandem mass spectrometry (MS/MS) as a more sensitive approach quantification 

and confirmation of the analysis (Pitarch et al., 2007).  

This GC-MS/MS methodology is more selective because it uses a two stage of mass 

analysis and more sensitive by showing the precursor and product ions, which provides 

good identification points and a one run analysis of a wide range of compounds with a 

reduction of chemical noise (Sánchez-Avila et al., 2011). 

In this sense, all analysis for the quantification of PAHs and PCBs in the seawater 

samples collected from Vila do Conde seacoast were analysed by GC-MS/MS. 

 

1.5 Present study objectives 

 

Our study area located at the seacoast of Vila do Conde was considered a region of 

great interest because it contains high frequented beaches, has protected sites such as 

the Regional Protected Landscape of the Coast of Vila do Conde and the Ornithological 

Reserve of Mindelo. Nonetheless, the proximity of high urbanized and industrialized 

centre (Ave River valley) is a serious concern and no data exists about the presence of 

organic pollutants in this area.  

In this context the main objectives of this study were: 

1. To investigate the presence of PAHs and PCBs dissolved in seawater samples 

collected from eight sites along the above referred protected areas;  

2. Verify if there was a toxic risk promoted by these compounds at the protected 

zones; 

3. Conclude about the seawater quality of this area;  

4. Improve the GC-MS protocol, already in usage by our group for the analysis of 

PAHs and PCBs, into a more robust technique the GC-MS/MS.  
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2. Materials and Methods 

 

2.1. Sampling area 

 

The sampling area covers the north of the Greater Porto city area seacoast (Portugal, 

Figure 4), in Vila do Conde. This zone comprises a longshore course ( 8 km) that 

started in Azurara, a beach at Vila do Conde and near the Ave river estuary, and ended 

in Areia beach.  

This particular area has a Regional Protected Coastal Landscape status and also a 

birdwatching reserve known as the Ornithological Reserve of Mindelo (DR, 2009). This 

course presents a wide variety of flora and fauna species, manly avifauna, and has a 

unique variety of landscapes such as dunes, cliffs and wetlands. 

 

2.2. Water collection and physicochemical measurements 

 

Seawater samples from eight sampling sites (S1 to S8) from four beaches (A to D) (Figure 

4), were collected in 2018 during ebb tide, in winter (18th January) and spring (19th April) 

and collected into amber glass bottles (2 L), pre-rinsed with local water. The samples were 

collected with an 500 m distance from each other, which means that each site had two 

sampling points and was discriminated as the follow: Azurara (S1 - 41°20'23.0"N 

8°44'45.7"W; S2 - 41°20'11.5"N 8°44'28.7"W), Árvore (S3 - 41°19'59.9"N 8°44'24.0"W ; S4 

- 41°19'40.2"N 8°44'21.9"W), Reserva (S5 - 41°19'24.3"N 8°44'21.8"W; S6 - 41°19'04.4"N 

8°44'23.9"W), Areia (S7 - 41°18'43.2"N 8°44'24.8"W; S8 -  41°18'39.3"N 8°44'26.8"W). 

Temperature was measured on site. During transport to the laboratory, the flasks were 

stored at ca. 4 ºC. Immediately after arrival at the laboratory, the levels of pH were 

measured using a Basic Meter PB-11 (Sartorius, Germany) with a pH glass electrode 

(Hach Comp., USA). Nitrites (NO2
-) (Merck KgaA, Germany), nitrates (NO3

-) (Merck KgaA, 

Germany), ammonium (NH4
+) (Xylem Analytics, Germany) and phosphates (PO4

-) (Xylem 

Analytics, Germany) were measured using the Palintest 7000 Interface Photometer and 

the adequate kits for evaluations in seawater. Then the remaining waters were prepared 

for further chemical analysis.  
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Figure 4 – Map of sampling sites. S1 to S4 and S7 to S8 are Atlantic public beaches at Vila 

do Conde Coast and S5 and S6 are located at the Ornithological Reserve beach 

of Mindelo. The sources that may contribute to higher amounts of PAHs and 

PCBs are referred in this figure. Letters A, B, C, and D refer to each of the four 

sampled areas. 

 

2.3. Reagents, solutions and standards 

 

PAHs standards (EPA TCL Polynuclear Aromatic Hydrocarbons mix) were purchased 

from Supelco (Bellefonte, PA). This stock mixture contained the 16 EPA priority PAHs, 

each at 2000 μg/mL in dichloromethane: benzene (1:1, v/v). The surrogate internal 

standard (IS) was a mixture containing naphthalene-d8 (N-d8), acenaphthene-d10 (AcP-

d10), phenanthrene-d10 (Phe-d10), chrysene-d12 (Chr-d12), and perylene-d12 (Per-d12), 

which was added to the water samples before the PAHs extraction. This standard mix 

solution, 2000 μg/mL in dichloromethane, was purchased from Supelco (Bellefonte, PA). 

Both stock solutions were kept in the dark at –20ºC to minimize their potential decay. All 

standard solutions were stable for one year and evidence of decomposing was never 

observed. Stock solutions were used to prepare working standard solutions for 
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calibration and spiking samples. From stock solutions were prepared seven nominal 

standard mixtures. 

PCBs standards (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) were 

purchased from Dr. Ehrenstorfer (Augsburg, Germany) with a 99.5% purity and a 10 

ng/mL concentration. The internal standard (IS), 4.4′-difluorobiphenyl (4.4'-DFB) was 

from Sigma-Aldrich (Steinheim, Germany). All reference standards were of >96% purity.  

For IS, an individual stock solution of 5000 μg/L was prepared in n-hexane. For all the 

PCBs included in this work, a 500 μg/L mix solution of each component in n-hexane was 

prepared. These solutions were stored in the dark at –20°C in amber bottles to avoid 

degradation, which was never observed during the study period. 

The solvents n-hexane with 99.0% purity, methanol (99.8%) and acetone (99.5%) were 

purchased from Sigma-Aldrich (Germany). Dichloromethane (99.9%) was acquired from 

Romil (Cambridge, UK). Ultrapure water was supplied by a Milli-Q water system 

(conductivity = 0.054 µS cm-1, at 25ºC). 

 

2.4. Solid-phase extraction (SPE) of both PAHs and PCBs 

 

Within 24 h after collection, the seawater samples (1 L) were filtrated. The PAHs and 

PCBs dissolved in the aqueous fraction (DAF) were separated from those adsorbed to 

solid suspend matter (SSM) as shown in Figure 5 and summarized below. The final 

extracts were analyzed by Gas Chromatography with tandem mass spectroscopy (GC-

MS/MS). 

 

Figure 5 – Diagram of the extraction procedures for DAF and SSM. Note: Herein it is 

shown data concerning the DAF. 
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 Seawater filtration (glass fiber filter) 

Briefly, water samples (1 L) were filtrated to eliminate particulate matter and other 

suspended solids, through a 0.45 µm glass fiber filter with 47 mm in diameter. The filter 

was placed in a Büchner funnel and then, using a vacuum bomb connected to a kitasato 

flask, each sample was filter in order to separate the DAF and the SSM.  

 PAHs and PCBs extraction from DAF and SPE protocol 

The protocol used for the extraction of PAHs and PCBs from DAF fraction, followed a 

previous validated SPE method specific for the extraction of these organics from water 

samples (Sánchez-Avila et al., 2011). The recovery rates of the SPE protocol were for 

both the 16 analyzed PAHs and 7 PCBs above 78%.  Firstly, the Oasis HLB cartridges 

(200 mg), were conditioned with 10 mL of hexane, 10 mL of dichloromethane, 10 mL of 

methanol and with 15 mL of Milli-Q ultrapure water using a manifold vacuum system 

device (Waters, Milford, Massachusetts, USA). 

Thereafter, 1 L of seawater samples + IS were loaded into the SPE cartridges at a 

constant flow rate of 5 mL mL/min, which were later rinsed three times with 5 mL of 

ultrapure water and then dried under vacuum for 30 min.  

 Elution 

Finally, both PAHs and PCBs were eluted with 10 mL of dichloromethane:hexane (1:1, 

v/v) followed by 10 mL of dichloromethane:acetone (1:1, v/v). 

 Final step for the concentration of PAHs and PCBs 

The extracts were concentrated into 100 μL of hexane and kept in vials at –20°C until 

analysis. 

 GC-MS/MS analysis 

The GC-MS/MS analytical protocol based in a previous validated GC-MS method (Rocha 

et al., 2011) is herein amplified to perform MS/MS analysis for both PAHs and PCBs. 
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2.5. Quantification by GC-MS/MS 

 

The targeted compounds were measured by GC-MS/MS accordingly to the features 

described in Table 5. Other details about the GC-MS/MS can be checked in Table 6. 

Table 5 – General conditions of the GC-MS/MS apparatus used in the present study. 

GC-MS/MS Conditions 

Gas 
chromatograph 

Trace GC ultra, Thermo Finnigan Electron Corporation 

Detector Ion trap mass spectrometer (Thermo Scientific ITQ™ 1100 GC-MSn) 

Auto sampler Thermo Scientific TriPlus™ 

Injector SSL (3 mm straight liner) 

Mode Splitless mode 

Volume (µL) 1 µL (50 mm length needle) 

Temperature (ºC) 280 

Column Trace GOLD column TR5MS (30 m x 0.25 mm x 0.25 µm) 

Gas carrier 
Helium (99.9999% purity), maintained at a constant flow rate of 
1.0 mL/min 

Oven Program Temperature (º C) 
Hold time 

(min) 
Rate ºC/min 

 

 40 2 
- 
 

1st ramp 250 1 
12 
 

2nd ramp 310 - 
5 
 

 310 5 
- 
 

Solvent delay: 5 min 

Transfer line: 280ºC 

Ion source: 280ºC 
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Table 6 – Quantification and diagnostic ions used in GC-MS/MS analysis for PAHs and PCBs evaluated in DAF (continues in the next pages). 

 

Qualifier ions 

Target compounds  tR (min) Target ions (m/z) Q1 (m/z) Q2 (m/z) Q3 (m/z) Segment time (min) 
Collision 

Energy (CE) 

Ion 

ratios 

N-d8 10.44 136 (88.7) 108 (11.3) - - 8.00-11.30 - - 

N 10.48 128 (71.3) 127 (13.5) 102 (8.4) 129 (6.8) 8.00-11.30 1.30 0.6 

4.4'-DFB 12.75 190 (62.7) 188 (36.6) 128 (0.7) - 11.30-16.00 - - 

AcP 13.65 154 (15.6) 152 (48.7) 151 (29.7) 76 (6.0) 11.30-16.00 1.03 0.6 

AcpY 14.09 152 (55.5) 151 (24.5) 150 (17.6) 76 (2.4) 11.30-16.00 1.65 0.7 

AcP-d10 14.16 164 (57.5) 162 (41.2) 160 (1.3) - 11.30-16.00 - - 

Flu 15.02 166 (24.2) 165 (47.6) 163 (25.9) 82 (2.37) 11.30-16.00 1.04 0.5 

Phe-d10 16.91 188 (62.6) 184 (22.3) 160 (15.1) - 16.00-18.00 - - 

Phe 16.92 178 (51.7) 176 (28.8) 152 (12.4) 179 (7.1) 16.00-18.00 1.05 0.4 

A 17.32 178 (53.8) 176 (30.0) 152 (12.9) 89 (3.3) 16.00-18.00 1.05 0.4 

PCB28 17.69 256 (37.6) 258 (35.4) 150 (18.2) 220 (8.8) 16.00-18.00 1.36 0.5 

PCB101 18.58 326 (63.0) 254 (21.7) 328 (10.9) 324 (4.4) 18.00-22.30 1.18 0.5 

PCB 52 18.60 292 (31.2) 255 (25.6) 290 (22.8) 220 (20.4) 18.00-22.30 1.57 0.9 

PCB138 19.30 290 (34.6) 325 (50.6) 326 (13.6) 360 (1.2) 18.00-22.30 2.28 0.3 

FL 19.41 202 (44.1) 200 (31.1) 201 (23.0) 101 (1.9) 18.00-22.30 2.15 0.7 

Pyr 19.53 202 (34.7) 200 (42.1) 201 (19.1) 101 (4.1) 18.00-22.30 2.15 0.5 
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Qualifier ions 

Target compounds tR (min) Target ions (m/z) Q1 (m/z) Q2 (m/z) Q3 (m/z) Segment time (min) 
Collision 

Energy (CE) 

Ion 

ratios 

PCB118 19.73 326 (58.8) 128 (20.4) 254 (14.6) 324 (6.1) 18.00-22.30 2.13 0.7 

PCB153 20.4 360 (0.14) 290 (68.3) 288 (19.9) 145 (11.6) 18.00-22.30 1.43 0.3 

PCB209F 20.4 334 (9.4) 265 (76.6) 315 (7.8) 335 (6.3) 18.00-22.30 - - 

Chr 23.05 228 (49.0) 226 (46.4) 113 (3.0) 201 (1.6) 22.30-25.00 1.96 0.1 

Chr-d12 23.12 240 (43.5) 236 (46.0) 237 (10.6) - 22.30-25.00 - - 

BaA 23.19 228 (46.4) 226 (44.2) 229 (6.7) 114 (2.7) 22.30-25.00 1.96 0.2 

PCB180 23.65 394 (12.8) 326 (41.5) 324 (40.3) 359 (5.4) 22.30-25.00 1.12 1.0 

BbFL 26.73 252 (50.1) 250 (43.8) 126 (4.1) 226 (2.0) 25.00-29.00 2.40 0.1 

BkFL 26.83 252 (47.5) 250 (46.3) 126 (4.3) 226 (2.0) 25.00-29.00 2.64 0.1 

BaP 27.75 252 (41.9) 250 (48.8) 126 (5.1) 226 (4.2) 25.00-29.00 2.40 0.1 

Per-d12 27.97 264 (50.9) 252 (46.7) 228 (2.4) - 25.00-29.00 - - 

Ind 31.46 276 (47.5) 274 (43.1) 138 (6.5) 248 (2.9) 29.00-37.00 2.80 0.2 

DBA 31.54 278 (3.1) 276 (83.3) 138 (11.0) 226 (2.5) 29.00-37.00 2.85 0.1 

BP 32.19 276 (41.3) 274 (45.7) 138 (8.8) 248 (4.1) 29.00-37.00 2.80 0.2 

 

Note: The relative abundance of ions (m/z) for each target compound is indicated between brackets. 
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Since the current PAHs and PCBs were measured in ng/L, method blanks were used to 

ensure the absence of contamination by laboratory material.  

Replicate samples (n = 3), and procedural blanks were used as quality control 

procedures.  

Reproducibility and recovery were high (78–142%) with relative standard deviation 

(RSD)  10%. Additionally, unbiased samples were both spiked with the 16 assayed 

PAHs and 7 assayed PCBs at an intermediate concentration of the calibration curve (30 

µg/L) and submitted to usual analysis (Rocha et al., 2011).  

To measure the quality control, the procedural blanks were periodically analysed for each 

batch of 10 samples. 

 

2.6. Samples confirmation and quantification 

 

According to the EU Commission Decision 2002/657/EC (CEC, 2002) for the 

confirmation and identification of pharmaceuticals, when using GC-MS/MS as 

instrumental technique, a minimum of three identification points (IPs) are required. In this 

study, two MS transitions (Table 6) were monitored for all the compounds and the ion 

ratios were calculated as the relation between the abundances of both transitions. In 

addition the retention times (tR) were used to confirm the presence of the PAHs and 

PCBs in the seawater samples. 

The first transition was used for quantification and the second one for confirmatory 

purposes. Quantification was then performed on the basis of external calibration plots 

for all the compounds. Calibration standards were analysed at the beginning of a sample 

sequence. The variations in signal intensity were monitored by the analyses of three QC 

samples after approximately ten injections. 

 

2.7. Calibration and detection limits 

 

The determination of the method linearity was made by doing three independent 

calibrations curves in solvent and in seawater matrix. The main purpose was to verify if 

the results were directly propositional to the concentration of compounds of interest in a 

certain interval. 
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For each calibration curve, seven different calibration points were used with the following 

concentration: 5 µg/L; 10 µg/L; 20 µg/L; 40 µg/L; 60 µg/L; 80 µg/L and 100 µg/L. All this 

concentrations were injected in triplicated and the correlation coefficient (r2) was 

determined to evaluate the linearity.  

After this, the limit of detection (LOD) and the limit of quantification (LOQ) were accurate 

based on mathematic formulas that used a proportion with standard deviation (SD) of 

the response and the median slope (S) of the three calibration curves: 

(1) LOD =
SD x 3

S
 

 

(2) LOQ = 
SD x 10

S
 

Finally, the precision, accuracy and recoveries were also determined using this 

concentrations points and the fortified seawater matrix (Table 7). 

 

2.8. Calculation of total TEQ 

 

In order to evaluate the potential toxicological risk of all compounds, an assessment of 

the total TEQ was calculated for the two groups of our interest compounds, following the 

equation (Nekhavhambe et al., 2014):  

(3) TEQ Total = ∑ Ci x TEFi 

Where TEQ = toxic equivalent quotient, Ci = concentration of individual PAHs and TEFi 

= toxic equivalent factor relative to BaP (for PAHs) (Nekhavhamble et al., 2014) or to 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for PCBs (Yang et al., 2010). 
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Table 7 – Calibration parameters of the method, including the calibration curves equation, 

the correlation coefficients (r2), and the detection and quantification limits (LODs 

and LOQs) of the method. 

Target 

compounds 

Regression  

equations 
r2 

LOD 

(ng/L) 

LOQ 

(ng/L) 

Extraction 

recoveries (%) 

N y = 0.006x 0.99 0.19 0.58 109.4 

AcP y = 0.00002x 0.99 0.17 0.50 112.7 

AcpY y = 0.00008x 0.99 0.01 0.04 114.8 

Flu y = 0.0005x 0.99 0.11 0.34 112.1 

Phe y = 0.09x 0.99 0.10 0.30 94.3 

A y = 0.07x 0.99 0.29 0.87 141.5 

PCB28 y = 0.02x 0.99 0.22 0.68 78.3 

PCB101 y = 0.03x 0.99 0.20 0.61 94.6 

PCB52 y = 0.01x 0.99 0.25 0.76 82.2 

PCB138 y = 0.003x 0.98 0.10 0.31 92.3 

FL y = 0.008x 0.99 0.11 0.33 107.9 

Pyr y = 0.009x 0.99 0.23 0.71 107.9 

PCB118 y = 0.02x 0.99 0.06 0.19 84.5 

PCB153 y = 0.02x 0.99 0.15 0.44 87.5 

Chr y = 0.02x 0.99 0.23 0.70 93.6 

BaA y = 0.02x 0.99 0.31 0.94 98.0 

PCB180 y = 0.008x 0.99 0.18 0.54 99.7 

BbFL y = 0.01x 0.99 0.32 0.97 90.5 

BkFL y = 0.002x 0.99 0.07 0.21 92.5 

BaP y = 0.005x 0.99 0.06 0.18 95.9 

Ind y = 0.003x 0.99 0.13 0.40 99.5 

DBA y = 0.002x 0.99 0.18 0.56 86.8 

BP y = 0.002x 0.99 0.07 0.20 95.8 
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3. Results 

 

In this section, all data refer to mean ± SE levels provided by the measurement of 

physicochemical or organic contamination in seawater samples collected from Azurara (A, 

S1-S2), Árvore (B, S3-S4), Reserva (C, S5-S6), and Areia (D, S7-S8) beaches. 

 

3.1. Seawater physical and chemical parameters  

 

Table 8 shows the physicochemical parameters observed in 16 samples collected from Vila 

do Conde seacoast. Values of pH and temperature were, in average,  8 and  15 ºC. The 

other parameters were  1.3 mg/L,  0.1 mg/L,  0.7 mg/L and  0.08 mg/L for ammonia, 

nitrites, nitrates and phosphates. No apparent differences were observed amongst seasons 

or sampling sites. 

 

Table 8 – Physicochemical parameters evaluated in the four beaches located in Vila do 

Conde region in January and April 2018 (mean ± SE). 

3.2. GC-MS/MS analysis of PAHs in the seawater samples 

 

Table 9 expresses the individual levels of the sixteen PAHs dissolved in seawater and 

shows that the sum of all PAHs per sampling site was  84 ng/L at A,   77 ng/L at B,  82 

ng/L at C, and  72 ng/L at D. In average the total sum of the PAHs concentration in the 

studied area (A to D) was  79 ng/L. 

Table 10 shows that, in terms of abundance (%), those PAHs with higher profusion were 

those containing three benzene rings ( 43%), followed by those containing four benzene 

Physicochemical 
parameters 

A B C D 

n = 4 n = 4 n = 4 n = 4 

Temperature °C 14.6 ± 2.3 15.1 ± 1.7 15.0 ± 1.0 15.8 ± 1.0 

pH 7.9 ± 0.1 7.9 ± 0.05 8.0 ± 0.05 7.9 ± 0.03 

NH4
+ mg/L 1.3 ± 0.9 1.3 ± 0.9 1.2 ± 1.0 1.2 ± 1.0 

NO2
- mg/L 0.1 ± 0.01 0.1 ± 0.03 0.1 ± 0.1 0.1 ± 0.1 

NO3
- mg/L 0.8 ± 0.4 0.7 ± 0.4 0.6 ± 0.4 0.6 ± 0.4 

PO4
- mg/L 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.03 0.03 ± 0.01 
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Table 9 – Average levels of PAHs (ng/L) dissolved in seawater samples (n = 16) collected from Atlantic seacoast located in Vila do Conde do 

Conde (A to D) (mean ± SE). 

*TEF values as proposed by EPA (2012) 

PAHs 
TEF 

values* 

IARC 
Groups 

(IARC, 2016) 

MDL 
(ng/L) 

MQL 
(ng/L) 

Abundance 
(%) 

PAHs (ng/L) 

A B C D 

n = 4 n = 4 n = 4 n = 4 

2 Rings 
      

                      

N 0.001 2B 0.2 0.6 100 6.1 ± 3.2 12.3 ± 5.3 8.7 ± 2.3 6.4 ± 1.0 

3 Rings 
 

                               

AcP 0.001 - 0.2 0.5 100 11.6 ± 5.3 7.8 ± 3.4 5.8 ± 1.7 8.8 ± 1.8 

AcpY 0.001 3 0.01 0.04 100 2.8 ± 1.5 3.3 ± 0.5 4.6 ± 1.2 3.0 ± 0.5 

A 0.01 3 0.3 0.9 94 2.3 ± 0.9 3.5 ± 1.8 4.0 ± 2.3 2.8 ± 1.5 

Phe 0.001 3 0.1 0.3 100 10.1 ± 6.0 17.0 ± 8.9 13.2 ± 6.0 14.6 ± 7.1 

Flu 0.001 3 0.1 0.3 100 5.7 ± 2.4 5.8 ± 1.7 3.8 ± 0.9 5.2 ± 1.4 

4 Rings 
 

                               

FL 0.001 3 0.1 0.3 100 9.1 ± 5.7 5.0 ± 2.6 10.0 ± 6.1 8.1 ± 4.2 

BaA 0.1 2B 0.3 0.9 100 1.7 ± 1.0 1.0 ± 0.3 2.0 ± 1.0 1.4 ± 0.7 

Chr 0.01 2B 0.2 0.7 100 2.0 ± 1.2 1.0 ± 0.2 1.7 ± 0.8 2.3 ± 1.4 

Pyr 0.001 3 0.2 0.7 100 14.7 ± 9.0 6.1 ± 2.6 13.3 ± 7.4 9.1 ± 5.1 

5 Rings 
 

                               

BaP 1 1 0.3 0.9 100 4.0 ± 2.5 2.0 ± 0.8 2.9 ± 1.0 2.6 ± 1.0 

BbFL 0.1 2B 0.3 1.0 56 1.3 ± 0.8 1.4 ± 1.0 1.4 ± 0.7 1.1 ± 0.8 

BkFL 0.1 2B 0.1 0.2 100 6.5 ± 4.0 5.5 ± 3.3 5.4 ± 3.6 2.4 ± 1.7 

DBA 1 2A 0.2 0.6 75 0.3 ± 0.2 1.2 ± 0.5 1.8 ± 0.6 1.3 ± 0.8 

6 Rings                  

BP 0.01 3 0.1 0.2 94 2.4 ± 1.4 2.6 ± 1.8 1.3 ± 0.6 2.1 ± 0.9 

Ind 0.1 2B 0.1 0.4 100 3.5 ± 2.2 1.6 ± 0.8 1.6 ± 0.5 1.0 ± 0.4 

∑16PAHs per Sampling site 84.1 77.0 81.5 72.3 



 

33 
 

rings ( 28%). In terms of carcinogenicity, and accordingly to the IARC classification (IARC, 

2010), this Table also shows that in average, those PAHs of Group 3 represents  59% of 

the total load of these compounds in the studied area. In spite of this, the other groups are 

also present, being their percentages of  4%,  1.5% and  25% for PAHs of Groups 1, 2A 

and 2B, respectively. 

 

Table 10 – PAHs (%) dissolved in the water considering both their number rings and their 

potential carcinogenicity per sampling site. 

% PAHs A B C D 

2 Rings 7.3 16.0 10.7 8.9 

3 Rings 38.6 48.5 38.5 47.6 

4 Rings 32.7 17.0 33.1 28.9 

5 Rings 14.4 13.1 11.9 10.2 

6 Rings 7.0 5.4 5.8 4.3 

% PAHs (IARC, 2016) per 
Group and sampling site 

 
      

Group 1 4.8 2.6 3.6 3.6 

Group 2A 0.4 1.6 2.2 1.8 

Group 2B 25.1 29.6 25.5 20.2 

Group 3 56.0 56.2 61.6 62.2 

 

In order to understand the possible origin of the measured PAHs, several ratios were 

established between target compounds (Table 11). The quotient between low molecular 

weight (LMW) and high molecular weight (HMW) PAHs was calculated following the next 

equation (Magi et al., 2002):  

(4) 
A+Phe+FL+Pyr

BaA+ Chr+ BaP + BbFL + BkFL + DBA + Ind
 

Table 11 – Relationship between PAHs in water samples as to their possible origin. 

Ratios between PAHs Petrogenic Pyrogenic 
This study 

A B C D 

Phe/A 10 <10 4.39 4.86 3.30 5.21 

A/ (A + Phe) <0.1 >0.1 0.19 0.17 0.23 0.16 

BaA/ (BaA + Chr) <0.2 >0.35 0.46 0.50 0.54 0.38 

FL/ (FL + Pyr) <0.4 >0.4 0.38 0.45 0.43 0.47 

  

Fuel combustion 
Grass/coal/wood 

combustion 

 

FL/ (FL + Pyr) 0.4-0.5 >0.5 - - - - 

LMW/HMW >1.0 <1.0 1.88 2.31 2.41 2.86 
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Generally, it is shown that in almost all sites the PAHs have a possible petrogenic origin. 

The calculation of TEQ for PAHs dissolved in water followed the EPA criteria (EPA, 2012). 

In Figure 6 it is shown that the most carcinogenic PAHs, namely BaP (Group 1) and DBA 

(Group 2A) are the main contributors to the potential toxicity (carcinogenesis/ mutagenesis) 

of the studied waters. Individually, the sum of all TEQ values for PAHs dissolved in water 

at each sampling site was  6 ng/L (A),  4 ng/L (B),  6 ng/L (C) and  5 ng/L (D).   

In Figure 7 (I to IV), the cross plots show the most probable source of the studied pollutants 

per sampling sites. There is a predominance of petroleum and petroleum combustion PAHs 

at A and B and other sources, such as biomass and coal combustion at C and D. 

Nonetheless, petroleum contamination also occurred in this area, as it can be observed in 

Figure 7.  

 

Figure 6 – Normalisation of the average concentrations of PAHs measured in seawater 

samples collected at Vila do Conde seacoast in terms of TEQ units of BaP. Data 

is shown as mean ± SE (n= 4). 

 

 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

N

AcP

AcpY

A

Phe

Flu

FL

BaA

Chr

Pyr

BaP

BbFL

BkFL

DBA

BP

Ind

TEQ (ng/L)



 

35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – PAH cross-plots (I – IV) for water samples from Vila do Conde seacoast (A to D). 
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3.3. GC-MS/MS analysis of PCBs in the seawater samples 

In accordance with the International Council for the Exploration of the Sea (ICES), Table 

12 reports the concentrations of seven PCBs, which includes the mono-ortho congener 

PCB118 in addition to the six PCBs (PCB28, PCB52, PCB101, PCB138, PCB153, and PCB180), 

usually measured in higher concentrations in environmental samples (ICES, 2012; Webster 

et al., 2013).  So, herein it is observed that the global concentration of these seven PCBs 

are, at each sampling site  59 ng/L at A,   48 ng/L at B,  47 ng/L at C, and  45 ng/L at 

D. 

Moreover, the six PCBs referred above are classified as possible carcinogenic (Group 2B) 

and PCB118 classified as a possible carcinogenic (Group 1) for humans (IARC, 2016). 

However, it is stressed that there is no sufficient certain about the carcinogenic effect of the 

PCB118, presently exists sufficient data that say that can have a carcinogenic effect in 

animals (Yang et al., 2010) reason why data shown in this sampling area was also 

converted in TEQ units of TCDD (Figure 8). 

 

 

Figure 8 – Normalisation of the average concentrations of PCBs measured in water of the 

Vila do Conde seacoast in terms of TEQ units of TCDD. Data is shown as mean 

± SE (n= 4). 
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Table 12 – Average levels of PCBs (ng/L) dissolved in seawater samples (n = 16) collected from Atlantic seacoast located in Vila do Conde (A to 

D) (mean ± SE). 

 

 

 

 

 

 

 

 

 

 

 

 

*TEF values as proposed by Yang et al. (2010).  

PCBs 
 

TEF 
values* 

MDL MQL Abundance 

PCBs (ng/L) 

(ng/L) (ng/L) (%) A B C D 

n = 4 n = 4 n = 4 n = 4 

Trichlorobiphenyl                 
PCB28 0.000002 0.2 0.7 94 1.4 ± 0.8 1.5 ± 0.5 1.1 ± 0.4 1.6 ± 0.4 

Tetrachlorobiphenyl                 
PCB52 0.000005 0.2 0.8 94 6.0 ± 3.8 12.2 ± 5.2 4.7 ± 1.9 7.7 ± 2.7 

Pentachlorobiphenyl                 
PCB101 0.00003 0.2 0.6 94 15.8 ± 9.9 9.5 ± 5.0 6.0 ± 2.4 11.4 ± 1.9 

PCB118 0.0001 0.1 0.2 88 9.4 ± 5.9 2.5 ± 1.1 15.2 ± 12.3 6.4 ± 1.8 

Hexachlorobiphenyl                 
PCB138 0.00002 0.1 0.3 94 17.6 ± 11.0 18.2 ± 7.6 16.3 ± 6.7 4.6 ± 0.8 

PCB153 0.00001 0.1 0.4 94 3.4 ± 2.1 2.5 ± 0.7 0.9 ± 0.3 6.8 ± 1.8 

Heptachlorobiphenyl                  
PCB180 0.000005 0.2 0.5 94 4.8 ± 3.0 1.9 ± 0.8 2.7 ± 0.5 6.5 ± 2.3 

∑7PCBs per Sampling site 58.5 48.3 46.9 45.0 
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4. Discussion 

 

This study focus on four beaches located close to the mouth of the Ave River estuary. As it 

was already referred in the Introduction, these areas were chosen due to their continuous 

usage by animals and humans. 

In fact during winter-spring this is an attractive area since here exists a natural ornithological 

reserve that holds lots of unique species of birds (54% are resident birds included in 81 

species) present, and during summer-autumn the three beaches not included in the natural 

reserve, are also plenty used for leisure activities such as swimming, surf, kitesurf, and as 

recreational fishing places. These actions pose health risks for birds, humans and also 

aquatic animals that contact directly with pollutants such as PAHs and PCBs. 

In the marine environment, the pollution from PAHs can result from everyday leakages or 

land-based sources, from river discharges, urban runoff, refineries and other industrial 

wastewater (Neff, 1979) or from sea-based sources, such as vessel discharges, vessel 

spills, operational discharges, gross atmospheric deposition, and aircraft dumping (Board 

& Council, 2003). 

Herein the possible sources of pollution by these organic compounds include the presence 

of several industrial poles along the Ave River, a harbour inside the mouth of its estuary, a 

camping park located close to the natural reserve and the existence of some agriculture 

activities. Due to the industrial pollution of the Ave River this stream was considered one of 

most polluted rivers of Portugal, due to incorrect treatment of both industrial and domestic 

wastewaters (Rocha et al., 2013). 

Recently, other studies in the Ave River support the presence of heavy metals, as well as 

PAHs and PCBs in sediments dredge from Vila do Conde harbour (Santos-Ferreira et al., 

2015).  Another study, also reports the presence of pesticides, fertilizers and endocrine 

disruptors in the Ave River (Ribeiro et al., 2016). These observations, all taken together, 

suggest that when the waters of this River attain the seacoast they could transport pollutants 

such PAHs and PCBs. 
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4.1. Concentration of PAHs in the seawater samples 

 

Comparing the concentrations of PAHs measured in this study (Table 9) with those of Table 

13, is its shown that in the studied area the global concentrations of these compounds are 

low ranging from  72 ng/L to 84 ng/L.  

From Table 13, it is stressed that the highest concentrations of PAHs in coastal 

environments were measured in petrol producer countries, such as Iraq and Iran whereas, 

in countries such as Portugal (Rocha et al., 2017) and Spain (Rojo-Nieto et al., 2013) these 

concentrations are almost one hundred folds lower.  

According with European Commission 2008/105/EC, the PAHs that are used as a criteria 

for evaluating the levels of pollution are respectively A, Pyr, BaP, BbFL, BkFL, Chr, DBA, 

and Ind (CEC, 2008).  

Concerning this aspect, it was noticed that  total PAH levels measured at all sampling sites 

are significantly lower than the maximum admissible concentrations either by the European 

Union (200 ng/L) or the Environmental Quality Criteria of the United States (300 ng/L) for 

protection of human consumers of aquatic life (EPA, 2009).  

Table 13 – PAHs concentrations (Σ16PAHs (ng/L) quantified in several coastal locations 

around the world. 

 

Nonetheless, with those shown worldwide (Table 3), it is possible to observe that the pattern 

of the 16 priority PAHs are different accordingly with their source.  

For instance, the levels of Pyr and DBA in our study area are higher than those 

concentrations measured, respectively, in Leça and Matosinhos (Rocha et al., 2017) and in 

Location n PAHs Mean (ng/L) Reference 

Vila do conde, Portugal 16 79 This study 

Leça e Matosinhos, Portugal 16 50 Rocha et al. (2017) 

Bay of Algeciras, Spain 16 238 Rojo-Nieto et al. (2013) 

Persian Gulf, Iraq 16 7310 Sinaei & Mashinchian (2014) 

Persian Gulf, Iran 16 1059 Agah et al. (2016) 

Thane Creek, India 16 522 Tiwari et al. (2017) 

Bohai Bay, China 16 275 Jia & Tian (2017) 

East Asia, China 18 0.2 Ma et al. (2013) 

North Pacific, China 18 0.1 Ma  et al. (2013) 

High Artic, Artic 18 0.04 Ma et al. (2013) 



 

41 
 

Iran (Agah et al., 2016). On the contrary, other reference PAHs showed similar, as BaP, or 

much lower concentrations than those referred in the last two studies.  

 

4.2. PAHs sources  

 

The composition pattern of PAHs by ring size for the water samples collected from the 

Atlantic Ocean Sea close to Vila do Conde is shown in Table 10. Since the contributions of 

the LMW PAHs [i.e., those with 2 rings (N) and 3 rings (A, Phe, AcP, AcpY, and Flu)] 

represent 54% of the total load of these pollutants and those of HMW PAHs [i.e., those with 

4 rings (FL, BaA, Chr, and Pyr), 5 rings (BaP, BbFL, BkFL and DBA) and 6 rings (BP 

and Ind)] (Nasher et al., 2013) constitute 46% of the total PAH lead us to the conclusion 

that these PAHs are derived from pyrogenic and petrogenic sources.  

In fact, during 2017 the pyrogenic activity was intense due to forest fires occurring mainly 

in autumn. These observations agree with the diagnostic PAH ratios found in this study 

(Table 11), the graphics shown in Figure 7 and with the indicator proposed by Magi et al. 

(2002).  

In particular, herein it was observed that in average the ratio Phe/A was  4, i.e., pyrogenic; 

A/(A + Phe) was  0.2, i.e., pyrogenic; BaA/(BaA + Chr) was  0.5, i.e. pyrogenic;  FL/(FL 

+ Pyr) was  0.4, i.e. both petrogenic and pyrogenic and finally LMH/HMW was  2.4, i.e., 

petrogenic. 

 

4.3. PAHs toxicity 

 

Concerning the toxicity promoted by PAHs it is stressed that the EPA (2000) established, 

for water quality, the goal to protect human health from the carcinogenic effects of PAHs 

exposure. These criteria involved to set a non-detectable level (zero concentration for 

carcinogenic PAHs) in ambient water. Meanwhile, the maximum contaminant level was 

0.2 ppb (200 ng/L) for BaP, since this compound is the most carcinogenic PAH (EPA, 2000).  

In this sense, herein the levels of all measured PAHs were converted in TEQ units, which 

normalize the toxicity in BaP units (Nekhavhambe et al., 2014). In average the BaP 

concentration was  2.9 ng/L but the TEQ total was  5.3 ng/L.  Thus, fortunately these 

levels are below the one established by European Commission for environmental water and 

USEPA (ATSDR, 2009; CEC, 2008). Also none of the measured PAHs concentrations 
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exceed this water concentrations limits, in which are discriminated by compound (BaP with 

100 ng/L; BaP, Pyr, BbFL and BkFL with 200 ng/L; Chr, DBA and A with 300 ng/L; and 

Ind with 400 ng/L).  

However, so far it hasn’t been prove long-term effects when exposure to small 

concentrations and for that reason, even in low levels PAHs could be harmful. 

In fact, according to Table 10, the two most abundant groups are the PAHs of the Group 3 

followed by the Group 2B (IARC, 2010). It is important to say that the AcP is not included 

in the Group 3 PAHs because there is no data that confirms its carcinogenicity.  

Despite the fact, that all the concentrations are within this range, the long-term effects 

should not be discarded since PAHs can have adverse effects such as damage in the DNA 

and act in the immune systems, besides the carcinogenicity (Rajendran et al., 2013). 

It is also important to refer that besides humans, other species are present in the area such 

as mussels and birds (natural habitants of the reserve). This two species tend to be more 

sensitive to the pollution of their habitat because are in constant contact with it and for that 

reason, can be added as an important fact to consider when even minimal values are found 

in the environment (Abdel-Shafy & Mansour, 2016). 

 

4.4. Concentration of PCBs in the seawater samples 

 

The seven non-dioxin-like PCB (NDL-PCBs) analysed in this study are used as indicators 

of marine water quality because are the ones present with the highest concentrations in the 

environment, food and in human fluids and tissues (WHO, 2016).  

Comparing the global values presented in Table 14, it is observed that the highest values 

of ∑PCBs occur in two European countries, i.e., France (2.6 ng/L) and Spain (1.2 ng/L) 

(García-Flor et al., 2009).  

According to data in Tables 12 and 14, it is noticed that all PCBs measured herein show 

concentrations ranging from  45 ng/L to 59 ng/L. Thus, all beaches analysed around and 

at the Ornithological Reserve exhibit amounts of PCBs higher than expected, being  20 

folds higher than the data observed in both France and Spain (García-Flor et al, 2009).  

Taking in consideration the last observation, although the levels of PCBs may seem 

extremely concerning, it is important to stress that previous studies provided by EPA (1980) 

reveal that acute toxicity to saltwater aquatic life probably will occur at concentrations above 

10 µg/L. Nonetheless, more recent guidelines propose that global concentrations of 30 ng/L 



 

43 
 

are sufficient for the occurrence of bioconcentration phenomena (EPA, 2009). Thus, since 

this study reveals ∑PCBs of  50 ng/L, it is hypothesized that bioconcentration by these 

compounds may occur in Vila do Conde seacoast. 

 

Table 14 – The total aqueous phase PCBs concentrations (Σ7PCBs (ng/L) from several 

locations around the world. 

 

4.5. PCBs sources 

 

It is difficult to identify the sources which are responsible for the concentrations measured 

in the study area, because so far the levels of PCBs have been decreasing since 1985 and 

also the use and marketing of PCBs in the European Community were heavily restricted 

(EC, 2001).  

However, due to their physicochemical properties the PCBs are a group of contaminants 

able to persist in the environment either by their continuous recycling through the elements 

and trophic chains or due to poor treatment of antique hazardous waste sites. These 

infrastructures, accumulate old products able to leak these compounds in the soil which 

ultimately drain through the rivers until reach the ocean (ATSDR, 2014).  

 

4.6. PCBs toxicity 

 

In terms of pharmacokinetics PCBs have intrinsic half-life backgrounds levels of several 

years. To understand the rate of persistency of these pollutants in the body these values 

are: for PCB28, 5.5 years; PCB52, 2.6 years; PCB138, 10.8 years; PCB153, 14.4 years; and 

 
Location 

n PCBs Mean (ng/L) Reference 

Vila do conde, Portugal 7 50 This study 

North Atlantic, Azores 7 0.02 Lammel et al. (2017) 

North Atlantic, between Azores 
and Jamaica 

7 0.01 Lammel et al. (2017) 

Barcelona, Spain 7 1.2 García-Flor et al. (2009) 

Banyuls-sur-Mer, France 7 2.6 García-Flor et al. (2009) 

Aegean Sea, Greece 7 0.03 Lammel et al. (2015) 

Atlantic Ocean, Germany to 
South Africa 

7 0.0005 Gioia et al. (2008) 

Equatorial Indian Ocean, 
between India and Indonesia 

7 0.004 Huang et al. (2014) 
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PCB180, 11.5 years (Ritter et al., 2011). This observation points that their presence in the 

environment could reach for periods that might last almost 15 years. 

Even though the NDL-PCBs aren’t still confirmed as carcinogenic, they can have other 

adverse effects such as neurotoxicity, immunotoxicity, endocrine disruption, oxidative 

stress (especially in fish), among others (Brenerová et al., 2016; Elia et al., 2005). This 

observation is applicable for PCB28, PCB52, PCB138 and PCB180 which are suspects of 

promoting endocrine disruptors (Petersen et al., 2007). 

In spite of PCB118 is being considerate a compound that maybe belong to Group 1, the 

others ones evaluated in this study were included in the Group 2B for carcinogenicity since 

there is still not enough information about their ability to promote physiologic damages in 

humans (IARC, 2016). 

In order to evaluate the risks of exposure for humans and animals of the environmental 

levels measured in the present area, these were normalized in TEQ values considering as 

the TCDD the most toxic PCB. The total TEQ obtained was  0.0015 ng/L.  

Figure 8 shows the extrapolation of the TEQs values from each PCB. The same one reveals 

that of all the PCBs the one who demonstrate a higher TEQ value was PCB118 with  0.0008 

ng/L. 

Since, PCB118 can act sometimes as a dioxin-like PCB, the fact that it have a high value is 

concerning in terms of both animal and human exposure (Elia et al., 2005). 

With all this in mind, the concentrations measured herein are a matter of concern and 

shouldn’t be ignored.  

 

4.7. Physicochemical parameters 

 

The physicochemical parameters measured point to a poor water quality at the seacoast. 

In fact, the levels measured for ammonia in all sampling sites, considering temperatures of 

15ºC and pH of 8 were above 1.2 mg/L which are well above the LC50 recommended by 

EPA (EPA, 1985).  

Converting the levels of nitrates and nitrites to levels nitrogen (1 mg/L as nitrate = 0.226 

mg/L as nitrate-nitrogen; 1 mg/L as nitrite = 0.304 mg/L), the latter never surpass 1 mg/L at 

all sampling sites, which is the concentration above which the WHO considers the presence 

of nitrogen as a hazardous for human health (WHO, 2011).  
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The average levels of phosphates (1 mg/L = 0.024 mg/L of phosphorous), which sources 

are mainly sewage effluents and/or organophosphorus pesticides, never surpass 0.010 

mg/L, which is the recommended limit for total phosphorus in flowing streams to prevent 

eutrophication (Daniel et al., 1998). This occurrence shows that in terms of this parameter, 

inputs from direct sewage discharges are not problematic in this area (Figure 4). 

All other physicochemical data, i.e., pH and temperature were within the usual 

characteristics of this area (Rocha et al., 2012). 
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5. Conclusions 

This study provides important and unique information about pyrogenic and petrogenic 

sources PAHs, and about PCBs concentrations in seawater samples collected from 

northern Portugal (NW Iberian Peninsula). This allowed to unveil a baseline data sets 

against which future chemical monitoring can be compared with coastline reserve areas, 

while contributing with data for building global scenarios for pollution by these organic 

compounds in Europe.  

The data suggest that the surveyed habitat is being impacted by these compounds, at levels 

that have in spite of do not have potency to cancer they are still able to induce metabolic 

disorders in aquatic organics, birds and promote unpredicted impacts on human health.  

Moreover, since the studied habitat also has a wide range of other pollutants, e.g., 

estrogenic endocrine disruptors (Rocha et al., 2013) these organics, all together, might form 

a cocktail with unknown extent of toxicant effects.  

The ecosystem and health impacts of such complex situations have been reported 

worldwide, calling for actions at affected locations (Nekhavhambe et al., 2014; Viguri et al., 

2002). 

To prevent health impacts for local biota and humans, and to ensure the zero impact by 

PAHs and PCBs, monitoring and depollution measures should be undertaken in this area, 

in order to protect humans and the Ornithological Reserve from this harmful effects. 
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