
D
Utility-based

Predictive Analytics

Paula Alexandra de Oliveira Branco
Programa Doutoral em Informática das

Universidades do Minho, Aveiro e Porto
Departamento de Ciência de Computadores

2018

Orientador
Luís Fernando Rainho Alves Torgo, Professor Associado

Faculdade de Ciências da Universidade do Porto

Coorientador
Rita Paula Almeida Ribeiro, Professora Auxiliar

Faculdade de Ciências da Universidade do Porto

ii

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the

requirements of the University’s Regulations and Code of Practice for Research

Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the

candidate’s own work. Work done in collaboration with, or with the assistance

of, others, is indicated as such. Any views expressed in the dissertation are those

of the author.

SIGNED: ..

DATE: ..

iii

iv

To Nicolau and Leonardo

v

vi

Acknowledgments

First and foremost, I would like to thank my supervisors, Professor Lúıs Torgo and Professor

Rita Ribeiro, for all the support, guidance and encouragement they have provided me since

I started this life-changing journey. They have made possible the realisation of this thesis. It

has been an honour to work with both. I thank Professor Lúıs Torgo for always expressing

his thoughts, concerns and suggestions in a clear and direct way. Professor Rita Ribeiro

was always patient, available and willing to help in the most difficult moments. I learned

a lot with both and I am thankful for the excellent examples they provided as successful

researchers and professors. For all this, they have my sincere respect and gratitude.

My thanks also go to my colleagues in DCC and LIAAD - INESC Tec for the many wonderful

moments but also for providing me support on the most difficult times. A special word to

Mariana Oliveira, Nuno Moniz and Vitor Cerqueira.

Lastly, I would like to thank my family for all the love and support. A special thanks to

my mother Amélia, my husband Nicolau and my son Leonardo. A very special thanks to

my loving, encouraging, and tremendously patient husband Nicolau. Without his confidence

and faithful support this journey would not have been possible. I am also very grateful to

my son Leonardo for all the happiness he has brought into my life.

The work presented in this thesis was supported by a scholarship from the Portuguese

Science and Technology Foundation (FCT) with the PhD grant PD/BD/105788/2014, by the

ERDF – European Regional Development Fund through the COMPETE 2020 Programme

within project POCI-01-0145-FEDER-006961, and by National Funds through FCT as part

of project UID/EEA/50014/2013.

vii

viii

Abstract

In several predictive tasks the end-user attention is focused in certain regions of the domain of

the target variable. As opposed to standard predictive tasks where all target variable values

are equally important, in these particular tasks the domain has a non-uniform importance for

the end-user. In many real world domains, such as financial, meteorological or medical, we

can find tasks that fit into this non-standard setting. In effect, for most practical applications

we observe that there is important domain knowledge that must be accounted for when

solving the corresponding predictive task.

In these tasks, the relevance of certain regions of the domain is associated to either high costs

and/or severe consequences, or to important profits and/or benefits. Initially, the research

community addressed these tasks through the development of the cost-sensitive learning

theory which considers only the costs component. More recently, this theory evolved to the

broader framework of utility-based mining. The utility-based learning setting allows the

consideration of both costs and benefits that may derive from different domain information.

Although more complex, the utility-based learning framework is also more intuitive from an

end-user perspective and more thorough regarding the domain information representation.

The first efforts for including costs and benefits into the learning procedure were concentrated

in tasks with a nominal target variable (classification tasks). Still, with time, it became clear

that this learning paradigm was also applicable to regression tasks, where the target variable

is continuous. In this thesis we focus on the utility-based learning problem. The youth of

this broader approach, specially regarding regression tasks, results in the existence of several

open issues that we tackled. In particular, we identified and addressed the following main

challenges: i) development of a unifying framework for utility-based learning; ii) development

of learning methods for optimising utility in regression tasks; and iii) proposal of new pre-

processing methods for addressing the problem of learning from imbalanced domains.

The proposal of a unifying utility-based framework allows to better understand the character-

istics of these tasks, while integrating both classification and regression problems. Moreover,

using this framework we are also able to establish important connections between different

predictive problems.

The second challenge is related with the lack of methods to address utility-based regression

ix

problems. When dealing with utility-based learning if the utility information is not incorpo-

rated into the learning procedure we are only able to obtain sub-optimal models. To solve

this problem we propose and evaluate new methods that allow to maximise the utility in

regression. We show that these methods are effective for different utility settings.

The third and final challenge is related with the particular sub-class of utility-based problems

known as imbalanced domains. This is also a problem insufficiently studied in the context

of regression tasks. We propose and evaluate several approaches to address this problem.

As a practical outcome of this work, we provide UBL, an R package for utility-based learning

that integrates approaches for classification and regression tasks. The UBL package includes

the proposals presented in this thesis, as well as many other approaches developed for utility-

based classification, providing to the research community a tool for testing and comparing

different alternative methods of addressing utility-based predictive tasks.

x

Resumo

Em várias tarefas de previsão a atenção do utilizador final está centrada em certas regiões

do domı́nio da variável objetivo. Ao contrário do que sucede com as tarefas de previsão

standard nas quais todos os valores a variável objetivo são igualmente importantes, nestas

tarefas o domı́nio tem uma importância não uniforme para o utilizador final. Em muitos

domı́nios reais, como o financeiro, meteorológico ou médico, podemos encontrar tarefas que

se enquadram nesta configuração não standard. Com efeito, observamos que na maioria das

aplicações práticas existe conhecimento sobre o domı́nio importante que deve ser tido em

conta no momento da resolução da tarefa de previsão correspondente.

Nestas tarefas, a relevância de certas regiões do domı́nio está associada a elevados cus-

tos e/ou graves consequências, ou a lucros e/ou benef́ıcios consideráveis. Inicialmente, a

comunidade cient́ıfica abordou estas tarefas através do desenvolvimento da teoria de cost-

sensitive learning a qual considera apenas a componente dos custos. Recentemente, esta

teoria evoluiu para a estrutura mais ampla de utility-based mining. Esta configuração de

aprendizagem baseada em utilidade permite considerar simultaneamente custos e benef́ıcios

que podem derivar de diferentes informações sobre o domı́nio. Apesar de ser mais complexa,

a estrutura de aprendizagem baseada em utilidade é também mais intuitiva do ponto de

vista do utilizador final e mais completa em relação à representação de informação sobre o

domı́nio.

Os primeiros esforços para incluir custos e benef́ıcios no processo de aprendizagem estavam

concentrados em tarefas com uma variável objetivo nominal (tarefas de classificação). No

entanto, com o tempo, tornou-se claro que este paradigma de aprendizagem era também

aplicável a tarefas de regressão, as quais têm a variável objetivo cont́ınua. Nesta tese

focámo-nos no problema de aprendizagem baseada em utilidade. A juventude desta am-

pla abordagem, especialmente no que diz respeito a tarefas de regressão, resulta na ex-

istência de diversas questões em aberto que nos enfrentámos. Em particular, identificámos e

abordámos os principais desafios seguintes: i) desenvolvimento de uma estrutura unificadora

para aprendizagem baseada em utilidade; ii) desenvolvimento de métodos de aprendizagem

para otimizar a utilidade em tarefas de regressão; e iii) proposta de novos métodos de pré-

processamento para lidar com o problema de aprendizagem em domı́nios desbalanceados.

xi

A proposta de uma estrutura unificadora para aprendizagem baseada em utilidade permite

compreender melhor as caracteŕısticas destas tarefas, integrando ambos os problemas de

classificação e regressão. Além disso, usando esta estrutura, também podemos estabelecer

conexões importantes entre diferentes problemas de previsão.

O segundo desafio está relacionado com a falta de métodos para abordar problemas de

regressão baseados em utilidade. Ao lidar com problemas de aprendizagem baseados em

utilidade, se a informação relativa à utilidade não é incorporada no processo de aprendizagem

seremos apenas capazes de obter modelos sub-ótimos. Para resolver este problema propomos

e avaliamos métodos novos que permitem maximizar a utilidade em regressão. Mostramos

que estes métodos são eficazes em diferentes configurações de utilidade.

O terceiro e último desafio está relacionado com uma subclasse particular de problemas

baseados em utilidade conhecida por domı́nios desbalanceados. Este é também um problema

estudado de forma insuficiente no contexto de tarefas de regressão. Nós propomos e avaliamos

abordagens para lidar com este problema.

Como resultado prático deste trabalho, disponibilizamos a UBL, uma package de R para

aprendizagem baseada em utilidade que integra abordagens para tarefas de classificação

e regressão. A package UBL inclui as abordagens apresentadas nesta tese, assim como

muitas outras abordagens desenvolvidas para tarefas de classificação baseadas em utili-

dade, fornecendo à comunidade cient́ıfica uma ferramenta para testar e comparar diferentes

métodos alternativos para abordar tarefas de previsão baseadas em utilidade.

xii

Contents

Abstract ix

Resumo xi

List of Tables xix

List of Figures xxiii

List of Algorithms xxv

1 Introduction 1

1.1 Data Science and Predictive Analytics . 1

1.2 Context and Problem Definition . 2

1.3 Motivation and Main Contributions . 3

1.4 Organisation of the Thesis . 4

1.5 Bibliographic Note . 5

2 Literature Review 7

2.1 Introduction . 7

2.2 Non-standard Predictive Analytics: Tasks and Challenges 8

2.3 Utility-based Learning . 10

2.3.1 Cost-sensitive and Utility-based Learning Theory 11

2.3.2 Performance Assessment in Utility-based Learning 22

2.3.3 Learning Methods for Utility Optimization 26

2.3.3.1 Direct Methods . 28

xiii

2.3.3.2 Meta-learning Methods . 30

2.4 Imbalanced Domains . 34

2.4.1 Problem Definition . 35

2.4.2 Performance Assessment in Imbalanced Domains 35

2.4.2.1 Metrics for Imbalanced Classification Tasks 36

2.4.2.2 Metrics for Imbalanced Regression Tasks 43

2.4.3 Methods for Dealing with Imbalanced Domains 45

2.4.3.1 Direct Methods . 46

2.4.3.2 Pre-processing Meta-learning Methods 49

2.4.3.3 Post-processing Meta-learning Methods 55

2.4.3.4 Hybrid Methods . 56

2.5 Conclusions . 56

3 A Utility-based Learning Framework 59

3.1 Introduction . 59

3.2 Formalisation of Predictive Analytics . 59

3.3 Utility-based Regression Challenges . 79

3.3.1 The Challenge of Obtaining the Utility Surface 80

3.3.2 The Challenge of Performance Assessment 88

3.4 Imbalanced Domains Learning: Definition and Main Challenges 88

3.4.1 The Problem of Learning from Imbalanced Domains 89

3.4.2 The Challenge of Relevance Function Estimation 91

3.4.3 The Challenge of Performance Assessment 93

3.5 Conclusions . 98

4 Utility Optimisation for Regression Tasks 101

4.1 Introduction . 101

4.2 UtilOptim: Maximising the Expected Utility 102

4.3 MetaUtil: Maximising the Utility by Changing the Training Set 105

4.4 Experimental Analysis . 106

xiv

4.4.1 Materials and Methods . 106

4.4.2 Results and Discussion . 109

4.5 Conclusions . 114

5 Learning in Imbalanced Regression Problems 117

5.1 Introduction . 117

5.2 Pre-processing Strategies for Imbalanced Regression 118

5.3 Biased Pre-processing Strategies for Imbalanced Regression 135

5.4 Experimental Study . 141

5.4.1 Materials and Methods . 141

5.4.2 Evaluation of Unbiased Pre-processing Strategies 143

5.4.3 Evaluation of Biased Pre-processing Strategies 149

5.4.4 Evaluation of Different Distribution Changes on Pre-processing Strate-

gies . 153

5.5 Conclusions . 155

6 Conclusions 159

6.1 Contributions . 159

6.2 Future Research Directions . 161

Appendices 163

A Pre-processing Strategies Results for Imbalanced Regression 165

A.1 Evaluation Results of Unbiased Pre-processing Strategies 166

A.2 Evaluation Results of Biased Pre-processing Strategies 184

A.3 Results of Pre-processing with Different Distribution Changes 202

Glossary 221

References 223

xv

xvi

List of Tables

2.1 An example of an arbitrary cost matrix for a binary classification problem. . 13

2.2 Cost matrix for which one class should never be predicted. 14

2.3 Cost matrix for which no learning is necessary. 14

2.4 Cost matrix for the calling card fraud detection problem. 20

2.5 Transformed cost matrix for the calling card fraud detection problem. 20

2.6 Transformed utility matrix for the calling card fraud detection problem. . . . 20

2.7 Example of a stationary and a dynamic cost matrix for a two-class problem. . 21

2.8 Performance assessment metrics for utility-based learning tasks. 23

2.9 Advantages and disadvantages of strategies for utility-based learning. 27

2.10 Bibliographic references of direct methods for utility maximisation. 31

2.11 Bibliographic references of meta-learning methods for utility maximisation. . 34

2.12 Performance assessment metrics for imbalanced domains learning. 36

2.13 Confusion matrix for a two-class problem. 37

2.14 Advantages and disadvantages of strategies for imbalanced domains learning. 47

2.15 Bibliographic references on direct methods for imbalanced domains. 48

2.16 Bibliographic references of pre-processing methods for imbalanced domains. . 50

2.17 Bibliographic references of post-processing methods for imbalanced domains. 55

2.18 Main bibliographic references of hybrid strategies chronologically ordered. . . 56

3.1 Uniform utility matrix UMunif for a binary classification problem. 65

3.2 Levels of information concerning the user predictive performance preferences. 66

3.3 Description of Breast Cancer Data observed characteristics. 67

3.4 Confusion matrices of three models built for the Breast Cancer problem. . . . 67

xvii

3.5 UM3: Utility matrix for the Breast Cancer prediction problem. 68

3.6 Scores obtained using different user information for three different models. . . 68

3.7 Classification tasks examples according to the defined framework. 77

3.8 Regression tasks examples according to the defined framework. 78

3.9 Interpolation methods for obtaining different utility surfaces. 84

3.10 Utility surface information provided by the user for Case 1. 85

3.11 Utility surface information provided by the user for Case 2. 86

3.12 Utility surface information provided by the user for Case 3. 87

3.13 Different metrics results on the four artificial models. 98

4.1 Characteristics of the 14 used data sets. 108

4.2 Regression algorithms, parameter values, and respective R packages. 108

4.3 NMU results by learner and data set for utility surface parameter p set to 0.2. 110

4.4 NMU results by learner and data set for utility surface parameter p set to 0.5. 110

4.5 NMU results by learner and data set for utility surface parameter p set to 0.8. 111

5.1 Data sets information by descending percentage of rare cases. 142

5.2 Regression algorithms, parameter variants, and the respective R packages. . . 143

5.3 Tested variants of unbiased pre-processing strategies. 144

5.4 Tested pre-processing variants with and without a neighbourhood bias. 149

5.5 Number of data sets with best average F φ1 score. 150

5.6 Tested pre-processing variants with different distribution changes. 155

A.1 F φ1 results of unbiased strategies. 166

A.2 G−Meanφ results of unbiased strategies. 169

A.3 precφ results of unbiased strategies. 172

A.4 recφ results of unbiased strategies. 175

A.5 specφ results of unbiased strategies. 178

A.6 NPvalφ results of unbiased strategies. 181

A.7 F φ1 results of biased strategies. 184

A.8 G−Meanφ results of biased strategies. 187

xviii

A.9 precφ results of biased strategies. 190

A.10 recφ results of biased strategies. 193

A.11 specφ results of biased strategies. 196

A.12 NPvalφ results of biased strategies. 199

xix

xx

List of Figures

2.1 Example of a Cost Curve for the pima data set. 25

2.2 RROC Curve of three models: A, B and C. 25

2.3 An example of a REC Curve. 26

2.4 Taxonomy for utility-based strategies. 28

2.5 Taxonomy for cost-sensitive decision trees algorithms. 29

2.6 ROC curves of 4 classifiers and corresponding AUC-ROC. 41

2.7 PR Curve curves of 3 classifiers and corresponding AUC-PR. 42

2.8 An example of a REC Surface. 45

2.9 Taxonomy of strategies for tackling imbalanced domains problems. 46

2.10 Example of synthetic case generation using SMOTE algorithm. 53

3.1 Examples of relevance functions defined for the glass classification data set. . 63

3.2 Examples of relevance functions defined for the autoPrice regression data set. 64

3.3 Illustration of a uniform utility surface USunif and the corresponding isometrics. 65

3.4 Utility surface U−lA
3/4

and the corresponding isometrics. 71

3.5 Relevance function φ3 derived for the example with ID 3 in Table 3.8. 76

3.6 Utility surface expressing a illness severity from a medical perspective. 81

3.7 Utility surface expressing a illness severity from a hospital manager perspective. 81

3.8 Utility surfaces obtained through the automatic method. 83

3.9 Isometrics obtained using different interpolation methods for Case 1 85

3.10 Utility Surface and isometrics generated with splines interpolation for Case 2. 86

3.11 Utility Surface and isometrics generated with idw interpolation for Case 3. . . 87

3.12 Probability mass function, φ(Y) and tR for a classification problem. 89

xxi

3.13 Probability density estimation, φ(Y) and tR for a regression problem. 90

3.14 Example of a partially ordered set and the construction of a LPOM. 93

3.15 Target variable distribution of LNO2Emissions data set. 96

3.16 Relevance function automatically estimated for the target variable LNO2. . . 96

3.17 Predictions of four artificial models on cases from the LNO2Emissions data. . 97

4.1 Utility and fY |X results for one case of LNO2Emissions data set. 105

4.2 CD diagrams of average NMU results for different utility surface settings. . . 111

4.3 CD diagrams of average NMU results for SVM learner. 113

4.4 CD diagrams of average NMU results for RF learner. 113

5.1 Example of obtaining two bins on LNO2Emissions data set. 120

5.2 Example of obtaining three bins on LNO2Emissions data set. 120

5.3 Example of obtaining five bins on LNO2Emissions data set. 121

5.4 Density on the original data set and after applying RU on fuelCons data set. 123

5.5 Density on the original data set and after applying RO on fuelCons data set. 125

5.6 Density on the original data set and after applying WERCS on fuelCons data. 127

5.7 Density on the original data set and after applying GN on fuelCons data set. 128

5.8 Density on the original data set and after applying SMOTER on fuelCons

data set. 132

5.9 Synthetic example illustrating the application of SMOGN algorithm. 133

5.10 Density on the original data set and after applying SMOGN on fuelCons data. 135

5.11 Degrees of closeness to frontier and safeness for rare and normal examples. . . 137

5.12 Average F φ1 results of unbiased pre-processing strategies. 145

5.13 Average G−Meanφ results of unbiased pre-processing strategies. 146

5.14 CD diagram of F φ1 results for unbiased pre-processing strategies. 147

5.15 CD diagrams of F φ1 results by learner for unbiased pre-processing strategies. . 148

5.16 Results of F φ1 gains of biased pre-processing strategies in comparison to RU. . 150

5.17 Results of F φ1 gains of biased pre-processing strategies in comparison to SMOTER.151

5.18 Number of best average F φ1 scores for biased pre-processing strategies. 152

5.19 CD diagram of F φ1 results for biased pre-processing strategies. 153

xxii

5.20 CD diagram of F φ1 results by learner for biased pre-processing strategies. . . . 154

5.21 F φ1 pre-processing results on boston data set for different distribution changes. 156

5.22 F φ1 pre-processing results on dAiler data set for different distribution changes. 157

A.1 F φ1 pre-processing results on servo data for different distribution changes. . . 202

A.2 F φ1 pre-processing results on a6 data for different distribution changes. 203

A.3 F φ1 pre-processing results on Abalone data for different distribution changes. . 204

A.4 F φ1 pre-processing results on machineCpu data for different distribution changes.205

A.5 F φ1 pre-processing results on a3 data for different distribution changes. 206

A.6 F φ1 pre-processing results on a4 data for different distribution changes. 207

A.7 F φ1 pre-processing results on a1 data for different distribution changes. 208

A.8 F φ1 pre-processing results on a7 data for different distribution changes. 209

A.9 F φ1 pre-processing results on a2 data for different distribution changes. 210

A.10 F φ1 pre-processing results on a5 data for different distribution changes. 211

A.11 F φ1 pre-processing results on fuleCons data for different distribution changes. 212

A.12 F φ1 pre-processing results on availPwr data for different distribution changes. 213

A.13 F φ1 pre-processing results on cpuSm data for different distribution changes. . 214

A.14 F φ1 pre-processing results on maxTorque data for different distribution changes.215

A.15 F φ1 pre-processing results on bank8FM data for different distribution changes. 216

A.16 F φ1 pre-processing results on concreteStrength data for different distribution

changes. 217

A.17 F φ1 pre-processing results on acceleration data for different distribution changes.218

A.18 F φ1 pre-processing results on airfoild data for different distribution changes. . 219

xxiii

xxiv

List of Algorithms

4.1 Utility Optimization (UtilOptim). 103

4.2 MetaUtil. 107

5.1 Construction of Bins. 119

5.2 Random under-sampling (RU). 122

5.3 Random over-sampling (RO). 124

5.4 WEighted Relevance-based Combination Strategy (WERCS). 126

5.5 Introduction of Gaussian Noise (GN). 129

5.6 Generating synthetic cases in regression (GenSynthCases). 130

5.7 SMOTE for Regression (SMOTER). 131

5.8 SMOTER with Gaussian Noise (SMOGN). 134

5.9 Under-sampling with neighbourhood bias (U Bias). 139

5.10 Over-sampling with neighbourhood bias (O Bias). 140

xxv

xxvi

Chapter 1

Introduction

The growth witnessed in the amount of available data has been accompanied by the will of

using it in a valuable way. In a Data Science context, this growth also brought attention to

the importance of taking into account all existing domain knowledge. The incorporation

of domain information when dealing with predictive tasks is crucial for many practical

applications, leading to more adequate and useful predictions.

Frequently, the end-user is particularly interested in some specific cases. This information

regarding important domain regions, represents situations where high profits or benefits may

occur, but also serious consequences or costs may be at stake. In this scenario, the goal is to

incorporate the available domain knowledge in the generation of the models. These models

should be able to make predictions that provide the higher utility value for the end-user

taking into account her/his domain preference biases.

This thesis addresses the problem of utility-based predictive analytics. The goal here is to

predict a target variable value using its dependency on a set of predictor variables, while

incorporating the available domain knowledge to maximise a utility score.

In this chapter we contextualise and define the problem of utility-based predictive analytics.

Our main motivations and contributions are also outlined.

1.1 Data Science and Predictive Analytics

The increasing amount of available data has promoted the fast development of Data Science.

The key objective of Data Science is to extract potentially interesting and novel knowledge

from the available data. It is this capability of Data Science to discover knowledge that makes

it so attractive in a diversity of practical domains. In effect, the discovered knowledge may

provide an important competitive advantage for many organisations and different application

domains, such as: medical, financial markets, meteorology/ecology, among others.

1

2 CHAPTER 1. INTRODUCTION

Data Science encompasses several different tasks among which predictive analytics occupies

a leading position. Predictive analytics aims at building models for solving predictive tasks

using examples of the domain.

In the course of time, the research community verified that standard learning tasks using

only the domain examples as input were not the most common setting. Typically, for a given

predictive task there is also other important domain knowledge that is crucial to consider.

For instance, it is frequent to find practical applications where the end-user interests are

biased towards specific regions of the domain which may provide high profits or costs. This

extra information must be accounted for when providing solutions for the predictive tasks.

These non-standard predictive tasks are more complex as they involve embedding more

domain knowledge into the learning process. However, if this knowledge is disregarded

the developed models will not be suitable for the end-user goals. Solving such tasks is an

interesting problem that still presents important open research challenges.

1.2 Context and Problem Definition

This thesis is focused on a particular type of Data Science applications: predictive tasks

where the main goal is to maximise the utility of the predictions. These tasks include pre-

dictive problems for which the end-user is able to provide information on hers/his preference

biases in a formal or informal way. This information involving non-uniform preferences

over the problem domain affects both the learning strategies and the evaluation procedures

that should be applied. A diverse set of practical applications share the goal of maximising

the utility of the predictions. This is the case for the medical diagnosis of rare diseases,

forecasting extreme weather events, prediction of high/low values of stock market assets,

among many others.

The key distinguishing characteristic of these applications is related with the impact of pre-

dictions on the most relevant regions of the domain of the target variable. These predictions

usually entail high costs and/or severe consequences, or may represent high profits and/or

benefits. A well-known framework for addressing some of these problems is cost-sensitive

learning (e.g. Elkan [2001]). Still, this framework is focused on classification problems, where

the target variable is nominal, and few solutions exist for regression problems, where the

target variable is continuous.

In this thesis we focus on the open issues associated with these non standard tasks, which

are more noticeable in regression problems. Examples of such open issues include: the

definition of a unifying framework for utility-based learning problems, the development of

learning methods for utility optimisation specially in a regression context, or the definition

of suitable performance assessment measures.

1.3. MOTIVATION AND MAIN CONTRIBUTIONS 3

1.3 Motivation and Main Contributions

In this thesis we address a special type of predictive tasks: utility-based predictive analytics.

The goal of this type of tasks is to use the utility information regarding the costs and

benefits of predictions supplied by the end-user to obtain models that maximise the utility,

i.e., models that provide lower costs and higher benefits with their predictions. The existence

of this additional domain knowledge is a key factor in these problems. If this knowledge is

disregarded only sub-optimal models can be obtained which may have severe consequences.

The several open issues still existing in these utility-based applications, particularly in the

less explored regression tasks, motivated the work presented in this thesis.

Solutions for the utility-based learning problem have been mostly focused on classification

tasks. Thus, the majority of open challenges are related with utility-based regression tasks.

One main objective of this thesis is to address these open issues, providing a diverse set of

solutions for utility-based regression tasks. Another important objective of this thesis is to

develop a unifying framework incorporating both utility-based classification and regression

tasks, that allows to: i) understand the connections between standard and non-standard

predictive tasks; and ii) show the relationship between utility-based learning and the problem

of learning from imbalanced domains.

The work carried out during the thesis led to the following main contributions:

i) present an extensive review of the utility-based learning problem, including the par-

ticular sub-problem of learning from imbalanced domains;

ii) propose a general utility-based learning framework that allows to contextualise these

tasks within standard and non-standard learning problems;

iii) frame the problem of learning from imbalanced domains as a sub-problem of utility-

based learning;

iv) present and discuss the main open challenges of utility-based learning problems;

v) present a solution based on spatial interpolation for addressing the challenge of ob-

taining the full utility information in regression problems;

vi) present performance assessment measures adjusted to the available problem informa-

tion;

vii) propose and evaluate two new methods for maximising utility in regression tasks;

viii) propose and evaluate several new pre-processing methods for dealing with the imbal-

anced regression problem;

4 CHAPTER 1. INTRODUCTION

ix) development of UBL, an R package for dealing with utility-based learning problems.

The UBL package includes several different methods for tackling utility-based learning

problems for both classification and regression tasks and is freely available for the

research community.

1.4 Organisation of the Thesis

This thesis is organised in six chapters described below.

Introduction In the present chapter we described this thesis context and problem defini-

tion. We also present the main motivations and contributions of our work.

Literature Review The second chapter provides an extensive review of previous work

on utility-based predictive analytics. We present the main challenges and developments

achieved in these problems which also include the problem of learning with imbalanced

domains.

Utility-based Learning Framework The third chapter presents a unifying framework

for utility-based learning that incorporates classification and regression tasks. Using this

framework we are able to show the relationship between utility-based learning and imbal-

anced learning problems.

Utility Optimisation for Regression Tasks In the fourth chapter we propose two new

methods for optimising the utility in regression problems. An experimental evaluation is

presented and a discussion regarding the advantages of the two methods is provided.

Learning from Imbalanced Regression Problems In the fifth chapter, we present

a diverse set of pre-processing methods to tackle imbalanced regression problem. The

presented methods include strategies for biasing the pre-processing strategies according

to the examples neighbourhood. The use of these methods is evaluated in an extensive

experimental study and a discussion of the results is provided.

Conclusions The sixth and final chapter concludes this thesis. We present a summary of

our main achievements and provide insights regarding future research directions.

1.5. BIBLIOGRAPHIC NOTE 5

1.5 Bibliographic Note

This thesis includes work that has been published elsewhere. The following list provides the

references to those publications as well as the chapters to which they are related.

• Paula Branco, Luis Torgo, and Rita P Ribeiro. A survey of predictive modelling under

imbalanced distributions. arXiv preprint arXiv:1505.01658, 2015 (Chapter 2, 3)

• Paula Branco, Lúıs Torgo, and Rita P Ribeiro. A survey of predictive modeling on

imbalanced domains. ACM Computing Surveys (CSUR), 49(2):31, 2016b (Chapter

2, 3)

• Paula Branco, Lúıs Torgo, and Rita P Ribeiro. Relevance-based evaluation metrics for

multi-class imbalanced domains. In Pacific-Asia Conference on Knowledge Discovery

and Data Mining, pages 698–710. Springer, 2017b (Chapter 3)

• Paula Branco, Rita P Ribeiro, and Luis Torgo. UBL: an R package for utility-based

learning. arXiv preprint arXiv:1604.08079, 2016a (Chapter 3, 4, 5)

• Paula Branco, Lúıs Torgo, Rita P Ribeiro, Eibe Frank, Bernhard Pfahringer, and

Markus Michael Rau. Learning through utility optimization in regression tasks. In

Data Science and Advanced Analytics (DSAA), 2017 IEEE International Conference

on, pages 30–39. IEEE, 2017d (Chapter 4)

• Paula Branco, Lúıs Torgo, and Rita P Ribeiro. MetaUtil: Meta learning for utility

maximization in regression. In International Conference on Discovery Science (to

appear). Springer, 2018a (Chapter 4)

• Lúıs Torgo, Paula Branco, Rita P Ribeiro, and Bernhard Pfahringer. Resampling

strategies for regression. Expert Systems, 32(3):465–476, 2015 (Chapter 5)

• Paula Branco, Lúıs Torgo, and Rita P Ribeiro. SMOGN: a pre-processing approach for

imbalanced regression. In First International Workshop on Learning with Imbalanced

Domains: Theory and Applications, pages 36–50, 2017c (Chapter 5)

• Paula Branco, Lúıs Torgo, and Rita P Ribeiro. Exploring resampling with neighbor-

hood bias on imbalanced regression problems. In Portuguese Conference on Artificial

Intelligence, pages 513–524. Springer, 2017a (Chapter 5)

• Paula Branco, Lúıs Torgo, and Rita P Ribeiro. Resampling with neighbourhood bias

on imbalanced domains. Expert Systems, 2018b (Chapter 5)

6 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

Standard predictive analytics assumes the user has a uniform interest across the domain of

the target variable. However, the study of real world applications shows that this is not

always the case. A diversity of practical applications has drawn the attention of the research

community to situations where this interest is non-uniform. This happens in many real

world applications such as extreme weather forecasting or prediction of rare diseases.

In this chapter we discuss the main challenges when tackling this particular class of predictive

problems and present the main existing solutions to address them. We define non-standard

predictive analytics tasks and provide an overview of the methods developed for dealing with

them. Namely, we cover some of the most common examples of non-standard predictive

analytics: the problems of cost-sensitive learning, utility-based learning and learning from

imbalanced domains.

2.1 Introduction

Data Science involves a diverse set of tasks, including data cleaning, data pre-processing and

transformation, data visualisation, learning of predictive models, development of decision

support tools, deployment of recommendation systems, among other. The main goal of Data

Science is to discover new interesting knowledge using the available data. The importance of

Data Science is precisely related with this process of uncovering knowledge from data which

can provide a competitive advantage for many companies and organisations.

Among the different steps involved in Data Science, predictive analytics emerges as a central

task. The goal of predictive analytics is to use a set of examples of a given domain to build

models that can solve predictive tasks [Torgo, 2016]. The objective of a predictive task is

to obtain a good approximation of an unknown function f that maps the values of a set of

predictor variables into the values of a target variable. This approximation is obtained using

7

8 CHAPTER 2. LITERATURE REVIEW

a training data set containing observations of both the predictor and target variables.

Standard predictive analytics tasks are focused on obtaining high quality predictions as-

signing the same importance to all cases in the problem domain. In these problems, the

performance of the obtained models is assessed by measuring the prediction errors using

standard evaluation metrics. These standard metrics are calculated in a uniform, indepen-

dent and unbiased fashion. This means that the errors are evaluated without taking into

account any domain characteristics or preference bias such as the cases where the errors

occurred, the type of error, or the user preferences over the domain. Therefore, standard

predictive tasks seek a minimisation of the errors, ignoring differences between types of

errors, i.e., they assume that all errors have the same cost.

For several real world domains many predictive tasks are non-standard because they involve

non-uniform preferences. In fact, for these tasks different errors may have different costs

and accurate predictions may also have different benefits. Examples of such tasks appear on

medical domains (e.g. prediction of rare diseases), meteorology (e.g catastrophes prediction),

financial markets (e.g. forecast of extreme returns in stock markets), ecology (e.g. prediction

of water contamination), fraud detection (e.g. prediction of fraudulent credit card transac-

tions), among many others. For instance, when considering the problem of predicting if a

person is healthy or has cancer, it is much more serious (costly) to misclassify as healthy a

person that actually has cancer than the reverse. In the first type of error, a person life may

be at stake, while on the second type of error it only implies conducting further unnecessary

exams on a healthy person.

This thesis is focused on this type of non-standard applications of predictive analytics. Our

goal is to explore solutions for solving open challenges related with these tasks. Therefore, in

this chapter we will start by addressing several examples of non-standard tasks. We describe

the cost-sensitive and utility-based learning tasks and present an overview of challenges and

existing solutions for addressing these problems. Next, we describe the related problem

of learning from imbalanced data sets. We discuss its connections with cost-sensitive and

utility-based learning, again describing existing solutions and open challenges.

2.2 Non-standard Predictive Analytics: Tasks and Challenges

Standard predictive tasks aim at obtaining high quality predictions. In the process to achieve

this goal all cases are considered equally important. Non-standard predictive tasks are

characterised by involving non-uniform preferences.

These non-uniform preferences may be associated to costs and/or benefits (cost-sensitive or

utility-based learning [Elkan, 2001]), to the rarity of certain events or values (imbalanced

domains learning [Branco et al., 2015]), or may even be associated with more complex settings

2.2. NON-STANDARD PREDICTIVE ANALYTICS: TASKS AND CHALLENGES 9

involving the decision maker prediction-based actions (e.g. actionable forecasting [Báıa,

2015]). All these problems are examples of non-standard predictive analytics. Utility Based

Data Mining (UBDM), as proposed by Weiss et al. [2005] and Zadrozny et al. [2006], also

fits into the class of “non-standard” predictive analytics. UBDM allows the consideration of

both costs and benefits that can arise from different factors.

In this thesis we focus on utility-based learning tasks, and in particular in utility-based

regression. Utility-based learning is an extension of cost-sensitive problems that takes into

account both costs and benefits of the predictions of the models. The main goal of utility-

based learning problems is to obtain models that maximise the utility of their predictions.

This utility describes the overall net balance between the costs and benefits of the predictions.

To be able to evaluate this utility we need to obtain information on the user preferences and

also to adopt suitable evaluation measures.

The problem of learning from imbalanced domains is another example of non-standard

predictive tasks. As in utility-based learning this problem also involves non-uniform pref-

erences over the domain of the target variable. However, this problem has an additional

difficulty: the cases that are more interesting to the user are poorly represented in the

available data. It is the conjunction of these two characteristics that causes the difficulties in

imbalanced domains. This means that imbalanced domains are a special case of utility-based

learning. Both are based on non-uniform preferences of the end-user. However, the poor

representativeness of the most interesting cases on imbalanced domains makes the learning

methods disregard them, which causes a performance degradation precisely on these cases.

Further details and more precise formalization of both utility-based learning and imbalanced

domains will be given in Chapter 3.

When tackling predictive tasks with non-uniform preferences from the end-user, researchers

must face a set of important challenges that are closely related with the nature of the

problem. These challenges are : (i) how to express the user preferences in a format useful

for biasing the learning of the models; (ii) how to evaluate the performance of the learned

models; and (iii) how to learn models biased towards the user preferences.

The first challenge is related with the domain knowledge that is available to the analyst. A

frequent setting for cost-sensitive classification tasks is to obtain a cost matrix that specifies

the different costs associated with each prediction error. Still, many authors claim that

obtaining such matrices may be challenging. In imbalanced domains this is also a challenge

because typically we only have some informal information available such as “the minority

class is the most important one”. As we will see, for utility-based regression this expression

of the user preferences is even more challenging.

The second challenge is related with performance evaluation. This is important because the

use of standard measures can lead to misleading conclusions on the quality of the obtained

models. Utility-based learning tasks aim at maximising the utility, while imbalanced domains

10 CHAPTER 2. LITERATURE REVIEW

aim at maximising the predictive performance on the most important cases. This means

that, in both cases, the issue of performance assessment must be adjusted to reflect the

user interests. In effect, standard evaluation measures focus on the average behaviour of the

models and therefore fail the goal of considering the user preferences.

Finally, the third challenge concerns obtaining models in accordance with the user prefer-

ences. Several strategies exist to force the learners to focus on the most interesting cases.

These strategies can be categorised into direct and meta-learning methods [Ling and Sheng,

2011b] based on the moment of the modeling workflow where they are applied. Direct

methods include solutions that act internally in the learning algorithm. Their goal is to

change the original learner to make it focus on the most important and useful cases. These

methods are typically effective but tailored to specific domains and therefore hard to use

in different contexts. Meta-learning methods act before or after the learning algorithm is

applied. They may adjust the training set distribution to correspond to the user preferences,

or act on the predictions changing them. The main advantage of meta-learning methods is

their independence of the learning algorithm, which makes them generally applicable.

2.3 Utility-based Learning

Utility-based learning is a special type of non-standard predictive task where we take into

consideration the fact that end-users assign different costs and benefits to the predictions

of the models. Utility-based learning can be seen as an extension of cost-sensitive learning.

Cost-sensitive predictive tasks may involve several different types of costs. Turney [2002]

proposed a taxonomy for the possible types of costs. Among the proposed types of costs

we find: costs of classification errors, costs of data acquisition, active learning costs, costs

of intervention, costs of computation and costs of human-computer interaction. Still, it

is recognised that the cost of classification errors is, by far, the most studied type and,

therefore, has a major role in the context of cost-sensitive learning.

Having differentiated costs of classification errors is useful in different real world applications,

such as, prediction of rare diseases, forecasting of unusual stock returns, credit approval,

anomaly detection in sensors data, prediction of meteorological catastrophes, etc. Given the

different contexts, costs can be represented through different units. Cost may be monetary,

but can also represent an illness severity, a waste of time, a computational cost, among

others.

The main goal of cost-sensitive algorithms is to minimise the total cost, as opposed to

standard learning tasks that assume uniform costs, and aim at minimising the number of

errors.

The more general framework of UBDM allows to consider both costs and benefits across all

2.3. UTILITY-BASED LEARNING 11

stages of the data mining process. The term utility emerged in the field of economics where

it was used to measure the preferences of the users over a set of goods or services. The

goal is the maximisation of the expected utility which can be achieved in multiple ways, by

improving the utility results in the different stages of the data mining process.

In the following subsections we present the main theory developed for cost-sensitive and

utility-based learning, and describe the methods proposed to address these tasks. Namely,

we consider the solutions put forward by the research community concerning the 3 main

challenges mentioned before: how to express the domain knowledge; how to properly evaluate

the models; and how to obtain them according to the user preferences.

2.3.1 Cost-sensitive and Utility-based Learning Theory

The goal of predictive analytics is to obtain a good approximation of an unknown function

Y = f(X1, X2, · · · , Xp) that maps the values of a set of p predictor or feature (independent)

variables into the target (dependent) variable values. This function f maps the feature space

X into the target variable space Y, i.e., f : X → Y. The approximation h(X1, X2, · · · , Xp)

of the function f , also called a model, is obtained using a training set D = {〈xi, yi〉}Ni=1 and

a selected learning algorithm. The cases 〈xi, yi〉 in D, also named examples, observations or

instances, are assumed to be drawn from the same (unknown) distribution. When the target

variable is numeric we face a regression task and when it is nominal we have a classification

problem.

The model h is obtained by optimising some preference criterion, usually known as the loss

function. These functions are used to assess how good the model h is, i.e., how well it is

expected to fit a new set of examples drawn from the same distribution.

Definition 2.3.1 (Loss Function) A loss function L : Y × Y → R provides the loss

associated with predicting the value of ŷ for a true target variable value of y.

Several loss functions exist. In classification tasks the 0/1 loss (cf. Equation 2.1) is typically

used, while for regression tasks the square loss (cf. Equation 2.2) or the absolute loss (cf.

Equation 2.3) are the common choices.

L0/1(ŷ, y) = I(y 6= ŷ) (2.1)

where I is the indicator function that returns one if its argument is true and zero otherwise.

L2(ŷ, y) = (y − ŷ)2 (2.2)

12 CHAPTER 2. LITERATURE REVIEW

L1(ŷ, y) = |y − ŷ| (2.3)

Definition 2.3.2 (Expected Loss) The expected loss of a model h in an instance 〈x, y〉 ∈
X × Y draw from a distribution D is defined as

EL(h, 〈x, y〉,D) := ED[L(h(x), y)] (2.4)

When we face a standard predictive task, the optimisation criterion used is the minimisation

of the expected loss (cf. Equation 2.4). Therefore, the optimal prediction y∗ ∈ Y for a given

instance 〈x, y〉 is determined by the model h as,

y∗ = arg min
h(x)∈Y

EL(h, 〈x, y〉,D) (2.5)

In this approach all errors are treated the same way, i.e., they all have the same cost. Still, as

we have mentioned, for several real world problems it is important to differentiate the costs of

the errors. When a cost function, C, describing the penalties incurred when errors are made,

is available, the used optimisation criterion must change. In these “non-standard” settings,

the predictive task goal changes from expected loss minimisation to the minimisation of the

expected cost.

Definition 2.3.3 (Cost Function) A cost function C : Y × Y → R maps each pair of

predicted and true values (ŷ, y) into a real number.

The theory of cost-sensitive learning was first developed for classification tasks. Therefore,

we will for now focus on cost-sensitive classification problems.

Consider a classification task with K classes, where Y = {y1, y2, · · · , yK}. Typically, when

we face a cost-sensitive classification task, the cost function is expressed as a K×K matrix,

that is also called a cost matrix. This formulation (e.g. Breiman et al. [1984], Domingos

[1999], Elkan [2001]) allows to express the existing domain knowledge by setting the costs of

all possible errors.

Definition 2.3.4 (Cost Matrix) Consider a classification task with K different classes.

A cost matrix C := [cij] specifies the costs incurred when an example is predicted to be of

class i when it actually belongs to class j. This matrix can be more formally defined as

follows:

C : K ×K → R+
0

(i, j) → cij =

0 i = j

> 0 i 6= j

(2.6)

2.3. UTILITY-BASED LEARNING 13

In this setting, accurate predictions should have no cost associated (cii = 0), while misclas-

sified classes should have a positive cost (cij > 0 if i 6= j).

Given a classification problem with K classes and a K × K cost matrix, the goal of the

classifier is to minimise the expected cost.

Definition 2.3.5 (Expected Classification Cost) Given a cost matrix, C, the expected

cost of a classifier h in an instance 〈x, y〉 ∈ X × Y draw from a distribution D is defined as

ECC(h, 〈x, y〉,D) := ED[C(h(x), y)] (2.7)

Consider an instance x ∈ X with unknown class label, for which we want to obtain a class

prediction. There are several different ways to achieve this goal. If the probability for each

class yi, P (yi|x), is available, then the Bayes optimal prediction for x is the class y∗ that

minimises the conditional risk [Duda et al., 2012]:

y∗ = arg min
y∈Y

R(y|x) = arg min
y∈Y

K∑
i=1

P (yi|x)C(y, yi) (2.8)

This provides a cost-sensitive method that solely depends on the quality of the class prob-

ability estimates. Two steps are required in this strategy: the estimation of the class

probabilities and the final labelling decision. One advantage of this strategy, which was

pointed by Margineantu [2002], concerns the independence between the two described steps.

This means that no information of the cost matrix is used for obtaining the probability

estimates and therefore, when the cost matrix changes, it is only necessary to evaluate the

final decision.

Table 2.1: An example of an arbitrary cost matrix for a binary classification problem.

True

y = 0 y = 1

Predicted
ŷ = 0 c00 c01

ŷ = 1 c10 c11

We must highlight that, sometimes, in the cost-sensitive literature the cost matrix has a

different definition. In fact, several authors consider that the cost matrix entries may be

set to any real value, including the entries for accurate predictions. The rational behind

this way of defining the cost matrix is related with, for instance, the need to perform some

“expensive” tests when a given class is predicted. Therefore, it is possible to assign costs

to accurate predictions. Let us term these matrices as arbitrary cost matrices. In this

14 CHAPTER 2. LITERATURE REVIEW

setting, Table 2.1 may represent the cost matrix associated with a binary classification

problem.

For now, let us assume the setting of arbitrary cost matrices. We will describe some of the

expected properties of cost matrices that are always satisfied with our proposed definition

(cf. Definition 2.3.4). Then, we show the equivalence between addressing a cost-sensitive

task with our proposed definition of cost matrix and that of arbitrary cost matrices.

Some important properties of cost matrices were described by Elkan [2001] and Margineantu

[2001].

Definition 2.3.6 (Row Dominance) Let C be a cost matrix. A row m dominates a row

n if, for all j, cmj ≥ cnj.

Considering the definition proposed for cost matrix (cf. Definition 2.3.4), there will never

occur a row dominance situation. This is trivially verified because accurate predictions

(cii = 0) are always set to zero, while a positive value is assigned to misclassified cases

(cih > 0). Therefore, no row of the cost matrix can dominate another. Still, this may occur

when any real values are considered as possible entries for the cost matrix. Tables 2.2 and

2.3, provided by Margineantu [2000], show two situations where this happens.

Table 2.2: Cost matrix for which one class should never be predicted.

True

y = 1 y = 2 y = 3

Predicted

ŷ = 1 2.0 3.2 4.5

ŷ = 2 1.0 0.1 1.0

ŷ = 3 1.5 1.2 0.3

Table 2.3: Cost matrix for which no learning is necessary.

True

y = 1 y = 2 y = 3

Predicted

ŷ = 1 2.0 3.2 4.5

ŷ = 2 1.0 0.1 1.0

ŷ = 3 1.5 2.2 1.3

In Table 2.2, we observe that the first row dominates the remaining rows, i.e., c1j > c2j and

c1j > c3j for all j ∈ {2, 3}. This means that to predict class 1 has always a higher cost than

to predict any other class. Therefore, we can conclude that class 1 should never be predicted

as it is never optimal.

2.3. UTILITY-BASED LEARNING 15

Table 2.3 represents an even more extreme situation: no learning is necessary because the

optimal prediction is trivial. In this case, we observe that class 1 dominates the remaining

classes and class 3 also dominates class 2. This means that class 2 has always the lowest

possible costs when compared against the other classes. Therefore, to predict class 2 will

always provide the lowest cost independently of this being an accurate prediction or not, i.e.,

for any values of P (j = 1|x), P (j = 2|x) and P (j = 3|x) predicting class 2 always provides

the minimum cost.

Elkan [2001] proposed the definition of reasonable conditions which guarantee that these

less interesting situations do not happen. These conditions essentially state that the cost of

accurate predictions should always be lower than the cost of misclassified cases.

Definition 2.3.7 (Reasonableness Conditions) Let C be a cost matrix. The cost of

accurately labelling an example is always lower than the cost of labelling it incorrectly, i.e.,

for all lines i of C,

cii < cij , ∀j (2.9)

If a cost matrix satisfies the reasonableness conditions, then no row of the cost matrix

dominates any other.

Another important property of cost matrices proposed by Margineantu [2001] is related with

the notion of equivalence between matrices.

Definition 2.3.8 (Equivalent Cost Matrices) Let C1 and C2 be two cost matrices, and

let h1 and h2 be two classifiers. Let EC1(h) (EC2(h)) represent the expected classification cost

of classifier h for the cost matrix C1 (C2). The two cost matrices are equivalent (C1 ≡ C2)

if and only if for any two classifiers h1 and h2:

EC1(h1) > EC1(h2)⇔ EC2(h1) > EC2(h2),

and

EC1(h1) = EC1(h2)⇔ EC2(h1) = EC2(h2).

This means that two cost matrices are equivalent when using either of them leads to the

same decisions for any two classifiers.

Theorem 2.3.9 (Margineantu [2001]) Let C1 be an arbitrary cost matrix. Let ∆ be a

matrix of the form:

∆ =


δ1 δ2 δ3 . . . δk

δ1 δ2 δ3 . . . δk
...

...
...

. . .
...

δ1 δ2 δ3 . . . δk



16 CHAPTER 2. LITERATURE REVIEW

If C2 = C1 + ∆, then C1 ≡ C2.

Corollary 2.3.9.1 (Margineantu [2001]) An arbitrary cost matrix can always be trans-

formed into an equivalent matrix with zero on the diagonal or into an equivalent matrix with

non-negative values.

Corollary 2.3.9.1 shows that considering a cost matrix with zero cost for accurate predictions

is equivalent to other arbitrary matrices with non-zero values on the diagonal. Therefore, all

the solutions proposed for arbitrary cost matrices are also valid for cost matrices defined as

we propose. Without loss of generality, we will assume the proposed cost matrix definition

with zero cost for accurate predictions.

Cost-sensitive learning has been explored mostly for the binary class case as this has shown

to be an easier to handle setting in comparison with the multiclass scenario. For this reason,

the theoretical developments are also more focused on the binary case.

Elkan [2001] studied, for the two-class case, the optimal decision threshold for making

predictions. Let us consider a classification task with two classes (y ∈ {0, 1}). Typically,

in two class problems, the minority or rare class is considered the positive class. Let us

suppose that the positive class has label 1. Let p represent the conditional probability that

an example x is classified as belonging to class 1, i.e., p = P (y = 1|x). Then, the conditional

probability for the example belonging to class 0 is 1− p. The optimal prediction for case x

is the class 1 if and only if the expected classification cost of predicting class 1 is lower than

that of predicting class 0, i.e.,

(1− p) · c10 + p · c11 < (1− p) · c00 + p · c01 (2.10)

When the above inequality becomes an equality, the expected cost of both classes is the

same, and therefore, predicting either class for example x is optimal. The inequality leads

to the following theoretical threshold for making optimal decisions:

p∗ =
c10 − c00

c10 − c11 + c01 − c00
(2.11)

When considering that accurate predictions have zero cost (cii = 0), the theoretical threshold

can be simplified to

p∗ =
c10

c10 + c01
(2.12)

Therefore, predicting the positive class (class 1) is optimal whenever p ≥ p∗.

This theoretical threshold can be used for cost-sensitive learning when the selected classifier

is able to output a posterior probability estimation for each test instance.

2.3. UTILITY-BASED LEARNING 17

Still, some classifiers are not capable of producing such probabilities. For this case, Elkan

[2001] showed how to rebalance the training set by sampling, and provided the optimal way

of changing the proportion of positive and negative class examples (cf. Theorem 2.3.10).

Theorem 2.3.10 (Elkan [2001]) To make a target probability threshold p∗ correspond to

a given probability threshold p0, the number of negative examples in the training set should

be multiplied by

p∗

1− p∗
· 1− p0

p0
(2.13)

Considering cost matrices with zeros in the diagonal and the most frequently used threshold

of 0.5, Theorem 2.3.10 states that the number of negative examples should be multiplied by
p∗

1− p∗
=
c10
c01

. This is a special case that was also used by Breiman et al. [1984].

Therefore, the theoretical proportion between the number of positive (n+) and negative (n−)

class examples in the training set is as follows:

n+ · c01
n− · c10

(2.14)

In a binary class problem, also the class prior probabilities (p+ and p−) and costs are

interchangeable, and, for instance, doubling p+ will have the same impact as doubling

c01 [Drummond and Holte, 2000c, Provost et al., 1998, Provost and Fawcett, 1997].

The theoretical advances for the multiclass case have been more scarce. In fact, frequently

the adopted strategy is to simply reduce the multiclass task to several binary class tasks

using different strategies to achieve this conversion. A relevant result was presented by Zhou

and Liu [2010] regarding the existence of an optimal way of rescaling multiclass cost-sensitive

problems. Although the theoretical proportion has shown to be efficient for two class

problems its efficiency when dealing with multiclass problems has been poor. Zhou and

Liu [2010] derived a property of cost matrices named consistency (cf. Definition 2.3.11) that

allows to determine whether it is possible or not to optimally rescale the problem classes.

The optimal rescale of classes is only possible when the cost matrix is consistent. When the

cost matrix does not have this property it is possible to select another method which will

necessary be suboptimal.

Definition 2.3.11 (Consistent cost matrix) Let C be a cost matrix representing a clas-

sification problem with k classes. C is a consistent matrix when matrix C ′, derived from C

18 CHAPTER 2. LITERATURE REVIEW

as show below, has lower rank than k.

C ′ =



c21 −c12 0 . . . 0

c31 0 −c13 . . . 0

. 0

ck1 0 0 . . . −c1k
0 c32 −c23 . . . 0

. 0

0 ck2 0 . . . −c2k
...

...
...

. . .
...

0 . . . 0 . . . −c(k−1)k


Cost-sensitive learning is the most popular framework for non-standard learning tasks. Still,

the impact of the predictions in a given domain should not be restricted to costs. In fact,

although incorrect predictions may lead to costs, the accurate predictions may also imply

profits or benefits. Therefore, to only consider costs may be too restrictive for several real

world problems. The broader notion of utility should be adopted and its integration on the

different data mining tasks must be considered [Weiss et al., 2005, Zadrozny et al., 2006].

Moreover, as pointed by Elkan [2001], the consideration of both benefits and costs (negative

benefits) has also the advantage of providing a more intuitive baseline. The baseline that

must be considered is the state of the decision maker before a decision is taken for a given

example. After the decision is made, if it implies a positive change in the state we have a

benefit, otherwise, we have a cost (negative benefit). According to Elkan [2001], it is easier

to avoid mistakes when this setting is considered.

Definition 2.3.12 (Utility Matrix) Consider a classification task with K different classes.

A utility matrix U := [uij] specifies the benefits and costs of predictions. More precisely, it

sets the benefits obtained when an example is accurately predicted, and the costs incurred

when an example is misclassified. This matrix can be more formally defined as follows:

U : K ×K → R

(i, j) → uij =

≥ 0 i = j

< 0 i 6= j

(2.15)

where uij provides the utility of predicting class i for an example with true class j.

The notion of utility matrix is an extension of the cost matrix concept where the entries

can have both positive and negative values. Moreover, the diagonal elements, corresponding

to accurate predictions, must have non-negative values while the remaining elements should

have negative values. When building a utility matrix, any baseline can be considered for

measuring costs and benefits, as long as it is fixed [Elkan, 2001].

In this setting, the goal of the predictive task is the maximisation of the expected utility.

2.3. UTILITY-BASED LEARNING 19

Definition 2.3.13 (Expected Classification Utility) Given a utility matrix U, the ex-

pected utility of a classifier h in an instance 〈x, y〉 ∈ X × Y drawn from a distribution D is

defined as

ECU (h, 〈x, y〉,D) := ED[U(h(x), y)] (2.16)

As we previously mentioned, in a classification problem, to consider a cost matrix with

arbitrary entry values is equivalent to consider a cost matrix with zeros in the diagonal (cf.

Corollary 2.3.9.1). This means that it is always possible to transform the cost matrix defined

for a given problem into an equivalent cost matrix with zero costs for accurate predictions.

Therefore, the problem of minimising the costs with both cost matrices is equivalent. In

a utility setting, the goal is different as it involves the maximisation of the utility. Still, if

the utility matrix is multiplied by -1, then, the problem of maximising the utility becomes

equivalent to the problem of minimising the symmetric of the utility matrix. Moreover, this

new symmetric matrix, containing negative values in the diagonal and positive values in the

off-diagonal entries, is equivalent to a matrix with zeros in the diagonal. This means that,

the problem of minimising the costs is equivalent to the problem of maximising the utility.

Let us see an example of this equivalence using the calling card fraud detection problem

presented by Margineantu [2001].

Example 2.3.14 (Calling Card Fraud Detection Problem) Let us consider the cost

matrix in Table 2.4. This matrix represents the costs incurred into when a call is labelled

as Fraud or No-Fraud by the decision maker. If a given call is predicted as fraudulent, the

consequence is the immediate close of the account associated with the call. If the call is

predicted as non-fraudulent, then no action is taken.

The matrix displays a high cost for the agent when a fraudulent call is misclassified as legal.

When a legal call is mislabelled as fraudulent it is necessary to take into account both the costs

related with closing and reopening the account and the client dissatisfaction. Calls accurately

predicted as fraud have the benefit of protecting the clients although they also assume the cost

of closing the account.

This matrix can be transformed into an equivalent one with zeros in the diagonal as displayed

in Table 2.5. The problem of minimising the costs using either of the cost matrices is

equivalent.

Let us now consider the utility matrix defined in Table 2.6. This matrix is obtained by

multiplying by -1 the cost matrix in Table 2.4. The problem of minimising the costs using

the matrix in Table 2.4 is equivalent to the problem of maximising the utility using the matrix

in Table 2.6.

Until this moment we have only considered stationary cost and utility matrices, i.e., matrices

that are known before the model is built and that do not change. However, this assumption is

20 CHAPTER 2. LITERATURE REVIEW

Table 2.4: Cost matrix proposed by Margineantu [2001] for the calling card fraud detection

problem.

True

Fraud No-Fraud

Predicted
Fraud −1.5 10

No-Fraud 100 0

Table 2.5: Transformed cost matrix for the calling card fraud detection problem.

True

Fraud No-Fraud

Predicted
Fraud 0 10

No-Fraud 101.5 0

Table 2.6: Transformed utility matrix for the calling card fraud detection problem.

True

Fraud No-Fraud

Predicted
Fraud 1.5 −10

No-Fraud −100 0

often considered unrealistic in real world problems [Provost and Fawcett, 2001, Margineantu,

2001]. This means that a more complex setting should be considered which allows that errors

and accurate predictions of the same type may incur into different cost/utility values. This

can happen in different ways. For instance, the matrix entries may be time dependent,

may be example dependent or may express a more complex dependence on other factors

such as the trigger of an event. A cost/utility matrix that allows that the entries defined

change based on some factors is named a dynamic cost/utility matrix. Dynamic cost and

utility matrices are a generalisation of stationary matrices. Table 2.7 shows an example of

a stationary and a dynamic cost matrix for a two-class problem. In the former the matrix

entries remain unchanged while in latter the entries change according to the definition of

f01 and f10 functions. These functions can represent a diversity of problem settings. For

instance, they can represent the monetary cost associated with each example (e.g. Bahnsen

et al. [2015]), can be associated with distance measurements when the examples have a

spatial component (e.g. Burl et al. [1998]) or can even be a function of time when the data

has this information (e.g. Fawcett and Provost [1999]).

Dynamic cost and utility matrices are meaningful in many contexts. For instance, for the

2.3. UTILITY-BASED LEARNING 21

Table 2.7: Example of a stationary cost matrix (left) and a dynamic cost matrix (right) for

a two-class problem.

True

y = 0 y = 1

Predicted
ŷ = 0 0 3

ŷ = 1 10 0

True

y = 0 y = 1

Predicted
ŷ = 0 0 3 · f01
ŷ = 1 10 · f10 0

cost-sensitive problem of credit card fraud (e.g. credit card cloning) the costs increase with

the time elapsed before the fraud is detected. In this case, the longer the situation remains

undetected, the higher are the losses. Another example can be found in activity monitoring

tasks. In this context, which involves time-dependent applications, Fawcett and Provost

[1999] highlighted that the costs are typically overestimated because the costs should only be

considered until the first true positive alarm. This means that, after the event is triggered by

a true positive alarm, the costs are meaningless because the situation was already detected.

As mentioned before, the problem of utility-based learning can be thought as a generalisation

of the cost-sensitive learning problem. As such, we will, from this point on, simply use the

term utility-based learning as an aggregating concept that incorporates both approaches

because one problem can be reduced to the other.

The problem of utility-based learning has also been considered for regression tasks [Torgo

and Ribeiro, 2007]. In this setting, the information regarding both costs and benefits is

provided for all pairs of values (ŷ, y) through a utility surface, given that the domain of the

target variable is continuous.

Definition 2.3.15 (Utility Surface) Consider a regression problem with target variable

domain Y. A utility surface U := u(ŷ, y) specifies the utility (benefit or cost) for predicting

ŷ for a true target variable value of y. More precisely, it maps each point (ŷ, y) into a utility

score, where negative utility values correspond to the costs incurred and non negative values

correspond to benefits achieved.

A utility surface can be interpreted as a continuous version of a utility matrix. However,

to fully specify this surface is usually too challenging for the end-user. Two main solutions

have been put forward: (i) interpolate the surface based on a few points supplied by the

user; (ii) automatic derivation of the surface that is possible for some particular sub-classes

of utility-based regression tasks.

The first approach is simple and more generally applicable. The user supplies a few values

of the utility surface for carefully selected pairs of ŷ and y values. A standard function

interpolation method is then used to obtain the full surface.

22 CHAPTER 2. LITERATURE REVIEW

The second approach was proposed by Ribeiro [2011] and can be applied under some assump-

tions concerning the user preferences. More specifically, this method can be applied when

the goal of the end-user is to obtain a model that is good at forecasting rare extreme values

of the target continuous variable. This is a particular case of imbalanced regression tasks.

Although specific, this setting is actually rather frequent in several real world applications

like forecasting extreme values in several ecological monitoring tasks, or forecasting stock

market returns.

Given that utility-based regression is one of the main topics of this thesis further details on

these and other methods will be presented in the next chapters.

2.3.2 Performance Assessment in Utility-based Learning

Performance assessment is an important challenge in utility-based learning, as mentioned in

Section 2.2. In these contexts, to simply analyse the scores of a loss function is insufficient

because it is necessary to take into account the domain information provided through a

utility matrix or surface. Standard loss functions may be misleading because they do not

take into account the end-user preferences.

Performance assessment metrics may be categorised into scalar-based and graphical-based.

In the former, the results are presented as a single number, while in the latter, the results are

displayed graphically or are derived from those representations. Scalar metrics are practical

because they are a succinct representation of the performance. However, they also present

important drawbacks because they may discard relevant information. In particular, these

metrics are suitable for cases where the user knows in advance the deployment scenario of

the learned model. However, if that is not the case, then graphical-based metrics may be

more adequate [Japkowicz, 2013]. Graphical-based metrics allow to observe the performance

of a model across all possible operating conditions, which represents an advantage when the

deployment scenario is unknown. Table 2.8 summarises the main references and metrics for

performance assessment in utility-based learning tasks.

Scalar Metrics Considering the cost-sensitive framework, where the goal is the minimisa-

tion of costs, the expected cost provides the baseline for performance assessment. A typically

used measure is the total cost, TC, which corresponds to summing all the predictions costs

(e.g. Elkan [2001]). Several measures can be derived such as the Mean Cost (MC). Given a

set of N cases this metric is defined as follows:

MC =
1

N

N∑
i=1

C(ŷi, yi) (2.17)

2.3. UTILITY-BASED LEARNING 23

Table 2.8: Performance assessment metrics and main bibliographic references for utility-

based learning tasks.

Metric Type Task type Metric Main References

Scalar

Classification TC, MC, NMC Elkan [2001], Turney [1995]

Regression

LIN − LIN ,

QUAD −QUAD,

LIN − EXP ,

QUAD − EXP , MU

Zellner [1986], Cain and Janssen [1995],

Christoffersen and Diebold [1996, 1997],

Crone et al. [2005], Granger [1999], Lee

[2008], Ribeiro [2011]

Graphical

Classification Cost curves Drummond and Holte [2000b]

Regression

REC curves, RROC space,

AOC

Bi and Bennett [2003], Hernández-Orallo

[2013]

Turney [1995] proposed the Normalised Mean Cost (NMC) metric for classification due

to several concerns related with the use of MC metric. These concerns were related with

the difficulty in comparing in a fair way different data sets, and matrices with different

magnitudes of costs. The new NMC measure was defined as a ratio between the MC and

the standard cost as follows:

NMC =
MC

T +mini(1− fi) ·maxi,j(cij)
(2.18)

where T represents the total cost of doing all of the possible tests, fi is the fraction of cases

in the data set that belong to class i, and cij is the cost of predicting class i for a true

class j. Although the standard cost considered (denominator in Equation 2.18) does not

represent the worst possible scenario, Turney [1995] claimed that, based on the experiments

conducted, the standard cost is better for normalisation providing a more realistic upper

bound on the average cost.

In regression tasks, one of the first attempts to deal with non-uniform preferences emerged

in the financial area with the proposal of asymmetric loss functions [Zellner, 1986, Cain and

Janssen, 1995, Christoffersen and Diebold, 1996, 1997, Crone et al., 2005, Granger, 1999,

Lee, 2008]. Such functions, allow the consideration of differentiated prediction costs for two

specific types of errors: under and over predictions. The LIN − LIN (asymmetric linear

on both sides) or the QUAD−EXP (approximately quadratic on one side and exponential

on the other) are examples of asymmetric loss functions. However, all these solutions suffer

from the same problem: they only allow to distinguish between under- and over-predictions

and do not take into account the location where the error occurred. This may not adapt to

the user preferences that may be biased towards specific ranges of the target variable rather

than to assigning a different penalisation to over- and under-predictions.

When having the full utility surface specified, the goal is utility maximisation and the natural

extension to a utility setting of the MC measure defined for classification, leads to the Mean

24 CHAPTER 2. LITERATURE REVIEW

Utility (MU) (cf. Equation 2.19), proposed by Ribeiro [2011].

MU =
1

N

N∑
i=1

U(ŷi, yi) (2.19)

The use of MU allows characterising the performance of different models taking into account

the end-user preference biases. Still, the use of MU may not be suitable for comparing

the performance of models across different data sets because the different utility matrices

or surfaces may be defined in different scales. The use of a normalised metric allows to

overcome this problem making the comparison between different data sets easier.

Graphical-based Metrics An interesting graphical performance assessment tool, suit-

able for binary class problems, are cost curves, that were introduced by Drummond and

Holte [2000b]. Cost curves represent the expected cost in the y-axis, while the x-axis displays

the probability cost function. Both axis are normalised to the interval [0, 1]. Equation 2.20

shows the probability cost function definition,

PCF (c1) =
p(c1)C(c2, c1)

p(c1)C(c2, c1) + p(c1)C(c1, c2)
(2.20)

where p(c1) represents the probability of a given class c1 and C(c1, c2) represents the cost of

misclassifying an example of a class c2 as being of class c1.

Figure 2.1 displays an example of a cost curve for the Pima Indians1 data set.

The popularity of Receiver Operating Characteristics curve (ROC) curves in classification

motivated several attempts to extend this concept to a regression context. The ROC Space

for Regression (RROC Curve) [Hernández-Orallo, 2013] is the result of one of those attempts.

Behind RROC curves there is the assumption that only over- and under-predictions entail

different costs. A point in the RROC Curve corresponds to plotting the total over- and

under-estimation on the x-axis and y-axis, respectively, as shown in Figure 2.2). The RROC

Curve is obtained by applying a shift to the predictions, i.e., by adding or subtracting a

constant to the predictions which allows to adjust the model to an asymmetric operating

condition.

The Area Over the RROC Curve (AOC) is a single value metric, proposed by [Hernández-

Orallo, 2013], that is derived from the RROC curves and aggregates a models performance

on different operating conditions. AOC metric was shown to be equivalent to the error

variance.

Another interesting graphical tool is the Regression Error Characteristic Curves (REC

1Pima Indians Diabetes Database data set is available through UCI Repository [Dheeru and Karra Taniski-

dou, 2017] at https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes.

https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes

2.3. UTILITY-BASED LEARNING 25

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability cost function (PCF)

N
or

m
al

iz
ed

 e
xp

ec
te

d
co

st

●

●

●

●

●

●

●

●

Figure 2.1: Example of a Cost Curve for the pima data set.

0 5 10 15 20

−
20

−
15

−
10

−
5

0

OVER

U
N

D
E

R

Ideal Model

●

model A
model B
model C

Figure 2.2: RROC Curve of three models: A, B and C.

26 CHAPTER 2. LITERATURE REVIEW

Curves) proposed by Bi and Bennett [2003]. REC Curves present the cumulative distribution

function of the error of a model. The strategy followed to show this is to plot the error

tolerance and the accuracy of a regression function which is defined as the percentage of

points predicted within a given tolerance ε. This means that REC Curves are able to

display the performance of a model for the range of possible errors. Figure 2.3 shows an

example of a REC Curve.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Absolute deviation tolerance

A
cc

ur
ac

y

Figure 2.3: An example of a REC Curve.

2.3.3 Learning Methods for Utility Optimization

The research community has proposed a diversity of methods for learning models that

maximize utility. As we have mentioned, they can be grouped in the two following main

types [Ling and Sheng, 2011a]: direct methods, and meta-learning methods. The for-

mer change the learning algorithm internally while the latter are “wrapper” methods that

transform any standard utility-insensitive learner into a utility-sensitive one. Meta-learning

approaches allow the use of any standard learner, because the methods either pre-process

the training data or post-process their predictions. Ling and Sheng [2011a] proposed to

further categorise these latter methods into: thresholding and sampling. Figure 2.4 shows a

taxonomy for utility-based learning strategies proposed by Ling and Sheng [2011a].

Table 2.9 provides a brief overview of these methods displaying a summary of the main

advantages and disadvantages of each type of utility-based learning strategy. In the two

following subsections we discuss with more detail the two main types of methods.

2.3. UTILITY-BASED LEARNING 27

Table 2.9: Main advantages and disadvantages of each type of strategy for utility-based

learning.

Strategy Advantages Disadvantages

Direct Methods

• costs/benefits are incorporated

directly into the models

• models obtained are more

comprehensible to the user

• some methods that directly

incorporate misclassification

costs/benefits when building the

model can also easily integrate

other types of costs/benefits

• if the utility matrix changes, the model

needs to be relearned

• user is restricted in his choice of the

learning algorithms that have been

modified to incorporate costs/benefits

• the adaptation of a learner is difficult

as it requires a deep knowledge of the

learning algorithms implementations

Meta-learning

Methods:

Thresholding

• the utility matrix information is

not used during the learning phase,

therefore the learned models can be

applied to different deployment

scenarios without the need of

re-learning the models or even

keeping the training data available

• the models do not reflect the user

preferences

• the selected learner must output

probabilities

• the strategies depend on accurate

probability estimations, which may not be

easy to obtain

• generally, only misclassification costs

are considered, being hard to consider

other types of costs

• models interpretability may be

jeopardised as they were obtained by

optimising a loss function that is not in

accordance with the utility scenario used

Meta-learning

Methods:

Sampling

• models are biased towards the

user preferences expressed through

the defined utility matrix

• any standard learning tool can

be used

• generally, only misclassification costs

are considered, being hard to consider

other types of costs

• difficulty of relating the modifications

in the data distribution with the costs

28 CHAPTER 2. LITERATURE REVIEW

Utility-based
Strategies

Direct Methods

Genetic
Algorithms Thresholding

Meta-learning Methods

SamplingUtility-based
trees

Utility-based
boosting

Utility-based
nnet

Utility-based
svm ...

Figure 2.4: Taxonomy proposed by Ling and Sheng [2011a] for utility-based strategies.

2.3.3.1 Direct Methods

The key idea of direct methods is to change a given learning algorithm (or to develop a

new learning algorithm) in order to make it capable of internally dealing with the utility

information. This requires a thorough knowledge of the learning algorithm implementation

to achieve the integration of costs and benefits in the learning process.

Several works exist on direct methods for utility-based learning including as base learn-

ers genetic algorithms, decision trees, Support Vector Machines (SVMs), Neural Networks

(NNETs), bagging or boosting (bootstrap aggregating). We will briefly present the main

methods for decision trees and ensembles, with other important direct methods summarised

in Table 2.10.

Decision Trees. A large number of proposals incorporate cost information in decision

trees. Figure 2.5 shows the taxonomy proposed by Lomax and Vadera [2013] for cost-

sensitive decision tree algorithms. This taxonomy distinguishes between the methods that

train a single or multiple decision trees. The first can be further clustered into those that

use costs during the tree construction and the ones that apply the costs after the tree is

built. We consider the latter as meta-learning methods and will describe them later in this

chapter.

A possible way for using costs during the decision tree construction is to change the splitting

criterion. A new measure that is able to take into account the cost information can be used

for selecting the split tests on each tree node. Several algorithms were proposed that follow

this intuition (e.g. Ailing et al. [2005], Zhang et al. [2007]). Many of these algorithms can

also deal with costs associated with the predictors, such as, costs for testing the value of a

variable in a split node.

Breiman et al. [1984] proposed an alternative approach that changes the class probabilities

that are used in the Information Gain splitting criterion. Pazzani et al. [1994] applied the

2.3. UTILITY-BASED LEARNING 29

idea of altering the class probabilities to the GINI index for building cost-sensitive decision

trees.

During tree construction, an alternative possibility is to use directly the misclassification

costs as the splitting criterion (e.g. Pazzani et al. [1994], Ling et al. [2004, 2006]). The key

idea of this strategy is to select a split on the attribute that produces the higher reduction

of the expected cost. If no split allows this reduction, then, a leaf node is created.

Cost-Sensitive
Decision Trees

Single Tree
(Greedy approach)

Post
construction

Stochastic
approach

Multiple Trees
Non-greedy approach

Wrapper
methods

Use costs
during

construction
GA methods

boosting bagging Multiple
structure

Figure 2.5: Taxonomy for cost-sensitive decision trees algorithms [Lomax and Vadera, 2013].

Ensembles. Ensemble methods have been gaining attention over the last years being

known to improve the performance of learning algorithms by combining several of them [Galar

et al., 2012]. The key idea of ensemble learning is to build multiple models using the available

training data and then aggregate their predictions on unseen examples through a certain

mechanism. Many ensemble methods were also adapted for being able to deal with cost

information. We will discuss the adaptation to a cost framework of bagging and boosting.

The key idea of bagging [Breiman, 1996] is the generation of a set of models using different

bootstrap samples of the training set. The final predictions are then obtained by averaging

or voting. The bagging method is able to improve the performance of learning algorithms,

in particular if the base learners used are not stable [Breiman, 1996].

Lin and McClean [2000] developed a bagging method with a final voting scheme based on a

risk measure proposed by the authors. This new risk measure uses the prior probabilities of

the examples, the defined costs and the predictions of all trained learners.

Margineantu [1999] proposed an algorithm for cost-sensitive bagging in the context of mul-

ticlass tasks. The algorithm incorporates the cost information by voting the predictions of

decision trees grown using bootstrap samples of weighted examples. Several other bagging-

30 CHAPTER 2. LITERATURE REVIEW

based proposals were put forward (e.g. Moret et al. [2006], Zhou and Liu [2006]).

Boosting [Schapire, 1990, Freund, 1995] is an iterative algorithm that trains weak learners

adding them in a weighted, sequential fashion to build the final model. Each training

sample is adaptively weighted at each boosting round, being higher weights assigned to

examples most often misclassified. One of the first and most successful boosting methods

is AdaBoost (Adaptive Boosting) [Freund and Schapire, 1995]. For incorporating cost

information in boosting it is necessary to exchange its goal from minimising the errors

in all classes to obtaining an unequal treatment of classes guided by the costs defined for

the problem. This can be achieved by changing: the algorithm initialisation, the weight

update rule or the final weighted combination of hypothesis. Several approaches exist for

cost-sensitive boosting. Many of them are based on altering the AdaBoost method by simply

changing the weight update rule. They essentially differ in the way they incorporate costs

into this formula. Examples of such proposals are: AdaCost [Fan et al., 1999], CSB1 and

CSB2 algorithms [Ting, 2000a], AdaC1, AdaC2 and AdaC3 [Sun et al., 2007], UBoost and

Cost-Uboost [Ting and Zheng, 1998], Loss Minimization Boosting [Margineantu, 1999] or

Assymetric Boosting [Masnadi-Shirazi and Vasconcelos, 2007].

The application of boosting to a multiclass context is harder because an example can

be misclassified into different classes and therefore the determination of weights is not

trivial. Several methods were proposed to address this problem (e.g. Breiman et al. [1984],

Margineantu [2001], Abe et al. [2004]).

There are also proposals that integrate boosting with other base learners. This is the case

for the work of Zheng [2010] where an algorithm for boosting NNETs is presented.

The work in the context of regression tasks is scarce. Ribeiro [2011] proposed a utility-

based ensemble system named utility-based Rules (ubaRules). The method is designed

for obtaining models that are biased towards a specific utility function. The key goal of

ubaRules is to obtain predictions both accurate and interpretable for regression tasks with

a non-uniform utility. ubaRules involves two main steps: i) grow different regression trees

and convert them to an ensemble of rules; ii) select the more suitable rules to include in the

final ensemble. The utility information is used at different levels of the algorithm.

2.3.3.2 Meta-learning Methods

Meta-learning methods transform any standard cost insensitive learner into a cost-sensitive

one without modifying it. Meta-learning methods may be further categorised into threshold-

ing and sampling methods. The first group is related with changing the decision threshold

to classify examples when the learner outputs probabilities. The sampling methods modify

the target variable distribution on the training data. After this step, any out-of-the-box

2.3. UTILITY-BASED LEARNING 31

Table 2.10: Main bibliographic references of works optimising different base learning

algorithms for utility maximisation chronologically ordered.

Base Learner Main References

decision tree

Breiman et al. [1984], Pazzani et al. [1994], Bradford et al.

[1998], Ting and Zheng [1998], Margineantu [2001], Ting [2002],

Ling et al. [2004], Ailing et al. [2005], Ling et al. [2006], Zhang

et al. [2007]

NNET
Kukar and Kononenko [1998], Wan et al. [1999], Zhou and Liu

[2006]

SVM

Amari and Wu [1999], Karakoulas and Shawe-Taylor [1999],

Fumera and Roli [2002], Lin et al. [2002], Kandola and

Shawe-Taylor [2003], Wu and Srihari [2003], Wu and Chang

[2003a], Akbani et al. [2004], Geibel et al. [2004], Wu and Chang

[2005], Bach et al. [2006], Masnadi-Shirazi et al. [2012]

Genetic Algorithm (GA)
Turney [1995], Li et al. [2005], Kretowski and Grześ [2007],

Omielan and Vadera [2012]

boosting

Breiman et al. [1984], Ting and Zheng [1998], Fan et al. [1999],

Margineantu [1999, 2001], Ting [2000a], Abe et al. [2004], Sun

et al. [2007], Masnadi-Shirazi and Vasconcelos [2007], Zheng

[2010]

bagging
Margineantu [1999], Lin and McClean [2000], Moret et al. [2006],

Zhou and Liu [2006]

random forest Chen et al. [2004], Yang et al. [2009], Xie et al. [2009]

32 CHAPTER 2. LITERATURE REVIEW

learner can be used directly.

Meta-learning methods have several advantages. The sampling methods allow the use of any

standard learning algorithm enabling the user to select the algorithm that he thinks is more

suitable for the problem being tackled. The thresholding methods allow the application of the

learned models to different deployment contexts without the need of re-learning the models.

However, frequently these methods are hard to apply because it may not be straightforward

to determine the ideal change to apply. We will briefly present the main meta-learning

methods which are summarised in Table 2.11

Thresholding. According to Ling and Sheng [2011a], the methods categorised under

thresholding are based on Equation 2.12 (page 16). These methods are only applicable

when the learner is able to output probabilities because they act by using the definition of

a theoretical threshold on the probabilities for making decisions.

Thresholding can be used for relabelling either the training or the test instances. Meta-

Cost [Domingos, 1999] starts by obtaining more reliable probability estimates of the training

set by applying bagging on decision trees. Then, the training set classes are relabelled for

minimising the conditional risk. Finally, a new cost-insensitive learner is trained on the new

modified training set.

Ting [2000b] studied the use of cost-sensitive boosting algorithms as base learners in the

MetaCost method. Namely, he tried the use of AdaBoost and Cost-UBoost in conjunction

with MetaCost. The results showed little improvements in the minimisation of costs. Still,

an advantage was observed when using a cost-sensitive algorithm as the base learner in

MetaCost in comparison to using a cost-insensitive learner [Ting, 2000b, Vadera, 2010].

Generally, thresholding methods depend on reliable probability estimations. However, these

accurate estimations are frequently hard to obtain. This motivated the multiple proposals

made by Zadrozny and Elkan [2001] that try to improve the calibration of probability

estimations. Sheng and Ling [2006] proposed an empirical thresholding method that does not

need accurate probabilities estimations, requiring only an accurate ranking. This method

does not use the theoretical threshold presented in Equation 2.12. Instead, this method uses

cross validation to search for the best threshold on the training set. The learned threshold

is then used to obtain the predictions on the test set.

Recently, thesholding has also been explored in the context of regression tasks. The reframing

proposal [Hernández-Orallo, 2012, 2014, Hernández-Orallo et al., 2016] aims at adjusting the

predictions to different deployment contexts. Reframing is a post-processing method, suit-

able for both classification and regression problems, that modifies the obtained predictions

making them adequate to a new context. The reframing method consists of two main steps:

• convert a standard model into a new model that can be seen as a conditional density

2.3. UTILITY-BASED LEARNING 33

estimator, by using enrichment methods;

• the reframing of the new model to new contexts, that is achieved through an instance-

dependent optimisation procedure.

Sampling The methods categorised under this section are related with the use of Equa-

tion 2.14 (page 17). The main idea is to change the training data distribution and then any

standard learner can be applied on the modified training set.

Zadrozny et al. [2003] showed that applying sampling with replacement may cause an

overfitting problem due to the introduction of exact replicas in the training data. As such,

Zadrozny et al. [2003] proposed the costing method to deal with this problem that is based

on the notion of “rejection sampling” for avoiding duplicate cases in the train set. The key

idea is to obtain a new training set where each example is selected for being included with a

probability proportional to its associated weight. These weights can be either provided for

each training example, or be calculated based on the cost matrix.

The weighting method [Ting, 1998] can also be considered a sampling approach. This

method associates a weight to each case according to the misclassification costs expressed in

Equation 2.14. After the weights assignment, any learner that is able to internally handle

examples weights can be used.

Sampling methods are more frequently used for handling imbalanced domains, which as we

have seen are a special case of utility-based learning tasks. In Section 2.4.3.2, we describe

in more detail these methods.

Other Meta-learning Methods Some methods use other strategies for handling cost-

sensitive learning, that nevertheless can be seen as belonging to the meta-learning category.

For instance, when learning a decision tree, the labels of the leaves may be changed after

the tree is grown. This can be performed if, for instance, the information regarding the

costs is unknown when the tree is grown, or even if the cost matrix is expected to change.

Pazzani et al. [1994] proposed the I-gain Cost-Laplace Probability method. An example is

assigned to the class that minimises the expected cost of misclassification that is evaluated

by taking into account both the cost matrix entries and the Laplace corrected probabilities.

Ferri et al. [2002] proposed the AUCSplit method that uses the area under the ROC curve

to post-process the labels of the leaves of a decision tree.

For regression tasks, Bansal et al. [2008] proposed a method for cost sensitive regression that

changes the predictions of a cost insensitive model. The new predictions are determined by

a polynomial function that is applied to the original predicted values. The coefficients of this

polynomial function are estimated by an iterative hill-climbing algorithm. Still, this method

was developed to tackle regression problems that consider asymmetric costs in terms of under

34 CHAPTER 2. LITERATURE REVIEW

and over predictions. The more complex setting of considering a general utility function was

not addressed.

Table 2.11: Main bibliographic references of meta-learning methods for utility maximisation

chronologically ordered.

Strategy Type Main References

Thresholding
Domingos [1999], Ting [2000b], Zadrozny and Elkan [2001], Sheng

and Ling [2006], Vadera [2010], Hernández-Orallo et al. [2012]

Sampling Ting [1998], Zadrozny et al. [2003]

Other

Pazzani et al. [1994], Ferri et al. [2002], Bansal et al. [2008], Zhao

et al. [2011], Hernández-Orallo [2012], Hernández-Orallo et al.

[2016]

2.4 Imbalanced Domains

In multiple real world applications, the preferences of the end-user are geared towards cases

that are underrepresented in the available data. These tasks are known as imbalanced

domains.

In the context of learning from imbalanced domains, rare cases are the most interesting for

the user, and therefore, these are also the cases with higher utility. As we have mentioned,

imbalanced domains are a sub-class of utility-based problems, both assuming non-uniform

preferences, but the former adding a preference bias towards underrepresented cases. It is

this lack of data concerning the more important cases that raises extra difficulties to learning

from imbalanced domains when compared to the general utility-based learning tasks. On

top of this, it is also frequent that the way these user preferences are expressed is also a bit

more informal, meaning that we usually do not have access to a utility matrix or surface,

but simply the information that rare cases are more important.

The problem of imbalanced domains was first studied for classification tasks, and in partic-

ular for two class problems. Therefore, the majority of solutions for this problem are still

concentrated in binary classification tasks. More recently, it was shown that the problem of

imbalanced domains also arises in several other tasks, namely, regression, time series, data

streams or multi-label prediction tasks [Branco et al., 2016b, Krawczyk, 2016].

Imbalanced domains for regression tasks is one of the topics addressed in this thesis. In this

context, the next sections will provide a broad overview of the state of the art on imbalanced

domains. We start by defining the problem of learning from imbalanced domains and then

describe the main solutions available in the literature.

2.4. IMBALANCED DOMAINS 35

2.4.1 Problem Definition

The problem of imbalanced domains can be defined as follows:

Definition 2.4.1 (Imbalanced Domains) Consider a predictive task where the goal is to

learn a model h(x) using a training set D. We face an imbalanced domain problem when the

following assertions occur simultaneously:

1. the importance assigned by the end-user to the predictive performance of the model

h(x) is non-uniform across the domain of the target variable (Y); and

2. the more relevant cases for the end-user are poorly represented in the training set D.

Assertion (1) means that imbalanced domains are also utility-based learning tasks. However,

due to the requirement of second assertion they are a specific type of utility-based tasks.

The rarity of the most important cases has consequences in terms of the learning procedures.

More specifically, it creates serious challenges to the learning algorithms due to the lack of

statistical support of the important cases in the available training sample.

2.4.2 Performance Assessment in Imbalanced Domains

Standard evaluation metrics are unsuitable in the context of imbalanced domains as their use

may lead to sub-optimal models (e.g. Weiss [2004], Kubat and Matwin [1997]) and misleading

conclusions (e.g. Ranawana and Palade [2006], Ribeiro [2011]). As in utility-based learning,

special purpose metrics are required for imbalanced domains learning problems. However,

choosing such metrics is not as straightforward as it is in utility-based learning. In utility-

based problems, the goal is the maximisation of the utility, and therefore, utility-based

metrics (cf. Equations 2.19) are the obvious choice. However, in the context of imbalanced

domains the information on the user preferences is typically less formal and expressed as an

interest on the performance in “the rare cases”, instead of a full utility matrix or surface.

Therefore, the issue of performance assessment is hard when tackling imbalanced domains

due to the difficulty in capturing with precision the user preferences. Still, multiple solutions

have been proposed for assessing the performance in imbalanced domains. These solutions

are mostly available for classification tasks, and in particular for binary class problems, which

is also the type of task where more research exists.

We will present the performance assessment metrics categorised into scalar-based and graphical-

based, as we have done for utility-based measures. Scalar metrics present the results

as a single number while for graphical-based metrics the results are displayed or derived

from graphical representations. Table 2.12 summarises the main references and metrics for

performance assessment on imbalanced domains categorised by task and type of metric.

36 CHAPTER 2. LITERATURE REVIEW

Table 2.12: Imbalanced domains performance assessment metrics and main bibliographic

references for classification and regression tasks.

Metric type Task type Metric Main References

Scalar

Classification

binary

TPrate(recall or sensitivity),

TNrate(specificity), FPrate,

FNrate, PPvalue(precision),

NPvalue, Fβ, G−Mean,

dominance, IBAα(M),

CWA, balanced accuracy,

optimized precision,

adjusted G−Mean, B42

Rijsbergen [1979], Kubat et al. [1998],

Estabrooks and Japkowicz [2001], Cohen

et al. [2006], Ranawana and Palade

[2006], Garćıa et al. [2008, 2009],

Batuwita and Palade [2009], Brodersen

et al. [2010], Garćıa et al. [2010],

Thai-Nghe et al. [2011], Batuwita and

Palade [2012]

multiclass

recall(c), precision(c), Fβ(c),

Recµ, Precµ, RecM , PrecM ,

MFβ, MFβµ, MFβM ,

MAvA, MAvG, CWA

Sun et al. [2006], Ferri et al. [2009],

Sokolova and Lapalme [2009]

Regression
NMU , precisionu, recallu,

precisionφ, recallφ
Torgo and Ribeiro [2007, 2009], Ribeiro

[2011], Branco [2014]

Graphical

Classification

binary

ROC curve, AUC,

ProbAUC, ScoredAUC,

WAUC, PR curve, Cost

curve, Brier curve,

Egan [1975], Metz [1978], Bradley [1997],

Provost and Fawcett [1997], Provost

et al. [1998], Drummond and Holte

[2000a], Ferri et al. [2005], Davis and

Goadrich [2006], Fawcett [2006b], Wu

et al. [2007], Weng and Poon [2008],

Hand [2009], Ferri et al. [2011b,a]

multiclass

ROC surface, AUNU ,

AUNP , AU1U , AU1P ,

SAUC, PAUC

Mossman [1999], Ferri et al. [2009], Alejo

et al. [2013], Sánchez-Crisostomo et al.

[2014]

Regression

AUC −ROCφ, AUC − PRφ,

AUC −ROCIV φ,

AUC − PRIV φ, REC

surface

Torgo [2005], Ribeiro [2011]

It is also important to highlight that the conclusions drawn from the use of different eval-

uation metrics may be different (e.g. Van Hulse et al. [2007]). This may be a problematic

issue and reinforces the need to develop suitable metrics that are able to correctly adapt to

the user preferences.

2.4.2.1 Metrics for Imbalanced Classification Tasks

Let us consider a test set with n cases each belonging to one class c ∈ C. For each test case

〈xi, yi〉, let ŷi = h(xi) represent the class predicted by model h. The estimated conditional

probability of example xi belonging to class c is represented by p̂(Y = c |X = xi), or

p̂(c |xi). An indicator function that returns 1 when its argument is true and 0 otherwise will

be represented by I(). The total number of examples belonging to a class c is represented

2.4. IMBALANCED DOMAINS 37

by nc =
∑n

i=1 I(yi = c). The prior probability of a given class c can be estimated as

p(Y = c) = nc
n . For the special case of binary classification task, we consider the two classes

y ∈ {0, 1}, where 0 will represent the negative (more frequent or majority) class and 1 will

represent the positive (less frequent or minority) class.

Scalar Metrics

The confusion matrix for a two-class problem summarises the results obtained by a given

classifier in a test set (cf. Table 2.13). This table provides for each class the cases that were

correctly classified, i.e. the number of True Positives (TP) and True Negatives (TN), and

the cases that were misclassified, i.e. the number of False Positives (FP) and False Negatives

(FN).

Table 2.13: Confusion matrix for a two-class problem.

True
Total

Negative Positive

(y = 0) (y = 1)

Predicted
Negative (y = 0) TN=

n∑
i=1

I(yi = 0)I(ŷi = 0) FN = n+ − TP
n∑
i=1

I(ŷi = 0)

Positive (y = 1) FP = n− − TN TP=
∑n

i=1 I(yi = 1)I(ŷi = 1)
n∑
i=1

I(ŷi = 1)

Total n− =
n∑
i=1

I(yi = 0) n+ =
n∑
i=1

I(yi = 1) n

Several proposals were made to condense the information on the confusion matrix while

taking into account the user preferences. However, given that frequently only strictly

informal information is available, the data distribution is usually taken into account. The

motivation behind this is related with the existence of a bias towards the less frequent classes.

Using Table 2.13 the following measures (cf. Equations 2.21-2.26) can be derived,

true positive rate (recall or sensitivity) : TPrate = TP
TP+FN

(2.21)

true negative rate (specificity) : TNrate = TN
TN+FP

(2.22)

false positive rate : FPrate = FP
TN+FP

(2.23)

false negative rate : FNrate = FN
TP+FN

(2.24)

38 CHAPTER 2. LITERATURE REVIEW

positive predictive value (precision) : PPvalue = TP
TP+FP

(2.25)

negative predictive value : NPvalue = TN
TN+FN

(2.26)

Each of the described metrics aggregates the information under a different evaluation per-

spective. Thus, it is necessary to monitor several metrics simultaneously, which is impractical

and difficult when evaluating the models performance. To overcome this problem, several

composite measures were proposed for assessing the performance in imbalanced domains,

such as, the Fβ [Rijsbergen, 1979] or the Geometric-Mean (G-Mean) [Kubat et al., 1998].

The Fβ metric (cf. Equation 2.27) integrates both precision and recall measures. The β

parameter is used for setting the relative importance of recall with respect to precision.

Commonly, the value of β is set to 1, which means that the same importance is given to

precision and recall, originating the F1 metric. Values of β larger than 1 increase the weight

of recall whilst values smaller than 1 give more importance to precision.

Fβ =
(1 + β)2 · recall · precision
β2 · precision+ recall

(2.27)

The Fβ measure is popular in the context of imbalanced domains, providing a more reliable

information regarding the models effectiveness on the important cases for the user, as

opposed to standard measures, such as accuracy (e.g. Estabrooks and Japkowicz [2001]).

The results of G-Mean (cf. Equation 2.28) are also frequently reported. This measure

represents the geometric mean of the classes accuracy. However, the same importance is

given to both classes in this formulation. This motivated a new version of G-Mean where

specificity is replaced by precision, in an attempt to focus the evaluation on the positive

class.

G-Mean =

√
TP

TP + FN
× TN

TN + FP
=

√
sensitivity × specificity (2.28)

Garćıa et al. [2008] proposed the use of dominance (cf. Equation 2.29) to address the inability

of G-Mean to explain the contribution of each class to the overall performance. This measure

takes values in [−1, 1], where the extremes of the interval represent situations where a perfect

accuracy is achieved in one class and all the cases of the other class where mislabelled.

Achieving a dominance of +1 means that all minority class cases where correctly predicted

and all negative class cases where misclassified. The opposite occurs when the dominance is

−1.

dominance = TPrate − TNrate (2.29)

2.4. IMBALANCED DOMAINS 39

The Mean Class Weighted Accuracy (CWA), was proposed by Cohen et al. [2006] to address

limitations of both Fβ and G-Mean. This measure tries, simultaneously, to address the

drawback of Fβ, that does not accounts for the performance on the negative class, and the

limitation of G-Mean, that does not assign more importance to the minority class. The CWA

measure (cf. Equation 2.30) solves these issues transferring the responsibility of setting the

weights used (parameter w ∈ [0, 1]) to the user.

CWA = w · sensitivity + (1− w) · specificity (2.30)

Several other metrics, such as optimized precision [Ranawana and Palade, 2006], adjusted

geometric mean [Batuwita and Palade, 2009, 2012] or B42 [Thai-Nghe et al., 2011], were

proposed with similar objectives.

The performance assessment metrics described above are suitable for binary classification

problems. Multiple proposals have been put forward for allowing their extension to a

multiclass setting. This extension can be accomplished in several ways, which makes the

problem of performance assessment more difficult in this context. For instance, precision

and recall were extended to multiclass (cf. Equation 2.31 to 2.35) using two strategies: micro

(µ) and macro (M) averaging. The macro averaging strategy averages the metric results

over all classes while the micro averaging strategy uses the pooled results. In imbalanced

domains the macro averaging strategy assigns the same weight to the classes while in the

micro averaging strategy the more frequent classes have more importance. Therefore, metrics

derived using micro averaging are usually considered unsuitable for performance assessment

in imbalanced domains. We must highlight that, for the micro averaging strategy both Recµ

and Precµ produce the same result. This happens because the numerator is equal in both

equations and in Recµ the denominator is the sum of all true cases, while for the Precµ the

denominator sums all the predicted cases for all cases. In both cases, this sum is the total

number of examples, and therefore, Recµ and Precµ are the same.

Recµ =

∑n
i=1 I(yi = ŷi)∑n
i=1 I(yi = i)

(2.31)

Precµ =

∑n
i=1 I(yi = ŷi)∑n
i=1 I(ŷi = i)

(2.32)

Recµ = Precµ =

∑n
i=1 I(yi = ŷi)

n
(2.33)

RecM =

∑
c∈C recall(c)

|C|
(2.34)

PrecM =

∑
c∈C precision(c)

|C|
(2.35)

40 CHAPTER 2. LITERATURE REVIEW

Ferri et al. [2009] proposed the extension of Fβ to multiclass as follows,

MFβ =

∑
c∈C Fβ(c)

|C|
(2.36)

However, Sokolova and Lapalme [2009] also proposed two alternative ways for obtaining Fβ

in multiclass problems. These metrics use either the micro or macro averaging strategies

to evaluate precision and recall which are then used in the Fβ standard formulation (cf.

Equation 2.27).

This demonstrates that the conversion of a measure to a multiclass scenario is not simple.

The generalisation to multiclass of other metrics was also proposed (e.g. Sun et al. [2006],

Cohen et al. [2006]).

Graphical-based Metrics

ROC curves (cf. Figure 2.6) and the Area Under the ROC Curve (AUC-ROC) mea-

sure [Metz, 1978] were proposed as alternatives to the use of standard evaluation measures

in imbalanced domains by Provost et al. [1998]. The ROC curve allows to visualise the

trade-off between TPrate and FPrate. A ROC curve is composed by a set of points each

one corresponding to the use of a different decision threshold for classifying an example as

positive. However, the use of ROC curves may be impractical for comparing the performance

of different models because it may not be straightforward which models is the best unless

one curve dominates all the others [Provost and Fawcett, 1997]. In Figure 2.6 we can observe

that classifier C presents the worst performance. However, it is not easy to decide if the best

model is A or B when we only take into account the ROC curve information. The AUC-ROC

aggregates under a single value the performance of the models, making easier the task of

deciding which one is the best on average. The AUC-ROC is given by a definite integral.

The approximation of this integral provided by the trapezoidal method is one of the most

widely used in practice. This method estimates the AUC-ROC value using trapezoids built

with linear interpolation of points in the ROC curve. In the situation depicted in Figure 2.6,

the AUC-ROC of model A is higher, and therefore, this model is preferred when considering

this metric. Fawcett [2006b] showed the equivalence between AUC-ROC and the Wilcoxon

test of ranks. Using this property, AUC-ROC can be determined as follows:

AUC(c, c′) =

∑n
i=1 I(yi = c)

∑n
t=1 I(yt = c′)L(p̂(c |xi), p̂(c |xt))

nc · nc′
(2.37)

where c and c′ are the two classes of the problem and L is a function that returns 0.5 when

the two arguments are equal, returns 1 when the first argument is greater than the second

and returns 0 otherwise.

2.4. IMBALANCED DOMAINS 41

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

ra
nd

om
 cl

as
sif

ier

A

B

C

AUC−ROC(A) = 0.87
AUC−ROC(B) = 0.83
AUC−ROC(C) = 0.64

Ideal Model

Figure 2.6: ROC curves of 4 classifiers (A, B, C and Random) and corresponding AUC-ROC.

Still, we must highlight that AUC-ROC measure is not biased towards the minority class.

Moreover, the coherence of AUC-ROC was questioned by Hand [2009], that detected vari-

ations in the evaluation of AUC-ROC for different classifiers. Therefore, AUC-ROC can

be misleading as it evaluates different classifiers using different measures. Still, Ferri et al.

[2011b] also presented a possible coherent interpretation for this measure.

Several adaptations of AUC-ROC were proposed, such as the ProbAUC [Ferri et al., 2005],

the ScoredAUC [Wu et al., 2007] or the WeightAUC [Weng and Poon, 2008]. ProbAUC

tries to overcome the limitation of AUC-ROC of not accounting for the probabilities of the

examples. ScoredAUC consider these probabilities but tries to provide a score more robust

to small changes in the probabilities. Finally, WeightAUC assigns more importance to the

areas near the top of the ROC curve, that are considered by the authors to be more relevant

in imbalanced domains.

The inability of ROC curves to deal with problems in which the error costs vary with the

instances lead to the proposal of Instance Varying Receiver Operating Characteristics curve

(ROCIV) by Fawcett [2006a]. The Area Under the ROCIV Curve (AUC-ROCIV) is obtained

in a similar way to AUC-ROC with the difference that the instances are chosen in proportion

to their costs.

Precision-Recall Curves (PR Curves) are another important graphical tool in the context of

imbalanced domains. These curves present the tradeoff between precision and recall rates

42 CHAPTER 2. LITERATURE REVIEW

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall

P
re

ci
si

on
AB

C

AUC−PR(A) = 0.97
AUC−PR(B) = 0.80
AUC−PR(C) = 0.76

Ideal Model

Figure 2.7: PR Curve curves of 3 classifiers and corresponding AUC-PR.

and are recommended for highly imbalanced domains where ROC curves may provide an

optimistic view of the performance [Davis and Goadrich, 2006]. The Area Under the PR

Curve (AUC-PR) was also proposed for summarising the PR Curve information [Davis and

Goadrich, 2006]. Figure 2.7 displays three PR Curve curves with the corresponding AUC-PR

measure. As we can observe, the ideal model in PR Curve curves corresponds to the top

right corner, where both precision and recall achieve the maximum value.

Addressing the issue of performance evaluation in the multiclass scenario using graphical-

based metrics is a complex task. For instance, for obtaining ROC curves in a problem with

c classes it is possible to use the strategy one-vs-all. When using this strategy, each class

is considered the positive class at a time and the remaining classes are aggregated into a

negative class, generating |C| different two-class problems. Mossman [1999] proposed the

ROC surface for the specific case of classification problems with three classes. However,

when the number of classes increases the complexity of constructing these curves also grows.

Another possibility is to consider all the combinations of pairs of classes, which increases

more the complexity of the task because, in this case, |C|(|C| − 1) two-class problems are

obtained.

Several adaptations of AUC-ROC to the multiclass setting were proposed [Ferri et al.,

2009]. These proposals vary in the assumptions they make and the strategy followed to

decompose multiclass into binary class problems. Some adaptations assume that the classes

are uniformly distributed while others take into account the prior probability of each class.

2.4. IMBALANCED DOMAINS 43

Regarding the strategy for decomposing the multiclass problem into several binary class

problems, some adaptations use the one-vs-all strategy while others evaluate all pairs of

classes.

The existing solutions for multiclass imbalanced problems are still scarce. Moreover, some

recent works [Alejo et al., 2013, Sánchez-Crisostomo et al., 2014] have shown that these

metrics may not be reliable for assessing the performance in imbalanced domains because

they do not always reflect the performance on the minority and majority classes.

2.4.2.2 Metrics for Imbalanced Regression Tasks

In the context of imbalanced regression tasks, few efforts have been made regarding the

proposal of suitable evaluation metrics. Ribeiro [2011] showed that standard regression

measures, such as Mean Squared Error (MSE) or Mean Absolute Error (MAE), are inad-

equate in this context. Ideally, the performance evaluation in imbalanced regression tasks

should take into account both the magnitude of the error, and the location of the error within

the target variable domain. This means that the error magnitude should have a different

impact in the performance according to the user preferences over the target variable domain.

Scalar Metrics

Ribeiro [2011] has presented an approach based on the utility-based regression framework

described in Torgo and Ribeiro [2007]. This proposal allows to automatically specify a

utility surface for applications where the goal is to be accurate on rare extreme values of a

continuous target variable. These applications are a specific type of imbalanced regression

where rarity occurs in the extreme values of the domain. In spite of this specificity, this

is actually a rather frequent setting in real world applications (e.g. ecological modelling,

financial forecasting, etc.). We will describe this framework in more detail in Chapter 3.

Using this method, Ribeiro [2011] proposed the Normalised Mean Utility (NMU), which is

a normalised version of MU measure that uses the utility framework described. This metric

can be used when the framework assumptions are fulfilled.

The utility-based regression framework proposed by Ribeiro [2011] proposes the introduction

of the auxiliary notion of relevance function. This function, named φ(Y), expresses the

domain-specific bias regarding the target variable domain Y. The relevance function maps

the target variable values into a relevance (importance) scale, where 1 corresponds to the

maximal relevance and 0 to minimum relevance.

To alleviate the end-user effort when defining the relevance function, Ribeiro [2011] proposed

an automatic method for estimating φ(Y). This method assumes that the relevance is

inversely proportional to the target variable probability density function. In this setting, the

44 CHAPTER 2. LITERATURE REVIEW

most interesting ranges of the domain are associated with higher levels of rarity. Moreover,

the rare and interesting values of the target variable are concentrated on the extremes of the

distribution. The proposed automatic method is only suitable for the particular sub-class

of imbalanced regression where the more relevant cases are the rare extreme values. The

estimate of φ(Y) is obtained by using the estimated quartiles and the inter-quartile range of

the target variable distribution.

Based on the described utility framework , Branco [2014] proposed precφ and recφ met-

rics, which adapt the concepts of precision and recall defined for classification tasks to an

imbalanced regression setting,

precφ =

∑
φ(ŷi)>tR

(1 + u(ŷi, yi))∑
φ(ŷi)>tR

(1 + φ(ŷi))
(2.38)

recφ =

∑
φ(yi)>tR

(1 + u(ŷi, yi))∑
φ(yi)>tR

(1 + φ(yi))
(2.39)

where φ() is the relevance function, yi, and ŷi are the true and predicted values of a case, tR

is a user-defined threshold signalling the cases that are relevant for the user, and u(ŷi, yi) is

the utility of making the prediction ŷi for the true value yi, normalised to [−1, 1].

Graphical-based Metrics

Ribeiro [2011] proposed several measures integrated in the utility framework suitable for

forecasting rare extreme values. In this context, the AUC-ROC and AUC-PR measures were

adapted to regression problems (AUC − ROCφ and AUC − PRφ respectively) by Ribeiro

[2011]. These adaptations followed the same definitions provided for classification but

replaced the base classification metrics results by the corresponding in regression. To

overcome the inability of AUC −ROCφ to account for the different utility of the instances,

Ribeiro [2011] also proposed the Area Under the ROCIV Curve for regression (AUC −
ROCIV φ), an adaptation of AUC-ROCIV notion to regression. This was accomplished

through the utility framework assuming the selection of instances proportionally to their

utility. Following the same intuition a similar adaptation was proposed to derive the Area

under the Instance Varying Precision-Recall Curve for regression (AUC − PRIV φ). Still,

we must highlight that these measures assume a utility framework developed specifically for

a particular class of imbalanced regression problems where the rare and relevant values are

located at the extremes of the target variable distribution

REC Curves were presented in Section 2.3.2 (page 26) in the context of graphical-based

utility metrics. Still, in the context of imbalanced domains, REC Curves have an important

drawback: they are insensitive to the error location across the target variable domain. To

2.4. IMBALANCED DOMAINS 45

solve this problem, Torgo [2005] proposed the use of Regression Error Characteristic Surfaces

(REC Surfaces). These surfaces add an extra dimension to REC Curves showing the errors

distribution across the target variable range. This means that one point in the REC Curve

is mapped into a curve in the REC Surface that displays the distribution of the errors over

the target variable range. Figure 2.8 shows an example of a REC Surface. REC Surface are

useful in the context of imbalanced domains because they allow: i) the observation of the

error distribution across the problem domain; and ii) the inspection of the types of errors

specifically in the relevant ranges of the target variable.

Y range

10

20

30

40
50

Error
0

10

20

30

P
robability

0.2

0.4

0.6

0.8

Figure 2.8: An example of a REC Surface.

2.4.3 Methods for Dealing with Imbalanced Domains

When dealing with imbalanced domains it is necessary to cope with the learning algorithms

inability to focus on the important cases. This corresponds to one of the challenges shared

with utility-based tasks described in Section 2.2. Still, in the case of imbalanced domains

this challenge is even harder given the rarity of the important cases. Several strategies

were developed to face this problem. Still, the majority of solutions proposed are suitable

for classification tasks, and in particular for binary classification. So far, few solutions are

suitable for the multiclass or regression contexts.

Similarly to the utility-based learning taxonomy, the approaches for tackling the problem

of imbalanced domains can be grouped into direct, meta-learning and hybrid methods.

Figure 2.9 shows the taxonomy of strategies for dealing with imbalanced domains as proposed

by Branco et al. [2016b].

As we previously described, direct methods change the learning algorithm for improving its

focus on the most relevant cases. Direct methods can be further categorised into utility-

based methods and other methods not dependent on the utility information. Meta-learning

46 CHAPTER 2. LITERATURE REVIEW

Imbalanced
Domains Strategies

Direct Methods Meta-learning
Methods Hybrid Methods

ThresholdingCost-sensitive
Post-processing

Distribution
Change Weighting

Data
Post-processing

Data
Pre-processingOtherUtility-based

Figure 2.9: Taxonomy of strategies for tackling imbalanced domains problems [Branco et al.,

2016b].

methods use standard learning algorithms and act before or after them. These methods can

be further categorised into: data pre-processing (change the training set) and data post-

processing (change the predictions) methods. Finally, hybrid strategies include methods

that apply changes in several moments of the learning procedure. The main advantages

and disadvantages of the existing methods are summarised in Table 2.14. In the following

sections we present an overview of the existing proposals for the types of strategies described.

2.4.3.1 Direct Methods

The direct methods for dealing with imbalanced domains aim at modifying or developing

new learning algorithms for providing a better fit to the domain specific bias. This is a

challenging task because it requires both the deep knowledge of the algorithms and the

capability of mapping the user information into an effective change. To modify a learner,

it is necessary to understand: i) why it fails when applied to the given domain; and ii)

which modifications are more adequate to match the expressed (formally or informally)

user preferences. When the available information is provided in a very informal way, this

task becomes extremely difficult. Nevertheless, when the changes in the learning algorithm

are accomplished, this becomes a very effective solution for the context for which it was

developed. The main bibliographic references regarding direct methods are summarised in

Table 2.15.

One way of changing the learning algorithms to deal with imbalanced domains is through

the incorporation of the utility information. This includes all cost-sensitive and, more

generally, utility-based algorithms for classification and regression tasks that directly include

the cost/benefit information into the learning process.

2.4. IMBALANCED DOMAINS 47

Table 2.14: Main advantages and disadvantages of each type of strategy for imbalanced

domains learning.

Strategy Advantages Disadvantages

Direct Methods

• user goals are incorporated directly

into the models

• models obtained are more

comprehensible to the user

• user is restricted to learning

algorithms that have been modified to

be able to optimize his goals

• models must be relearned if the

target loss function changes

• changes in the loss function may

require further modifications in the

algorithm

• requires a deep knowledge of the

learning algorithms implementations

• not easy to map the specified user

preferences into a loss function

Meta-learning

Methods:

Pre-processing

• can be applied to any learning tool

• the chosen models are biased to the

goals of the user

• models more interpretable

according to the user goals

• difficulty of relating the

modifications in the data distribution

and the user preferences

Meta-learning

Methods:

Post-processing

• it is not necessary to be aware of the

user preference bias at learning time

• the obtained model can, in the

future, be applied to different

deployment scenarios without the need

of re-learning the models or even

keeping the training data available

• any standard learning tool can be

used

• the models do not reflect the user

preferences

• models interpretability may be

jeopardised as they were obtained

optimising a loss function that is not

in accordance with the user preference

bias

48 CHAPTER 2. LITERATURE REVIEW

Table 2.15: Main bibliographic references on direct methods for imbalanced domains

chronologically ordered

Strategy type Main References

Direct Methods

Utility-based

Joshi et al. [2001], Maloof [2003], Akbani et al. [2004], Chen

et al. [2004], Zhou and Liu [2006], Alejo et al. [2007], Sun et al.

[2007], Song et al. [2009], Wang and Japkowicz [2010], Oh [2011],

Ribeiro [2011], Weiguo et al. [2012], Cao et al. [2013], Castro and

de Pádua Braga [2013]

Other

Barandela et al. [2003], Ribeiro and Torgo [2003], Tan et al.

[2003], Torgo and Ribeiro [2003], Wu and Chang [2003b], Huang

et al. [2004], Wu and Chang [2005], Imam et al. [2006], Tang and

Zhang [2006], Cieslak and Chawla [2008], Li et al. [2009], Tang

et al. [2009], Batuwita and Palade [2010b], Liu et al. [2010],

Hwang et al. [2011], Cieslak et al. [2012], Rodŕıguez et al. [2012],

Xiao et al. [2012]

Multiple works address the problem of converting standard classifiers into cost-sensitive ones.

These adaptations have been already discussed in Section 2.3.3.1 of this thesis. However,

some of these algorithms were adapted specifically to incorporate costs/benefits in the

framework of imbalanced domains. This is what distinguishes them from the previously

described. Typically they must deal with informal information regarding the cost/benefit

values, and their main strategy involves developing utility incorporation mechanisms for

facing the difficulties posed by imbalanced domains to standard learners. We will begin by

describing these methods and then describe other methods that are not based on the utility

setting.

Maloof [2003] addressed the problem imbalanced domains with regression trees, by incor-

porating costs that are both unknown and unequal. For SVMs several strategies were

considered for embedding costs such as introducing weights in the attributes [Yuanhong et al.,

2009], assigning a different penalisation to errors [Akbani et al., 2004], among other [Weiguo

et al., 2012]. Costs were also included in NNETs with the exploration of several strategies for

adapting them (e.g. Zhou and Liu [2006], Oh [2011]). Different strategies were proposed in

this context, including modifications on the weight update rule [Castro and de Pádua Braga,

2013], the incorporation of Particle Swarm Optimization (PSO) [Cao et al., 2013] or embed-

ding a cost function in the training phase [Alejo et al., 2007]. Multiple ensemble models

have also been adjusted to incorporate costs/benefits with the goal of solving the problem of

imbalanced domains. Boosting has been the most thoroughly explored, and in particular, the

AdaBoost algorithm. The existing proposals modify the weight updating process in different

ways. Examples of such proposals are the RareBoost [Joshi et al., 2001], AdaC1, AdaC2

and AdaC3 [Sun et al., 2007] and BABoost [Song et al., 2009]. A system using boosting and

SVMs modified to incorporate costs was proposed by Wang and Japkowicz [2010]. Random

2.4. IMBALANCED DOMAINS 49

forest algorithm was also modified to deal with imbalanced domains, in a new Weighted

Random Forest (WRF) algorithm [Chen et al., 2004] that assigns higher misclassification

costs to the minority class.

Direct methods also integrate other strategies that modify the algorithms’ preference criteria

and are not bound to the utility concept. Modifications were proposed for SVMs that change

the kernel function [Wu and Chang, 2003b], change SVM algorithms developed for dealing

with outliers and noisy examples [Batuwita and Palade, 2010b], or define a new objective

function and constraints [Li et al., 2009]. For k-Nearest Neighbours (k-NN), a new weighted

distance function was integrated [Barandela et al., 2003]. The modifications proposed in

decision trees for improving their performance when handling imbalanced domains are mostly

focused on changes in the splitting criteria. For instance, the Class Confidence Proportion

Decision Tree (CCPDT) proposed by Liu et al. [2010] adopts a new measure that is embedded

in the information gain and used as the splitting criteria. The Hellinger distance was also

incorporated as a splitting criteria in Hellinger Distance Decision Trees (HDDT) [Cieslak

and Chawla, 2008] and bagged HDDTs [Cieslak et al., 2012] were recommended for learning

in imbalanced domains. Modification to the splitting criterion of regression trees were also

proposed by Torgo and Ribeiro [2003] and Ribeiro and Torgo [2003] in the context of rare

cases prediction.

2.4.3.2 Pre-processing Meta-learning Methods

Pre-processing methods tackle the problem of learning from imbalanced domains by changing

the distribution of the available training data before applying the learning algorithm. The

goal is to obtain a new modified training set that is more in accordance with the user

preferences. These modified training sets do not have the proobles of imabalanced data

sets and thus allow the usage of standard learners without any modification. This is a big

advantage that explains the popularity of these methods. However, it is also difficulty to

determine the relationship between the modifications that are necessary to apply and the

user preferences. This task becomes even more challenging when the information provided

by the user is too informal.

Pre-processing methods can be further categorised into: methods that change the data

distribution and methods that weight the data space. The former change the data dis-

tribution for addressing the issue of the lack of representativeness of the most important

cases, while the latter use the cost/benefit information to modify the data distribution.

Table 2.16 summarises the main sub-types of pre-processing methods and the corresponding

bibliographic references.

Distribution Change. The key idea of these methods is to change the data distribution

by somehow manipulating the available examples. The modification is achieved by including

50 CHAPTER 2. LITERATURE REVIEW

Table 2.16: Main bibliographic references of pre-processing methods for imbalanced domains

chronologically ordered.

Strategy type Main References

Distribution

Change

Stratified

Sampling

Random

Under/Over-sampling

Kubat and Matwin [1997], Japkowicz [2000b],

Chawla et al. [2002], Chang et al. [2003],

Drummond and Holte [2003], Chen et al.

[2004], Estabrooks et al. [2004], Tao et al.

[2006], Wang and Yao [2009], Seiffert et al.

[2010], Wallace et al. [2011], Torgo et al. [2013]

Distance Based
Chyi [2003], Mani and Zhang [2003],

B laszczyński and Stefanowski [2015]

Data Cleaning Based

Kubat and Matwin [1997], Laurikkala [2001],

Batista et al. [2004], Naganjaneyulu and

Kuppa [2013]

Recognition Based

Japkowicz [2000a], Chawla et al. [2004],

Raskutti and Kowalczyk [2004], Lee and Cho

[2006], Zhuang and Dai [2006b,a], Bellinger

et al. [2012], Wagstaff et al. [2013]

Cluster Based

Jo and Japkowicz [2004], Cohen et al. [2006],

Yen and Lee [2006, 2009], Sobhani et al. [2014],

Ofek et al. [2017]

Evolutionary Sampling

Del Castillo and Serrano [2004], Garćıa et al.

[2006], Doucette and Heywood [2008], Drown

et al. [2009], Garćıa and Herrera [2009],

Maheshwari et al. [2011], Garćıa et al. [2012],

Yong [2012], Galar et al. [2013]

Synthesising New Data

Lee [1999, 2000], Chawla et al. [2002, 2003],

Batista et al. [2004], Han et al. [2005], Liu

et al. [2007], He et al. [2008], Bunkhumpornpat

et al. [2009], Hu et al. [2009], Wang and Yao

[2009], Menardi and Torelli [2010], Maciejewski

and Stefanowski [2011], Zhang et al. [2011],

Barua et al. [2012], Bunkhumpornpat et al.

[2012], Mart́ınez-Garćıa et al. [2012], Ramentol

et al. [2012a,b], Verbiest et al. [2012],

Nakamura et al. [2013], Torgo et al. [2013], Gao

et al. [2014], Li et al. [2014], Zhang and Li

[2014], Bellinger et al. [2015], Sáez et al. [2015],

Bellinger et al. [2018]

Combination of Methods

Liu et al. [2006], Mease et al. [2007], Li et al.

[2008], Stefanowski and Wilk [2008], Chen

et al. [2010], Jeatrakul et al. [2010], Napiera la

et al. [2010], Songwattanasiri and

Sinapiromsaran [2010], Bunkhumpornpat et al.

[2011], Vasu and Ravi [2011], Sharma et al.

[2012], Yang and Gao [2012], Ng et al. [2014]

Weighting the Data Space Zadrozny et al. [2003]

2.4. IMBALANCED DOMAINS 51

or removing examples using some strategy.

The major obstacle of these methods is related with the difficulty in relating the user

preference bias with the modifications to apply on the data. Even in situations where

the user is able to fully specify the utility information, to decide which is the best data

distribution to use is not straightforward. A solution that has shown to be effective to deal

with imbalanced domains is to balance the distribution of the important and unimportant

cases (e.g. Estabrooks et al. [2004], Fernández et al. [2008, 2010], Batuwita and Palade

[2010a]). Nevertheless, it was also shown that, for some classifiers such as C4.5, Ripper

or Naive Bayes, the optimal results are not always achieved with a perfectly balanced

distribution [Weiss and Provost, 2003]. This motivated several works that search for the

right amount of change to apply in the data distribution [Weiss and Provost, 2003, Chawla

et al., 2005, 2008, Khoshgoftaar et al., 2007].

For the particular case of binary imbalanced classification problems, Breiman et al. [1984]

showed the equivalence between the concepts of changing the data distribution and the

misclassification cost ratio. However, as reported by Weiss [2013], this equivalence does not

hold in many real world problems because of its assumptions on data availability.

The approaches for changing the data distribution may be categorised into: stratified sam-

pling, synthesising new data or a combination of both. Stratified sampling methods add

or remove examples from the original data set by considering a given technique that may

be simply random, or based in distance measures, evolutionary algorithms, data cleaning,

clustering or recognition approaches.

The simplest approaches involve the random selection of examples to include or to remove

from the data set, i.e., random under-sampling and random over-sampling. The former

randomly removes examples from the most frequent and uninteresting class while the latter

adds replicas of examples belonging to the less frequent and most important class. Random

under-sampling strategy has as consequence the reduction of the data set size which may be

an advantage. On the other hand, it discards examples that may be useful and may lead to a

performance loss. The application of random over-sampling may increase the probability of

overfitting, specially for higher rates of over-sampling [Chawla et al., 2002, Drummond and

Holte, 2003]. Therefore, it may also negatively impact the performance and it increases the

computational effort due to the larger training set. The random under-sampling strategy was

also extended to regression tasks [Torgo et al., 2013]. To achieve this the user should provide

a relevance function specifying the importance of the target variable domain and a threshold

on the relevance scores that determines which are the important and unimportant cases.

Random under-sampling was also embedded in ensemble methods such as boosting [Seiffert

et al., 2010], bagging [Chang et al., 2003, Tao et al., 2006, Wang and Yao, 2009, Wallace

et al., 2011] and random forest [Chen et al., 2004].

The modifications in the data distribution can also be achieved through other strategies

52 CHAPTER 2. LITERATURE REVIEW

that change the data in a more informed and non-random way. This happens with methods

based on distance between cases (e.g. Chyi [2003], Mani and Zhang [2003]). These proposals

apply under-sampling by using a certain distance criteria to determine which examples are

included in the new data set.

Data cleaning techniques also allow to perform informed under-sampling, by identifying po-

tential problematic cases. Examples of such strategies include the use of Tomek links [Batista

et al., 2004], Condensed Nearest Neighbour Rule (CNN) [Hart, 1968] or One Sided Selection

(OSS) Kubat and Matwin [1997].

Recognition-based methods perform the most extreme type of under-sampling: the entire

minority class is discarded and only the majority class examples are used. In this case,

the recognition-based methods such as one-class learners or autoencoders, try to build

boundaries surrounding the majority class. Examples falling outside these boundaries are

classified as being from the minority class. These methods are based on the similarity

between a new case and the majority class. They require the definition of a threshold which

will set when the similarity score is enough, or not, for the example to be classified as

belonging to the majority class. Examples of recognition-based methods include one-class

SVMs (e.g. Schölkopf et al. [2001], Manevitz and Yousef [2002], Raskutti and Kowalczyk

[2004], Zhuang and Dai [2006a,b], Lee and Cho [2006]) and autoencoders (or autoassociators)

(e.g. Japkowicz et al. [1995], Japkowicz [2000a]).

Another way to change the distribution of the original data set is by using clustering algo-

rithms. An example of such methods is the Cluster-Based Over-sampling (CBO) strategy,

proposed by Jo and Japkowicz [2004], where a clustering algorithm is used to deal with the

problem of imbalanced domains and also to face the small disjuncts problem. Small disjuncts

are subclusters of a class that contain few examples [Holte et al., 1989]. CBO method applies

the well known k-means algorithm to each class. Then, each majority class cluster is over-

sampled until it reaches the largest cluster size of this class. Finally, the minority class

clusters are also over-sampled until the distribution is balanced. Several other approaches

exist involving the use of clustering algorithms (e.g. Yen and Lee [2006], Cohen et al. [2006],

Yen and Lee [2009]) and also integrating them with ensemble methods (e.g. Sobhani et al.

[2014]).

Evolutionary Algorithms (EAs) have also been used as informed under- and over-sampling

techniques to deal with imbalanced domains. For instance, Garćıa et al. [2006] and Garćıa

and Herrera [2009] propose under-sampling methods through prototype selection procedures.

EAs have also been used in conjunction with other techniques in the development of strategies

that combine under- and over-sampling. For instance, the combination of genetic algorithms

and clustering methods was proposed [Maheshwari et al., 2011, Yong, 2012], and EAs were

also integrated with boosting methods [Galar et al., 2013].

The problem of imbalanced domains may also be addressed through the generation of new

2.4. IMBALANCED DOMAINS 53

synthetic cases. A diversity of proposals exist for synthesising new data due to its known

advantages [Chawla et al., 2002, Menardi and Torelli, 2010], such as: i) the reduction of the

overfitting probability when compared to the introduction of exact copies of examples; and

ii) the improved generalisation capability. The methods that allow to obtain new synthetic

examples can be categorised into those that only introduce small perturbations on original

cases, and those that obtain new cases by an applying an interpolation strategy.

A strategy that generates new minority class examples by adding normally distributed

noise to the minority class cases was proposed by Lee [1999] and Lee [2000]. The DEAGO

system [Bellinger et al., 2015] is another example that also generates synthetic cases with

Gaussian noise added.

The Random Over Sampling Examples (ROSE) framework [Menardi and Torelli, 2010]

is based on a smoothed bootstrap re-sampling technique that combines over- and under-

sampling to obtain a balanced and completely new training set. ROSE framework works as

follows: i) an example is selected from the original data set by assigning the same probability

to both classes; ii) a new synthetic case is generated in the neighbourhood of the case

previously draw using a neighbourhood width determined by a user selected smoothing

matrix.

One of the most successful strategies for obtaining new synthetic data is the Synthetic

Minority Over-sampling TEchnique (SMOTE) algorithm proposed by Chawla et al. [2002].

SMOTE uses an interpolation strategy to obtain new synthetic examples from the minority

class. The new synthetic case is built by using a minority class case and one of its k nearest

neighbours randomly selected. The new case is generated randomly along the line segment

joining the two cases as displayed in Figure 2.10. This technique is typically combined with

random under-sampling that is applied to the majority class cases.

case 1
neighbour

case 1

synthetic
case

Figure 2.10: Example of synthetic case generation using SMOTE algorithm.

SMOTE has also been integrated with ensemble methods such as boosting [Chawla et al.,

2003] and bagging [Wang and Yao, 2009].

Although SMOTE presents multiple advantages, specially when compared to over-sampling

54 CHAPTER 2. LITERATURE REVIEW

strategies that simply introduce replicas of examples, several drawbacks have also been

pointed to this strategy. For instance, the fact that the majority class cases are not taken

into account when new cases are generated is one of the problems of SMOTE. Disregarding

the majority class cases may lead to overgeneralization [Yen and Lee, 2006, 2009, Maciejewski

and Stefanowski, 2011]. This may be particularly problematic for highly imbalanced domains

where the minority class cases are very sparse and new synthetic cases can be generated with

higher probability in overlapping regions of the problem domain. Several strategies were

proposed to face these difficulties of the SMOTE algorithm. These variants can be aggregated

into the following main types: i) apply a pre-/post-processing method before/after using

SMOTE to avoid the generation of cases in inconvenient regions or remove cases generated

in those regions; ii) apply SMOTE only in selected regions of the domain; iii) introduce

modifications directly in the SMOTE algorithm.

The first SMOTE variant concerns essentially the use of some data cleaning technique before

or after the application of SMOTE to remove cases that may hinder the classifiers perfor-

mance. Some examples of the first type of SMOTE variants are SMOTE+Tomek [Batista

et al., 2004], SMOTE+ENN [Batista et al., 2004], SMOTE+FRST [Ramentol et al., 2012b],

SMOTE+RSB [Ramentol et al., 2012a] or Fuzzy Rough Imbalanced Prototype Selection

(FRIPS) [Verbiest et al., 2012]. Regarding the second types of variants, there are several

proposals that act in a very different way: some approaches try to reinforce the borders of

the minority class, others reinforce only the domain space clearly belonging to the minority

class, and other try to identify the cases that are difficulty to learn in order to reinforce only

those cases. Some examples of this variant of SMOTE are: Borderline-SMOTE [Han et al.,

2005], ADASYN [He et al., 2008], Modified Synthetic Minority Oversampling Technique

(MSMOTE) [Hu et al., 2009], FSMOTE [Zhang et al., 2011], MWMOTE [Barua et al., 2012],

among others. Finally the last type of SMOTE variants include changes to the SMOTE algo-

rithm that bias the generation of synthetic cases towards some regions of the problem domain.

Some proposals that fit into this category are: Safe-Level-SMOTE [Bunkhumpornpat et al.,

2009], Safe Level Graph [Bunkhumpornpat and Subpaiboonkit, 2013], LN-SMOTE [Ma-

ciejewski and Stefanowski, 2011] and DBSMOTE [Bunkhumpornpat et al., 2012].

The SMOTE algorithm was also adapted to handle imbalanced regression tasks by Torgo

et al. [2013]. In Chapter 5 we present an extended version of this algorithm that uses the

same procedure for generating new cases, but is able to handle multiple important and

unimportant regions of the target variable domain.

A large number of other methods have emerged that combine some of the previously de-

scribed techniques (e.g. Stefanowski and Wilk [2008], Bunkhumpornpat et al. [2011], Song-

wattanasiri and Sinapiromsaran [2010], Yang and Gao [2012]). For instance, some proposals

devote a special attention to biasing NNETs [Jeatrakul et al., 2010], SVMs [Kang and Cho,

2006, Liu et al., 2006], or ensemble methods [Mease et al., 2007, Chen et al., 2010, Galar

2.4. IMBALANCED DOMAINS 55

et al., 2012].

Weighting the Data Space. This can be an effective method to deal with imbalanced

domains as it corresponds to implementing cost-sensitive learning. However, in this case,

the information regarding the misclassification costs should be available. This method

consists of applying misclassification costs to the original data set to determine the best

modified training distribution. By assigning a weight to each case that is proportional to its

importance, the original data distribution is changed.

This technique, although simple and easy to apply, has also some important drawbacks, such

as, the increased probability of overfitting and the requirement of having cost information.

This approach is theoretically substantiated by the Translation Theorem that was derived

by Zadrozny et al. [2003]. Two different methods were proposed by Zadrozny et al. [2003] to

change the training set taking into consideration the misclassification costs information. One

method can be though as a transparent box, and consists of directly providing the weights

to the classifier. The main disadvantage of this method is the need of a classifier that is able

to handle case weights. The second method is a black box approach and consists of using the

determined weights to sample the original training set. This method may lead to overfitting

if sampling with replacement is used. To address the drawbacks of the black box approach,

Zadrozny et al. [2003] proposed the cost-proportionate rejection sampling method. In this

sampling procedure each example is included in the modified training set with a probability

proportional to the respective weight.

2.4.3.3 Post-processing Meta-learning Methods

Post-processing methods act after the learning stage, changing the predictions outputted by

a model learned using the original data set and a standard learning algorithm. The main

solution for changing the predictions at a post-processing level is the thresholding method.

This method uses a class membership score to derive a ranking of the examples and produces

different learners by manipulating the class membership threshold. Table 2.17 summarises

the main bibliographic references of post-processing meta-learning methods.

Table 2.17: Main bibliographic references of post-processing methods for imbalanced

domains chronologically ordered.

Strategy type Main References

Thresholding Maloof [2003], Weiss [2004]

Proposals for handling imbalanced domains through the thresholding strategy assume that

56 CHAPTER 2. LITERATURE REVIEW

Table 2.18: Main bibliographic references of hybrid strategies chronologically ordered.

Strategy type Main References

Hybrid

Estabrooks and Japkowicz [2001], Kotsiantis and Pintelas [2003], Estabrooks

et al. [2004], Phua et al. [2004], Yoon and Kwek [2005], Ertekin et al.

[2007b,a], Zhu and Hovy [2007], Liu et al. [2009], Ghasemi et al. [2011a,b],

Ertekin [2013], Mi [2013], Barnab-Lortie et al. [2015], Lim et al. [2017]

the used classifier is able to produce a score for each case that expresses the class membership

degree of the example. These classifiers are frequently named soft classifiers. Typically, a

decision threshold is used for determining the prediction for each case based on the class

membership score. By varying the decision threshold, it is possible to obtain different

predictions [Weiss, 2004]. Maloof [2003] studied the impact of moving the decision threshold,

applying a sampling strategy and adjusting the cost matrix. This study provided empirical

evidence that the classifiers obtained using the three methods have a similar performance.

2.4.3.4 Hybrid Methods

Hybrid methods combine previously developed methods, trying this way to minimise draw-

backs detected in some approaches. Table 2.18 provides a summary of the main bibliographic

references concerning hybrid methods.

Estabrooks and Japkowicz [2001] and Estabrooks et al. [2004] proposed one of the first hybrid

methods. This method is a mixture-of-experts system that combines several sets of models

learned in under-sampled and over-sampled training sets using different sampling rates. A

specially developed strategy is applied to obtain the final predictions. Several systems were

proposed that integrate the use of different learners and sampling strategies (e.g. Kotsiantis

and Pintelas [2003], Phua et al. [2004], Liu et al. [2009], Wang [2008]).

Several other proposals merge the concept of active learning with meta-learning strate-

gies (e.g. Ertekin et al. [2007b,a], Zhu and Hovy [2007], Ertekin [2013], Mi [2013]).

2.5 Conclusions

In this chapter we presented a thorough discussion of the related work regarding utility-

based learning and the particular sub-problem of learning from imbalanced domains. We

presented the existing solutions for dealing with the performance evaluation issue and we

discussed the main learning methods proposed for tackling both problems.

2.5. CONCLUSIONS 57

Utility-based learning has been mainly addressed in a classification context. Several impor-

tant theoretical results are available for binary classification tasks, while for the multiclass or

regression settings these results are more scarce. Moreover, also regarding the development

of new learning methods, there are only few available for multiclass problems and regression.

Still, it is recognised that costs and benefits are inherent to a vast range of important real

world applications. Therefore, it is necessary and important to address these open challenges.

The development of a general theoretical utility-based learning framework that incorporates

both classification and regression tasks could provide important insights for this problem.

However, as we have mentioned, a unifying theory for utility-based learning still does not

exists.

One of the main obstacles when considering utility-based learning in regression tasks is

related with obtaining the full utility information. In classification the user needs to provide

a utility matrix, while for regression tasks a utility surface is required. To obtain this

information in regression can be a demanding and time consuming task. It is important to

develop new methods for tackling this issue.

Regarding the problem of imbalanced domains, one of the major challenges is related with

the quality of the information that is available to the data analyst. If the full information

regarding the user preferences is available, then the problem can be solved using the utility-

based learning mechanisms. The challenges are larger when the information available is

more informal. In this case, it is necessary to understand how to properly evaluate the

performance and also which methods to apply to obtain better models according to the user

preference bias. Another challenge of learning from imbalanced domains in regression tasks

regards the lack of methods for tackling this particular class of problems.

58 CHAPTER 2. LITERATURE REVIEW

Chapter 3

A Utility-based Learning

Framework

3.1 Introduction

The main goal of this chapter is to provide a unifying framework for utility-based predictive

analytics. This framework unifies how different learning tasks are understood and incorpo-

rates both classification and regression problems. Our goal is to formalise predictive tasks,

generalising their main characteristics. This framework provides a broader overview of the

learning problem showing important connections between different predictive tasks. We also

discuss the relationship between utility-based learning and other predictive problems. Fi-

nally, we discuss the main open challenges of utility-based learning and imbalanced domains

learning tasks. We focus our attention on the utility-based regression challenges because

these are the most recently explored tasks and therefore, those with more unsolved issues.

3.2 Formalisation of Predictive Analytics

Predictive analytics has a key role in Data Science. Predictive analytics uses the available

data and other relevant information from a given domain with the goal of building models

that solve predictive tasks. The domain information that the end-user is capable of supplying

can be a fundamental aspect when solving the predictive task. This domain knowledge may

be available in a formal or informal way and may also be limited or be very detailed and

complete. Frequently the user is only able to provide a minimum amount of information.

This happens when only a data set is supplied and nothing else is specified regarding the

problem apart from defining the target variable. In this setting, it is the data analyst

responsibility to determine which are the necessary and more suitable assumptions to be

59

60 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

made regarding the problem domain. This scenario may occur when a team of domains

experts is simply not available or is too expensive. At the other extreme of information

provided by the end-user, we can have complex tasks where a huge amount of information

concerning the problem is provided. This information may include, for instance, the data set,

specific preferences regarding the predictive performance of the models, costs associated with

features, concrete rules that the models should obey, constraints on the features or target

variable, noise levels of the features, among other. These tasks are hard to solve due to the

difficulty in integrating all the existing domain information within the learning process. We

use the notion of user information to represent the available raw domain knowledge.

Definition 3.2.1 (User Information) The user information is all the knowledge that the

end-user is able to provide regarding the predictive problem. This domain knowledge is

represented by a n-tuple θ, with n ≥ 1, and may be provided in an informal or formal way.

The user information θ is always a non-empty tuple because it should contain at least the

predictive task, T , that includes the problem data D and the target variable Y , i.e.,

θ = 〈T , · · · 〉 (3.1)

The user information may be a 1-tuple with information restricted to the available data and

target variable (θ = 〈T 〉), or may include, for instance, informal preferences regarding the

predictive performance of some classes (θ = 〈T ,“class cancer is more important than class

non-cancer”〉). In some cases, the user may be able to completely specify a utility matrix

UM1. In this case, the provided user information is more formal: θ = 〈T , UM1(ŷ, y)〉.
The user information may also include more complex settings where more information is

available, which may always be provided in a formal or informal way. Let us consider, for

instance, that we are solving a predictive task involving the diagnosis of a certain disease.

Let us also assume that a team of medical specialists is also collaborating. In this case, the

user information can be much more complete, and may include the predictive task (data set

and target variable), a utility matrix UM2 provided by the field specialists, a set of rules to

which the learned model must comply to, and also some information regarding the noise level

of some features. This information could be specified as follows: θ = 〈T , UM2(ŷ, y),“when

both features B and C are high, the target variable must be a negative value” “when features

A and B are low the target variable must be high”, “feature A has more than 50% of noise”〉.

It is clear that the existence of more domain knowledge has advantages. It allows the data

analyst to better adjust the results of the learning process to the aspects of the predictive

task that are more relevant to the end-user. On the other hand, when only the minimum

domain knowledge is available, i.e., when θ is a 1-tuple and only the data set and target

variable are provided, then the data analyst is forced to make assumptions for solving the

predictive task. For instance, if the user does not state a differentiated interest across the

target variable domain, then, the data analyst may assume that the end-user has a uniform

3.2. FORMALISATION OF PREDICTIVE ANALYTICS 61

interest across this domain, meaning that all target variable values are equally important to

the end-user.

The biggest obstacle when solving a predictive task with more user information, i.e., with

|θ| > 1 is related with the transformation of the provided information into a formal and

usable format. Even when the amount of information provided is not large, the fact that it

is often provided in a very informal way causes important problems to the data analyst. For

instance, this can be easily observed when dealing with binary classification tasks where the

most important class is under-represented. This information is usually provided in a very

informal way and it is the data analyst responsibility to use this available information for

determining the most suitable model for the task. The difficulties in using this informal user

information are clearly mirrored on the difficulties associated with performance evaluation

in these tasks. If the end-user preferences are not formally stated, then it is more difficult

to determine how the models’ performance should be evaluated.

The described difficulties show the need to convert the provided user information into a more

formal setting. This formalisation is a responsibility of the data analyst that should interpret

the user information transforming it into usable knowledge. We define this formalisation of

the domain knowledge as the learning context.

Definition 3.2.2 (Learning Context) The learning context of a predictive task is a k-

tuple θ′, with k ≥ 2, that aggregates all the user information transforming it into formal

and usable knowledge. θ′ is a tuple that contains at least the two following elements: i) the

predictive task T that includes the available data set and the problem target variable; and ii)

the user preferences regarding the model predictive performance, i.e.,

θ′ = 〈T ,Π, · · · 〉 (3.2)

where Π represents the formal definition of the predictive performance preferences.

The notion of learning context is used to reflect the transformation of the user information

into a formal and operational setting. It requires the formal definition of at least two elements

in θ′: the predictive task, and the user preferences in terms of predictive performance. The

first element of θ′ is the most simple to obtain. The data analyst only has to consider

eventual data pre-processing steps that may be necessary before learning can take place. The

second element requires the formalisation of the user preferences concerning the predictive

performance which is a more complex task. We will briefly explain how this task can be

solved and will provide more details in the following sections.

All predictive tasks involve the definition of the predictive performance preferences, even

when this is not directly provided by the end-user. We will distinguish three main types of

user-provided information, θ: i) no information regarding predictive performance preferences

is provided (missing); ii) only partial or informal information is provided (partial); or iii)

62 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

all the preferences are fully specified (complete). When the user information is provided as

θ = 〈T 〉 there is no extra information beyond the predictive task. In this case we say that

the information regarding the user preferences is missing. A partial level of information is

present whenever the user is able to provide some information but is not capable of fully

specify his preferences. For instance, we have a partial level of information available when

the end-user states that a certain class is more important than another. The following is an

example of this situation: θ = 〈T , “class cancer is more important than class healthy”〉. We

have a complete level of information when the user is able to fully specify these preferences

which happens when, for instance, a utility matrix is provided, i.e., θ = 〈T , UM1(ŷ, y)〉.
Depending on the available level of information, the data analyst can use different tools

to formally define the predictive performance preferences. We will now describe how this

formalisation can be achieved.

We proposed to use two main concepts to formalise the end-user preferences: utility sur-

faces for regression tasks and utility matrices for classification tasks. These concepts were

previously defined in Sections 2.3 and 2.4 (pages 18 and 21, respectively).

The utility matrix or surface concept allows to fully specify the end-user preferences regarding

the possible predictions for each true target variable value. This setting corresponds to

having available a complete level of information. In this case, the user information tuple

already includes the formal definition of the user preferences required for the learning

context, i.e., θ = θ′ = 〈T , Uinf 〉, where Uinf represents the utility matrix or utility surface

information. This means that, in this case, the issue of formalising the user preferences is

already solved, and therefore the data analyst task is easier as he only has to deal with the

data preparation issues.

The concept of relevance function is used when the end-user is only able to provide partial

information and is applicable to both classification and regression problems.

Definition 3.2.3 (Relevance Function) A relevance function, which we will denote by

φ(), is a function that maps the target variable into a scale of relevance in [0,1]:

φ : Y → [0, 1] (3.3)

where 0 represents minimum relevance and 1 represents maximum relevance.

The relevance function can be directly provided by the end-user, or may be estimated by the

data analyst. In the following sections we will discuss different strategies for obtaining the

relevance function for a given predictive task. Figure 3.1 shows two examples of different

relevance functions for the multiclass problem described by data set glass1. We can observe

that different relevance scores are assigned to the different problem classes. In the left hand

1Data set available at https://archive.ics.uci.edu/ml/datasets/glass+identification

https://archive.ics.uci.edu/ml/datasets/glass+identification

3.2. FORMALISATION OF PREDICTIVE ANALYTICS 63

1 2 3 5 6 7

0
20

40
60

80

0.13 0.12

0.53

0.69

1

0.31

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

φ(
)

fre
qu

en
cy

Glass Classes
1 2 3 5 6 7

0
20

40
60

80

0.2 0.2 0.2

0.1

1

0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

φ(
)

fre
qu

en
cy

Glass Classes

Figure 3.1: Examples of two possible relevance functions φ defined for the classification data

set glass with the target variable frequency.

side graph, we observe that the least represented classes are the most important ones while

on the right hand side the most relevant classes are class 6 and 7.

Figure 3.2 displays two examples of different relevance functions for the regression problem

autoPrice2. The relevance function in the left side assigns a higher relevance to the regions

with lower density of the target variable. The relevance function displayed on the right

considers as the most relevant regions two particular ranges of the target variable (in the

neighbourhood of the values of 0 and 20000) that are not associated with low density regions.

With this type of partial information, relevance functions can be used to formalise the user

information into an operational learning context (θ′). For instance, the user information

previously provided θ = 〈T , “class cancer is more important than class healthy”〉 can be

transformed into the following learning context

θ′ = 〈T , φ(Y) =

{
1 if Y = cancer

0.5 if Y = healthy
〉

Finally, we say that the level of information is missing when the user is not able to provide

any information regarding the predictive performance preferences. In this case, there is

no extra information from the end-user and therefore the data analyst is forced to make

assumptions. The absence of information regarding the predictive performance preferences

implies the assumption that the user preferences are uniform, i.e., all accurate predictions

have the same benefit and all comparable errors have the same cost. This is the more

reasonable assumption in the absence of any information provided by the end-user, and

2Data set available at https://archive.ics.uci.edu/ml/datasets/automobile

https://archive.ics.uci.edu/ml/datasets/automobile

64 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

0 10000 20000 30000 40000 50000

0e
+0

0
2e

-0
5

4e
-0

5
6e

-0
5

8e
-0

5

Y

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

φ(
)

0 10000 20000 30000 40000 50000

0e
+0

0
2e

-0
5

4e
-0

5
6e

-0
5

8e
-0

5
Y

D
en

si
ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

φ(
)

Figure 3.2: Examples of two possible relevance functions φ defined for the regression data

set autoPrice with the target variable density.

leads to the following notion of uniform utility.

Definition 3.2.4 (Uniform Utility) When the end-user has uniform preferences regard-

ing the predictive performance of a model this means that all accurate predictions and

all comparable errors have the same importance. In this case, we say that the predictive

performance has a uniform utility, i.e., all accurate predictions have the same benefit and

all comparable errors have the same cost. We represent this uniform utility as Uunif for both

classification and regression tasks.

The uniform preferences of the end-user can be represented by a uniform utility matrix (cf.

Definition 3.2.5), or by a uniform utility surface (cf. Definition 3.2.6), depending whether

the problem being addressed is a classification or a regression task.

Definition 3.2.5 (Uniform Utility Matrix) Let us consider a classification problem with

uniform utility Uunif . The utility matrix representing this setting is defined as follows:

UMunif (ŷ, y) :=

{
0 if ŷ = y

−1 if ŷ 6= y
(3.4)

Definition 3.2.6 (Uniform Utility Surface) Let us consider a regression problem with

uniform utility Uunif . The utility surface representing this setting is defined as follows:

USunif (ŷ, y) := −|ŷ − y| (3.5)

3.2. FORMALISATION OF PREDICTIVE ANALYTICS 65

(a) Uniform utility surface USunif . (b) Isometrics of the Uniform Utility Surface.

Figure 3.3: Illustration of a uniform utility surface USunif and the corresponding isometrics.

To illustrate the previous concepts, Table 3.1 shows an example of a uniform utility matrix,

UMunif , for a binary classification problem. In Figure 3.3a we show a uniform utility surface

USunif for a regression task, with Figure 3.3b showing the corresponding utility isometrics.

By observing the utility isometrics of USunif , i.e., the lines that share the same utility value,

we confirm that all errors with the same magnitude have the same costs and all accurate

predictions have the same benefit.

Table 3.1: Uniform utility matrix UMunif for a binary classification problem.

True

A B

Predicted
A 0 −1

B −1 0

Table 3.2 shows examples of the described levels of information of θ (the user information

tuple) and corresponding learning context tuple, θ′, for a classification problem.

The following example shows how the user information θ can be converted into formal

knowledge by defining the learning context θ′. This example also illustrates the impact of

using different user information on the learning task.

Example 3.2.7 (Learning with different θ: Breast Cancer Prediction) Let us con-

66 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

Information Level θ (user information) θ′ (learning context)

Missing 〈T 〉 〈T ,UMunif (ŷ, y)〉

Partial

〈T , “class cancer

is more important than

class healthy” 〉
〈T , φ(Y) =

{
1 Y = cancer

0.5 Y = healthy
〉

Complete 〈T , UM1(ŷ, y)〉 〈T , UM1(ŷ, y)〉

Table 3.2: Levels of information available concerning the user predictive performance

preferences (T is the predictive task that includes the available data set and the problem

target variable, φ(Y) represents the relevance function and UM1 is a utility matrix).

sider the Breast Cancer Wisconsin (Diagnostic) data set3. We will represent this data set

by D. The Breast Cancer Wisconsin data set was built from digitised images of a fine

needle aspirate of patient’s breast mass. The predictive task to solve is a binary classification

problem where the goal is to obtain the patient’s diagnosis into malignant or benign. The

target variable, diagnosis, is nominal and may assume two different labels: M (malignant)

or B (benign). D is composed by 30 numeric features extracted from the patient’s images

and are based on the characteristics of the cell nuclei present in each image. Table 3.3

displays the 10 characteristics observed from the images for this data set. For each of

these characteristics, the mean, standard error and “worst” or largest of these features were

computed, providing a total of 30 predictor variables that are used in this data set. In

summary, the predictive task information T is composed by data set D with target variable

diagnosis.

The data set includes 569 examples and has 31 features (the 30 described above and an ID

number). The target variable distribution is slightly imbalanced with 357 benign (B) and 212

malignant (M) cases.

Let us also consider the confusion matrices in Table 3.4 that represent the errors of three

different models (m1, m2 and m3). Suppose that the data analyst goal is to select one of

these models.

We will observe the impact of solving this task while considering the following three different

user information tuples that correspond to the three levels of information described before:

1. θ1 = 〈T 〉 (missing information);

2. θ2 = 〈T , “class M has twice the importance of class B” 〉 (partial information);

3. θ3 = 〈T , UM3(ŷ, y)〉, where UM3(ŷ, y) is defined in Table 3.5 (complete information).

3This data set is available through UCI [Dheeru and Karra Taniskidou, 2017] Machine Learning Repository

at http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28diagnostic%29.

http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28diagnostic%29

3.2. FORMALISATION OF PREDICTIVE ANALYTICS 67

Table 3.3: Description of Breast Cancer Data observed characteristics from the collected

images.

Name Description

radius mean of distances from center to points on the perimeter

texture standard deviation of gray-scale values

perimeter cell nucleus perimeter

area cell nucleus area

smoothness local variation in radius lengths

compactness perimeter2/area− 1

concavity severity of concave portions of the contour

concave points number of concave portions of the contour

symmetry symmetry of the cell nucleus

fractal dimension “coastline approximation” - 1

Table 3.4: Confusion matrices of three models m1, m2 and m3 built for the Breast Cancer

problem (M: class malignant, B: class benign).

Model m1 True

M B

Predicted
M 152 59

B 60 298

Model m2 True

M B

Predicted
M 110 1

B 102 356

Model m3 True

M B

Predicted
M 159 80

B 53 277

68 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

Table 3.5: UM3: Utility matrix for the Breast Cancer prediction problem.

True

M B

Predicted
M 2 −1

B −7 1

Table 3.6 shows the scores obtained for the three models when using the three alternative

user information settings. We will now explain how is the user information converted into

the formal learning context, and the motivation for using the evaluation measures displayed.

Table 3.6: Scores obtained using different user information for the three different models

described in Table 3.4.

Scores Decision Rank

m1 m2 m3 m1 m2 m3

θ1
L0/1 119 103 133 2 1 3

UMunif -119 -103 -133 2 1 3

θ2

F1 0.719 0.681 0.705 1 3 2

G−Mean 0.774 0.719 0.763 1 3 2

CWA0.67 0.756 0.677 0.759 2 3 1

θ3 UM3 123 -139 144 2 3 1

In the setting corresponding to θ1, the user only provides the predictive task and nothing else

is specified. In this case, the data analyst must assume uniform preferences, i.e., all cases

should be equally important and all mistakes equally serious. This means that, in this user

information setting, it is as serious to fail a malignant prediction as it is to fail a benign

case. Therefore, the goal of the predictive task when the user information θ is a 1-tuple,

is to minimise a selected standard loss function such as the 0-1 loss (L0/1) as defined in

Equation 2.1 on page 11. If the data analyst is required to select between models m1, m2 and

m3, then model m2 should be selected because this is the model with minimum loss. In effect,

model m2 only misclassifies 103 cases while models m1 and m3 misclassify 119 and 133

respectively. The minimisation problem described is equivalent to the problem of maximising

the uniform utility. The user information θ1 is formalised as θ′1 = 〈T ,UMunif 〉. Using this

formalisation, the data analyst goal is the maximisation of the utility. Model m2 has a utility

of -103 and models m1 and m3 have a utility of -119 and -133, respectively. Therefore, model

m2 should be selected because this model achieves a higher utility. As we can observe the

problem of minimising the L0/1 is equivalent to the problem of maximising the UMunif .

3.2. FORMALISATION OF PREDICTIVE ANALYTICS 69

The second setting includes only a partial information. In this case the user expresses

informally that class M is more important and is also able to quantify that it is twice more

important than class B. In this case, the data analyst can formalise the user information

using a relevance function. There are different ways to accomplish this. For this example,

we will assume that the data analyst sets the relevance function as follows:

φ(Y) =

{
1 if Y = M

0.5 if Y = B
(3.6)

This means that θ2 is converted into θ′2 = 〈T , φ(Y)〉, where φ(Y) is defined by Equation 3.6.

Although this function provides a formalization of the user preferences it still does not tell

the analyst how to evaluate the predictive performance of the models. Several alternatives

exist to evaluate the performance in these cases. It is the data analyst responsibility to

determine which are the more suitable evaluation metrics to apply. A common option in

problems where the end-user is more interested in one class is the use of the F1 or G−Mean

evaluation metrics. The first is only focused on the most important class for the user while

the second takes both classes into account. The CWA metric can also be suitable for this

setting as it allows to weight the sensitivity and the specificity of the models being evaluated.

In the described user information setting θ′2, the data analyst could consider w = 0.67 which

provides the sensitivity measure with a weight of 0.67 and the specificity measure with a

weight of 0.33. This is motivated by the fact that, sensitivity is a measure focused on the

positive class (M) while specificity is focused on the negative class (B) and the user assigned

to class M twice the relevance of class B. As we can observe in Table 3.6 the three measures

displayed for this case (F1, G −Mean and CWA with w = 0.67) lead to different ranking

outcomes. Using the two first measures model m1 achieves the best performance while using

the last measure would lead to the selection of model m3. Still, we must highlight that m2 is

always the worst performing model in this situation, as opposed to the previous setting where

no user knowledge was available.

Finally, in the last user information setting θ3 the user is able to fully specify the domain

preferences by providing a utility matrix UM3(ŷ, y) displayed in Table 3.5. In this situation,

there is a match between the user information and the learning context, i.e., θ3 = θ′3 and

the data analyst has the formalisation problem solved. The best model under this learning

context is the one that achieves the maximum utility according to the provided utility matrix.

Models m1, m2 and m3 obtain a total utility of 123, -139 and 144, respectively. This means

that, for the learning context θ′3, the best model is m3.

As a conclusion we observe that the user information available is decisive in choosing the

more suitable performance evaluation measures and consequently in the selection of the best

model.

70 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

The previous example showed how the conversion of user information into learning context

can be accomplished. Moreover, it also showed the importance of the second component of

θ′: the formalisation of the end-user preferences regarding the predictive performance. The

notions of θ and θ′ allow the formalisation of standard and non-standard tasks.

Definition 3.2.8 (Standard Predictive Task) A predictive task is standard when the

user information θ is a 1-tuple, or equivalently, the learning context θ′ is a 2-tuple, having as

second component uniform preferences over the models predictive performance, i.e., uniform

utility. This means that we face a standard learning task when |θ| = 1 or θ′ = 〈T ,Uunif 〉.

In fact, in the previous example we observed that the evaluation of the models is equivalent

when using both the standard evaluation metric (L0/1) and the uniform utility matrix

(UMunif). The only difference between the two methods is related with the goal which

changes from minimisation when using the standard evaluation measure to maximisation

when using the uniform utility information.

Equivalently, it is also possible to define non-standard predictive tasks as follows.

Definition 3.2.9 (Non-standard Predictive Task) A predictive task is non-standard when

the user information θ is a n-tuple with n > 1.

Non-standard predictive tasks involve the existence of more information than standard tasks.

This information may be related with the end-user predictive performance preferences, or

may be connected with other domain information such as noisy features or rules specified

by domain experts to which the models must comply to.

Predictive tasks that include information regarding non-uniform preferences on the predictive

performance of the models are a special type of non-standard tasks named utility-based

learning tasks (cf. Definition 3.2.10).

Definition 3.2.10 (Utility-based Learning Task) A predictive task is a utility-based learn-

ing task when the learning context θ′ is defined by a non-uniform relevance function or a

non-uniform utility, i.e.,

θ′ = 〈T , φ(Y)〉 ∨ θ′ = 〈T ,U〉 (3.7)

where φ(Y) represents a non-uniform relevance function and U represents a non-uniform

utility matrix or surface depending whether the problem is a classification or regression task,

respectively.

This means that, whenever the user has information regarding the predictive performance

preferences, this information can be transformed into formal and usable knowledge using

3.2. FORMALISATION OF PREDICTIVE ANALYTICS 71

(a) Utility surface U−lA
3/4

. (b) Isometrics of the Utility Surface U−lA
3/4

.

Figure 3.4: Utility surface U−lA
3/4

and the corresponding isometrics.

either relevance functions or utility matrices/surfaces. Relevance functions provide less in-

formation while utility matrices/surfaces are a more complete picture of the user preferences.

In both cases we face a utility-based learning task.

An example of utility-based learning tasks can be observed, for instance, when the user

defines as his preferences non-standard loss functions, such as asymmetric loss functions.

For instance, in a regression setting, it may be important to penalise more heavily the

under predictions than the over-predictions of a model. Therefore, a possible scenario may

involve the definition of the user information as follows: θ = 〈D, lA3/4〉, where lAα is defined

by Equation 3.8 and represents the asymmetric absolute error function [Hernández-Orallo,

2013] also known as LIN-LIN function. Figure 3.4 shows the Utility Surface U−lA
3/4

and the

corresponding isometrics.

lAα (ŷ, y) =

{
2α(y − ŷ) if ŷ < y

2(1− α)(ŷ − y) otherwise
(3.8)

Let us now consider some special cases of utility-based learning tasks. The definition of

utility-based learning tasks that we have presented allows us to see standard learning tasks

as a special case of utility-based learning tasks. In effect, a standard predictive task is just

a utility-based learning task with a uniform utility Uunif . In this context, we claim that

all standard tasks are also utility-based learning tasks using a uniform utility matrix or a

uniform utility surface.

72 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

Another special case of utility-based learning tasks are imbalanced domain learning tasks

that occur when the defined relevance function is associated with some specific domain

characteristics.

Definition 3.2.11 (Imbalanced Domain Learning Task) A predictive task is an im-

balanced domain learning task when the two following assertions are verified: i) the learning

context is defined through a non-uniform relevance function; and ii) the relevance function

is biased towards under-represented values of the target variable domain., i.e.,

i) θ′ = 〈T , φ(Y)〉, with φ(Y) non-uniform; and

ii) φ(Y) is higher on under-represented values of the target variable.

This means that imbalanced domain predictive tasks are also a special case of utility-based

learning tasks involving the definition of a non-uniform relevance function and also having

an extra restriction concerning the distribution of the target variable.

Having defined a learning context, the data analyst still has to make other important

decisions. Specifically, for a given learning context, many learning tools can be used and

each may search for a model optimising different loss functions, that may or may not match

the user preferences. Moreover, different performance estimation methodologies can be

considered to select the best model for solving the predictive task. We will call these

decisions the model selection context (cf. Definition 3.2.12). More precisely, the model

selection context includes four different elements: the predictive task, that may be subject

to some modification or not; the selected loss function (cf. Definition 2.3.1 provided in page

11); the modelling tools; and the estimation methodology.

Definition 3.2.12 (Model Selection Context) The model selection context ω is a 4-

tuple composed by: a (possibly modified) predictive task T ′; the loss function L that will

guide the search process used during the learning of the models and that should be selected

taking into account the user preference biases; the modelling tools to be considered, repre-

sented by µ; and the estimation methodology, denoted by λ. The modelling tools include

information regarding the learning algorithm and respective set of parameters, while the

estimation methodology includes the evaluation procedures and measures.

ω = 〈T ′,L, µ, λ〉 (3.9)

It is the data analyst responsibility to define suitable L, µ and λ for the predictive task

under consideration. The model selection context is a crucial step because the model derived

for solving the predictive task is obtained through a search process that is guided by the

3.2. FORMALISATION OF PREDICTIVE ANALYTICS 73

optimisation of some loss function. To select this function the data analyst must take into

consideration the learning context θ′ of the task. In some applications it is not easy to

select a loss function that bias the learning process to a model that is the best according

to the user preferences that were formalised in the learning context. In these situations, a

frequent option for the data analyst is to to modify the predictive task in such a way that

achieving these goals becomes feasible. This is a strategy frequently used when dealing with

imbalanced domain problems as described in Section 2.4.3.2.

Finally, the last step, also of the data analyst responsibility, consists of using the obtained

model to produce predictions in a deployment context (cf. Definition 3.2.13).

Definition 3.2.13 (Deployment Context) The deployment context δ is a n-tuple with

n ≥ 2, composed by all the information available at the moment of the deployment of the

model built using the model selection context ω of the predictive task. The deployment context

must contain, at least, the built model m and the deployment data Γ for which the data analyst

is required to obtain predictions, i.e.,

δ = 〈m,Γ, · · · 〉 (3.10)

Data set Γ contains previously unseen observations for which predictions are required. More

information may be provided in the deployment context. For instance, consider a task whose

goal is to predict the volume of sales of a certain product. The data set provided in θ contains

all the available information for a certain country. The data analyst uses this information

to obtain the most suitable model. However, at deployment time, the user may receive a

new data set Γ as well as the information that the model will only be applied in a particular

region of the country. In this case, the model previously built may not be optimal. It is

the data analyst responsibility to decide how to act in these cases. When |δ| > 2 the data

analyst must evaluate the newly received information and decide between one of the following

options: i) apply the previously built model assuming that the new information provided

will not have a relevant impact in the models’ performance; ii) restart the process including

in the user information θ the new information provided; or iii) adapt the built model to be

suitable for the information that was provided. The first option may be selected when the

new information is not important or will not impact the models’ performance. This can also

be the data analyst option when there is no time left to make readjustments and the new

predictions are required without any delay. The second option can be followed when time is

not an issue and the data analyst is focused on the models’ performance rather than making

fast predictions when the deployment context is known. In this case, the complete procedure

can be rethought to incorporate the new information. The user information θ is completed

with the more recent information and then the data analyst should rebuilt θ′ and ω to derive

the optimal model. Finally, the last option involves re-adapting the previously built model

to reflect the newly provided information. This process of modifying a model after it is built,

74 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

adapting it to a new context is known as reframing (e.g. Hernández-Orallo [2014], Hernández-

Orallo et al. [2016]). An example of this setting can be observed when, at deployment time,

the data analyst is informed that over predictions are more serious than under-predictions.

The previously built model m can be adapted to this new setting by applying a constant

positive shift to the obtained predictions. This would inflate the models’ predictions which

would allow to obtain less over-predictions (which are more serious) at the cost of obtaining

more, but less important, under-predictions.

Tables 3.7 and 3.8 show examples of the main groups of information that we have used to

characterise a predictive task, namely, of user information (θ), the learning context (θ′) and

the model selection context (ω), for classification and regression tasks, respectively. We have

not included the deployment context in these tables and assumed the simpler deployment

context containing only a new data set Γ and the model.

The first classification examples in Table 3.7 describe a standard classification task. We can

observe that the data analyst may select either the L0/1 or the uniform utility matrix UMunif

as the loss function to use. We also highlight that in this case the predictive performance

can be characterised through either accuracy or utility-based metrics (total utility or NMU

described in Section 3.3.2 in page 88). The second example in the table represents a situation

of utility-based classification where the user provides the full information regarding the

predictive performance preferences through a certain utility matrix UM2. The third and

fourth examples of Table 3.7 represent situation of imbalanced classification tasks. We

observe that in these cases the user provides an informal and partial knowledge regarding

the problem predictive performance preferences. For each one of these cases the data analyst

derives a relevance function. We observe that the data analyst decides to optimise a standard

loss function but in both cases the predictive task is changed. In particular in these cases the

change applied is a data pre-processing method that allows to balance the fraud and non-

fraud examples in the available data. This change enables the use of standard learning

methods (random forests and neural networks) that optimise a standard loss function.

However, in the evaluation of the performance of the obtained models measures that are

suitable to the problem goals should be selected.

The regression tasks shown in Table 3.8 also include examples of standard, utility-based

and imbalanced regression tasks. The first example in this table corresponds to a standard

regression task. We observe that the data analyst assumes that the end-user has uniform

preferences regarding the predictive performance of the models. In this case, the data analyst

may choose between the minimisation of the LAE , or the maximisation of USunif . In this

situation the performance evaluation should be carried out through the MAE measure or

through utility-based measures such as the total utility or the MU (cf. Equation 2.19 in

page 24). The second example in Table 3.8 concerns a utility-based regression task where

the end-user provides the full utility information through a utility surface US2. This is a

3.2. FORMALISATION OF PREDICTIVE ANALYTICS 75

simple task from the data analyst perspective because no effort is required to formalise the

predictive performance preferences. In this case we observe that the data analyst selected a

special purpose modelling tool, and evaluates the performance though utility-based measures.

In the third example, the user information θ provided is informal. Apart from providing T3,
which contains the available data and the problem target variable, the end-user is only able

to specify that he is more interested in the high target variable values. The data analyst

should transform this informal knowledge into a formal form. This is accomplished though

the definition of a relevance function φ3 that is displayed in Figure 3.5. We must highlight

that the function φ3 is only one possible definition. Given the informal knowledge provided

the data analyst could have defined a different relevance function as long as a higher relevance

is assigned to the high target variable values. Figure 3.5 also shows the boxplot of the target

variable values. In this case, it is clear that we face an imbalanced regression problem because

the most relevant values are poorly represented in the available data. In this example, the

data analyst has pre-processed the available data set transforming the predictive task T3 into

T ′3 . Regarding the performance evaluation the data analyst has selected the F φ1 measure that

is suitable for imbalanced regression problems. The fourth example in Table 3.8 displays

a utility-based regression task with an informal level of information provided by the end-

user. In this case it is only specified that under-predictions are worse than over-predictions.

This requirement could be formalised by multiple utility surfaces. In this example, the

data analyst selected to use a utility surface U−lA
3/4

(displayed in Figure 3.4) based on an

asymmetric loss function (cf. Equation 3.8) that penalises more under-predictions than

over-predictions. For this example, the adequate metrics to evaluate the performance of the

models are utility-based measures. The last example shows an imbalanced regression task

for which the end-user is able to fully specify the relevance function φ5. This represents an

imbalanced regression task because φ5 is not uniform and the target variable values with

higher relevance correspond to low density regions in the available data set. The data analyst

addressed this task by modifying the data set which allowed the use of a standard learning

algorithm. For the performance evaluation the data analyst decided to use the F φ1 measure.

76 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

0.00

0.25

0.50

0.75

1.00

Y

φ 3
(Y

)

Figure 3.5: Relevance function φ3 derived by the data analyst for the example with ID 3 in

Table 3.8.

Table 3.7: Examples of classification tasks with the characteristics decomposed according to the defined predictive analytics framework.

ID θ θ′
ω

Task
T ′ L µ λ

1 〈T1〉 〈T1,UMunif 〉 T1
L0/1(ŷ, y) or

UMunif

decision tree;

minsplit =

{10, 20, 30};
maxdepth =

{10, 15, 20, 25}

2 repetitions of 5

fold CV;

Accuracy, Total

Utility or NMU

Standard

Classifica-

tion

2 〈T2, UM2〉 〈T2, UM2〉 T2 UM2(ŷ, y)

MetaCost algorithm

with decision tree as

base learner;

default parameters

10-fold stratified

CV;

Total Utility, Mean

Utility or NMU

Utility-

based

Classifica-

tion

3
〈T3, class “fraud” is

the most important〉

〈T3,
φ(“fraud”) = 1;

φ(“non− fraud”) = 0.2〉
Note: “fraud” is

under-represented in the data set

provided in T3

T ′3 L0/1(ŷ, y)

random forest;

mtry = {5, 7, 9};
ntree =

{1000, 1500, 2000}

100 repetitions of

.632 bootstrap

procedure;

F1

Imbalanced

Classifica-

tion

4

〈T4, “fraud” is two

times more

important than

“non-fraud”〉

〈T4,
φ(“fraud”) = 1;

φ(“non− fraud”) = 0.5〉
T ′4 L0/1(ŷ, y)

neural network;

size =

{2, 4, 6, 8, 10};
decay =

{0, 0.01, 0.05, 0.1}

5-fold stratified CV;

G−Mean or CWA

with w = 0.67

Imbalanced

Classifica-

tion

Table 3.8: Examples of regression tasks with the characteristics decomposed according to the defined predictive analytics framework.

ID θ θ′
ω

Task
T ′ L µ λ

1 〈T1〉 〈T1,USunif 〉 T1
LAE(ŷ, y) = |y − ŷ|

or

USunif (ŷ, y)

random Forest;

mtry = {6, 8, 10};
ntree =

{500, 1000, 1500, 2000}

2 repetitions of 10

fold CV;

MAE or Total

Utility or MU

Standard

Regression

2 〈T2, , US2〉 〈T2, US2〉 T2 US2(ŷ, y)

special purpose

modelling tool that

optimises US2

5 fold CV;

Total Utility or MU

Utility-

based

Regression

3

〈T3, “high target

variable values are

the most important”

〉

〈T3, φ3〉Note: “higher target

variable values are scarce”
T ′3 LSE(ŷ, y) = (ŷ − y)2

standard SVM with

RBF kernel;

γ = {0.1, 1, 10};
C = {10, 20, 30}

200 repetitions of

.632 bootstrap

procedure;

F φ1

Imbalanced

Regression

4

〈T4,
“under-predictions

are worse than

over-predictions” 〉

〈T4,U−lA
3/4
〉 T4

lA3/4(ŷ, y) ={
3
2(y − ŷ) , ŷ < y
1
2(ŷ − y) , ŷ ≥ y

special purpose

learning algorithm

optimising lA3/4

10 repetitions of

10-fold CV;

total utility or MU

Utility-

based

Regression

5 〈T5, φ5〉
〈T5, φ5〉Note: values with high

φ5 correspond to low density

regions in the data set contained

in T5

T ′5 LAE(ŷ, y) = |ŷ − y|
linear regression

model

2 repetitions of

5-folds CV;

F φ1

Imbalanced

Regression

3.3. UTILITY-BASED REGRESSION CHALLENGES 79

3.3 Utility-based Regression Challenges

The problem of utility-based learning was formally presented in the previous section (cf.

Definition 3.2.10). In this section we discuss the open challenges of a sub-class of these

problems: utility-based regression tasks. This is a less explored problem and still has several

important open issues to be solved. Ideally, in utility-based regression tasks, the user should

provide a utility surface expressing the domain knowledge, i.e., the user information θ should

be a 2-tuple containing the available data set and respective target variable (T), as well as

the end-user non-uniform predictive performance preferences represented by a non-uniform

utility surface (US 6= USunif). As we have mentioned before, in some cases the user may

only be able to provides a relevance function or a even more informal information regarding

the predictive performance preferences. This is frequently the case in imbalanced domains.

Having formalised the utility information in θ′ we can use it to calculate a utility score

when evaluating the models. The models with higher utility are preferred over the ones with

a lower utility score. In this context, the utility information is a key component of these

problems where the goal is to maximise the utility.

Researchers dealing with utility-based regression tasks must face the following three main

challenges: i) obtaining the utility information; ii) deciding how to assess the performance

on the models; and iii) how to obtain models that optimise utility.

The first challenge involves the formalisation of user preferences as a utility surface. This

is particular challenging for regression tasks where we have potentially an infinite number

of target variable values. Ideally, the end-user should be helped in the process of deriving a

utility surface that matches his goals. When a utility surface (US) is fully specified in θ′ the

task of selecting a suitable loss function L for the model selection context ω becomes easier.

The second challenge regards the need to consider a suitable evaluation framework, i.e. the

definition of the λ component of the model selection context ω. Finally, the third challenge

has to do with the current lack of solutions to obtain models that are able to optimise utility.

This is related with the selection of suitable modelling tools µ in the model selection context

ω. Although there are some solutions for this problem they are focused on classification

tasks while for regression tasks they are still poorly explored. We can observe that the

described challenges cover different important groups of information that characterise the

learning task, namely, they impact the formalisation of θ′, L, µ and λ.

In this section we will provide solutions for solving the two first challenges. The third

challenge is discussed in Chapter 4 where we present new solutions for optimising the utility

on utility-based regression tasks.

80 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

3.3.1 The Challenge of Obtaining the Utility Surface

As we have mentioned, the lack of utility information in classification problems is an im-

portant obstacle to the development of solutions for these tasks. Teams of domain experts

have frequently high associated costs. Moreover, it is difficult to find available domain

experts. This poses an important challenge when trying to define the utility matrix for a

given practical application.

Although already being challenging in the context of classification tasks, this is even harder

when we consider utility-based regression tasks. This happens because the user is required

to specify the utility assigned to all possible combination of pairs (ŷ, y) of predicted and true

target variable values. The continuous nature of the target variable in regression problems,

makes this task extremely complex. Still, only when a mapping between these pairs and

a utility score is available it is possible to effectively train and assess utility-based models.

In this section we will focus on solutions for deriving this utility information for regression

tasks. This will help to provide a more formal user information θ which in turn also alleviates

the data analyst task when building the learning context θ′. Moreover, this utility surface

information can also be used by the data analyst as the loss function (L) to use in the

models’ optimisation procedure.

Typically, the utility surface definition is problem dependent. Moreover, different utility

surfaces may be preferable depending on the users’ goals. To illustrate the impact that

the users’ goals may have in the utility surface let us consider a data set where the target

variable expresses the degree of a certain illness. From a human health perspective, the

higher the illness degree the more important is its diagnosis. The higher values of the target

variable correspond to the most severe and complicated situations and therefore are the most

important ones. Figure 3.6a shows a utility surface that could be suitable for this problem

considering the described point of view. Figure 3.6b shows the isometrics corresponding to

the utility surface in Figure 3.6a.

However, this same data set, from a hospital manager perspective, could have a different

utility surface. In fact, when expenses with treatments and exams are taken into account, the

most important cases may be different. Mistakes in certain values may imply unnecessary

and expensive exams, while for other values this may be less important. Let us assume

that, for the described illness, having a good predictive performance for the values in the

range [30, 40] is the most important. This means that an accurate prediction for values in

[30, 40] leads to the high benefits while a poor performance in these values leads to expensive

treatments that were not needed. This means that the hospital incurs into high costs if these

cases are incorrectly predicted. Figure 3.7 shows a utility surface and the corresponding

isometrics that could be preferable for this other situation. As we can observe, the utility

surfaces of both perspectives are very different. A model considered good for predicting under

the first setting could display a poor performance for the second setting and vice-versa.

3.3. UTILITY-BASED REGRESSION CHALLENGES 81

(a) Utility surface. (b) Utility surface isometrics.

Figure 3.6: Illustration of a utility surface defined for a data set expressing a illness severity

that could be suitable from a medical perspective.

(a) Utility surface. (b) Utility surface isometrics.

Figure 3.7: Illustration of a utility surface defined for a data set expressing a illness severity

that could be suitable from a hospital manager perspective.

82 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

The responsibility of defining an adequate utility surface for the problem lies with the end-

user. Still, given that this is a hard task, Ribeiro [2011] proposed a solution that decreases the

effort required from the user. The solution of Ribeiro [2011] allows to automatically obtain

both a relevance function and a utility surface for regression tasks making assumptions

that are reasonable for a particular subclass of utility-based learning problems known as

imbalanced domain problems. Moreover, this method also assumes that the most important

values of the target variable can only be located on the extremes of the target variable

distribution (i.e. either high or low values). Ribeiro [2011] proposed an automatic method

that establishes relevance scores assuming that the rarest extreme values are likely to be

the most important ones. Alternatively, the relevance function can also be obtained by

the interpolation of relevance values given at specific points. The automatic method for

obtaining the relevance function assumes that the relevance is inversely proportional to the

target variable probability density function. The proposed automatic method provides an

estimate of the relevance function φ(Y) by assigning more relevance to the rare and most

extreme values. This is achieved by using the estimated quartiles and the inter-quartile

range of the target variable distribution.

Ribeiro [2011] also proposed a method for obtaining the utility score of a problem using the

notions of costs and benefits (cf. Equation 3.11). A utility score for each pair of values (ŷ, y)

is calculated by taking into account both the error measured through a given loss function

and the relevance of y and ŷ. More precisely, this method the utility of the predictions of a

regression model is given by a net balance between the benefits and costs of the predictions,

Upφ(ŷ, y) = Bφ(ŷ, y) − Cpφ(ŷ, y)

= φ(y) · (1− ΓB(ŷ, y)) − φp(ŷ, y) · ΓC(ŷ, y)
(3.11)

where functions Bφ(ŷ, y) and Cpφ(ŷ, y) represent the benefits and the costs incurred when

predicting ŷ for a true value y, respectively. The benefit of a prediction (Bφ(ŷ, y)) is a

proportion of the relevance of the true value. If we have a perfect prediction (i.e. equal to

the true value), then the benefit is maximum and equal to this relevance. This is captured by

the expression φ(y) ·(1−ΓB(ŷ, y)), where ΓB(ŷ, y) is a bounded loss function that normalises

the standard loss function (L(ŷ, y)) into a [0, 1] scale, so that after L(ŷ, y) reaches a certain

value the bounded loss is maximum (1). Regarding the cost of a prediction (Cpφ(ŷ, y)) this

is calculated as a proportion of the maximum cost that is defined as a weighted average

between the relevance of the true value and the relevance of the predicted value. The cost

is obtained through expression φp(ŷ, y) · ΓC(ŷ, y). Function φp(ŷ, y) provides the weighted

relevance average and uses parameter p to defined the weights between the two relevance

values (0.5 gives equal importance to both). Function ΓC(ŷ, y) is a bounded loss function in

the scale [0, 1], similarly to ΓB(ŷ, y).

In the proposed framework the user is able to obtain different utility surfaces by changing

3.3. UTILITY-BASED REGRESSION CHALLENGES 83

(a) Utility surface with p = 0.2. (b) Utility surface with p = 0.8.

Figure 3.8: Utility surfaces obtained automatically with the method proposed by Ribeiro

[2011].

the parameter p. This parameter has an impact on the types of errors that are more or

less penalised in the utility surface. If parameter p is set to 0.5, then the same weight is

assigned to all types of errors. This is similar to the process of assigning more costs to false

positives, false negatives or both in classification tasks. Setting p to a value above 0.5 means

that missing an important prediction has a high cost. On the other hand, if the user defines

a value of p below 0.5, then to predict as important a value that is not important has the

higher costs. Figure 3.8 displays two utility surfaces obtained for different values of p. In

Figure 3.8a parameter p was set to 0.2, while Figure 3.8b shows a utility surface with p set

to 0.8.

Although being automatic, the proposed method is only applicable for obtaining the utility

surface of some particular utility-based problems: imbalanced domains problems where the

important cases are located at the extremes of the target variable distribution. To overcome

this limitation we propose a different method for obtaining utility surfaces. This method

requires some user input but is also more general in the sense that it allows to derive any

utility surface.

Essentially, the proposed method applies a selected point interpolation technique on a set

of user provided points. This way a full utility surface is obtained and can be visualised.

The end-user can always adapt the results by changing the selected interpolation method or

adding/removing interpolating points when the surface does not match the initial expecta-

tions. The end-user is required to specify: i) the utility of some pairs (ŷ, y) for which the

84 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

utility score is known; and ii) the interpolation method to use. The complete information of

a utility surface is generated by applying the interpolation technique selected to the utility

information provided. This method advantage lies on the flexibility offered to the user that

is able to obtain specifically tailored utility surfaces with a minimal amount of supplied

information.

We have implemented this method in the UBL R package [Branco et al., 2016a] where the

user may select among one of four different interpolation methods: bilinear [W. S. Cleveland

and Shyu, 1991], splines [Lee et al., 1997], idw [Cressie, 1993] and kriging [Cressie, 1993].

Table 3.9 briefly describes these interpolation methods and corresponding used R packages.

Method Description R package

bilinear local fitting of a polynomial surface of degree 1 stats [R Core Team, 2018]

splines multilevel B-splines MBA [Finley and Banerjee, 2014]

idw inverse distance weighted interpolation gstat [Pebesma, 2004]

kriging automatic kriging automap [Hiemstra et al., 2008]

Table 3.9: Interpolation methods, and corresponding R packages, for obtaining different

utility surfaces.

The goal of our proposal is to allow a higher flexibility for the utility surface definition while

maintaining the simplicity for the user. Let us see some examples of utility surfaces obtained

using the proposed interpolation method.

Example 3.3.1 (Obtaining utility surfaces based on the interpolation method) Let

us consider the regression data set named LNO2Emissions4. The target variable (LNO2)

represents hourly measured values of the logarithm of the concentration of NO2 (particles)

in Oslo, Norway, between October 2001 and August 2003. The data set has seven features

that include information on the traffic, temperature, wind, hour and day. We will provide

three cases for illustrating the use of the interpolation method proposed.

Case 1 Let us suppose that the end-user is able to provide, for this predictive task, the utility

information described in Table 3.10. Let us also assume that he is not certain regarding the

interpolation method that should be applied.

By observing the utility surfaces obtained using different interpolation methods, the end-

user may verify which method is more suitable for the utility surface that he wants to

generate. Figures 3.9a to 3.9d show the isometrics of the utility surfaces generated using

the information in Table 3.10. These figures show that the same set of points generates

very different surfaces. We must highlight that the “splines” interpolation method allows to

4A set of 500 examples from a study relating air pollution with traffic volume and meteorological variables.

The data is available from the StatLib Datasets Archive: http://lib.stat.cmu.edu/datasets/.

http://lib.stat.cmu.edu/datasets/

3.3. UTILITY-BASED REGRESSION CHALLENGES 85

Table 3.10: Utility surface information provided by the user for Case 1.

y ŷ U(ŷ, y)

1.22378 1.22378 0

3.84802 3.84802 0

5.58237 5.58237 1

1.22378 6.39509 −0.2

6.39509 1.22378 −1

3 1.22378 −0.5

3 6.39509 −1

obtain a smoother surface, while the “kriging” requires the specification of a higher number

of points, and therefore is more suitable for situations where there is a greater amount of

available utility information.

(a) Bilinear interpolation. (b) Splines interpolation.

(c) Idw interpolation. (d) Kriging interpolation.

Figure 3.9: Isometrics obtained using different interpolation methods using the information

provided by the user described in Table 3.10.

86 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

Case 2 In this case we will consider that the user specifies the utility of a set of 10 points,

assigning to the values of 2.5 and 3.5 the maximum utility score of 1, while 0 was assigned to

the extremes of the target variable. The utility information provided by the user is displayed

in Table 3.11.

Table 3.11: Utility surface information provided by the user for Case 2.

y ŷ U(ŷ, y)

2.5 2.5 1

3.5 3.5 1

1.22378 1.22378 0

6.39509 6.39509 0

1.22378 6.39509 −0.1

6.39509 1.22378 −0.1

3 6.39509 −1

3 1.22378 −1

1.22378 3 −0.5

6.39509 3 −0.5

Figure 3.10 shows the utility surface and corresponding isometrics generated using the de-

scribed information and the “splines” interpolation method. We selected this method due to

its ability of generating a smoother surface, but any other method could be used. We highlight

that, although some effort was required from the user, with a minimum of information it is

easy to derive a domain specific utility surface.

(a) Utility surface.
(b) Isometrics.

Figure 3.10: Utility Surface and isometrics generated with splines interpolation method using

the information provided in Table 3.11 for Case 2.

3.3. UTILITY-BASED REGRESSION CHALLENGES 87

Case 3 In this case we show a surface built with more domain knowledge available and

a different interpolation method. In this case the user provides 13 points for interpolation.

Two non-extreme target variable values (2 and 5) are considered relevant. The information

supplied for this case is shown in Table 3.12.

In this case the “idw” interpolation method was selected to derive the utility surface. Fig-

ure 3.11 displays the utility surface obtained and the corresponding isometrics.

Table 3.12: Utility surface information provided by the user for Case 3.

y ŷ U(ŷ, y)

2 2 1

5 5 1

3.5 3.5 0

1.22 1.22 0

6.39 6.39 0

1.22378 6.39509 −0.2

2 6.39509 −0.5

3.5 6.39509 −0.5

5 6.39509 −0.2

2 1.22378 −0.2

3.5 1.22378 −1

5 1.22378 −1

6.39509 1.22378 −1

(a) Utility surface.
(b) Isometrics.

Figure 3.11: Utility Surface and isometrics generated with idw interpolation method using

Table 3.12 information for Case 3.

The proposed tool provides an easy way for solving the problem of deriving the utility surface

88 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

requiring a minimum of user effort. The user is able to obtain different utility surfaces simply

by changing the provided points. It may happen that the utility surface derived does not

correspond to the user preferences. In that case, it is easy to adjust the utility surface, being

only necessary that the user corrects the introduced points or adds new points for adjusting

the surface till it meets his requirements.

3.3.2 The Challenge of Performance Assessment

As discussed in Chapter 2, the use of standard evaluation measures leads to misleading

conclusions in the context of non-uniform utility predictive tasks. The metrics for perfor-

mance evaluation must be focused on the utility achieved by the models rather than on their

accuracy. This challenge has been solved with the proposal of several measures that allow

to adequately evaluate the utility of the models (see Table 2.8 in Chapter 2, page 23). Still,

we must highlight that, most of the proposed metrics for utility-based regression tasks are

based on asymmetric loss functions that are not able to fully capture the concept of utility

of the individual predictions. The work of Ribeiro [2011] has provided solutions for more

general utility settings for regression tasks. Using the method proposed by Ribeiro [2011],

it is possible to derive the MU (cf. Equation 2.19, page 24).

Ribeiro [2011] also proposed the NMU (cf. Equation 3.12), which is a normalised version of

the MU measure that uses the utility-based regression framework described and represented

by Upφ(ŷi, yi). The NMU metric is calculated as follows:

NMU =

∑N
i=1 U

p
φ(ŷi, yi) +N

2N
(3.12)

where Upφ(ŷi, yi) represents the utility of predicting ŷi for a true value of yi derived through

the automatic method described in Ribeiro [2011] (cf. Equation 3.11 defined in page 82).

3.4 Imbalanced Domains Learning: Definition and Main Chal-

lenges

In this section we discuss the problem of learning from imbalanced domains presenting its

main challenges and providing solutions for addressing them.

Before discussing the open challenges of learning in imbalanced domains, we will first discuss

the problem definition, explaining its extension to regression tasks.

3.4. IMBALANCEDDOMAINS LEARNING: DEFINITION ANDMAIN CHALLENGES89

B M

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

●

●

0.53

1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

φ
()

fr
e
q
u
e
n
c
y

Classes

Threshold(tR)

Figure 3.12: Probability mass function of a binary classification problem, relevance function

(φ(Y)) and relevance threshold (tR).

3.4.1 The Problem of Learning from Imbalanced Domains

The problem of learning from imbalanced domains is a particular subclass of predictive

tasks, more precisely, it is a subclass of utility-based learning problems. A definition for the

imbalanced domain learning tasks has been presented in Section 3.2 (cf. Definition 3.2.11

in page 72). We face an imbalanced domain problem when the second component of the

learning context θ′ is a non-uniform relevance function and the relevance is higher on under-

represented values of the target variable. Our goal is to analyse the provided definition of

imbalanced domains, discussing its application for both classification and regression tasks.

The notion of relevance function helps in defining which are the most important cases.

However, to clearly separate the important from the non-important cases, we also need to

define a threshold on the relevance function values. This threshold, tR, sets the boundary

above which the target variable values are relevant. Using tR we are able to define a partition

of the target variable domain Y in two complementary subsets: YR = {y ∈ Y : φ(y) > tR}
and YN = Y \ YR. The subset DR ⊂ D contains the examples satisfying y ∈ YR and

DN = D \ DR. We must highlight that this partition is easily applicable to all regression

problems as well as to binary and multiclass problems.

Figures 3.12 and 3.13 show the construction of sets DR and DN using the threshold (tR) on

the relevance values, for a classification and a regression problem, respectively.

Using this notation, the assertions describing the problem of learning from imbalanced

domains (cf. Definition 3.2.11 provided in page 72) can be rewritten as follows:

90 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

Y

D
e
n
s
it
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

φ
()

Threshold(tR)

Figure 3.13: Probability density estimation, relevance function (φ(Y)) and user defined

threshold (tR) for a regression problem.

i) θ′ = 〈D, φ(Y)〉, with φ(Y) non-uniform; and

ii) |DR| << |DN |.

The violation of any of the previous assertions results in the elimination of the problem of

imbalanced domains. If assertion i) is not fulfilled, then all cases are equally relevant to the

user, i.e., the user has a uniform interest over the domain (φ(Y) is uniform). In this case,

this poses no problem to the learning procedure. If assertion ii) fails, this means that either

the rare and normal cases distribution is approximately balanced, i.e., |DR| ≈ |DN | or the

number of rare cases is much larger than the number of normal cases, i.e., |DR| >> |DN |.
Both situations will also not represent a problem for the learner. In effect, in the first case,

by having approximately the same number of normal and rare cases the learner will be able

to focus on both type of cases. In the second case, by having available more rare cases the

learner will be focused on these frequent cases which matches the user preferences are biased.

The problem of learning from imbalanced domains has been thoroughly studied in the context

of classification tasks. However, for regression tasks, this has been a less explored issue. We

address in the following section the main open challenges of the problem of learning from

imbalanced domains for regression tasks. The main challenges that we will discuss are : i)

how can the relevance function be obtained; ii) how can we evaluate the performance in

these tasks in an adequate way; and iii) how can we develop models suitable for imbalanced

domain tasks. We will discuss the two first challenges. The last challenge is addressed in

Chapter 5 where several solutions are presented and evaluated.

3.4. IMBALANCEDDOMAINS LEARNING: DEFINITION ANDMAIN CHALLENGES91

3.4.2 The Challenge of Relevance Function Estimation

The formalisation of the domain knowledge provided through the user information tuple θ

is one the biggest challenges that the data analyst must solve. Solutions for obtaining the

utility surface information were presented in the previous Section 3.3.

As we have mentioned before imbalanced domains tasks are a special case of the more

general utility-based learning task. The specificity lies on the fact that the end-user declares

a preference for accurate performance on a subset of the values of the target variable domain

(and as we have seen these values are rare). This information does not require a full utility

matrix or surface, it is enough to say which are the relevant values. As we have seen before,

that is the purpose of the relevance function - to map the target variable domain into a scale

of relevance. In this context, the main goal of the formalisation of the user preferences in a

imbalanced domains task is to be able to fully specify this relevance function.

Several methods can be used for obtaining an estimate of the relevance function of a given

problem domain. The used method depends on the amount of available information provided

by the end user. We will consider four different classes of information to express the user

preferences in these problems:

• Informal: characterised by completely informal domain knowledge. This is typical in

imbalanced domains where no quantification regarding the importance of each class or

range of the target variable exist. Frequently, in classification tasks it is only stated

that “the most important class is the minority”.

• Intermediate informal: more information available although very limited. We

assume the user provides a partial order of the classes or ranges of the target variable

by their importance.

• Intermediate formal: characterised by a more complete information available. In

this setting the user is able to provide a total order of the classes or ranges of the

target variable.

• Formal: the user provides a full specification of the relevance function. Although

being the ideal setting, this scenario is not common in real world domains.

Considering these classes of available information, different methods can be used to obtain

an estimate of the relevance function. Obviously, in the ”formal” class nothing is necessary

as the user already specifies/provides the function.

The informal type of information is the most challenging one due to the lack of information.

In this case the most suitable method involves the estimation of the relevance function based

on the target variable distribution, because one of the properties of imbalanced tasks is the

fact that the more important values are less frequent in the data set. More precisely, when

92 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

no information is provided, we can derive a relevance function that is inversely proportional

to the target variable distribution. This is a valid method for classification and regression

tasks. Following this intuition, in classification tasks, the relevance score assigned to each

class i can be determined as:

φ(i) =
1/ti∑C
i=1 1/ti

(3.13)

where i is a certain problem class, C is the total number of classes in the domain, and ti is

the sampling frequency of class i.

For regression tasks, Ribeiro [2011] proposed a similar method that allows to obtain automat-

ically the relevance function. This method was already described in the previous Section 3.3

(in page 82) and uses statistics of the target variable distribution to obtain φ(Y).

When the available information is intermediate informal the end-user is already able to

provide more information, although being still incomplete. In this case, the end-user is able

to specify a partial order between the problem classes or ranges.

A partial order specifies a binary relation between pairs of target variable classes or ranges,

depending if the problem is a classification or regression task. This relation is denoted as

c1 < c2 and is read as “c1 is the successor of c2”, where ci represents a problem class or range.

The relation c1 < c2 represents that c1 has a lower relevance value than c2. In the relation

c1 < c2, c1 is the successor of c2 or, equivalently, c2 is the predecessor of c1. The relation

is named partial because it does not provide a full relation between all the classes/ranges,

i.e., there are pairs of classes/ranges named incomparable because the relation between both

was not specified. Figure 3.14 shows on the left side an example of a partial order on a

classification problem with 7 classes. In this figure we represent the binary relation c1 < c2

by a directed graph connecting nodes c1 and c2 with the arrow pointing to the predecessor,

i.e. an arrow from c1 (the successor) to c2 (the predecessor). Several studies have been

conducted to estimate rankings from a partial order (e.g. Brüggemann et al. [2004]). We

propose the use the partial order of classes or ranges to estimate their relevance. The main

advantage of this method is that it is less demanding for the end-user when compared to a

full specification of the relevance function. Moreover, to use a partial order defined for the

target variable is preferable to the situation where only informal information is available.

To estimate the relevance function for the classes (or ranges) of a certain problem using a

partial order we applied the US-model [Brüggemann et al., 2004]. This method builds a

Local Partial Order Model (LPOM) for each class/range. A LPOM for a node X represents

all the successor (S), predecessor (P) and incomparable (U) nodes in relation to node X.

Then, the estimated average rank of node X is defined as follows:

Rank(X) =
(|S|+ 1) + (|S|+ 1 + |U |)

2
= |S|+ 1 +

|U |
2

(3.14)

Figure 3.14 shows, on the right side, the LPOM corresponding to node E. In this example

3.4. IMBALANCEDDOMAINS LEARNING: DEFINITION ANDMAIN CHALLENGES93

B

A

G

F

E

D

C

E

C

A

D B F G

Figure 3.14: Example of a partially ordered set (left hand side) and the construction of a

LPOM for class E (right hand side).

node E has 2 successors (nodes A and C), 1 predecessor (node D) and 3 incomparable nodes

(B, F and G). Node E ranking, according to the proposed US-model, is Rank(E) = 4.5.

For classification tasks, we use the classes ranks derived from the partial order provided by

the user and estimate the relevance of each class i as follows:

φ(i) =
Rank(i)

max∀i∈C Rank(i)
(3.15)

For regression tasks a similar methodology can be applied as follows: for each user provided

range of the domain i we use Equation 3.15 to derive the average value of φ(Y) for that

range and then use an interpolation method to obtain the full continuous relevance function.

The last setting, regards the existence of intermediate formal information. In this case,

we assume that the user is able to specify a total order of the problem classes or ranges

and we use a mechanism similar to the previous one. This is a more demanding task

for the user because all pairs of classes/ranges must be comparable, i.e., for each node

considered there can not exist incomparable nodes. Given a total order, only the magnitude

of the classes/ranges relevance remains unspecified. In this case, we can also use the US-

model [Brüggemann et al., 2004] to obtain each class/range rank. For a given node X the

formula applied to derive the corresponding rank is as follows: Rank(X) = |S| + 1. In

the total order case we have a simplified formula because X has no incomparable nodes.

After obtaining the rank of each class or range, the relevance can be estimated through

Equation 3.15 and by applying the previously described mechanism for classification and

regression problems.

3.4.3 The Challenge of Performance Assessment

As we have mentioned in Section 2.2, in the context of utility-based learning and, in

particular, imbalanced domains learning, performance assessment is a critical issue. In these

problems, the performance of a model should not be considered “blindly” with respect to the

94 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

errors location and must also take into account the error magnitude [Ribeiro, 2011]. Standard

evaluation measures only take into account the magnitude of the errors independently of

where they occurred. For this reason they are not suitable for these applications because

they can be misleading [Ribeiro, 2011, Branco et al., 2016b].

The problem of performance assessment was thoroughly addressed within imbalanced clas-

sification problems and a diverse set of metrics was put forward as described in Chapter 2.

The more frequently used metrics involve the aggregation into a single number of a given

perspective derived from the problem confusion matrix. Because different metrics express

different evaluation perspectives, it is usual to report the results of several metrics, to

show the behaviour of the solutions across different angles. The most frequently used

metrics for the class imbalance problem are the Fβ (cf. Equation 2.27, in page 38), G-

Mean (cf. Equation 2.28 in page 38). The results of AUC-ROC measure (cf. Equation 2.37

in page 40) are also frequently reported, although they have been shown to be misleading

because they can provide an excessive optimistic view of the performance achieved [Davis

and Goadrich, 2006].

When dealing with imbalanced regression problems only few solutions exist for assessing the

performance. Generalisations of precision and recall measures, precφ (cf. Equation 2.38) and

recφ (cf. Equation 2.39) respectively, have been proposed and were described in Chapter 2

(page 44). These two metrics can be aggregated into the F φβ metric using the same formula

defined for classification (Equation 2.27). Important regression metrics proposed by Ribeiro

[2011] are AUC−ROCφ, AUC−PRφ, AUC−ROCIV φ and AUC−PRIV φ. These metrics

were described in Section 2.4.2.2 (page 44).

The G-Mean is a metric often used in classification because it also takes into account the

precision obtained on the negative class. In order to generalise G-Mean metric to a regression

context we need to use the extension to regression problems of recall and specificity. The

former metric has been proposed for regression as recφ (defined in page 44). We propose

the generalisation to regression tasks of the specificity metric, which we call specφ. This

metric is focused on the performance achieved on the negative class and can be thought as

the equivalent of precision measure but evaluated on the negative class.

The generalisation of specificity is obtained through a method similar to the one proposed

for the obtaining precision and recall for regression. We use the concepts of utility (u) and

relevance (φ) of a pair of true and predicted values of the target variable (yi, ŷi). spec
φ is

the proportion between the utility achieved by the model on the true normal cases (φ(y) ≤
tR) and the maximal achievable utility (i.e., the relevance) for those cases as defined in

Equation 3.16. The constant 1 is used in this equation in order to obtain measures in the

interval [0, 1].

3.4. IMBALANCEDDOMAINS LEARNING: DEFINITION ANDMAIN CHALLENGES95

true negative rateφ (specificityφ or specφ) : TNφ
rate =

∑
φ(yi)≤tR(1 + u(ŷi, yi))∑
φ(yi)≤tR(1 + φ(yi))

(3.16)

Using these metrics we are able to adapt to regression the G-Mean [Kubat et al., 1998]

defined for classification tasks. For distinguishing between the two evaluation measures we

will refer to the regression version of the G-Mean, as G −Meanφ because it involves the

notion of relevance.

G−Meanφ =
√
recφ · specφ

=

√∑
φ(yi)>tR

(1 + u(ŷi, yi))∑
φ(yi)>tR

(1 + φ(yi))
·
∑

φ(yi)≤tR(1 + u(ŷi, yi))∑
φ(yi)≤tR(1 + φ(yi))

(3.17)

One advantage of G −Meanφ is that it considers the accuracy achieved both on the rare

and normal cases, i.e., it takes into account the performance of the cases with φ(y) > tR and

φ(y) ≤ tR. On the other hand, the Fβ measure is solely focused on the rare cases, integrating

the accuracy achieved on both predicted and true rare cases.

For completeness, we also propose the extension of the negative predictive value to regression,

which is the equivalent of recφ evaluated on the normal cases. The negative predictive value

(NP φvalue) is a proportion between the utility achieved on the predicted normal cases and the

maximal achievable utility for those cases as defined in Equation 3.18. We use the constant

1 in the equation to obtain measures in the interval [0, 1].

negative predictive valueφ : NP φvalue =

∑
φ(ŷi)≤tR(1 + u(ŷi, yi))∑
φ(ŷi)≤tR(1 + φ(ŷi))

(3.18)

In the following Example 3.4.1 we show how standard evaluation metrics can be misleading in

the context of imbalanced regression problems and show that the use of different evaluation

metrics may lead to different conclusions.

Example 3.4.1 (Evaluating the Air Quality Prediction Problem) Let us consider once

again the LNO2 data set described in Example 3.3.1. High values of target variable LNO2

indicate a bad air quality as opposed to lower LNO2 values. However, both extremes (low

and high) are rare in the data set. Figure 3.15 shows the boxplot and the density function of

the target variable approximated through a kernel density estimator.

Let us suppose that a decision maker is interested in predicting the LNO2 variable for

determining when to impose traffic restrictions to prevent reaching a dangerous atmosphere.

In this case, the decision maker’s preferences are not uniform across the target variable

96 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

0.0

0.2

0.4

0.6

de
ns

ity

● ● ● ●● ●●● ●● ●

1 2 3 4 5 6

LNO2

Figure 3.15: Target variable distribution of LNO2Emissions data set.

domain, and his main goal is to obtain a predictive model with high accuracy on high extreme

values of LNO2. Figure 3.16 displays a relevance function suitable for these goals that was

obtained using the automatic method proposed by Ribeiro [2011].

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6

LNO2

φ(
LN

O
2)

Figure 3.16: Relevance function automatically estimated for the target variable LNO2.

Let us consider a test sample with 10 examples of this data set. Figure 3.17 shows the

predictions obtained by four artificially generated models. The relevance threshold (tR)

was set to 0.8, which in this case means that relevant target values are greater or equal

to approximately 5.08.

By a simple observation of Figure 3.17 we notice that model m1 is the best model for

predicting the higher LNO2 values. However, this model also signals several normal events

as relevant, presenting generally inflated predictions. Model m2 comes next in what concerns

3.4. IMBALANCEDDOMAINS LEARNING: DEFINITION ANDMAIN CHALLENGES97

●

●

●

●

●

●
● ●

●
●

1

2

3

4

5

1 2 3 4 5

Y

Ŷ
model

● m1

m2

m3

m4

Figure 3.17: Predictions of four artificial models on a test sample with 10 cases drawn from

the LNO2Emissions data set.

the rare case predictions, while the remaining models show a poor performance on these cases.

Table 3.13 shows the results obtained by these four models on different metrics. We have

grouped the measures into four groups defined as follows: i) standard regression metrics; ii)

confusion matrix derived regression metrics; iii) metrics that aggregate precision/recall met-

rics (focused on rare cases performance only); and iv) metrics that aggregate the information

of measures focused on rare and normal cases.

Standard measures such as MAE or MSE signal either model m3 or model m4 as the best

performing, respectively. When considering these metrics, the worst model is m1. However,

provided that the higher values are the most important for the user, these conclusions are

clearly misleading. This illustrates that, when tackling imbalanced domains learning prob-

lems, it is necessary to use suitable evaluation measures.

The results of precφ and recφ point models m1 or m2 as the best performing ones. This is in

accordance with the expected because these metrics are focused on the rare values evaluation.

On the other hand, both specφ and NP φvalue position model m1 in last, although they do

not agree on the best model. This is also the expected result because these measures are

concentrated in the performance achieved in the normal cases.

The next group of measures presented in Table 3.13 is based on aggregating the precφ and

recφ metrics. In imbalanced classification tasks, the F1 measure (corresponding to the F φ1
for regression) is frequently reported. The results of this group of metrics point to either m1

or m2 as the best performing models. Still, we must highlight that the results of these metrics

do not agree completely, although having the same overall focus.

Finally, the last group of measures include metrics that aggregate information related with

both rare and normal values. These metrics unanimously rank first model m1 (and m3 in

98 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

Table 3.13: Different metrics results on the four artificial models displayed in Fig. 3.17.

Scores Decision Rank

m1 m2 m3 m4 m1 m2 m3 m4

MAE 1.157 0.927 0.852 0.899 4 3 1 2

MSE 2.213 1.76 1.827 1.271 4 2 3 1

precφ 0.695 1.000 0.000 0.000 2 1 3.5 3.5

recφ 0.988 0.735 0.640 0.674 1 2 4 3

specφ 0.904 0.998 0.968 0.988 4 1 3 2

NP φvalue 0.96 0.994 0.997 1.000 4 3 2 1

F φ1 0.816 0.847 0.000 0.000 2 1 3.5 3.5

AUC − PRφ 1.000 0.826 0.826 1.000 1.5 3.5 3.5 1.5

AUC − PRIV φ 0.995 0.813 0.763 0.847 1 3 4 2

AUC −ROCφ 0.944 0.5 0.944 0.888 1.5 4 1.5 3

AUC −ROCIV φ 0.990 0.499 0.882 0.77 1 4 2 3

G−Meanφ 0.945 0.856 0.787 0.816 1 2 4 3

the case of AUC −ROCφ). However, the remaining ranks of the models display differences.

This example shows that standard metrics should not be used in the context of imbalanced

regression problems. It also demonstrates that different evaluation measures capture different

perspectives of the evaluation. Moreover, it is also shown that the metrics may provide

different results, even when considering metrics that aggregate the same base measures. This

means that, even when suitable metrics are used, the evaluation results may change according

to the metric being observed.

3.5 Conclusions

In this chapter we have proposed a utility-based learning framework. This framework in-

volved the formalisation of predictive tasks, which allowed to establish important connections

between different types of predictive tasks. In particular, the proposed framework allowed

to verify that standard learning tasks are a special case of utility-based learning problems.

We have also seen that the problem of learning from imbalanced domains can be seen as a

special case of utility-based learning tasks.

An important set of open issues in utility-based regression tasks was presented. We discussed

these open challenges and presented solutions for them for both utility-based regression and

imbalanced domains learning tasks.

3.5. CONCLUSIONS 99

The two following chapters focus on modelling solutions for both utility-based regression

problems and imbalanced domains learning tasks.

100 CHAPTER 3. A UTILITY-BASED LEARNING FRAMEWORK

Chapter 4

Utility Optimisation for Regression

Tasks

If we have information on the utility preferences of the end-user we should use it to drive

the learning of predictive models. In this chapter we address the problem of maximising

utility in regression tasks. We propose two solutions to the problem of maximising utility

and evaluate them on several real world tasks.

4.1 Introduction

Many important practical applications involve the consideration of a utility setting. In

the previous chapter we defined a framework for the problem of utility-based learning, and

showed its relations with other predictive tasks. We also discussed the main challenges

involving utility-based learning problems, particularly concerning the procedures used to

express the user preferences in a way that is useful for learning predictive models.

In this chapter we focus on the problem of utility-based regression, assuming we have an

utility surface that describes the user preference biases. Given a utility surface, how can we

change the learning algorithms in order to obtain models that achieve higher utility scores?

We answer this question in Sections 4.2 and 4.3 by proposing two solutions to optimise

utility in regression tasks: UtilOptim and MetaUtil algorithms. In Section 4.4, we evaluate

and discuss the predictive performance of the proposed algorithms through an extensive

experimental study. Finally, in Section 4.5 we conclude this chapter.

101

102 CHAPTER 4. UTILITY OPTIMISATION FOR REGRESSION TASKS

4.2 UtilOptim: Maximising the Expected Utility

Our first proposal to obtain models biased towards utility maximisation is based on the

estimation of the maximum expected utility for a given test case. The key idea of this

approach is to determine the optimal prediction for a case by maximising its expected utility.

To calculate the expected utility we use the conditional density of the target variable. Let

fY |X represent the conditional probability density function of Y given the occurrence of the

value x of X.

For a given test case q = 〈xk, yk〉, with yk unknown, the optimal prediction y∗ that maximises

the expected utility, can be determined as follows:

y∗ = arg max
z∈Y

∫
fY |X(y|X = xk) · U(z, y) dy (4.1)

Equation 4.1 shows how the optimal prediction for a given example can be obtained, as-

suming the true conditional density for the target variable is known. This equation is the

extension to regression and utility-based problems of the minimisation of the conditional

risk [Duda et al., 2012] described in Equation 2.8 (page 13, Section 2.3.1). To apply the

described mechanism in practice, we need: i) a utility surface describing the user preference

bias; ii) an estimate of the conditional probability density function fY |X ; and iii) an estimate

for the integral in Equation 4.1. Regarding the definition of the utility surface, we have

described several approaches in the previous chapter. To obtain an estimate for fY |X , we

propose the use of the method presented by Frank and Bouckaert [2009] and Rau et al.

[2015] that uses a class probability estimator to approximate fY |X in a certain range [yl, yh]

of the target variable Y . Finally, we can use the trapezoidal rule (e.g. Davis and Rabinowitz

[2007]) to approximate the integral in the equation through a definite integral in [yl, yh].

Algorithm 4.1 describes with more detail the process used to estimate the optimal prediction

under a utility-based regression setting.

The method proposed by Frank and Bouckaert [2009] and Rau et al. [2015] is used to obtain

an estimate of fY |X . This method is based on the usage of a class probability estimator p̂

that is able to provide the probabilities of each class c conditioned on a given test case q,

i.e. p̂(c|q). Such estimator can easily be obtained using some training set of the problem.

We create such training set by using the available data of the regression task, but changing

the continuous target to a discretized version, i.e. a nominal variable. This results from

discretizing the continuous target variable values into a set of B contiguous, non-overlapping

and equal width bins. The considered bins cover the interval [yl, yh] of the target variable

Y . Each of these bins will act as a class value. After training the probabilistic classifier with

this data, the idea is to use the estimated class probabilities, p̂(c|q), to derive weights for

each bin. Given a case xq, we derive a weight wb for each bin b ∈ B as follows:

4.2. UTILOPTIM: MAXIMISING THE EXPECTED UTILITY 103

Algorithm 4.1 Utility Optimization (UtilOptim).

Input: Train - regression training set with target variable Y

U - utility surface (Optional)

A - probabilistic classifier

ε - granularity

Test - test set

Output: Predictions obtained for Test

1: function UtilOptim(Train, U , A, ε, Test)

2: if U is not defined then

3: U ← estimate utility using the automatic method provided by Ribeiro [2011]

4: end if

5: B ← set of ε-width non-overlapping bins obtained by discretizing Y in Train

6: V ← set of mid-points of each bin b

7: for each xt ∈ Test do

8: for each b ∈ B do

9: wb(xt)←
p̂(b|xt)
|b|

. Use A and Train to estimate p̂(b|xt)

10: end for

11: for each v ∈ V do

12: fY |X(v|xt)←
∑n

i=1wb:yi∈b(xt)Kh(v − yi)
13: end for

14: ŷt ← arg maxz∈Y
∫
fY |X(v|xt) · U(z, v) dv approximated through a trapezoidal

rule with granularity ε

15: end for

16: return ŷt ∀xt ∈ Test
17: end function

104 CHAPTER 4. UTILITY OPTIMISATION FOR REGRESSION TASKS

wb(xq) =
p̂(b|xq)
|b|

(4.2)

where |b| is the number of training cases in the bin b, and p̂(b|xq) is the estimated probability

of the bin b given the test case xq.

We then use a weighted Gaussian kernel density estimator with bandwidth h in conjunction

with the obtained weights to yield the following estimate of the conditional probability

density function:

fY |X(y|X = xq) =
n∑
i=1

wb:yi∈b(xq)Kh(y − yi) (4.3)

where wb:yi∈b represents the weight of the bin to which yi belongs, Kh(x) = K(x/h)
h represents

a Gaussian kernel, i.e., K(x) = 1√
2π
· e−

x2

2 , and h is the kernel bandwidth. The bandwidth

value determines how closely the estimator adjusts to the data. The value that we selected

is based on the global standard deviation and the number of data points. We followed the

recommendation of Silverman [1986] for setting the h value, namely we used h = 0.9An−1/5,

where A = min{σX , IQR1.34 }, IQR represents the interquartile range and σX is the standard

deviation, both estimated with the training data.

Finally, to calculate the optimal prediction of a case xq it is necessary to evaluate the integral

of Equation 4.1. This integral is approximated by a definite integral in the interval [yl, yh]

as shown in Equation 4.4. To do this, we need to assess the effects of predicting z for case

xq, for all z ∈ [yl, yh]. The value of z that yields the highest expected utility is selected

as the optimal prediction for xq. We use a parameter ε for setting the granularity to use.

Given this granularity ε, we evaluate the function fY |X and the surface U in [yl, yh] using a

set of points equality spaced by ε. We also use this set of points to estimate the value of the

integral in Equation 4.4 using a trapezoidal rule (e.g. Davis and Rabinowitz [2007]).

y∗ = arg max
z∈[yl,yh]

∫ yh

yl

fY |X(y|X = xk) · U(z, y) dy (4.4)

Figure 4.1 illustrates this procedure for a test case of the LNO2Emissions data set. In

this data set the high extreme values of the target variable are more valuable for the end-

user and they configure a situation with extreme pollution, which is a serious event with

potential impact in human health. The solid black line represents the fY |X estimate obtained

conditional on the considered test case. The red dashed line displays the values obtained

for the integral proposed in Equation 4.1 across the Y domain. The vertical lines in the

figure show the true target variable value (dashed blue), the LNO2 value with the highest

probability given the information in the probability density function conditional on the case

(solid black) and the LNO2 value with the highest expected utility (dashed red), which

4.3. METAUTIL: MAXIMISING THE UTILITY BY CHANGING THE TRAINING SET105

2 3 4 5

−
0.

5
0.

0
0.

5
1.

0

LNO2

f Y
|X

−
0.

05
0.

00
0.

05
0.

10
0.

15

E
st

im
at

ed
 in

te
gr

al
 v

al
ue

s

fY|X

⌠
⌡

fY|X(y|xk)U(z, y)dy

max fY|X

max utility

true value

Figure 4.1: Results from utility optimisation and fY |X estimation for one LNO2Emissions

data example with true target variable value of 4.949.

will be the predicted value, in accordance with Equation 4.1. Note how, in this illustrative

example, the prediction is pushed to a value with lower conditional probability but higher

expected utility.

4.3 MetaUtil: Maximising the Utility by Changing the Train-

ing Set

Our second proposal, MetaUtil, is able to obtain a model that tries to maximise utility

by changing the provided training set. This method is an adaptation of the idea proposed

by Domingos [1999] and implemented in the algorithm MetaCost for classification tasks. In

MetaCost the idea is to change the training data in such a way that when learning a model

with the new data we obtain a model that minimises the cost of the predictions. Here, we

adapt this idea to a context of maximising utility for regression tasks.

The key idea of the MetaUtil algorithm is to change the target variable value of each training

case to the value we estimate that will maximise the expected utility. As MetaCost, the

MetaUtil algorithm uses several bootstrap samples to obtain different models to provide

conditional probability density estimates. Each of these models is used to obtain approx-

imations of the conditional probability density function, fY |X(y|X = x), using the same

procedure described in the UtilOptim algorithm. There are two different ways for obtaining

the final estimate of fY |X(y|X = x): i) by averaging all the approximations provided by

these models; or ii) by averaging only the approximations obtained from samples that did

not include the example x. This final average estimate is used in Equation 4.1 to derive

the optimal y value for a given case. As in the MetaCost algorithm, the original target

106 CHAPTER 4. UTILITY OPTIMISATION FOR REGRESSION TASKS

variable value of the each training case is replaced by this optimal y value. Finally, a model

is trained with this modified training set. In summary, MetaUtil uses a bootstrap procedure

to obtain the optimal target variable value for each training case, according to the preference

biases of the user. In MetaCost these preferences are expressed through a cost matrix, and

the optimal target values calculated using the conditional risk (Equation 2.8). In MetaUtil

a utility surface describes the user preferences and the optimal values are calculated using

Equation 4.1. MetaUtil obtains a new, modified training set, where the target variable

values were changed in accordance with the user preference biases, i.e., the new target

variable values maximise the expected utility. This new training set is used to obtain the

final model that is expected to be biased towards the user preferences as it was learned in

a training set modified with the utility information that describes these preferences. The

details of our proposal are described in Algorithm 4.2.

The MetaUtil algorithm has the important advantage of allowing to obtain more inter-

pretable models. This happens because the modifications are embedded in the new training

set, and therefore, the learned model is obtained with a training set biased towards the

utility preferences of the user. This means that this model will reflect the user preferences

as expressed through the utility surface.

4.4 Experimental Analysis

In this section we describe and discuss the results of an experimental evaluation of the two

approaches for utility optimisation. Our main goal is to assess the effectiveness of using the

UtilOptim and the MetaUtil algorithms presented in Sections 4.2 and 4.3. More specifically,

we carried out a set of experiments for evaluating: i) the advantages of using the proposed

approaches; and ii) the impact in the predictive performance when applying these approaches

under different utility settings.

4.4.1 Materials and Methods

Data Sets and Utility Settings. In the experiments carried out we used 14 real world

regression data sets from different domains. For each data set, as we had no access to domain

experts, we have used the automatic method proposed by Ribeiro [2011] to derive a relevance

function and then a utility surface. Table 4.1 shows the main characteristics of these data

sets, including the number and percentage of rare values for a relevance threshold (tR) of

0.8.

One goal of our experiments regards assessing the impact of using the proposed methods

under different utility settings. To obtain different utility surfaces for each data set we

applied the method proposed by Ribeiro [2011]. This method allows to derive a set of utility

4.4. EXPERIMENTAL ANALYSIS 107

Algorithm 4.2 MetaUtil.

Input: Train - regression training set with target variable Y

A - regression learning algorithm

U - utility surface (Optional)

m - number of samples to generate

n - number of examples in each sample

r - TRUE iff all samples are to be used for each example

ε - granularity parameter

Test - test set

Output: Predictions obtained for Test

1: function MetaUtil(Train, A, U , m, n, r, ε, Test)

2: for i = 1 to m do

3: Si ← bootstrap sample of Train with size n

4: Mi ← {f̃Y |X}x∈Train family of functions estimated with granularity ε using Si

5: end for

6: for each example 〈x, y〉 ∈ Train do . Change training set target values

7: if r is TRUE then

8: M ′(x)← average of Mi(x)

9: else

10: M ′(x)← average of models Mi(x) where x was not used for training

11: end if

12: y ← arg maxz∈Y
∫
M ′(x).U(y, z) dy approximated through trapezoidal rule with

granularity ε

13: end for

14: M ← model obtained from applying A to the new modified training set

15: for each test case t := xt do

16: ŷt ← predict(xt,M)

17: end for

18: return ŷt ∀t ∈ Test
19: end function

108 CHAPTER 4. UTILITY OPTIMISATION FOR REGRESSION TASKS

Table 4.1: Characteristics of the 14 used data sets. (N : Nr of cases; tpred: Nr of predictors;

p.nom: Nr of nominal predictors; p.num: Nr numeric predictors; nRare: nr. cases with

φ(Y) > 0.8; %Rare: 100× nRare/N).

Data Set N tpred p.nom p.num nRare % Rare

servo 167 4 2 2 34 20.4

a6 198 11 3 8 33 16.7

Abalone 4177 8 1 7 679 16.3

a3 198 11 3 8 32 16.2

a4 198 11 3 8 31 15.7

a1 198 11 3 8 28 14.1

a7 198 11 3 8 27 13.6

boston 506 13 0 13 65 12.8

a2 198 11 3 8 22 11.1

a5 198 11 3 8 21 10.6

fuelCons 1764 37 12 25 164 9.3

bank8FM 4499 8 0 8 288 6.4

Accel 1732 14 3 11 89 5.1

airfoild 1503 5 0 5 62 4.1

Table 4.2: Regression algorithms, parameter values, and respective R packages.

Learner Parameter Variants R package

SVM
cost = {10, 150}

e1071 [Dimitriadou et al., 2011]
gamma = {0.01, 0.001}

Random Forest
mtry = {5, 7}

randomForest [Liaw and Wiener, 2002]
ntree = {500, 750, 1500}

surfaces representing different penalisation contexts, for each data set. To achieve this, we

used different values for parameter p that specifies which types of errors should be more/less

penalised. More precisely, the values of p are used to assign more or less costs to two different

situations: opportunity costs (a relevant case was predicted as non relevant) and false alarms

(a non relevant case was predicted as relevant). In the method proposed by Ribeiro [2011],

when p > 0.5 opportunity costs are considered more serious than false alarms, i.e., missing

a relevant prediction is considered to have a higher cost than predicting a non relevant case

as relevant. On the other hand, when p < 0.5 the reverse happens: opportunity costs are

less penalised than false alarms. To assess the impact of using different utility settings, we

obtained three different utility surfaces for each data set by considering p ∈ {0.2, 0.5, 0.8}.

Learning settings. In our evaluation we used 2 different learning algorithms with different

parameter variants. The algorithms, set of used parameter variants and respective used R

packages are described in Table 4.2.

We applied 10 learning approaches (6 Random Forest variants + 4 SVM variants) to each of

the 42 problems (14 data sets × 3 utility surface settings) using both the original regression

4.4. EXPERIMENTAL ANALYSIS 109

learner without utility optimisation (Orig) and the proposed approaches for optimising the

utility: UtilOptim (cf. Algorithm 4.1) and MetaUtil (cf. Algorithm 4.2).

We fixed the granularity parameter ε to 0.1. Regarding the required probabilistic classifier,

we selected the classification learner most closely related to the regression algorithm being

compared against. The motivation for this choice is related with the negative impact in the

observed performance when there is a mismatch between the probability estimator and the

used classifier [Domingos, 1997]. Moreover, we will assume, as done by Domingos [1999],

that the user is able to select the regression scheme that best adapts to the task that is

being considered. This selected scheme is then used for learning the regression model and

its probabilistic classifier counterpart is used for obtaining the conditional probability density

estimates. In the MetaUtil algorithm we set the number of bootstrap samples to generate

(parameter m) to 20; the number of examples in each sample (parameter n) to the training

set size and parameter r to TRUE meaning that all samples are used.

Evaluation Methodology. All alternatives were evaluated using the Normalized Mean

Utility (NMU) metric defined in Equation 3.12 (page 88). When dealing with utility-based

regression tasks it is necessary to use suitable evaluation metrics, as we previously discussed

in Section 3.3. We selected a normalised measure for obtaining comparable results across

different data sets. The NMU values were estimated by 2 repetitions of a stratified 10-

fold cross validation process. This process was done using the infrastructure provided by R

package performanceEstimation [Torgo, 2014].

In addition to reporting the NMU scores, we also assessed the statistical significance of the

results through the non-parametric Friedman F-test together with a post-hoc Nemenyi test

with a significance level of 95%.

4.4.2 Results and Discussion

The 10 learning variants were applied to the 42 regression problems (14 data sets using 3

different utility surface settings) using 3 strategies for utility optimization (Orig, UtilOptim

and MetaUtil). Thus, we tested 1260 (10 × 42 × 3) combinations. Tables 4.3 to 4.5 show

the mean NMU results of the variants of each learner, obtained for each utility setting i.e.,

when considering different values for parameter p in the generation of the utility surface.

The best results by learning algorithm and data set are displayed in bold.

The advantage of the proposed algorithms is clear for all the evaluated utility contexts. We

also observe that, for the tested SVM variants, the algorithms display a more consistent

advantage. The advantages are also noticeable for the RF variants. However, in some data

sets, the proposed algorithms were not able to improve on the RF performance, which does

not happen with the SVM variants.

110 CHAPTER 4. UTILITY OPTIMISATION FOR REGRESSION TASKS

Overall, the NMU results of both proposed algorithms are rather competitive. The MetaUtil

method achieves several times the best average performance, particularly for utility surfaces

with higher values of p.

Table 4.3: Mean NMU results of the variants of each learner by data set for the value of

parameter p on the utility surface set to 0.2. (Best results by leaner and data set are in

bold.)

SVM RF

Orig UtilOptim MetaUtil Orig UtilOptim MetaUtil

servo 0.4891 0.5585 0.4772 0.5712 0.5624 0.5666

a6 0.5157 0.5223 0.5203 0.5123 0.5140 0.5051

Abalone 0.5751 0.5862 0.5818 0.5786 0.5849 0.5855

a3 0.5039 0.5108 0.5085 0.5002 0.5079 0.4843

a4 0.5200 0.5307 0.5303 0.5269 0.5272 0.5275

a1 0.5335 0.5371 0.5370 0.5485 0.5498 0.5490

a7 0.4983 0.5075 0.5083 0.4735 0.5055 0.4543

boston 0.5748 0.5770 0.5738 0.5784 0.5806 0.5784

a2 0.5236 0.5294 0.5312 0.5289 0.5276 0.5260

a5 0.5226 0.5284 0.5288 0.5269 0.5250 0.5222

fuelCons 0.6138 0.6183 0.6164 0.6175 0.6257 0.6213

bank8FM 0.5694 0.5699 0.5720 0.5703 0.5690 0.5707

Accel 0.5582 0.5606 0.5593 0.5638 0.5655 0.5641

airfoild 0.4566 0.4853 0.4853 0.4599 0.4853 0.4853

Table 4.4: Mean NMU results of the variants of each learner by data set for the value of

parameter p on the utility surface set to 0.5. (Best results by leaner and data set are in

bold.)

SVM RF

Orig UtilOptim MetaUtil Orig UtilOptim MetaUtil

servo 0.4875 0.5601 0.4778 0.5718 0.5655 0.5660

a6 0.5072 0.5207 0.5187 0.5140 0.5069 0.5116

Abalone 0.5705 0.5893 0.5829 0.5764 0.5884 0.5883

a3 0.4927 0.5051 0.5046 0.5048 0.4958 0.4944

a4 0.5140 0.5313 0.5336 0.5284 0.5331 0.5346

a1 0.5297 0.5394 0.5425 0.5479 0.5531 0.5533

a7 0.4859 0.4975 0.4976 0.4810 0.4840 0.4652

boston 0.5743 0.5775 0.5748 0.5782 0.5814 0.5792

a2 0.5180 0.5289 0.5309 0.5269 0.5242 0.5298

a5 0.5172 0.5282 0.5293 0.5257 0.5261 0.5269

fuelCons 0.6135 0.6194 0.6170 0.6171 0.6259 0.6222

bank8FM 0.5692 0.5702 0.5723 0.5703 0.5694 0.5710

Accel 0.5580 0.5611 0.5601 0.5638 0.5655 0.5643

airfoild 0.4508 0.4633 0.4633 0.4575 0.4635 0.4631

4.4. EXPERIMENTAL ANALYSIS 111

Table 4.5: Mean NMU results of the variants of each learner by data set for the value of

parameter p on the utility surface set to 0.8. (Best results by leaner and data set are in

bold.)

SVM RF

Orig UtilOptim MetaUtil Orig UtilOptim MetaUtil

servo 0.4859 0.5624 0.4840 0.5723 0.5661 0.5664

a6 0.4987 0.5251 0.5259 0.5156 0.5128 0.5239

Abalone 0.5660 0.5961 0.5866 0.5743 0.5955 0.5939

a3 0.4814 0.5132 0.5152 0.5093 0.4960 0.5067

a4 0.5081 0.5412 0.5481 0.5299 0.5473 0.5484

a1 0.5258 0.5490 0.5539 0.5473 0.5589 0.5612

a7 0.4735 0.4950 0.4926 0.4886 0.4728 0.4793

boston 0.5737 0.5783 0.5762 0.5780 0.5819 0.5804

a2 0.5123 0.5330 0.5352 0.5249 0.5293 0.5373

a5 0.5119 0.5326 0.5353 0.5244 0.5312 0.5353

fuelCons 0.6131 0.6207 0.6175 0.6167 0.6260 0.6233

bank8FM 0.5691 0.5708 0.5725 0.5702 0.5699 0.5713

Accel 0.5577 0.5618 0.5612 0.5637 0.5656 0.5646

airfoild 0.4450 0.4460 0.4422 0.4550 0.4509 0.4509

1 2 3

CD

UtilOptim

MetaUtil

Orig

(a) Results for Utility Surface with p = 0.2.

1 2 3

CD

MetaUtil

UtilOptim

Orig

(b) Results for Utility Surface with p = 0.5.

1 2 3

CD

MetaUtil

UtilOptim

Orig

(c) Results for Utility Surface with p = 0.8.

Figure 4.2: Critical Difference diagrams of average NMU results for different utility surface

settings.

112 CHAPTER 4. UTILITY OPTIMISATION FOR REGRESSION TASKS

We proceeded with the application of the non-parametric Friedman F-test, to check the

statistical significance of the observed differences. The F-test results allowed the rejection of

the null hypothesis that all the tested approaches for utility optimisation exhibit the same

performance. We then applied the post-hoc Nemenyi test with a significance level of 95%

to verify which approaches are statistically different. The critical difference diagrams (CD

diagrams) [Demšar, 2006] with the results aggregated by type of utility surface settings are

displayed in Figure 4.2. The lower average ranks indicate a better performance and when

two algorithms are connected by a bold horizontal line it means that their average ranks

are not significantly different, i.e. the observed difference in performance is not statistically

significant. When considering the performance of all tested learner variants we can conclude

that: i) using the original learner has the worst performance for all tested utility settings

with statistical significance; ii) the UtilOptim is better, with statistical significance, than the

remaining tested approaches for the utility surfaces obtained with the lower value of p; iii)

for the remaining utility surface settings, although the MetaUtil algorithm displays a lower

rank, the observed differences between the UtilOptim and the MetaUtil algorithms are not

statistically significant.

With the goal of providing a more detailed picture of the performance of the algorithms,

we also present the CD diagrams corresponding to the three tested utility surface settings

for the SVM and RF variants, separately. The results of the SVM variants are displayed in

Figure 4.3, while those of RF variants are shown in Figure 4.4.

The SVM results confirm that for this learner there is no statistical significance between

the performance of the UtilOptim and MetaUtil algorithms in all tested utility settings.

The UtilOptim algorithm achieves a lower rank for the utility surface with lower value of

parameter p, while the MetaUtil has a better rank for the more balanced utility setting

(p = 0.5).

Regarding the RF results, the better performance of UtilOptim algorithm is also confirmed

for the lower value of p in the tested utility surface settings. For the remaining values of

p, the MetaUtil algorithm has a better performance as it provides lower ranks in the CD

diagrams, although not always with statistical significance when compared against UtilOptim

algorithm.

When observing the CD diagrams results by learner, we can conclude that: i) using the

original learning algorithm is worst with statistical significance under all tested utility

settings; ii) for the SVM learner, the differences between UtilOptim and MetaUtil algorithms

are not statistically significant, although UtilOptim achieves a lower rank for the more

extreme utility settings and MetaUtil has a lower rank on the remaining utility surfaces; iii)

for the RF learner, UtilOptim is better with statistical significance for the lower value of

p, while MetaUtil achieves a lower rank on the remaining utility surface settings, although

only for the p = 0.8 this is statistically significant.

4.4. EXPERIMENTAL ANALYSIS 113

1 2 3

CD

UtilOptim

MetaUtil

Orig

(a) Results for Utility Surface with p = 0.2.

1 2 3

CD

MetaUtil

UtilOptim

Orig

(b) Results for Utility Surface with p = 0.5.

1 2 3

CD

MetaUtil

UtilOptim

Orig

(c) Results for Utility Surface with p = 0.8.

Figure 4.3: Critical Difference diagrams of average NMU results for SVM learner.

1 2 3

CD

UtilOptim

MetaUtil

Orig

(a) Results for Utility Surface with p = 0.2.

1 2 3

CD

MetaUtil

UtilOptim

Orig

(b) Results for Utility Surface with p = 0.5.

1 2 3

CD

MetaUtil

UtilOptim

Orig

(c) Results for Utility Surface with p = 0.8.

Figure 4.4: Critical Difference diagrams of average NMU results for RF learner.

114 CHAPTER 4. UTILITY OPTIMISATION FOR REGRESSION TASKS

Based on the ranks described in Figures 4.3 and 4.4, we would generally recommend the use

of UtilOptim when lower values of p are being used for setting the utility surface; and the

MetaUtil algorithm for the remaining utility surface settings. We can say that the UtilOptim

generates more conservative models that are less prone to “false alarms”, while the MetaUtil

algorithm generates more risky models that are less prone to “opportunity costs”. Still,

we must highlight that, in the majority of the situations there is no statistical significance

between the results achieved by UtilOptim and MetaUtil algorithms.

In spite of the similar predictive performance of the two proposed methods, there are

significant differences between them in terms of interpretability and computation costs. The

interpretability factor favours the MetaUtil algorithm while the computation aspect favours

the UtilOptim approach.

When using as base learners algorithms that produce interpretable models, the MetaUtil

algorithm learns these models with a training set biased toward the utility preferences of

the end user. This means that the models will reflect these biases and thus if the user wants

a justification for some predicted value she/he will be able to find it in the model. On the

other hand, UtilOptim works as a post-processing method, meaning that the models are

learned without any consideration of the user utility preferences. It is only when making the

predictions that the values predicted by the learned models may be changed towards new

values that maximise the expected utility. However, the consequence is that if the user wants

a justification for this predicted value she/he will not be able to find it in the models, because

the models have not predicted that value, the value resulted from the applied change. In

this sense, we can say that the MetaUtil algorithm produces models that are better from

the interpretability perspective, provided the used base algorithms are interpretable.

From the perspective of computational complexity, the UtilOptim algorithm has a clear

advantage as only one estimate of the conditional probability density function is obtained,

while MetaUtil needs to obtain several of these estimates using different bootstrap samples.

4.5 Conclusions

The research community has proposed several different approaches for tackling cost-sensitive

classification tasks and few attention has been given to the more general problem of dealing

with utility information where both costs and benefits are considered. Moreover, the pro-

posed solutions have been focused on classification tasks, existing few algorithms for tackling

this problem in a regression context. The utility-based regression problem raises different

challenges that must be considered. In this chapter we addressed the problem of learning

regression models that try to maximise the utility of their predictions.

Learning models that maximise the utility according to a utility surface reflecting the user

4.5. CONCLUSIONS 115

preferences is an important challenge. We address this problem proposing two algorithms

designed to maximise the models utility. An experimental analysis is carried out to assess the

effectiveness of the proposed algorithms. The goals of the experimental analysis are two fold:

i) to analyse the predictive performance of the proposed algorithms; and ii) to understand

the impact of using different utility settings in the predictive performance of the algorithms.

Concerning the first objective, the experimental evaluation carried out shows that both

algorithms proposed have a clear advantage when compared against the original regression

algorithm. It is also shown that it is difficult to determine which algorithm performs

better. Among the possible factors that may influence the performance of UtilOptim and

MetaUtil algorithms we find: the utility surface, the learning algorithm, or even data related

characteristics. As for the second objective, results show that for all tested utility settings

the observed differences between the two proposed algorithms were generally not statistically

significant. By inspecting the rankings achieved by the algorithms, we recommend the use

of UtilOptim algorithm when the utility surface is build with lower values of p. MetaUtil is

recommended in the remaining situations. The end-user may also prefer the UtilOptim

algorithm due to its lower computational cost or may select the MetaUtil algorithm if

interpretability of the models is an important factor.

116 CHAPTER 4. UTILITY OPTIMISATION FOR REGRESSION TASKS

Chapter 5

Learning in Imbalanced Regression

Problems

Several real world applications involve the prediction of a continuous target variable with

different costs and benefits associated with the predictions. Frequently, in these problems,

the higher costs and/or benefits are associated with the rarity of the target variable values.

This is known as the problem of imbalanced domains. One of the challenges when dealing

with imbalanced domains is the need of focusing the learners on rare cases. Several solutions

have been proposed for addressing this challenge for classification tasks. However, this is a

still scarcely explored issue in regression problems.

In this chapter we present several pre-processing solutions for tackling the problem of

imbalanced domains in a regression context. An extensive experimental evaluation is carried

out showing the advantages of the proposed approaches.

5.1 Introduction

The problem of imbalanced domains occurs in a diversity of predictive tasks, such as, re-

gression, data streams, time series, multi-label, ordinal classification, multi-instance learning,

among others [Branco et al., 2016b, Krawczyk, 2016]. Recently, the problem of learning from

imbalanced domains in regression tasks has been gaining more attention. However, this is

still a poorly studied problem with few solutions. In this chapter we focus our attention on

imbalanced regression problems.

Learning from imbalanced domains poses important challenges, namely in what concerns

the informal domain information, performance evaluation and learning process. The first

two challenges were discussed in Chapter 3. In this chapter our goal is to propose solutions

for addressing the problem of forcing the learners to focus on the most important, but rare,

117

118 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

cases. We developed pre-processing solutions that provide the flexibility of allowing the use

of any standard learning algorithm to obtain the models after pre-processing takes place.

Sections 5.2 and 5.3 present unbiased and biased pre-processing approaches for tackling

imbalanced regression problems, respectively. This categorisation depends on the ability of

the pre-processing method to consider or not the neighbourhood of the original examples. In

Section 5.4 we present an extensive experimental evaluation of the proposals and Section 5.5

describes the main conclusions of the work described in this chapter.

5.2 Pre-processing Strategies for Imbalanced Regression Tasks

In this section, we propose solutions to solve the problem of performance degradation

of the models on the most important cases when they are rare. The strategies that we

propose are pre-processing or resampling methods that act before the learning procedure by

changing the training data distribution. We will refer to these solutions as resampling or pre-

processing methods.Details regarding the advantages and disadvantages of these solutions

were presented in Table 2.14 (page 47). Pre-processing or resampling strategies can be

clustered into three main types: i) under-sampling; ii) over-sampling; and iii) a mixture of

both. Under-sampling involves removing uninteresting examples from the data set, while

over-sampling increases the number of interesting examples.

The first challenge that we must face when tackling imbalanced regression problems is

related with the definition of the interesting and uninteresting cases. This is an important

issue because this will determine which cases to add or remove. This is a straightforward

problem in a binary classification scenario: the most represented class or majority class

will be under-sampled, while the least represented (minority) class will be over-sampled. In

regression this decision is not so easy because the target variable is continuous. To address

this problem we use the relevance function φ(Y) (defined in Section 3, page 62) and a

threshold on the relevance values (tR) to distinguish the training cases. The main idea is

to build partitions with contiguous target variable values which belong either to DR or DN
(defined in Section 3.4, page 89), i.e., each partition will include only examples with a high

or low relevance based on the user provided threshold tR. This procedure will allow us to

obtain a set of bins with normal cases, denoted by BinsN and another set of bins with

rare examples denoted by BinsR. To build these data partitions we apply the following

procedure:

i) sort the examples of the data set by ascending order of the target variable values;

ii) scan the data, starting from the lower Y value, and create a new bin whenever the

relevance of the target variable value (φ(Y)) changes from below to above the relevance

threshold tR or vice-versa.

5.2. PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION 119

This process generates a certain number of bins belonging either to BinsR or BinsN . Each

bin in BinsR contains only cases with φ(y) ≥ tR and contiguous target variable values.

A similar reasoning applies to the bins in BinsN . Algorithm 5.1 describes this method of

generating bins.

Algorithm 5.1 Construction of Bins.

Input: D - original regression data set with target variable Y

tR - threshold for relevance on Y values

φ(Y) - relevance function on Y values (Optional)

Output: Bins - data set partitions into relevant and normal bins

1: function BinsConstructor(D, tR, φ(Y))

2: OrdD ← order D by ascending value of Y

3: if φ(Y) = ∅ then . Use the automatic method proposed by Ribeiro [2011].

4: φ()← relevance function obtained from Y distribution

5: end if

6: BinsN ← k partitions of consecutive examples 〈xi, yi〉 ∈ OrdD, s.t. φ(yi) < tR

7: BinsR ← l partitions of consecutive examples 〈xi, yi〉 ∈ OrdD, s.t. φ(yi) ≥ tR
8: Bins← BinsR

⋃
BinsN

9: return Bins

10: end function

Figures 5.1 to 5.3 illustrate the impact in the bins obtained in BinsR and BinsN under

different problem assumptions. We use the LNO2Emissions data set1 and fixed the relevance

threshold (tR) at 0.8. In Figure 5.1 the used relevance function assumes that only the high

extreme values of the target variable are relevant. Under this assumption, we observe that

only one bin is generated for each of the sets BinsN and BinsR.

However, if the used function assigns higher importance to both high and low extreme values

of the target variable distribution then, with the same relevance threshold, we would obtain

two distinct bins in BinsR and one bin in BinsN as displayed in Figure 5.2. The two bins

with rare values are very different in this situation, and therefore, any over-sampling strategy

applied to the rare cases should take this into account.

Finally, in Figure 5.3 we show another setting where we assume a relevance function that

assigns high importance to the cases with target variable value below 0.8, between 2.35 and

3.2, and above 5.5. In this setting, Algorithm 5.1 returns 5 distinct bins: 3 bins in BinsR

and 2 bins in BinsN . We must highlight that the generation of bins is important for both the

normal and rare cases. In either case, the bins obtained may have different characteristics,

such as the number of cases or the range of values, that may be important when applying

under- or over-sampling.

1Data set previously described in Section 3.3 in page 84.

120 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LNO2

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LNO2

D
en

si
ty

φ(
LN

O
2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.1: LNO2Emissions data with density target variable distribution (solid line) and

corresponding relevance function φ() (dashed line). For tR = 0.8 (horizontal dashed line),

we have one bin in BinsR (blue shaded region) and another bin in BinsN (white region).

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LNO2

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LNO2

D
en

si
ty

φ(
LN

O
2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.2: LNO2Emissions data with with density target variable distribution (solid line)

and corresponding relevance function φ() (dashed line). For tR = 0.8 (horizontal dashed

line), we have two bins in BinsR (blue shaded region) and another bin in BinsN (white

region).

5.2. PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION 121

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LNO2

D
en

si
ty

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

LNO2

D
en

si
ty

φ(
LN

O
2)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.3: LNO2Emissions data with with density target variable distribution (solid line)

and corresponding relevance function φ() (dashed line). For tR = 0.8 (horizontal dashed

line), we have three bins in BinsR (blue shaded region) and two bins in BinsN (white

region).

Algorithm 5.1 solves the problem of deciding which are the candidate cases for over- and

under-sampling while partitioning them by target variable value. This can be thought as

a form of discretization of the continuous target variable. However, this method does not

transform the initial regression task into a classification problem. It is simply used to decide

which are the important and non-important cases according to the user preferences which are

defined by a relevance function and a relevance threshold. Several other issues related with

the continuous nature of the target variable remain to be decided, such as how to determine

the target variable value when adding new examples.

The first pre-processing strategy that we propose is Random Under-sampling (RU), one

of the simplest approaches for dealing with imbalanced domains. The key idea of under-

sampling (e.g. Kubat and Matwin [1997]) is to remove examples with the most frequent

target variable values for balancing the proportion of uninteresting and interesting examples

in the available data set. Algorithm 5.2 describes the RU approach. This approach has two

optional parameters: the relevance function and the percentage of under-sampling. When the

relevance function is not provided by the user, the automatic method proposed by Ribeiro

[2011] is applied. For the under-sampling percentage, a default setting of balancing the

normal and rare cases is applied when this parameter is not set by the user. This procedure

automatically determines the number of examples that each normal bin should have. This

number is obtained by dividing the total number of rare cases by the number of normal bins.

When this parameter is specified by the user, the number of removed cases is calculated

122 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

with respect to the number of existing normal cases in each normal bin. Parameter u.perc

should be provided as a set of values defined in the interval]0, 1[, expressing the percentage

of normal cases that are kept in each bin. If a single value is provided for parameter u.perc

this percentage is used for all bins belonging to BinsN . When the user specifies a set

with different under-sampling percentages for each normal bin, they should be provided by

increasing target variable value of those bins.

Algorithm 5.2 Random under-sampling (RU).

Input: D - regression data set with target variable Y

tR - threshold for relevance on Y values

φ(Y) - relevance function on Y values (Optional)

u.perc - set of percentages of under-sampling (Optional)

Output: NewD - a new modified data set

1: function RandUnder(D, tR, φ(Y), u.perc)

2: Bins← BinsConstructor(D, tR, φ(Y))

3: BinsR ← {Binsi ∈ Bins : ∀(x, y) ∈ Binsi, φ(y) ≥ tR}
4: BinsN ← Bins \BinsR
5: NewD ← BinsR

6: for i← 1 to |BinsN | do . Random under-sampling procedure

7: if |u.perc| = 0 then . Balance the normal and rare cases

8: TgtNr ←
∑

∀B∈BinsR
|B|

|BinsN |
9: else if |u.perc| = 1 then . Same under-sampling percentage applied

10: TgtNr ← u.perc× |BinsN [i]|
11: else . Each bin has a defined under-sampling percentage

12: TgtNr ← u.perc[i]

13: end if

14: selNormCases← randomly sample TgtNr elements from BinsN [i]

15: newD ← newD
⋃
selNormCases

16: end for

17: return NewD

18: end function

Figure 5.4 shows the impact of applying the RU strategy with different parameter settings

to the fuelCons data set2.

The second pre-processing strategy that we propose for dealing with imbalanced regression

tasks is Random Over-sampling (RO). This is also a simple and well-known strategy in

the context of imbalanced classification tasks (e.g. Batista et al. [2004]). The key idea is

to obtain a new data set where replicas of existing rare cases are added to the original

data. The goal is again to better balance the distribution of rare and normal cases without

2Data set used in the Experimental Study Section were more details are presented.

5.2. PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION 123

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y

D
en

si
ty

φ(
Y

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Original
RU−balance
RU−%u=0.5
RU−%u=0.2
φ(Y)

Figure 5.4: Density of the target variable on the original data set and after applying RU

with different parameters on fuelCons data set (φ(Y) automatically estimated).

discarding any information. To achieve this, we use the BinsConstructor function defined

in Algorithm 5.1 to obtain the sets of normal and rare bins, BinsN and BinsR, respectively.

In RO, the new data set contains all the original examples D. Replicas of the examples

in each bin of the set BinsR, are also added to the new data set. The number of exact

copies introduced in each bin in BinsR is determined by an optional parameter, o.perc.

The default behaviour followed when parameter o.perc is not set by the user is to balance

the number or rare and normal cases. The number of replicas to introduce in each bin is

calculated dividing the total number of normal cases by the number of rare bins. If the user

sets parameter o.perc, then the number of replicas to introduce is calculated with respect to

the number of rare examples existing in each rare bin. Parameter o.perc should be greater

than 1. When only one value for o.perc is provided this value is reused in all existing rare

bins, otherwise the user should provide a value to apply to each rare bin. Algorithm 5.3

describes this pre-processing method. This method has the advantage of not discarding any

of the original data. However, it leads to a larger data set and increases the likelihood of

overfitting, specially when high over-sampling percentages are applied.

Figure 5.5 provides a brief overview of the impact of applying RO with different parameter

settings in the density of the target variable of the fuelCons data set.

All the resampling approaches presented so far depend on the definition of important and

non-important cases based on a relevance threshold, which can be thought as some sort of

discretization of the target variable based on the relevance scores. Our next proposal, named

WEighted Relevance-based Combination Strategy (WERCS), tries to avoid this step, by

changing the data distribution solely based on the information of the relevance function.

124 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

Algorithm 5.3 Random over-sampling (RO).

Input: D - regression data set with target variable Y

tR - threshold for relevance on Y values

φ(Y) - relevance function on Y values (Optional)

o.perc - set of percentages of over-sampling (Optional)

Output: NewD - a new modified data set

1: function RandOver(D, tR, φ(Y), o.perc)

2: NewD ← D
3: Bins← BinsConstructor(D, tR, φ(Y))

4: BinsR ← {Binsi ∈ Bins : ∀(x, y) ∈ Binsi, φ(y) ≥ tR}
5: BinsN ← Bins \BinsR
6: for i← 1 to |BinsR| do . Random over-sampling procedure

7: if |o.perc| = 0 then . Balance the normal and rare cases

8: TgtNr ←
∑

∀B∈BinsN
|B|

|BinsR|
9: else if |o.perc| = 1 then . Same over-sampling percentage applied

10: TgtNr ← o.perc× |BinsR[i]|
11: else . Each bin has a defined over-sampling percentage

12: TgtNr ← o.perc[i]

13: end if

14: selCases← randomly sample TgtNr elements from BinsR[i]

15: NewD ← NewD
⋃
selCases . Add the replicas to the new data set

16: end for

17: return NewD

18: end function

5.2. PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION 125

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y

D
en

si
ty

φ(
Y

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Original
RO−balance
RO−%o=2
RO−%o=4
φ(Y)

Figure 5.5: Density of the target variable on the original data set and after applying RO

with different parameters on fuelCons data set (φ(Y) automatically estimated).

WERCS addresses the imbalanced regression problem through a combination of under- and

over-sampling based on the relevance scores of the cases. Instead of randomly sampling either

normal or rare cases based on a relevance threshold, WERCS biases this decision using the

relevance values to derive weights for the examples, which are then used as a probability for

selecting or not the examples. All examples are candidates for under-/over-sampling, the

two steps that WERCS algorithm applies. Both strategies are applied in the entire domain.

However, the probability of a case being selected for over- or under-sampling depends on the

derived weights. This process is accomplished as follows:

• a percentage of cases is randomly selected to be added as replicas considering weights

proportional to their respective relevance function values, i.e., w(〈xi, yi〉) = φ(yi); and

• a percentage of cases is randomly selected for being removed considering weights that

are the complement of their relevance function values, i.e., w(〈xi, yi〉) = 1− φ(yi).

Algorithm 5.4 implements this WERCS strategy. The way we derive the weights means

that cases with higher relevance (and thus higher weight) have a higher probability of being

replicated, whilst low relevance examples have higher probability of being removed. This

facilitates the user task that only has to provide two percentages setting the level of under-

and over-sampling to apply, parameters u.perc and o.perc respectively in Algorithm 5.4.

Parameters u.perc and o.perc express the proportion of examples to replicate or to remove

with respect to the number of examples in the original data set D. Parameter φ(Y) is

optional. When not set by the user, the method proposed by Ribeiro [2011] is used to obtain

126 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

φ(Y).

Algorithm 5.4 WEighted Relevance-based Combination Strategy (WERCS).

Input: D - regression data set with target variable Y

φ(Y) - relevance function on Y values (Optional)

u.perc - percentage of under-sampling

o.perc - percentage of over-sampling

Output: newD - a new modified data set

1: function WERCS(D, φ(Y), u.perc, o.perc)

2: if φ(Y) = ∅ then . Use the automatic method proposed by Ribeiro [2011].

3: φ()← relevance function obtained from Y distribution

4: end if

5: newD ← D
6: WOve← {φ(yi) | yi ∈ Y }
7: Ove← sample o.perc× |D| cases from D with WOve weights . over-sampling

procedure

8: newD ← newD
⋃
Ove

9: WUnd← {1− φ(yi) | yi ∈ Y }
10: Und← sample u.perc× |D| cases from D with WUnd weights

11: newD ← newD \ Und . under-sampling procedure

return newD

12: end function

The most interesting feature of the WERCS approach is that takes into account the intrinsic

continuous nature of the target variable, avoiding a crisp partition of the data into bins.

Let us consider, for instance, two examples A and B with relevance value of 0.8 and 0.9,

respectively. In WERCS these examples would have a similar probability of being over-

or under-sampled because they have similar relevance values, and thus will have similar

weights. However, in the context of a strategy using bins, if for instance the selected relevance

threshold was 0.85, these two examples would be assigned to distinct bins: A to BinsN and

B to BinsR. This means that example A would be candidate for an under-sampling strategy

with the same probability as examples with relevance zero, while B would be a candidate

for over-sampling with the same probability as all other cases with high relevance. WERCS

prevents this counter-intuitive procedure by avoiding the use of the relevance threshold, and

by using the relevance scores to perform informed under-/over-sampling.

Figure 5.6 displays the impact of choosing different parameter settings for the WERCS

algorithm on the density distribution of the target variable of the fuelCons data set.

The next pre-processing strategies we will describe are different from the previous ones

because they all generate new synthetic examples. The main motivation for generating new

synthetic cases is to face the overfitting likelihood that may occur when simple replicas of

5.2. PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION 127

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y

D
en

si
ty

φ(
Y

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Original
WERCS−%u=0.5;%o=0.5
WERCS−%u=0.5;%o=0.8
WERCS−%u=1;%o=1
WERCS−%u=2;%o=2
φ(Y)

Figure 5.6: Density of the target variable on the original data set and after applying WERCS

with different parameters on fuelCons data set (φ(Y) automatically estimated).

existing examples are used as in over-sampling procedures.

The first of these strategies we propose is the Introduction of Gaussian Noise (GN). This

strategy changes the data distribution through two main steps:

• under-sampling the normal and less important cases in BinsN ; and

• generating new cases with relevant target variable values by adding Gaussian Noise to

the feature values of original rare cases.

The process for generating new cases uses an adaptation of the method proposed in Lee

[1999, 2000] for classification tasks. Lee [2000] described an over-sampling strategy that

obtains new minority class cases using the addition of normally distributed noise to existing

minority class cases. We use a similar strategy for over-sampling some cases in the bins in

BinsR. Namely, given a seed rare case, we obtain new cases from it by introducing small

perturbations on both the attributes and the target variable value of the seed case.

Algorithm 5.5 describes the GN method. The algorithm starts by applying random under-

sampling to the normal cases as defined in Algorithm 5.2. With respect to the over-sampling

strategy, GN first determines the number of examples to be generated in each bin belonging

to BinsR. This is calculated using the optional parameter o.perc. If this parameter is not

provided the algorithm will balance the number of rare and normal cases. If it is provided,

then the specified over-sampling percentage is applied.

The new synthetic cases are generated as follows:

128 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

• for the numeric attributes and the target variable, we add a perturbation randomly

drawn from a normal distribution N(0, δ× sd(a)), where δ is a user-defined parameter

controlling the amplitude of the perturbation, and sd(a) is the standard deviation of

attribute a estimated using the cases in the bin under consideration;

• for nominal attributes, sample from the values in the bin with a probability propor-

tional to the frequency of the values in the bin.

In the generation of the target variable value the algorithm makes sure the new synthetic

cases are generated inside the high relevance bin.

Figure 5.7 provides an overview of the impact on the density distribution of the target

variable of the fuelCons data set for different parameter settings of the GN algorithm.

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y

D
en

si
ty

φ(
Y

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Original
GN−balance;δ=0.1
GN−balance;δ=0.5
GN−%o=2;%u=0.5
GN−%o=4;%u=0.2
φ(Y)

Figure 5.7: Density of the target variable on the original data set and after applying GN

with different parameters on fuelCons data set (φ(Y) automatically estimated).

The next proposed strategy, named SMOTE for Regression (SMOTER), also generates

synthetic examples and is based on the well-known SMOTE algorithm [Chawla et al.,

2002]. The SMOTER algorithm was proposed by Torgo et al. [2013, 2015] for dealing with

imbalanced regression problems with one normal and two relevant bins at most.

We extended the SMOTER algorithm so that it becomes able to deal with any number of

normal and rare bins. The SMOTER algorithm begins by using the function BinsCon-

structor defined in Algorithm 5.1 to obtain the sets of bins BinsN and BinsR. Then, if

the user did not specify parameters u.perc and o.perc, the algorithm defaults to the strategy

of balancing all bins while maintaining the total number of examples in the data set. The

next step involves applying random under-sampling (cf. Algorithm 5.2). Finally, the over-

5.2. PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION 129

Algorithm 5.5 Introduction of Gaussian Noise (GN).

Input: D - regression data set with target variable Y

tR - threshold for relevance on Y values

φ(Y) - relevance function on Y values (Optional)

u.perc, o.perc - sets with percentages of under- and over-sampling (Optional)

δ - perturbation amplitude

Output: newD - a new modified data set

1: function GaussNoiseIntroduction(D, tR, φ(Y), u.perc, o.perc, δ,)

2: Bins← BinsConstructor(D, tR, φ(Y))

3: BinsN ← {Binsi ∈ Bins : ∀(x, y) ∈ Binsi, φ(y) < tR}
4: BinsR ← Bins \BinsN
5: if |u.perc| = |o.perc| = 0 then

6: update u.perc and o.perc in order to balance all the bins and maintain the data

set size

7: end if

8: newD ← RandUnder(D, tR, φ(Y), u.perc) . under-sampling procedure

9: for j ← 1 to |BinsR| do . over-sampling procedure

10: if |o.perc| = 1 then . Determine the number of examples to generate in the bin

11: TgtNr ← o.perc× |BinsR[j]|
12: else

13: TgtNr ← o.perc[j]

14: end if

15: for each case ∈ BinsR[j] do . generate synthetic examples

16: for i← 1 to TgtNr do

17: for each a ∈ Attrs
⋃
Y do

18: if a is nominal then

19: probs← frequency of possible values of a

20: new[a]← sample a value from the values of a with weights = probs

21: else

22: sp← random sample from N(0, δ × sd(a))

23: new[a]← case[a]× sp
24: end if

25: end for

26: newD ← newD
⋃
{new} . add synthetic case to newD

27: end for

28: end for

29: end for

30: return newD

31: end function

130 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

sampling procedure is applied on the bins belonging to BinsR. Algorithm 5.7 describes the

SMOTER strategy and Algorithm 5.6 shows the procedure for generating synthetic cases.

Algorithm 5.6 Generating synthetic cases in regression (GenSynthCases).

Input: D - set of base cases from which new synthetic cases are generated

o - percentage of over-sampling

k - number of neighbours used in case generation

Output: newCases - a set of new synthetic cases

1: function GenSynthCases(D, o, k)

2: newCases← {}
3: ng ← (o− 1)× |D| . nr. of new cases to generate for each existing case

4: for each case ∈ D do

5: nns← kNN(k, case,D \ {case}) . k-Nearest Neighbours of case

6: for i = 1 to ng do

7: x← randomly choose one of the nns

8: for each a ∈ attributes do . Generation of the attribute values

9: if is.numeric(a) then

10: diff ← case[a]− x[a]

11: new[a]← case[a] + random(0, 1)× diff
12: else

13: new[a]← randomly select among case[a] and x[a]

14: end if

15: end for . Generation of the target value

16: d1 ← dist(new, case)

17: d2 ← dist(new, x)

18: new[Target]← d2×case[Target]+d1×x[Target]
d1+d2

19: end for

20: newCases← newCases
⋃
new . Add the new synthetic case

21: end for

22: return newCases

23: end function

The over-sampling procedure of SMOTER algorithm is an adaptation to regression of the

mechanism proposed in SMOTE for classification. This procedure generates the features of a

new synthetic case by interpolating a seed rare example with one of its k Nearest Neighbours

(k-NN). The target variable value of the synthetic case is calculated as a weighted average

between the target variable values of the two original cases being interpolated. The higher

is the distance to the case, the lower will be the weight.

Figure 5.8 shows the impact on the target variable density distribution of the fuelCons data

when different parameter values are selected for applying the SMOTER algorithm.

5.2. PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION 131

Algorithm 5.7 SMOTE for Regression (SMOTER).

Input: D - regression data set with target variable Y

tR - threshold for relevance on Y values

φ(Y) - relevance function on Y values (Optional)

u.perc, o.perc - sets with percentages of under- and over-sampling (Optional)

k - number of used neighbours in case generation

Output: newD - a new modified data set

1: function SMOTER(D, tR, φ(Y), u.perc, o.perc, k)

2: Bins← BinsConstructor(D, tR, φ(Y))

3: BinsN ← {Binsi ∈ Bins : ∀(x, y) ∈ Binsi, φ(y) < tR}
4: BinsR ← Bins \BinsN
5: if |u.perc| = |o.perc| = 0 then

6: update u.perc and o.perc in order to balance all the bins and maintain the data

set size

7: end if

8: newD ← RandUnder(D, tR, φ(Y), u.perc) . under-sampling procedure

9: for i← 1 to |BinsR| do . over-sampling procedure

10: if |o.perc| = 1 then

11: newCases← genSynthCases(BinsR[i], o.perc, k)

12: else

13: newCases← genSynthCases(BinsR[i], o.perc[i], k)

14: end if

15: newD ← newD
⋃
newCases

16: end for

17: return newD

18: end function

132 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y

D
en

si
ty

φ(
Y

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Original
SMT−balance
SMT−%o=2;%u=0.8
SMT−%o=3;%u=0.5
SMT−%o=4;%u=0.2
φ(Y)

Figure 5.8: Density of the target variable on the original data set and after applying

SMOTER with different parameters on fuelCons data set (φ(Y) automatically estimated).

The last strategy proposed in this section is the SMOTER with Gaussian Noise (SMOGN)

algorithm. This method combines the application of random under-sampling to the normal

cases with two distinct over-sampling strategies: SMOTER and GN. The key idea of SMOGN

is to combine both strategies for generating synthetic examples with the goal of simultane-

ously: i) limiting the risks that SMOTER can incur into by using the more conservative

strategy of GN, and ii) allow an increase of the diversity in examples generation, which is

not possible to achieve when using only the GN. SMOGN generates synthetic examples with

SMOTER only when the seed example and the k-NN selected are “close enough” and will

apply GN strategy to the seed example when this example and its nearest neighbour are too

far apart, which would increase the risk of the interpolation. Figure 5.9 shows an example of

the application of SMOGN. The relevant cases are represented by blue dots and the normal

cases are represented by green crosses. In this figure, for a given case we marked its 5-NNs.

For a certain threshold on the distances, we can see that only three of those neighbours

are considered “safe”. Therefore, SMOGN algorithm will generate new synthetic cases with

SMOTER for any of these neighbours. The two more distant neighbours are considered

“unsafe”, and will not be used in the interpolation process. Instead, SMOGN will follow a

more conservative procedure by applying GN on the seed example.

Algorithm 5.8 describes the SMOGN Algorithm. This algorithm also includes two optional

parameters, u.perc and o.perc, representing the sets with the percentages of over and under

sampling to apply. Similar to the previously presented algorithms, when these parameters

are not set by the user, the distribution will be balanced across all bins in BinsR and

BinsN maintaining at the same time the data set size. Parameter φ(Y) is also optional,

5.2. PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION 133

case

Tgt

X1

X2

5-NN

Safe

Unsafe

Figure 5.9: Synthetic example illustrating the application of SMOGN algorithm (blue dots

represent rare cases and green crosses represent normal cases).

being estimated through a distribution derived method as proposed by Ribeiro [2011], if not

supplied by the user.

After building the sets BinsR and BinsN , SMOGN applies random under-sampling to

the normal cases in BinsN , while the bins in BinsR will be subject to an over-sampling

procedure. For each case (the seed example) in a bin belonging to BinsR, a number of

synthetic cases is generated. The over-sampling will use either the SMOTER or GN strategy

to generate new cases depending on the distance between the seed example and the selected

k-NN. The main idea is that, if the selected neighbour is “safe”, then he is in a distance

considered to be suitable to perform interpolation through SMOTER. On the other hand, if

the selected neighbour is not in a range considered safe, then he is too far away to be used to

perform interpolation which means that, in this case, it is better to generate a new example

by applying GN on the seed case. The threshold that is used to decide if the neighbour is

at a safe or unsafe distance depends on the distance between the seed example and all the

remaining cases in the partition under consideration. We used half of the median of the

distances between the seed example and the other examples in the same partition.

Figure 5.10 displays the impact on the density distribution of fuelCons data set target

variable for different parameter settings of SMOGN algorithm.

134 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

Algorithm 5.8 SMOTER with Gaussian Noise (SMOGN).

Input: D - regression data set with target variable Y

tR - threshold for relevance on Y values

φ(Y) - relevance function on Y values (Optional)

u.perc, o.perc - sets with percentages of under- and over-sampling (Optional)

k - number of used neighbours in case generation

δ - perturbation amplitude

Output: newD - a new modified data set

1: function SMOGN(D, tR, φ(Y),u.perc, o.perc, k, δ)

2: Bins← BinsConstructor(D, tR, φ(Y))

3: BinsN ← {Binsi ∈ Bins : ∀(x, y) ∈ Binsi, φ(y) < tR}
4: BinsR ← Bins \BinsN
5: if |u.perc| = |o.perc| = 0 then

6: update u.perc and o.perc in order to balance all the bins and maintain the data

set size

7: end if

8: newD ← RandUnder(D, tR, φ(Y), u.perc) . under-sampling procedure

9: for j ← 1 to |BinsR| do . over-sampling procedure

10: if |o.perc| = 1 then . Determine the number of examples to generate in the bin

11: TgtNr ← o.perc× |BinsR[j]|
12: else

13: TgtNr ← o.perc[j]

14: end if

15: for each case ∈ BinsR[j] do . generate synthetic examples

16: nns← kNN(k, case,BinsR[j]) . k-Nearest Neighbours of case

17: DistM ← distances between the case and the examples in BinsR[j]

18: maxD ← median(DistM)/2

19: for i← 1 to TgtNr do

20: x← randomly choose one of the nns

21: if DistM(x) < maxD then . safe kNN selected

22: new ← use SMOTER to interpolate x and case

23: else . non-safe kNN selected

24: pert← min(maxD, δ)

25: new ← introduce Gaussian Noise in case with a perturbation pert

26: end if

27: newD ← newD
⋃
{new} . add synthetic case to newD

28: end for

29: end for

30: end for

31: return newD

32: end function

5.3. BIASED PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION135

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y

D
en

si
ty

φ(
Y

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Original
SMOGN−balance;δ=0.1
SMOGN−balance;δ=0.5
SMOGN−%o=2;%u=0.8;δ=0.1
SMOGN−%o=3;%u=0.5;δ=0.4
φ(Y)

Figure 5.10: Density of the target variable on the original data set and after applying

SMOGN with different parameters on fuelCons data set (φ(Y) automatically estimated).

5.3 Biased Pre-processing Strategies for Imbalanced Regres-

sion Tasks

In the previous section we presented resampling strategies for dealing with problem of

imbalanced regression. These strategies include the removal of normal and uninteresting

examples and/or the inclusion of rare cases by replication or synthetic generation.

Nevertheless, the procedure for removing or adding cases is unbiased w.r.t. the neighbour-

hood of the examples. These strategies either randomly remove or add cases, or follow a

method that does not take into consideration whether the neighbours of the seed examples

(for removal or generation of new cases) are interesting or uninteresting. This may be

crucial because the analysis of a case neighbourhood may reveal important characteristics.

For instance, a rare case can be completely surrounded by normal cases, or the opposite may

happen. This analysis may serve as guidance for the under-/over-sampling strategy which

may use this knowledge to apply a more informed procedure. In effect, the characteristics

of the neighbourhood may provide important indications, like for instance if it is too risky

to interpolate between two interesting cases because they are surrounded by uninteresting

cases. This and other properties of a case neighbourhood are important to be checked to

make sure the over- and/or under-sampling procedures do help the learning process instead

of causing unwanted performance degradation. The key distinguishing feature of the biased

strategies presented in this section is to actively use the neighbourhood knowledge available

to bias the resampling procedures for reinforcing specific regions of the domain.

136 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

We present two algorithms for biasing an under-sampling and an over-sampling strategy by

using the information of each case neighbourhood. Our goal is to act on specific domain

regions that may be more responsible for a degradation in the learners’ performance. Instead

of treating all rare (or normal) cases uniformly, by inspecting the examples neighbourhood,

we will be able to apply a differentiated resampling method across the problem domain.

Let us begin with two definitions that may be applied to both normal and rare cases.

Definition 5.3.1 (Degree of Closeness to Frontier) Let us consider an example exi =

〈xi, yi〉 ∈ D that belongs to a certain bin B contained in either BinsR or BinsN . Determine

the k nearest neighbours of example exi ∈ D. The degree of closeness to frontier of case exi

is the proportion of these k-nearest neighbours that do not belong to the same bin B,

DF (exi) =
|kNN(exi) 6∈ B|

k
(5.1)

where kNN(exi) is the set of k nearest neighbours of the case exi.

Definition 5.3.2 (Degree of Safeness) Consider an example exi = 〈xi, yi〉 ∈ D that

belongs to a certain bin B contained in either BinsR or BinsN . The degree of safeness

of case exi is the proportion of its k-nearest neighbours that belong to the same bin B,

DS(exi) =
|kNN(exi) ∈ B|

k
= 1−DF (exi) (5.2)

The two presented properties are complementary, the higher is the degree of closeness to the

frontier the lower is the safeness degree, and vice-versa.

Cases with high degrees of closeness to the frontier have as their nearest neighbours cases

that belong to a different bin. These cases can be regarded as hard to learn or outliers, as

they are surrounded by cases of different type. On the other hand, cases with a low degree

of closeness to the frontier, and thus a high degree of safeness, have most of their k-nearest

neighbours in the same bin, and therefore, can be seen as easier to learn.

Figure 5.11 shows the two extreme situations of cases with a maximum degree of closeness

to the frontier and safeness applied to both rare and normal cases when considering 3-

nearest neighbours. In this figure, the higher target variable values represent the rare and

important cases, i.e., the set DR, while the low target variable values represent the set DN .

For simplicity purposes, let us assume that the partition into bins produced only two bins

that match the sets DR and DN . We used the colours red and orange for representing

the cases with higher degree of closeness to the frontier and the cases with higher degree of

safeness, respectively. We highlight that cases with different degrees of safeness and closeness

to frontier may arise when the cases neighbourhood has a mixture of normal and rare cases.

5.3. BIASED PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION137

 Safe
rare caseTgt

X1

X2

 Frontier
rare case

Frontier
normal case

 Safe
normal case

Figure 5.11: Illustration of cases with the higher degree of closeness to frontier (red) and

higher degree of safeness (purple) for both rare (blue) and normal (green) examples in a

regression problem. The notions of degree of closeness to frontier and degree of safeness

were assessed based on 3-nearest neighbours.

138 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

The two following variants may be applied for biasing pre-processing strategies according

to the cases neighbourhood: i) reinforce the frontier, or harder to learn cases; and/or

ii) reinforce the safe or easier to learn cases. The first variant reinforces with higher

probability the cases with a higher degree of closeness to the frontier. On the other hand,

the second strategy reinforces the cases with higher degree of safeness, i.e., the higher the

safeness degree of a case the more likely it will be selected to be reinforced. The degree of

safeness or closeness to the frontier of a case, being a number in [0, 1] interval, is used as a

sampling probability of the case. This sampling probability can then be used to apply either

under- or over-sampling to certain regions. These regions are determined by the selected

bias variant that may reinforce the frontier or the safe regions.

Reinforcement of the frontier regions can be accomplished through over or under-sampling.

When performing over-sampling synthetic examples are generated with higher probability

for cases with a high degree of closeness to the frontier. On the other hand, when applying

under-sampling to reinforce the frontier, examples with higher degree of closeness to the

frontier are more likely to be kept. In both situations, the bias will favour the cases that are

closer to the frontier.

The same reasoning applies to the strategy that reinforces the safer cases. In this case

it is also possible to apply both under- and over-sampling. However, the probability for

generating new cases or removing cases is now related with the degree of safeness of the

cases.

Algorithms 5.9 and 5.10 describe the proposed variants for biasing the resampling strategies.

These algorithms require as input a bin B obtained using Algorithm 5.1. The bin should

belong to BinsN when an under-sampling strategy is applied, and to BinsR when over-

sampling is applied. This happens because we only apply under-sampling strategies to the

normal cases and over-sampling to the rare cases. Both algorithms return a new changed

bin. Both algorithms calculate, for each case xi, a value ri that expresses either the degree

of closeness to the frontier or the safeness of the case, depending on the biasing strategy

applied.

Algorithm 5.9 requires the setting of the number of examples that the modified bin should

have. It also requires the definition of a logical parameter Fr that sets if reinforcement is

applied to the closest to the frontier or safer cases.

Algorithm 5.10 requires that the user defines how many examples should be generated

in the new modified bin. It also has a logical parameter, Fr, that determines whether

the reinforcement should be applied in the frontier or in the safe cases. This algorithm

requires the definition of parameter GenEx, which sets the method that should be applied

for obtaining new examples. This parameter can be set to any procedure that generates new

cases such as: introduction of replicas, use of GN or interpolation with SMOTER.

5.3. BIASED PRE-PROCESSING STRATEGIES FOR IMBALANCED REGRESSION139

Algorithm 5.9 Under-sampling with neighbourhood bias (U Bias).

Input: D - regression data set with target variable Y

B - a bin belonging to BinsN with normal cases provided by algorithm 5.1

tgtNr - target number of examples to obtain in the new bin

k - number of evaluated neighbours

Fr - logical value indicating if the reinforcement is applied to the frontier (TRUE)

or to the safe (FALSE) cases

Output: newB - a new modified data bin

1: function UndNeigBias(D, B, tgtNr, k, Fr)

2: KNNs← kNN(B,D, k) . k-NN of all cases in B evaluated in set D
3: r← vector of dimension |B|
4: for each exi ∈ B do

5: if Fr = TRUE then

6: ∆i ← nr of KNNs of exi that belong to B

7: else

8: ∆i ← nr of KNNs of exi that do not belong to B

9: end if

10: ri ← ∆i/k

11: end for

12: r̂← r/
∑|B|

i=1 ri

13: newD ← sample tgtNr examples from B with sampling probability r̂

14: return newD

15: end function

140 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

Algorithm 5.10 Over-sampling with neighbourhood bias (O Bias).

Input: D - regression data set with target variable Y

B - a bin belonging to BinsR with relevant cases provided by algorithm 5.1

tgtNr - number of new examples to generate in the new bin

k - number of evaluated neighbours

Fr - logical value indicating if the reinforcement is applied to the frontier (TRUE)

or safe (FALSE) cases

GenEx - function for obtaining the new examples

Output: newB - a new modified data bin

1: function OverNeigBias(D, B, tgtNr, k, Fr, GenEx)

2: KNNs← kNN(B,D, k) . k-NN in set D of examples in B

3: r← vector of dimension |B|
4: for each exi ∈ B do

5: if Fr = TRUE then

6: ∆i ← nr of KNNs of exi that do not belong to B

7: else

8: ∆i ← nr of KNNs of exi that belong to B

9: end if

10: ri ← ∆i/k

11: end for

12: r̂← r/
∑|B|

i=1 ri

13: for i = 1 to |B| do

14: gi ← r̂i × tgtNr
15: end for

16: newD ← use GenEx function to generate gi new examples for each exi

17: return newD

18: end function

5.4. EXPERIMENTAL STUDY 141

From an end-user perspective, the decision of either reinforcing the frontier or the safe cases

may not be trivial. The better option can be data-dependent and several arguments may

be put forward for and against the two options. For instance, in a noisy data set it may

be probably better to generate new rare examples based on the existing safe rare cases.

However, if we have a data set with few noisy examples, then, the use of the frontier cases

for obtaining new cases may be beneficial.

5.4 Experimental Study

In this section we provide an experimental analysis of the pre-processing strategies we have

previously presented. We study several different aspects related with the impact of applying

the biased and unbiased pre-processing strategies in the learning algorithms performance.

The main research questions that we aim to answer are:

• How do the unbiased pre-processing strategies impact the performance of the learning

algorithm? (Section 5.4.2)

• What is the impact of applying biasing pre-processing strategies in comparison to the

use of unbiased strategies? (Section 5.4.3);

• What is the impact of applying a change in the training data distribution that does

not aim at balancing the examples distribution? (Section 5.4.4).

Section 5.4.1 describes the experimental setup used on the experiments carried out for

answering to the two first questions. In Section 5.4.4 we describe the setup used in answering

the third question that is different with respect to the used learning algorithms.

5.4.1 Materials and Methods

Data Sets

We have used 20 real world regression data sets in our experimental study. For each of these

data sets we estimated the relevance function, φ(Y), using the automatic method proposed

by Ribeiro [2011]. We set the relevance threshold to 0.8 to define the sets DR and DN of

rare and normal cases. According to this setting, the used data sets have a percentage of

rare cases that ranges between 20.4% and 4.1%. The main characteristics of the used data

sets are shown in Table 5.1.

142 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

Table 5.1: Data sets information by descending percentage of rare cases. (N : nr. of cases;

tpred: nr. of predictors; p.nom: nr. of nominal predictors; p.num: nr. of numeric predictors;

nRare: nr. of cases with φ(y) > 0.8; %Rare: nRare/N × 100).

ID Data Set N tpred p.nom p.num nRare %Rare

DS1 servo 167 4 2 2 34 20.4

DS2 a6 198 11 3 8 33 16.7

DS3 Abalone 4177 8 1 7 679 16.3

DS4 machCpu 209 6 0 6 34 16.3

DS5 a3 198 11 3 8 32 16.2

DS6 a4 198 11 3 8 31 15.7

DS7 a1 198 11 3 8 28 14.1

DS8 a7 198 11 3 8 27 13.6

DS9 boston 506 13 0 13 65 12.8

DS10 a2 198 11 3 8 22 11.1

DS11 a5 198 11 3 8 21 10.6

DS12 fuelCons 1764 37 12 25 164 9.3

DS13 availPwr 1802 15 7 8 157 8.7

DS14 cpuSm 8192 12 0 12 713 8.7

DS15 maxTorq 1802 32 13 19 129 7.2

DS16 bank8FM 4499 8 0 8 288 6.4

DS17 dAiler 7129 5 0 5 450 6.3

DS18 ConcrStr 1030 8 0 8 55 5.3

DS19 Accel 1732 14 3 11 89 5.1

DS20 airfoild 1503 5 0 5 62 4.1

5.4. EXPERIMENTAL STUDY 143

Learning Algorithms

In order to avoid the introduction of any bias in our conclusions due to the used mod-

elling techniques, we selected four different types of learning algorithms. We used the

implementations available on the R software environment [R Core Team, 2018]. The mod-

elling techniques selected were: Neural Networks (NNET), Multivariate Adaptive Regression

Splines (MARS), Support Vector Machines (SVM) and Random Forests (RF). The learning

algorithms, tested parameter variants, and corresponding R packages are shown in Table 5.2.

Table 5.2: Regression algorithms, parameter variants, and the respective R packages.

Learner Parameter Variants R package

NNET size = {1, 2, 5, 10}, decay = {0, 0.01} nnet [Venables and Ripley, 2002]

MARS nk = {10, 17}, degree = {1, 2}, thresh = {0.01, 0.001} earth [Milborrow, 2012]

SVM cost = {10, 150, 300}, gamma = {0.01, 0.001} e1071 [Dimitriadou et al., 2011]

RF mtry = {5, 7}, ntree = {500, 750, 1500} randomForest [Liaw and Wiener, 2002]

We applied 28 learning approaches (8 NNET variants + 8 MARS variants + 6 SVM variants

+ 6 RF variants) to each of the 20 data sets, for a total of 560 setups.

Evaluation Methodology

The results were evaluated using a large set of metrics that are suitable for these problems,

as discussed in Section 3.4 (page 93). Namely, we have used the following measures: F φ1 ,

G−Meanφ, precφ recφ, specφ andNPvalφ. However, given the extension of the experimental

evaluation we will report here only the results for F φ1 and G −Meanφ measures. The full

results for all metrics are included in Annex A. The values of the metrics were estimated

by 2 repetitions of a 10-fold stratified cross validation procedure. All experiments were

carried out in R software environment [R Core Team, 2018] and we used the stratified cross

validation process implemented in the performanceEstimation R package [Torgo, 2014].

5.4.2 Evaluation of Unbiased Pre-processing Strategies

In this set of experiments we evaluated the impact in the performance of using unbiased pre-

processing strategies. We compared the results of applying the 6 pre-processing strategies

against the baseline of using the original imbalanced data set. More specifically, the following

alternatives were compared: carry out no pre-processing (None), RU, RO, WERCS, GN,

SMOTER and SMOGN. In these experiments all strategies were applied with the goal of

balancing the training set. Only for WERCS strategy we were not able to guarantee that

the final training set was balanced, given the characteristics of this method. Therefore,

we fixed both u.perc and o.perc to 1. This choice was motivated by the following aspects:

144 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

i) it allows to obtain only one variant of the algorithm which provides a fair comparison

against the other pre-processing strategies that were also only tested with one variant; and

ii) by using the same value for both parameters the same importance is given to under and

over-sampling in the WERCS algorithm. Table 5.3 summarises the tested variants of the

unbiased pre-processing strategies.

Table 5.3: Tested variants of unbiased pre-processing strategies.

Strategy Parameter Variants

None No sampling applied

RU Random Under-sampling %u.perc = {balance}
RO Random Over-sampling %o.perc = {balance}
WERCS WEighted Relevance-based Combination Strategy %u = {1}, %o = {1}
GN Introduction of Gaussian Noise %u.perc/%o.perc = {balance}, δ = {0.01}
SMOTER SMOTE for Regression %u.perc/%o.perc = {balance} k = 5

SMOGN SMOTER with Gaussian Noise %u.perc/%o.perc = {balance}, k = 5, δ = {0.01}

Figures 5.12 and 5.13 show the results averaged over the learning algorithms variants for

the F φ1 and G −Meanφ metrics. The complete set of results from these experiments are

provided in Annex A.1.

The results show an advantage when applying pre-processing strategies for both F φ1 and

G −Meanφ evaluation measures. Moreover, we are also able to confirm that the results

obtained using the two evaluation measures are different. Let us observe, for instance, the

behaviour of data set a7, when using the SVM learner. In this case, when considering the

F φ1 metric, we observe that applying random under-sampling improves the performance with

respect to not applying any sampling (the F φ1 score changes from 0.107 to 0.325). However,

for the G−Meanφ metric, the inverse happens: this metric score gets worse with the use of

random under-sampling strategy (the G −Meanφ score changes from 0.434 to 0.423). We

also observe that globally, there is a higher positive impact when applying pre-processing

strategies on the F φ1 measure results in all learning algorithms in comparison to the results

of G −Meanφ measure. A possible explanation for this may be related with the metrics

definition, as F φ1 is focused in the performance on the rare cases, while G−Meanφ takes into

account the performance in both the normal and the rare cases. Still, for both measures, the

use of pre-processing strategies shows a clear advantage with respect to using the original

imbalanced data set.

We also detected two particular behaviours in some data sets that are noteworthy. One is

related with data sets that already show a good performance when using the imbalanced data

set. For these data sets, we observe that the use of pre-processing strategies has a marginal

impact in the achieved performance. This is in accordance with what is expected because:

i) when the baseline performance is already high there is a narrow margin for improvements;

and ii) an initial good performance may indicate that the rare cases are easily separated from

the normal cases and therefore the application of a pre-processing method has only a marginal

5.4. EXPERIMENTAL STUDY 145

MARS SVM

NNET RF

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

N
on

e

R
U

R
O

W
E

R
C

S

G
N

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

W
E

R
C

S

G
N

S
M

O
T

E
R

S
M

O
G

N

Strategies

F
1φ

Data Sets

servo

a6

Abalone

machineCpu

a3

a4

a1

a7

boston

a2

a5

fuelCons

availPwr

cpuSm

maxTorque

bank8FM

dAiler

concreteStrength

acceleration

airfoild

Figure 5.12: Average F φ1 results of unbiased pre-processing strategies, by learning algorithm.

146 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

MARS SVM

NNET RF

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

N
on

e

R
U

R
O

W
E

R
C

S

G
N

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

W
E

R
C

S

G
N

S
M

O
T

E
R

S
M

O
G

N

Strategies

G
−

M
ea

nφ

Data Sets

servo

a6

Abalone

machineCpu

a3

a4

a1

a7

boston

a2

a5

fuelCons

availPwr

cpuSm

maxTorque

bank8FM

dAiler

concreteStrength

acceleration

airfoild

Figure 5.13: Average G −Meanφ results of unbiased pre-processing strategies, by learning

algorithm.

5.4. EXPERIMENTAL STUDY 147

3 4 5 6

CD

RO

WERCS

SMOGN

SMOTER

GN

RU

None

Figure 5.14: Critical Difference diagram of average F φ1 results on all tested learners for

unbiased pre-processing strategies.

impact. The second observed behaviour is connected with a poor performance displayed on

some data sets which is roughly maintained with the application of pre-processing strategies.

We verify that this happens for both F φ1 and G −Meanφ measures, in a small fraction of

the tested data sets. In these cases, the impact of the pre-processing strategies is also

marginal. This problem may be related with some data characteristics that increase the

problem difficulty.

To check the statistical significance of the observed differences, we applied the non-parametric

Friedman F-test. This test considers the hypothesis that all approaches exhibit the same

performance. If the test rejects this hypothesis, we proceed with the application of the

post-hoc Nemenyi test for verifying which approaches are statistically different. We used

CD diagrams [Demšar, 2006] to display this information and we set the significance level

to 95%. Figure 5.14 displays the CD diagram of the aggregated F φ1 over all tested learning

algorithms variants. To provide a more detailed overview, we also show in Figure 5.15 the

CD diagrams with the F φ1 results by learner.

The aggregated results in Figure 5.14 confirm that the use of pre-processing strategies

provides results that are better, with statistical significance, in comparison to using the

original imbalanced training set. They also show that the differences between RO, WERCS,

SMOGN and SMOTER are not statistically significant. This is also the case between

SMOTER and GN, and between GN and RU. Regarding the results when considering each

learner individually, show in Figure 5.15, we observe that the use of pre-processing strategies

148 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

3 4 5 6

CD

RO

WERCS

SMOGN

SMOTER

RU

GN

None

(a) Results of MARS.

2 3 4 5 6

CD

WERCS

RO

GN

SMOTER

SMOGN

RU

None

(b) Results of SVM.

3 4 5 6

CD

SMOGN

RO

RU

SMOTER

GN

WERCS

None

(c) Results of NNET.

3 4 5 6

CD

SMOGN

RO

SMOTER

WERCS

GN

RU

None

(d) Results of RF.

Figure 5.15: Critical Difference diagrams of average F φ1 results by learner for unbiased pre-

processing strategies.

5.4. EXPERIMENTAL STUDY 149

has a different impact depending on the learning algorithm. Still, we again observe that the

use of the original training set is always worst than using the pre-processing approaches with

statistical significance, except for the Random Forest learner where None and RU do not

display a statistically significant difference. We also observe that SMOGN and RO obtain

the best rankings for NNET and RF, while RO and WERCS achieve the best rankings for

MARS and SVM.

5.4.3 Evaluation of Biased Pre-processing Strategies

In this section we describe the experiments with the biased pre-processing strategies. We

will observe the impact in the performance of introducing a neighbourhood bias in a pre-

processing strategy when compared to the use of the corresponding unbiased pre-processing

strategy. We used the RU and the SMOTER strategies as baselines and compare them to

the variants where we add a neighbourhood bias to these two approaches. Table 5.4 shows

the considered variants for each base strategy and the respective used acronyms. All the

tested pre-processing strategies aim at balancing the number of rare and normal cases.

Table 5.4: Summary of tested pre-processing variants with and without a neighbourhood

bias.

Bias Acronym Base Strategy Normal Rare Parameter Variants

Unbiased U. . RU - - %u.perc = {balance}
Biased U.F. RU frontier - %u.perc = {balance}
Biased U.S. RU safe - %u.perc = {balance}

Unbiased S. . SMOTER - - %u.perc/%o.perc = {balance} k = 5

Biased S.F.F SMOTER frontier frontier %u.perc/%o.perc = {balance} k = 5

Biased S.F.S SMOTER frontier safe %u.perc/%o.perc = {balance} k = 5

Biased S.S.F SMOTER safe frontier %u.perc/%o.perc = {balance} k = 5

Biased S.S.S SMOTER safe safe %u.perc/%o.perc = {balance} k = 5

The complete set of results regarding the biased pre-processing strategies for the different

evaluation measures are provided in Annex A.2. Figures 5.16 and 5.17 show the average

results of the tested learning algorithm variants for the F φ1 metric on the under-sampling

based and the SMOTER based strategies, respectively. In Table 5.5 we show the number of

data sets for which a given pre-processing strategy displayed the best average F φ1 score by

learning algorithm. Finally, Figure 5.18 shows the over all number of data sets with best

average F φ1 scores by learning algorithm and type of pre-processing strategy.

The presented F φ1 results show that the magnitude of the gains achieved when applying

neighbourhood biased pre-processing strategies are not large. Still, we must highlight that

frequently there are gains when applying a biased pre-processing strategy in comparing to

using an unbiased pre-processing strategy. It is difficult to identify which type of bias is

150 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

MARS SVM

NNET RF

−0.02

0.00

0.02

0.04

−0.02

−0.01

0.00

0.01

0.02

−0.050

−0.025

0.000

0.025

0.050

−0.01

0.00

0.01

0.02

U
.F

._

U
.S

._

U
.F

._

U
.S

._

U
.F

._

U
.S

._

U
.F

._

U
.S

._

Strategies

F
1φ

Data Sets

servo

a6

Abalone

machineCpu

a3

a4

a1

a7

boston

a2

a5

fuelCons

availPwr

cpuSm

maxTorque

bank8FM

dAiler

concreteStrength

acceleration

airfoild

Figure 5.16: Average results of F φ1 gains of under-sampling based biased pre-processing

strategies in comparison to the RU strategy, for all tested learner variants.

Table 5.5: Number of data sets with best average F φ1 score by learner and pre-processing

strategy (biased and unbiased).

Learner None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

MARS 2 4 3 1 2 6 2 2 2

RF 3 0 4 1 4 1 3 6 0

SVM 2 1 1 0 2 7 2 5 5

NNET 1 5 3 3 3 0 2 4 1

Total 8 10 11 5 11 14 9 17 8

5.4. EXPERIMENTAL STUDY 151

MARS SVM

NNET RF

−0.02

0.00

0.02

−0.04

−0.02

0.00

0.02

−0.2

−0.1

0.0

0.1

−0.04

−0.02

0.00

0.02

0.04

S
.F

.F

S
.S

.F

S
.F

.S

S
.S

.S

S
.F

.F

S
.S

.F

S
.F

.S

S
.S

.S

S
.F

.F

S
.S

.F

S
.F

.S

S
.S

.S

S
.F

.F

S
.S

.F

S
.F

.S

S
.S

.S

Strategies

F
1φ

Data Sets

servo

a6

Abalone

machineCpu

a3

a4

a1

a7

boston

a2

a5

fuelCons

availPwr

cpuSm

maxTorque

bank8FM

dAiler

concreteStrength

acceleration

airfoild

Figure 5.17: Average results of F φ1 gains of SMOTER based biased pre-processing strategies

in comparison to the SMOTER strategy, for all tested learner variants.

152 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

01020304050

Strategies with Neighborhood Bias

None

U

S

0 10 20 30

total

svm

rf

nnet

mars

Original Resampling Strategies

Figure 5.18: Number of data sets with best average F φ1 scores by learner and strategy type

for biased pre-processing strategies (S: SMOTER based; U: under-sampling based).

globally the best. Still, we observe that biased pre-processing strategies that reinforce the

frontier of the normal cases, such as U.F. , S.F.F and S.F.S, have the best average F φ1 score

on a larger number of data sets. We also observe that the used learning algorithm and

base pre-processing strategy have a high influence on the performance gains of the biased

pre-processing strategies.

We applied the non-parametric Friedman F-test, to verify the statistical significance of the

observed differences. These results allowed the rejection of the null hypothesis that all

the tested pre-processing approaches for dealing with imbalanced regression show the same

performance. We proceeded with the application of the post-hoc Nemenyi test to check which

approaches are statistically significant for a significance level of 95%. Figure 5.19 shows the

CD diagrams [Demšar, 2006] with the overall results of the tested learners. Figure 5.20

displays the CD diagrams with the results obtained for each learning algorithm.

The CD diagrams results allow to confirm that, globally, the use of the original data set

is worst with statistical significance than applying a pre-processing strategy (biased or

unbiased). We observe that there are differences on the statistical significance of the results

achieved by the biased pre-processing strategies on the several tested learning algorithms.

Namely, for the MARS learner there is no statistical significance among all tested strategies,

while for the SVM learner the performance of the SMOTER based biased strategies are better

than the performance of U. . and U.S. , with statistical significance. It is also noticeable

that, for the RF learner, the strategy None is not worse with statistical significance than

several pre-processing strategies. This does not happen with the remaining tested learners.

5.4. EXPERIMENTAL STUDY 153

4 5 6 7

CD

S.F.S

S._._

S.S.S

S.F.F

U.F._

S.S.F

U._._

U.S._

None

Figure 5.19: Critical Difference diagram of average F φ1 results on all tested learners for biased

pre-processing strategies.

5.4.4 Evaluation of Different Distribution Changes on Pre-processing Strate-

gies

In this section we report the experimental results of comparing the impact of applying

pre-processing strategies with different parameters for changing the normal and rare cases

distribution. We tested: i) the “balance” option which allows to roughly obtain the same

number of rare and normal cases on the training set and ii) the application of other distribu-

tion modifications. The tested variants are described in Table 5.6. We must highlight that

for the WERCS algorithm there is no “balance” option. For this reason, we considered the

option that assigns 1 to both parameters %u and %o on this algorithm as the corresponding

to the “balance” option.

We changed the experimental setup used in the previous sets of experiments. We used

the same 20 data sets and the same evaluation methodology. With respect to the learning

algorithms, we have also used the same learners. However, we restricted the considered

learner variants and only tested them with the default parameters as this approach is

sufficient for answering our research question. The NNET learner requires the setting of

parameter size which defines the number of nodes to use in the network hidden layer. We

have set this parameter to 4. This choice was motivated by the recommendations of Cybenko

[1989], Hornik [1991] for selecting a single hidden layer neural network. Blum [1992] suggests

that the size of the hidden layer should be between the sizes of the input and output layers.

This means that the size parameter should be between 1 and the number of features of the

data set. For selecting a single number for the size parameter that satisfies this condition

154 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

4 5 6 7 8

CD

S._._

S.F.S

S.S.S

S.F.F

S.S.F

U._._

U.F._

U.S._

None

(a) Results of MARS.

4 5 6 7 8

CD

S._._

S.F.F

S.F.S

S.S.F

S.S.S

U.F._

U._._

U.S._

None

(b) Results of SVM.

4 5 6 7 8

CD

S.F.S

U.S._

S.S.S

U._._

U.F._

S._._

S.F.F

S.S.F

None

(c) Results of NNET.

4 5 6 7

CD

S._._

S.F.F

U.F._

S.F.S

S.S.F

S.S.S

U._._

None

U.S._

(d) Results of RF.

Figure 5.20: Critical Difference diagrams of average F φ1 results by learner for biased pre-

processing strategies.

5.5. CONCLUSIONS 155

Table 5.6: Tested variants of pre-processing strategies with different distribution changes.

Strategy Parameter Variants

None No sampling applied (original data set)

RU Random Under-sampling %u.perc = {balance, 0.8, 0.6, 0.4}

RO Random Over-sampling %o.perc = {balance, 1.5, 2, 2.5}

WERCS WEighted Relevance-based Combination Strategy %u = {1, 2, 3}, %o = {1, 2, 3}

GN Introduction of Gaussian Noise
%u/%o = {balance, 0.8/1.5, 0.6/2, 0.4/2.5},
δ = {0.01}

SMOTER SMOTE for Regression
%u/%o = {balance, 0.8/1.5, 0.6/2, 0.4/2.5},
k = 5

SMOGN SMOTER with Gaussian Noise
%u/%o = {balance, 0.8/1.5, 0.6/2, 0.4/2.5},
k = 5, δ = {0.01}

for all data sets, we selected the value of 4 because the number of features in the used data

sets varies between 4 and 37, therefore, the number 4 is suitable for all.

Figures 5.21 and 5.22 show the impact on the learners performance in two data sets (boston

and dAiler3) when the pre-processing strategies aim at balancing the distribution of normal

and rare cases or other changes in the distribution are applied. These figures display the

average results of F φ1 metric, by learner, for the strategy of balancing and the strategies that

do not balance the normal and rare cases. The remaining results are available in Annex A.3.

The results on these data sets show that aiming at balancing the normal and rare cases is

not always the best strategy. This was also observed in imbalanced classification tasks (e.g.

Weiss and Provost [2003], Khoshgoftaar et al. [2007], Branco et al. [2016b]), and our results

also support this conclusion for imbalanced regression problems.

5.5 Conclusions

The class imbalance problem has been studied for more than two decades. Still, only recently

other predictive tasks also affected by this problem have started to receive some attention

from the research community. This is the case with imbalanced regression problems. The

problem of dealing with imbalanced regression tasks raises several different challenges. In

this chapter we addressed the challenge of forcing the learning algorithms to focus on the

most important cases in the context of imbalanced regression problems.

Several methods have been proposed to solve this challenge in a classification context.

Among these methods we have the pre-processing strategies that change the original training

set distribution. The goal of this change is to allow the learning algorithms to focus on

the rare and important cases. In this chapter we proposed a diverse set of data pre-

3Data sets described in Section 5.4.1, Table 5.1 in page 142

156 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.89

0.90

0.91

0.895

0.900

0.905

0.910

0.885

0.890

0.895

0.900

0.0

0.1

0.2

0.3

0.4

0.5

Strategies

F
1φ

balance

Not Balance

Figure 5.21: Results of F φ1 measure on boston data set, by learner, with pre-processing

strategies for balancing or considering other not balancing variants.

5.5. CONCLUSIONS 157

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.735

0.740

0.745

0.750

0.755

0.73

0.74

0.75

0.76

0.745

0.750

0.755

0.760

0.60

0.65

0.70

0.75

Strategies

F
1φ

balance

Not Balance

Figure 5.22: Results of F φ1 measure on dAiler data set, by learner, with pre-processing

strategies for balancing or considering other not balancing variants.

158 CHAPTER 5. LEARNING IN IMBALANCED REGRESSION PROBLEMS

processing solutions to solve the imbalanced regression problem. An experimental study

was carried out to assess the effectiveness of the proposed strategies. The main goals of

the experimental analysis were: i) to understand the impact of applying pre-processing

strategies in the learning algorithms performance; ii) observe if the use of neighbourhood

biased pre-processing strategies brought advantages in relation to unbiased pre-processing

strategies; and iii) exploring the impact of balancing the rare and normal cases in comparison

to the application of other changes in the distribution. Regarding our first objective, our

experiments showed a clear advantage in using data pre-processing strategies for dealing

with imbalanced regression problems. Concerning the second research question, results

show that biasing the pre-processing strategies by considering the cases neighbourhood

has gains in comparison to the use of unbiased pre-processing strategies. However, it is

not straightforward to decide which type of bias should be applied because we could not

find one biased method that was the best overall. As for our third objective, the results

showed that balancing the rare and normal cases is not always the best way for changing the

examples distribution. These results were verified for different metrics and are in accordance

with results obtained by others in the context of imbalanced classification problems.

Chapter 6

Conclusions

Utility-based predictive analytics is very important in several real world applications. These

problems are characterised by the existence of information regarding non-uniform preferences

over the domain of the target variable. This information on relevant domain regions provided

is by the end-user as it is domain-dependent, and it describes important situations that

may be associated with either high benefits or substantial costs. This is a very frequent

problem occurring in a diversity of domains, such as medical, financial, or meteorological,

among other. Moreover, the utility-based learning problem is also considered one of the most

important problems that machine learning and data mining researchers need to address [Yang

and Wu, 2006].

In a utility-based learning setting, it is crucial to properly use the information regarding

the end-user preferences over the target domain. Still, important challenges arise when

incorporating this knowledge in the learning procedure. The initial research on cost-sensitive

classification provided a more solid background for classification tasks dealing with costs.

Therefore, the current challenges regarding utility-based learning are more focused on re-

gression problems. In general, the main open issues within utility-based learning are: i)

the definition of a unifying framework for utility-based learning problems, ii) the definition

of suitable performance assessment measures for utility-based learning tasks and their sub-

problems, iii) the development of user-friendly methods for expressing the existing domain

preferences, iv) the development of learning methods for utility optimisation, specially in

a regression context, and v) the proposal of new methods to deal with the imbalanced

regression sub-problem. In this thesis we have studied the problem of utility-based learning

with a special focus on the open issues mentioned above.

6.1 Contributions

This thesis includes the following main contributions:

159

160 CHAPTER 6. CONCLUSIONS

• Literature Review of the Utility-Based Learning Problem. In Chapter 2 we

provided an extensive literature review of the utility-based learning problem and the

sub-problem of learning from imbalanced domains. We included the theoretical devel-

opments, performance evaluation measures and learning methods for both classification

and regression tasks. We also presented and discussed the main open challenges of

utility-based learning.

• A unifying framework for utility-based learning tasks. In Chapter 3 we pre-

sented a unifying framework that contextualises utility-based learning tasks within

standard and non-standard predictive tasks. Using this framework we showed the

relationship between utility-based learning problems and other predictive tasks, such

as standard tasks and the problem of learning from imbalanced domains.

• Utility Surfaces through Spatial Interpolation. In Chapter 3 we provided a

solution for obtaining the full utility information in regression tasks. The main goal

of this proposal was to provide a user-friendly tool for obtaining a complete utility

surface with the minimum user effort using a selected spatial interpolation technique.

• New Performance Evaluation Measures. In Chapter 3 we proposed new measures

for performance evaluation adjusted to the available problem information. These new

measures are suitable for contexts where there is only a partial or informal information

regarding the user preferences and allow to fully use the available relevant domain

knowledge.

• Methods for Utility Maximisation in Regression. In Chapter 4 we proposed

and evaluated two general methods for utility optimisation in regression tasks. Both

methods present good results. We present the main advantages and disadvantages of

the proposed methods and discuss the practical contexts where one method may be

preferred over the other.

• Pre-processing Methods for Dealing with Imbalanced Regression Problems.

In Chapter 5 we presented several data pre-processing methods for dealing with imbal-

anced regression problems. We explore methods that simply remove or add replicas of

existing cases and methods that generate new synthetic cases. We also explore methods

that take into account the cases neighbourhood or that disregard this information.

• UBL R package. An important outcome of this thesis is the UBL R package which

contains the methods proposed in this thesis and several other methods described in

the current literature for dealing with utility-based problems. The UBL package is

open source software and is freely available to all research community.

6.2. FUTURE RESEARCH DIRECTIONS 161

6.2 Future Research Directions

The utility-based learning paradigm is still recent, specially in what concerns its application

to regression tasks. The research and the results that we have presented in this thesis can be

extended in several different directions. The following list presents some of those directions.

• Performance Evaluation Procedures and Measures. This is an important issue

that still needs to be further addressed. Although several measures were proposed for

utility-based learning and the sub-problem of learning from imbalanced domains, it is

still necessary to explore new measures that can easily accommodate different levels

and types of information concerning the user preference biases in a predictive task. It

is also important to explore the impact of the used performance estimation procedures.

For instance, it would be interesting to determine how small changes in this procedure

impact the performance estimation.

• Automatic Ways for Obtaining the Utility Information. As we have seen,

it is hard, from an end-user perspective, to provide the complete utility information

for a certain problem, specially for regression tasks. It is necessary to develop new

user-friendly ways for automatically converting the domain knowledge into formal

information. Several paths may be considered, such as an active learning based

procedure, or a mathematical formulation that is able to adapt to different settings.

• Relationship between Data Characteristics and Performance. Regarding the

sub-problem of learning from imbalanced domains, it would be interesting to see if there

is a relationship between data characteristics and the performance gains achieved by

the different pre-processing methods. This could lead to a new recommendation system

that could considerably reduce the end-user time when solving these tasks.

• New Automatic Pre-processing Methods. The developments accomplished so

far still require a considerable effort from the end-user, namely when dealing with

imbalanced domains. It would be interesting to develop an automatic method that

could “learn”, for a given problem, the best pre-processing strategy to apply.

• Extension of Utility-based Learning Methods to Other Predictive Problems.

Several other prediction problems involve the consideration of costs and benefits which

may be provided formally or informally. These are important problems which still

require several improvements. Examples of such tasks include imbalanced data streams

or multi-label classification problems.

• Utility-based Learning with Instance or/and Spatio-temporal Dependant

Costs and Benefits. The issue of considering instance dependant costs and benefits

was already addressed in a classification context. However, it is still necessary to

162 CHAPTER 6. CONCLUSIONS

develop new strategies that are capable of dealing with more complex settings which

may involve instance and/or spatio-temporal dependant utility.

Appendices

163

Appendix A

Results of the Experiments with

Pre-processing Strategies for

Tackling Imbalanced Regression

Problems

In this appendix we present the complete set of obtained results from the experiments

conducted in Chapter 5 regarding the use of pre-processing strategies for dealing with

imbalanced regression problems. In Section A.1 we present the results of the unbiased

strategies using multiple evaluation metrics. Section A.2 displays the complete results of the

biased pre-processing strategies, and in Section A.3 the results of strategies with different

changes on the training set distribution are presented.

165

A.1 Evaluation Results of Unbiased Pre-processing Strategies

Table A.1: Evaluation results of unbiased pre-processing strategies concerning the F φ1 metric (average and standard deviation) for 20

data sets and all tested variants of 4 learners.

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

MARS

servo 0.645(0.11) 0.630(0.13) 0.652(0.12) 0.637(0.12) 0.657(0.12) 0.613(0.14) 0.638(0.14)

a6 0.459(0.19) 0.517(0.10) 0.519(0.09) 0.508(0.09) 0.528(0.10) 0.517(0.10) 0.517(0.09)

Abalone 0.708(0.02) 0.736(0.01) 0.739(0.02) 0.736(0.02) 0.733(0.01) 0.730(0.01) 0.731(0.01)

machineCpu 0.797(0.09) 0.778(0.08) 0.773(0.11) 0.771(0.09) 0.780(0.09) 0.793(0.08) 0.788(0.08)

a3 0.498(0.21) 0.533(0.09) 0.542(0.10) 0.532(0.09) 0.526(0.09) 0.535(0.09) 0.536(0.10)

a4 0.481(0.20) 0.552(0.11) 0.579(0.13) 0.549(0.13) 0.552(0.10) 0.538(0.12) 0.562(0.10)

a1 0.573(0.25) 0.720(0.10) 0.709(0.09) 0.707(0.08) 0.722(0.10) 0.708(0.09) 0.728(0.09)

a7 0.294(0.17) 0.365(0.13) 0.357(0.13) 0.355(0.13) 0.361(0.14) 0.346(0.14) 0.347(0.16)

boston 0.894(0.04) 0.873(0.05) 0.887(0.04) 0.885(0.05) 0.883(0.04) 0.880(0.04) 0.881(0.04)

a2 0.260(0.38) 0.488(0.22) 0.518(0.22) 0.496(0.23) 0.522(0.20) 0.531(0.21) 0.535(0.21)

a5 0.146(0.21) 0.495(0.22) 0.532(0.20) 0.539(0.21) 0.525(0.21) 0.510(0.21) 0.527(0.20)

fuelCons 0.853(0.03) 0.865(0.03) 0.870(0.02) 0.864(0.03) 0.866(0.03) 0.880(0.02) 0.872(0.03)

availPwr 0.902(0.02) 0.900(0.02) 0.902(0.02) 0.908(0.02) 0.898(0.02) 0.894(0.02) 0.896(0.02)

cpuSm 0.142(0.03) 0.167(0.02) 0.161(0.03) 0.169(0.03) 0.170(0.02) 0.168(0.02) 0.171(0.02)

maxTorque 0.954(0.01) 0.980(0.01) 0.959(0.01) 0.969(0.01) 0.959(0.02) 0.965(0.02) 0.965(0.02)

bank8FM 0.943(0.01) 0.947(0.01) 0.948(0.01) 0.949(0.01) 0.947(0.01) 0.948(0.01) 0.947(0.01)

dAiler 0.736(0.03) 0.754(0.02) 0.753(0.02) 0.765(0.02) 0.746(0.02) 0.746(0.02) 0.746(0.02)

concreteStrength 0.886(0.03) 0.886(0.03) 0.901(0.03) 0.906(0.03) 0.898(0.03) 0.897(0.03) 0.903(0.03)

acceleration 0.895(0.03) 0.886(0.04) 0.892(0.03) 0.906(0.03) 0.898(0.03) 0.891(0.03) 0.895(0.02)

airfoild 0.116(0.08) 0.208(0.09) 0.201(0.11) 0.166(0.11) 0.214(0.11) 0.208(0.10) 0.200(0.10)

RF

servo 0.761(0.14) 0.730(0.12) 0.775(0.14) 0.752(0.16) 0.754(0.15) 0.658(0.16) 0.683(0.14)

a6 0.527(0.14) 0.534(0.12) 0.518(0.14) 0.525(0.13) 0.524(0.14) 0.513(0.11) 0.527(0.12)

Abalone 0.719(0.02) 0.726(0.02) 0.723(0.02) 0.725(0.02) 0.727(0.02) 0.726(0.02) 0.725(0.01)

machineCpu 0.797(0.09) 0.788(0.09) 0.794(0.10) 0.780(0.10) 0.792(0.09) 0.789(0.08) 0.797(0.09)

a3 0.453(0.20) 0.541(0.09) 0.564(0.15) 0.539(0.12) 0.566(0.09) 0.544(0.09) 0.541(0.10)

Continued on next page

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
167

Table A.1 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

RF

a4 0.506(0.24) 0.585(0.12) 0.526(0.23) 0.549(0.16) 0.577(0.13) 0.571(0.16) 0.590(0.14)

a1 0.621(0.29) 0.736(0.08) 0.644(0.24) 0.675(0.18) 0.727(0.09) 0.722(0.10) 0.731(0.10)

a7 0.303(0.19) 0.382(0.15) 0.360(0.19) 0.402(0.17) 0.404(0.15) 0.366(0.17) 0.366(0.17)

boston 0.902(0.04) 0.891(0.05) 0.909(0.04) 0.912(0.04) 0.896(0.04) 0.897(0.05) 0.902(0.04)

a2 0.243(0.36) 0.576(0.22) 0.398(0.31) 0.446(0.31) 0.555(0.23) 0.576(0.27) 0.586(0.26)

a5 0.209(0.30) 0.551(0.20) 0.475(0.28) 0.523(0.24) 0.548(0.22) 0.553(0.22) 0.563(0.22)

fuelCons 0.918(0.01) 0.894(0.02) 0.935(0.01) 0.933(0.02) 0.920(0.02) 0.922(0.02) 0.923(0.02)

availPwr 0.964(0.02) 0.951(0.02) 0.978(0.01) 0.978(0.02) 0.967(0.01) 0.973(0.02) 0.969(0.01)

cpuSm 0.508(0.05) 0.484(0.06) 0.518(0.05) 0.512(0.06) 0.498(0.06) 0.500(0.06) 0.497(0.06)

maxTorque 0.967(0.01) 0.949(0.02) 0.978(0.01) 0.980(0.01) 0.968(0.01) 0.971(0.01) 0.971(0.01)

bank8FM 0.946(0.01) 0.941(0.01) 0.945(0.01) 0.945(0.01) 0.946(0.01) 0.945(0.01) 0.946(0.01)

dAiler 0.735(0.03) 0.753(0.01) 0.719(0.02) 0.734(0.03) 0.746(0.02) 0.746(0.02) 0.748(0.02)

concreteStrength 0.907(0.21) 0.907(0.03) 0.954(0.02) 0.911(0.22) 0.942(0.03) 0.939(0.03) 0.948(0.03)

acceleration 0.934(0.02) 0.906(0.02) 0.950(0.02) 0.954(0.01) 0.941(0.02) 0.945(0.02) 0.943(0.02)

airfoild 0.219(0.15) 0.214(0.09) 0.198(0.09) 0.201(0.09) 0.195(0.10) 0.194(0.11) 0.229(0.10)

SVM

servo 0.366(0.12) 0.612(0.10) 0.670(0.10) 0.682(0.09) 0.648(0.10) 0.607(0.11) 0.614(0.11)

a6 0.229(0.18) 0.526(0.11) 0.530(0.10) 0.535(0.11) 0.522(0.10) 0.536(0.10) 0.533(0.10)

Abalone 0.712(0.03) 0.735(0.02) 0.739(0.02) 0.738(0.02) 0.734(0.01) 0.736(0.01) 0.735(0.01)

machineCpu 0.780(0.10) 0.785(0.07) 0.787(0.08) 0.792(0.08) 0.782(0.08) 0.791(0.08) 0.794(0.07)

a3 0.181(0.10) 0.520(0.10) 0.526(0.08) 0.519(0.09) 0.532(0.10) 0.524(0.08) 0.512(0.10)

a4 0.252(0.24) 0.568(0.10) 0.563(0.10) 0.556(0.09) 0.578(0.12) 0.572(0.12) 0.564(0.11)

a1 0.113(0.18) 0.690(0.08) 0.716(0.08) 0.713(0.07) 0.715(0.09) 0.715(0.09) 0.704(0.10)

a7 0.107(0.10) 0.325(0.16) 0.340(0.14) 0.356(0.15) 0.343(0.15) 0.362(0.16) 0.332(0.15)

boston 0.883(0.04) 0.878(0.04) 0.901(0.03) 0.903(0.04) 0.896(0.04) 0.895(0.04) 0.898(0.04)

a2 0.232(0.34) 0.494(0.22) 0.520(0.22) 0.496(0.25) 0.504(0.24) 0.499(0.24) 0.504(0.24)

a5 0.139(0.17) 0.534(0.21) 0.542(0.23) 0.553(0.22) 0.547(0.22) 0.560(0.22) 0.552(0.21)

fuelCons 0.908(0.02) 0.880(0.03) 0.906(0.02) 0.906(0.03) 0.892(0.02) 0.896(0.02) 0.897(0.02)

availPwr 0.935(0.01) 0.924(0.02) 0.943(0.01) 0.947(0.01) 0.938(0.01) 0.921(0.02) 0.934(0.01)

cpuSm 0.161(0.03) 0.166(0.03) 0.186(0.03) 0.193(0.03) 0.179(0.03) 0.192(0.03) 0.178(0.03)

maxTorque 0.973(0.01) 0.958(0.02) 0.974(0.01) 0.978(0.01) 0.972(0.01) 0.973(0.01) 0.971(0.01)

Continued on next page

168
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.1 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

SVM

bank8FM 0.947(0.01) 0.949(0.01) 0.949(0.01) 0.952(0.01) 0.950(0.01) 0.950(0.01) 0.950(0.01)

dAiler 0.728(0.03) 0.761(0.02) 0.757(0.02) 0.765(0.02) 0.751(0.01) 0.752(0.01) 0.751(0.01)

concreteStrength 0.840(0.14) 0.875(0.04) 0.908(0.03) 0.914(0.04) 0.909(0.03) 0.906(0.03) 0.905(0.03)

acceleration 0.872(0.07) 0.898(0.03) 0.897(0.02) 0.914(0.02) 0.899(0.02) 0.909(0.02) 0.901(0.02)

airfoild 0.158(0.09) 0.216(0.12) 0.255(0.13) 0.224(0.12) 0.240(0.11) 0.231(0.11) 0.229(0.11)

NNET

servo 0.654(0.14) 0.619(0.18) 0.722(0.17) 0.681(0.18) 0.666(0.18) 0.562(0.17) 0.556(0.17)

a6 0.176(0.19) 0.515(0.11) 0.518(0.11) 0.518(0.11) 0.518(0.11) 0.505(0.13) 0.520(0.11)

Abalone 0.693(0.06) 0.704(0.08) 0.707(0.11) 0.667(0.10) 0.708(0.08) 0.731(0.01) 0.720(0.05)

machineCpu 0.062(0.08) 0.531(0.10) 0.526(0.10) 0.542(0.09) 0.555(0.09) 0.545(0.09) 0.537(0.11)

a3 0.197(0.21) 0.507(0.08) 0.502(0.08) 0.509(0.07) 0.513(0.08) 0.508(0.08) 0.521(0.08)

a4 0.422(0.25) 0.504(0.15) 0.481(0.19) 0.514(0.15) 0.548(0.14) 0.504(0.17) 0.512(0.13)

a1 0.243(0.26) 0.433(0.24) 0.480(0.22) 0.345(0.27) 0.416(0.26) 0.453(0.28) 0.407(0.29)

a7 0.263(0.23) 0.347(0.14) 0.366(0.16) 0.371(0.15) 0.359(0.14) 0.355(0.14) 0.381(0.15)

boston 0.311(0.29) 0.355(0.21) 0.330(0.27) 0.371(0.29) 0.298(0.24) 0.305(0.24) 0.274(0.27)

a2 0.044(0.13) 0.334(0.22) 0.328(0.26) 0.354(0.27) 0.374(0.26) 0.440(0.27) 0.373(0.28)

a5 0.011(0.04) 0.399(0.23) 0.411(0.25) 0.328(0.27) 0.378(0.24) 0.442(0.22) 0.391(0.24)

fuelCons 0.056(0.13) 0.375(0.20) 0.257(0.20) 0.166(0.20) 0.302(0.24) 0.285(0.18) 0.297(0.22)

availPwr 0.096(0.12) 0.180(0.21) 0.192(0.29) 0.037(0.09) 0.060(0.14) 0.085(0.18) 0.050(0.10)

cpuSm 0.084(0.07) 0.246(0.17) 0.208(0.15) 0.256(0.23) 0.230(0.17) 0.173(0.17) 0.277(0.21)

maxTorque 0.088(0.17) 0.443(0.22) 0.293(0.25) 0.287(0.26) 0.270(0.18) 0.278(0.30) 0.411(0.26)

bank8FM 0.953(0.01) 0.898(0.10) 0.933(0.05) 0.925(0.08) 0.946(0.03) 0.945(0.03) 0.940(0.06)

dAiler 0.329(0.08) 0.332(0.03) 0.376(0.12) 0.329(0.05) 0.374(0.06) 0.372(0.11) 0.403(0.08)

concreteStrength 0.000(0.00) 0.293(0.23) 0.129(0.24) 0.056(0.12) 0.127(0.19) 0.184(0.19) 0.164(0.17)

acceleration 0.099(0.24) 0.310(0.22) 0.336(0.31) 0.179(0.25) 0.259(0.25) 0.338(0.27) 0.387(0.28)

airfoild 0.020(0.03) 0.070(0.06) 0.031(0.05) 0.011(0.02) 0.029(0.04) 0.035(0.04) 0.043(0.06)

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
169

Table A.2: Evaluation results concerning the G−Meanφ metric (average and standard deviation) for 20 data sets and all tested variants

of 4 learners using unbiased pre-processing strategies.

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

MARS

servo 0.734(0.12) 0.738(0.12) 0.758(0.12) 0.739(0.12) 0.759(0.12) 0.735(0.12) 0.755(0.13)

a6 0.596(0.11) 0.629(0.14) 0.628(0.12) 0.627(0.13) 0.642(0.13) 0.627(0.14) 0.630(0.13)

Abalone 0.734(0.02) 0.803(0.02) 0.801(0.02) 0.796(0.02) 0.813(0.02) 0.811(0.02) 0.813(0.02)

machineCpu 0.845(0.07) 0.851(0.07) 0.847(0.08) 0.843(0.06) 0.847(0.08) 0.859(0.06) 0.852(0.07)

a3 0.601(0.12) 0.679(0.11) 0.677(0.13) 0.676(0.11) 0.663(0.10) 0.681(0.11) 0.671(0.12)

a4 0.638(0.11) 0.710(0.14) 0.706(0.15) 0.690(0.14) 0.689(0.12) 0.676(0.14) 0.701(0.12)

a1 0.757(0.10) 0.825(0.09) 0.824(0.09) 0.813(0.09) 0.815(0.09) 0.816(0.09) 0.836(0.09)

a7 0.440(0.18) 0.497(0.20) 0.468(0.20) 0.462(0.18) 0.484(0.21) 0.453(0.20) 0.460(0.23)

boston 0.914(0.05) 0.923(0.04) 0.927(0.04) 0.925(0.05) 0.924(0.04) 0.925(0.04) 0.925(0.04)

a2 0.623(0.25) 0.679(0.25) 0.648(0.26) 0.657(0.26) 0.660(0.25) 0.674(0.26) 0.666(0.26)

a5 0.587(0.23) 0.667(0.26) 0.665(0.25) 0.664(0.26) 0.663(0.26) 0.642(0.27) 0.658(0.26)

fuelCons 0.878(0.02) 0.910(0.02) 0.914(0.01) 0.900(0.02) 0.913(0.02) 0.921(0.02) 0.916(0.02)

availPwr 0.925(0.02) 0.934(0.01) 0.933(0.01) 0.933(0.01) 0.933(0.01) 0.932(0.01) 0.931(0.01)

cpuSm 0.220(0.03) 0.247(0.03) 0.240(0.04) 0.248(0.04) 0.250(0.03) 0.248(0.03) 0.252(0.03)

maxTorque 0.964(0.01) 0.988(0.00) 0.971(0.01) 0.976(0.01) 0.973(0.01) 0.976(0.01) 0.975(0.01)

bank8FM 0.950(0.01) 0.957(0.01) 0.957(0.01) 0.957(0.01) 0.957(0.01) 0.957(0.01) 0.956(0.01)

dAiler 0.748(0.02) 0.849(0.02) 0.851(0.02) 0.822(0.02) 0.859(0.02) 0.860(0.02) 0.860(0.02)

concreteStrength 0.904(0.03) 0.942(0.03) 0.950(0.02) 0.940(0.03) 0.944(0.03) 0.949(0.02) 0.949(0.02)

acceleration 0.919(0.02) 0.948(0.02) 0.946(0.01) 0.938(0.02) 0.946(0.02) 0.944(0.02) 0.943(0.02)

airfoild 0.229(0.07) 0.283(0.10) 0.283(0.12) 0.234(0.11) 0.294(0.12) 0.288(0.11) 0.280(0.11)

RF

servo 0.816(0.12) 0.813(0.11) 0.834(0.13) 0.814(0.14) 0.822(0.14) 0.760(0.14) 0.779(0.12)

a6 0.600(0.15) 0.664(0.17) 0.616(0.15) 0.641(0.16) 0.645(0.17) 0.625(0.15) 0.643(0.16)

Abalone 0.748(0.02) 0.808(0.02) 0.764(0.02) 0.776(0.02) 0.802(0.02) 0.803(0.02) 0.803(0.02)

machineCpu 0.853(0.07) 0.856(0.07) 0.850(0.08) 0.843(0.07) 0.855(0.07) 0.855(0.06) 0.857(0.07)

a3 0.606(0.11) 0.693(0.12) 0.638(0.13) 0.657(0.14) 0.691(0.11) 0.671(0.10) 0.659(0.12)

a4 0.662(0.11) 0.729(0.14) 0.674(0.11) 0.699(0.13) 0.703(0.11) 0.720(0.11) 0.711(0.10)

a1 0.772(0.10) 0.834(0.09) 0.786(0.10) 0.801(0.10) 0.809(0.10) 0.821(0.10) 0.815(0.10)

Continued on next page

170
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.2 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

RF

a7 0.450(0.18) 0.504(0.23) 0.497(0.22) 0.539(0.23) 0.535(0.21) 0.476(0.23) 0.489(0.21)

boston 0.920(0.05) 0.930(0.04) 0.928(0.04) 0.930(0.04) 0.928(0.04) 0.933(0.04) 0.930(0.04)

a2 0.615(0.24) 0.711(0.27) 0.631(0.24) 0.651(0.25) 0.675(0.25) 0.686(0.27) 0.673(0.26)

a5 0.604(0.24) 0.692(0.26) 0.632(0.26) 0.645(0.26) 0.660(0.26) 0.677(0.27) 0.673(0.27)

fuelCons 0.922(0.01) 0.931(0.02) 0.940(0.01) 0.941(0.01) 0.942(0.01) 0.940(0.01) 0.941(0.01)

availPwr 0.973(0.01) 0.972(0.01) 0.984(0.01) 0.984(0.01) 0.977(0.01) 0.982(0.01) 0.978(0.01)

cpuSm 0.566(0.05) 0.584(0.06) 0.579(0.05) 0.570(0.05) 0.581(0.05) 0.581(0.05) 0.579(0.05)

maxTorque 0.974(0.01) 0.975(0.01) 0.983(0.01) 0.984(0.01) 0.980(0.01) 0.982(0.01) 0.981(0.01)

bank8FM 0.955(0.01) 0.964(0.01) 0.956(0.01) 0.955(0.01) 0.965(0.00) 0.961(0.01) 0.964(0.00)

dAiler 0.770(0.02) 0.861(0.02) 0.776(0.02) 0.792(0.02) 0.843(0.02) 0.830(0.02) 0.842(0.02)

concreteStrength 0.942(0.02) 0.951(0.02) 0.952(0.03) 0.955(0.03) 0.952(0.02) 0.949(0.02) 0.952(0.02)

acceleration 0.948(0.02) 0.959(0.01) 0.963(0.01) 0.965(0.01) 0.965(0.01) 0.963(0.01) 0.966(0.01)

airfoild 0.287(0.14) 0.298(0.10) 0.274(0.10) 0.271(0.10) 0.278(0.11) 0.276(0.12) 0.306(0.10)

SVM

servo 0.497(0.14) 0.744(0.12) 0.800(0.12) 0.807(0.11) 0.778(0.11) 0.739(0.13) 0.744(0.12)

a6 0.550(0.10) 0.640(0.14) 0.639(0.13) 0.653(0.12) 0.634(0.12) 0.638(0.12) 0.638(0.13)

Abalone 0.717(0.02) 0.794(0.02) 0.795(0.02) 0.788(0.02) 0.809(0.02) 0.807(0.02) 0.809(0.02)

machineCpu 0.839(0.08) 0.851(0.07) 0.857(0.07) 0.852(0.07) 0.849(0.07) 0.855(0.07) 0.858(0.07)

a3 0.536(0.07) 0.671(0.12) 0.658(0.10) 0.659(0.11) 0.662(0.12) 0.657(0.11) 0.644(0.11)

a4 0.597(0.10) 0.696(0.13) 0.685(0.12) 0.687(0.13) 0.682(0.13) 0.703(0.11) 0.688(0.12)

a1 0.679(0.06) 0.815(0.09) 0.831(0.08) 0.821(0.08) 0.822(0.09) 0.820(0.08) 0.814(0.08)

a7 0.434(0.14) 0.423(0.22) 0.446(0.20) 0.464(0.21) 0.452(0.21) 0.467(0.21) 0.426(0.21)

boston 0.900(0.04) 0.923(0.04) 0.936(0.03) 0.936(0.03) 0.930(0.04) 0.933(0.03) 0.932(0.04)

a2 0.591(0.24) 0.655(0.26) 0.654(0.25) 0.633(0.24) 0.665(0.26) 0.645(0.24) 0.645(0.25)

a5 0.558(0.21) 0.674(0.27) 0.678(0.27) 0.677(0.27) 0.665(0.26) 0.676(0.27) 0.677(0.27)

fuelCons 0.921(0.02) 0.927(0.02) 0.928(0.02) 0.926(0.02) 0.927(0.02) 0.928(0.02) 0.929(0.02)

availPwr 0.950(0.01) 0.955(0.01) 0.960(0.01) 0.960(0.01) 0.957(0.01) 0.946(0.01) 0.954(0.01)

cpuSm 0.241(0.03) 0.238(0.04) 0.270(0.04) 0.276(0.04) 0.262(0.04) 0.275(0.03) 0.260(0.04)

maxTorque 0.979(0.01) 0.980(0.00) 0.980(0.00) 0.983(0.01) 0.980(0.01) 0.981(0.01) 0.979(0.01)

bank8FM 0.955(0.01) 0.955(0.01) 0.959(0.01) 0.961(0.01) 0.958(0.01) 0.958(0.01) 0.958(0.01)

dAiler 0.740(0.02) 0.848(0.02) 0.854(0.02) 0.820(0.02) 0.864(0.01) 0.862(0.01) 0.864(0.01)

Continued on next page

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
171

Table A.2 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

SVM

concreteStrength 0.899(0.03) 0.943(0.02) 0.953(0.02) 0.947(0.02) 0.953(0.02) 0.953(0.02) 0.953(0.02)

acceleration 0.907(0.02) 0.949(0.02) 0.946(0.01) 0.938(0.02) 0.946(0.02) 0.942(0.02) 0.944(0.02)

airfoild 0.237(0.09) 0.294(0.12) 0.331(0.12) 0.297(0.12) 0.318(0.11) 0.309(0.11) 0.305(0.11)

NNET

servo 0.746(0.13) 0.708(0.17) 0.782(0.15) 0.751(0.15) 0.738(0.17) 0.670(0.17) 0.656(0.17)

a6 0.562(0.12) 0.637(0.16) 0.654(0.15) 0.649(0.16) 0.641(0.16) 0.643(0.16) 0.652(0.15)

Abalone 0.736(0.03) 0.798(0.04) 0.799(0.05) 0.775(0.05) 0.808(0.05) 0.820(0.02) 0.815(0.03)

machineCpu 0.582(0.11) 0.689(0.14) 0.690(0.13) 0.707(0.12) 0.700(0.14) 0.701(0.13) 0.693(0.14)

a3 0.559(0.09) 0.656(0.13) 0.653(0.10) 0.666(0.12) 0.648(0.11) 0.652(0.11) 0.661(0.12)

a4 0.635(0.12) 0.702(0.13) 0.705(0.14) 0.715(0.12) 0.715(0.12) 0.699(0.12) 0.699(0.12)

a1 0.694(0.10) 0.779(0.09) 0.787(0.09) 0.784(0.09) 0.787(0.08) 0.773(0.09) 0.774(0.09)

a7 0.468(0.21) 0.472(0.20) 0.487(0.22) 0.499(0.22) 0.487(0.20) 0.474(0.20) 0.511(0.21)

boston 0.748(0.07) 0.821(0.05) 0.819(0.05) 0.830(0.05) 0.810(0.05) 0.809(0.05) 0.807(0.05)

a2 0.574(0.22) 0.675(0.26) 0.672(0.26) 0.676(0.26) 0.671(0.26) 0.681(0.26) 0.680(0.26)

a5 0.540(0.21) 0.664(0.26) 0.663(0.26) 0.653(0.26) 0.659(0.26) 0.660(0.26) 0.658(0.26)

fuelCons 0.518(0.04) 0.626(0.05) 0.584(0.07) 0.575(0.05) 0.609(0.08) 0.600(0.07) 0.613(0.08)

availPwr 0.637(0.05) 0.776(0.05) 0.773(0.05) 0.743(0.04) 0.755(0.05) 0.756(0.05) 0.754(0.04)

cpuSm 0.241(0.06) 0.279(0.13) 0.250(0.12) 0.272(0.16) 0.257(0.13) 0.227(0.14) 0.301(0.17)

maxTorque 0.667(0.04) 0.809(0.04) 0.802(0.04) 0.787(0.04) 0.797(0.04) 0.795(0.04) 0.799(0.04)

bank8FM 0.962(0.01) 0.956(0.02) 0.963(0.01) 0.958(0.02) 0.965(0.01) 0.966(0.01) 0.964(0.01)

dAiler 0.607(0.02) 0.653(0.03) 0.692(0.05) 0.649(0.03) 0.688(0.03) 0.682(0.05) 0.694(0.03)

concreteStrength 0.700(0.03) 0.856(0.04) 0.835(0.04) 0.822(0.03) 0.832(0.04) 0.840(0.04) 0.835(0.03)

acceleration 0.699(0.04) 0.834(0.03) 0.835(0.03) 0.809(0.03) 0.831(0.03) 0.839(0.04) 0.842(0.04)

airfoild 0.341(0.04) 0.241(0.05) 0.245(0.03) 0.256(0.03) 0.249(0.03) 0.244(0.03) 0.251(0.04)

172
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.3: Evaluation results concerning the precφ metric (average and standard deviation) for 20 data sets and all tested variants of 4

learners using unbiased pre-processing strategies.

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

MARS

servo 0.614(0.10) 0.585(0.13) 0.605(0.11) 0.595(0.11) 0.611(0.12) 0.557(0.15) 0.581(0.14)

a6 0.475(0.20) 0.485(0.06) 0.491(0.07) 0.468(0.06) 0.491(0.07) 0.487(0.07) 0.486(0.06)

Abalone 0.731(0.03) 0.698(0.02) 0.706(0.02) 0.708(0.02) 0.679(0.01) 0.677(0.01) 0.676(0.01)

machineCpu 0.794(0.11) 0.748(0.09) 0.752(0.13) 0.754(0.11) 0.759(0.10) 0.769(0.09) 0.765(0.09)

a3 0.531(0.25) 0.463(0.10) 0.480(0.08) 0.462(0.07) 0.467(0.08) 0.463(0.07) 0.476(0.09)

a4 0.482(0.25) 0.478(0.09) 0.524(0.11) 0.498(0.11) 0.498(0.09) 0.485(0.11) 0.500(0.10)

a1 0.573(0.28) 0.668(0.11) 0.648(0.11) 0.658(0.10) 0.680(0.11) 0.656(0.10) 0.671(0.11)

a7 0.307(0.15) 0.338(0.06) 0.348(0.05) 0.351(0.05) 0.346(0.05) 0.343(0.05) 0.350(0.05)

boston 0.898(0.04) 0.847(0.06) 0.867(0.05) 0.867(0.05) 0.862(0.05) 0.856(0.05) 0.858(0.05)

a2 0.308(0.41) 0.462(0.13) 0.508(0.11) 0.478(0.13) 0.505(0.08) 0.508(0.09) 0.525(0.08)

a5 0.156(0.22) 0.466(0.12) 0.522(0.08) 0.535(0.08) 0.520(0.10) 0.504(0.09) 0.518(0.07)

fuelCons 0.851(0.05) 0.835(0.05) 0.840(0.04) 0.846(0.05) 0.833(0.04) 0.852(0.04) 0.842(0.04)

availPwr 0.900(0.02) 0.884(0.03) 0.890(0.02) 0.902(0.02) 0.882(0.03) 0.876(0.02) 0.880(0.02)

cpuSm 0.144(0.03) 0.168(0.02) 0.163(0.03) 0.170(0.04) 0.170(0.02) 0.169(0.02) 0.172(0.02)

maxTorque 0.954(0.02) 0.974(0.02) 0.955(0.02) 0.968(0.02) 0.953(0.02) 0.959(0.03) 0.960(0.02)

bank8FM 0.948(0.01) 0.948(0.01) 0.948(0.01) 0.951(0.01) 0.948(0.01) 0.948(0.01) 0.948(0.01)

dAiler 0.786(0.04) 0.697(0.02) 0.692(0.02) 0.747(0.02) 0.673(0.02) 0.672(0.02) 0.672(0.02)

concreteStrength 0.895(0.06) 0.847(0.05) 0.867(0.05) 0.889(0.05) 0.868(0.05) 0.860(0.05) 0.873(0.05)

acceleration 0.892(0.05) 0.843(0.06) 0.855(0.04) 0.892(0.05) 0.865(0.04) 0.856(0.04) 0.864(0.04)

airfoild 0.118(0.09) 0.215(0.09) 0.201(0.11) 0.180(0.13) 0.218(0.12) 0.211(0.11) 0.205(0.11)

RF

servo 0.750(0.14) 0.691(0.12) 0.757(0.14) 0.735(0.16) 0.730(0.15) 0.614(0.17) 0.641(0.14)

a6 0.549(0.14) 0.482(0.07) 0.509(0.12) 0.495(0.09) 0.490(0.10) 0.485(0.07) 0.493(0.08)

Abalone 0.736(0.03) 0.675(0.02) 0.722(0.02) 0.711(0.02) 0.682(0.02) 0.679(0.02) 0.679(0.01)

machineCpu 0.783(0.09) 0.761(0.10) 0.780(0.11) 0.761(0.11) 0.770(0.09) 0.764(0.09) 0.778(0.10)

a3 0.459(0.22) 0.460(0.06) 0.568(0.16) 0.496(0.10) 0.511(0.08) 0.488(0.08) 0.496(0.09)

a4 0.496(0.27) 0.516(0.10) 0.519(0.26) 0.505(0.16) 0.530(0.14) 0.521(0.17) 0.551(0.17)

a1 0.644(0.32) 0.683(0.07) 0.628(0.24) 0.646(0.17) 0.696(0.09) 0.680(0.12) 0.699(0.12)

Continued on next page

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
173

Table A.3 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

RF

a7 0.314(0.18) 0.365(0.04) 0.338(0.14) 0.381(0.11) 0.379(0.06) 0.368(0.07) 0.355(0.10)

boston 0.909(0.04) 0.873(0.05) 0.911(0.04) 0.913(0.04) 0.884(0.04) 0.880(0.05) 0.893(0.04)

a2 0.291(0.38) 0.551(0.09) 0.443(0.29) 0.481(0.28) 0.561(0.14) 0.604(0.17) 0.633(0.19)

a5 0.244(0.32) 0.518(0.05) 0.497(0.24) 0.532(0.19) 0.554(0.11) 0.551(0.11) 0.569(0.10)

fuelCons 0.928(0.02) 0.864(0.03) 0.939(0.02) 0.936(0.03) 0.904(0.03) 0.910(0.04) 0.912(0.03)

availPwr 0.962(0.02) 0.936(0.03) 0.977(0.02) 0.977(0.02) 0.962(0.02) 0.969(0.02) 0.966(0.01)

cpuSm 0.525(0.05) 0.455(0.06) 0.529(0.06) 0.528(0.06) 0.486(0.06) 0.490(0.05) 0.486(0.06)

maxTorque 0.969(0.01) 0.928(0.03) 0.977(0.01) 0.981(0.01) 0.961(0.02) 0.965(0.02) 0.965(0.02)

bank8FM 0.947(0.01) 0.926(0.01) 0.944(0.01) 0.945(0.01) 0.936(0.01) 0.936(0.01) 0.936(0.01)

dAiler 0.752(0.04) 0.684(0.02) 0.711(0.04) 0.724(0.04) 0.688(0.02) 0.701(0.03) 0.693(0.02)

concreteStrength 0.933(0.22) 0.875(0.04) 0.971(0.03) 0.925(0.22) 0.944(0.04) 0.942(0.04) 0.957(0.03)

acceleration 0.933(0.02) 0.865(0.03) 0.947(0.02) 0.951(0.02) 0.925(0.03) 0.937(0.03) 0.928(0.03)

airfoild 0.244(0.18) 0.214(0.09) 0.207(0.11) 0.215(0.10) 0.201(0.10) 0.193(0.11) 0.238(0.10)

SVM

servo 0.369(0.11) 0.538(0.07) 0.592(0.08) 0.607(0.08) 0.572(0.07) 0.535(0.10) 0.544(0.09)

a6 0.258(0.23) 0.492(0.08) 0.500(0.09) 0.495(0.09) 0.494(0.08) 0.516(0.08) 0.511(0.09)

Abalone 0.767(0.04) 0.708(0.02) 0.714(0.02) 0.723(0.02) 0.688(0.02) 0.696(0.02) 0.690(0.01)

machineCpu 0.770(0.11) 0.763(0.08) 0.763(0.10) 0.775(0.09) 0.758(0.09) 0.769(0.09) 0.772(0.08)

a3 0.187(0.11) 0.452(0.08) 0.470(0.07) 0.455(0.07) 0.478(0.08) 0.466(0.06) 0.462(0.08)

a4 0.256(0.26) 0.518(0.09) 0.519(0.10) 0.507(0.08) 0.551(0.12) 0.528(0.12) 0.529(0.12)

a1 0.103(0.16) 0.620(0.08) 0.651(0.09) 0.654(0.07) 0.660(0.11) 0.661(0.12) 0.651(0.11)

a7 0.141(0.13) 0.349(0.05) 0.345(0.05) 0.358(0.06) 0.347(0.06) 0.369(0.08) 0.354(0.07)

boston 0.895(0.04) 0.855(0.04) 0.884(0.03) 0.886(0.04) 0.881(0.04) 0.876(0.04) 0.881(0.04)

a2 0.282(0.38) 0.492(0.12) 0.519(0.12) 0.514(0.18) 0.501(0.15) 0.522(0.17) 0.529(0.17)

a5 0.145(0.16) 0.513(0.09) 0.521(0.14) 0.544(0.12) 0.552(0.11) 0.562(0.11) 0.542(0.08)

fuelCons 0.908(0.04) 0.844(0.04) 0.897(0.04) 0.899(0.04) 0.869(0.03) 0.874(0.04) 0.876(0.04)

availPwr 0.934(0.02) 0.906(0.04) 0.936(0.02) 0.944(0.02) 0.930(0.01) 0.911(0.03) 0.925(0.02)

cpuSm 0.163(0.03) 0.178(0.03) 0.187(0.03) 0.195(0.03) 0.180(0.03) 0.193(0.03) 0.179(0.03)

maxTorque 0.973(0.01) 0.942(0.03) 0.972(0.01) 0.976(0.01) 0.969(0.01) 0.969(0.01) 0.968(0.01)

bank8FM 0.949(0.01) 0.952(0.01) 0.949(0.01) 0.953(0.01) 0.951(0.01) 0.951(0.01) 0.951(0.01)

dAiler 0.781(0.05) 0.711(0.02) 0.698(0.02) 0.749(0.03) 0.677(0.02) 0.681(0.02) 0.677(0.02)

Continued on next page

174
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.3 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

SVM

concreteStrength 0.855(0.15) 0.827(0.07) 0.875(0.05) 0.897(0.06) 0.877(0.05) 0.872(0.05) 0.870(0.05)

acceleration 0.876(0.08) 0.864(0.06) 0.865(0.04) 0.907(0.03) 0.869(0.04) 0.891(0.03) 0.874(0.04)

airfoild 0.166(0.11) 0.222(0.12) 0.265(0.15) 0.233(0.12) 0.247(0.11) 0.238(0.12) 0.239(0.12)

NNET

servo 0.644(0.14) 0.587(0.16) 0.708(0.17) 0.659(0.19) 0.648(0.18) 0.521(0.16) 0.525(0.16)

a6 0.175(0.19) 0.470(0.07) 0.465(0.07) 0.465(0.06) 0.473(0.06) 0.461(0.09) 0.471(0.07)

Abalone 0.707(0.06) 0.656(0.08) 0.663(0.10) 0.633(0.10) 0.650(0.08) 0.671(0.02) 0.660(0.05)

machineCpu 0.059(0.07) 0.454(0.07) 0.446(0.08) 0.457(0.08) 0.484(0.07) 0.466(0.07) 0.461(0.07)

a3 0.203(0.22) 0.434(0.05) 0.434(0.06) 0.430(0.05) 0.453(0.06) 0.439(0.06) 0.456(0.05)

a4 0.407(0.25) 0.427(0.13) 0.406(0.17) 0.442(0.15) 0.479(0.13) 0.434(0.16) 0.438(0.12)

a1 0.252(0.27) 0.400(0.24) 0.455(0.22) 0.327(0.26) 0.386(0.25) 0.421(0.27) 0.380(0.27)

a7 0.282(0.22) 0.326(0.05) 0.351(0.07) 0.346(0.07) 0.334(0.06) 0.338(0.06) 0.352(0.06)

boston 0.308(0.28) 0.324(0.20) 0.311(0.26) 0.346(0.27) 0.276(0.22) 0.280(0.23) 0.253(0.25)

a2 0.048(0.14) 0.325(0.15) 0.316(0.21) 0.344(0.22) 0.369(0.19) 0.421(0.19) 0.365(0.21)

a5 0.011(0.04) 0.363(0.15) 0.380(0.18) 0.322(0.21) 0.362(0.17) 0.416(0.12) 0.353(0.18)

fuelCons 0.065(0.15) 0.368(0.22) 0.255(0.20) 0.171(0.22) 0.290(0.24) 0.269(0.18) 0.280(0.22)

availPwr 0.094(0.12) 0.166(0.20) 0.173(0.26) 0.035(0.09) 0.056(0.13) 0.076(0.16) 0.047(0.10)

cpuSm 0.094(0.10) 0.317(0.24) 0.262(0.21) 0.340(0.33) 0.316(0.25) 0.218(0.22) 0.370(0.30)

maxTorque 0.093(0.18) 0.397(0.21) 0.261(0.23) 0.273(0.25) 0.237(0.16) 0.245(0.27) 0.370(0.24)

bank8FM 0.954(0.01) 0.890(0.10) 0.925(0.05) 0.925(0.08) 0.938(0.03) 0.937(0.03) 0.933(0.06)

dAiler 0.351(0.09) 0.301(0.04) 0.348(0.12) 0.322(0.05) 0.334(0.06) 0.332(0.11) 0.364(0.09)

concreteStrength 0.000(0.00) 0.258(0.20) 0.115(0.22) 0.053(0.11) 0.115(0.18) 0.164(0.17) 0.150(0.16)

acceleration 0.116(0.29) 0.268(0.20) 0.299(0.28) 0.174(0.24) 0.235(0.23) 0.298(0.24) 0.349(0.26)

airfoild 0.020(0.03) 0.078(0.07) 0.032(0.05) 0.014(0.03) 0.029(0.04) 0.038(0.04) 0.046(0.06)

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
175

Table A.4: Evaluation results concerning the recφ metric (average and standard deviation) for 20 data sets and all tested variants of 4

learners using unbiased pre-processing strategies.

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

MARS

servo 0.614(0.10) 0.585(0.13) 0.605(0.11) 0.595(0.11) 0.611(0.12) 0.557(0.15) 0.581(0.14)

a6 0.475(0.20) 0.485(0.06) 0.491(0.07) 0.468(0.06) 0.491(0.07) 0.487(0.07) 0.486(0.06)

Abalone 0.731(0.03) 0.698(0.02) 0.706(0.02) 0.708(0.02) 0.679(0.01) 0.677(0.01) 0.676(0.01)

machineCpu 0.794(0.11) 0.748(0.09) 0.752(0.13) 0.754(0.11) 0.759(0.10) 0.769(0.09) 0.765(0.09)

a3 0.531(0.25) 0.463(0.10) 0.480(0.08) 0.462(0.07) 0.467(0.08) 0.463(0.07) 0.476(0.09)

a4 0.482(0.25) 0.478(0.09) 0.524(0.11) 0.498(0.11) 0.498(0.09) 0.485(0.11) 0.500(0.10)

a1 0.573(0.28) 0.668(0.11) 0.648(0.11) 0.658(0.10) 0.680(0.11) 0.656(0.10) 0.671(0.11)

a7 0.307(0.15) 0.338(0.06) 0.348(0.05) 0.351(0.05) 0.346(0.05) 0.343(0.05) 0.350(0.05)

boston 0.898(0.04) 0.847(0.06) 0.867(0.05) 0.867(0.05) 0.862(0.05) 0.856(0.05) 0.858(0.05)

a2 0.308(0.41) 0.462(0.13) 0.508(0.11) 0.478(0.13) 0.505(0.08) 0.508(0.09) 0.525(0.08)

a5 0.156(0.22) 0.466(0.12) 0.522(0.08) 0.535(0.08) 0.520(0.10) 0.504(0.09) 0.518(0.07)

fuelCons 0.851(0.05) 0.835(0.05) 0.840(0.04) 0.846(0.05) 0.833(0.04) 0.852(0.04) 0.842(0.04)

availPwr 0.900(0.02) 0.884(0.03) 0.890(0.02) 0.902(0.02) 0.882(0.03) 0.876(0.02) 0.880(0.02)

cpuSm 0.144(0.03) 0.168(0.02) 0.163(0.03) 0.170(0.04) 0.170(0.02) 0.169(0.02) 0.172(0.02)

maxTorque 0.954(0.02) 0.974(0.02) 0.955(0.02) 0.968(0.02) 0.953(0.02) 0.959(0.03) 0.960(0.02)

bank8FM 0.948(0.01) 0.948(0.01) 0.948(0.01) 0.951(0.01) 0.948(0.01) 0.948(0.01) 0.948(0.01)

dAiler 0.786(0.04) 0.697(0.02) 0.692(0.02) 0.747(0.02) 0.673(0.02) 0.672(0.02) 0.672(0.02)

concreteStrength 0.895(0.06) 0.847(0.05) 0.867(0.05) 0.889(0.05) 0.868(0.05) 0.860(0.05) 0.873(0.05)

acceleration 0.892(0.05) 0.843(0.06) 0.855(0.04) 0.892(0.05) 0.865(0.04) 0.856(0.04) 0.864(0.04)

airfoild 0.118(0.09) 0.215(0.09) 0.201(0.11) 0.180(0.13) 0.218(0.12) 0.211(0.11) 0.205(0.11)

RF

servo 0.750(0.14) 0.691(0.12) 0.757(0.14) 0.735(0.16) 0.730(0.15) 0.614(0.17) 0.641(0.14)

a6 0.549(0.14) 0.482(0.07) 0.509(0.12) 0.495(0.09) 0.490(0.10) 0.485(0.07) 0.493(0.08)

Abalone 0.736(0.03) 0.675(0.02) 0.722(0.02) 0.711(0.02) 0.682(0.02) 0.679(0.02) 0.679(0.01)

machineCpu 0.783(0.09) 0.761(0.10) 0.780(0.11) 0.761(0.11) 0.770(0.09) 0.764(0.09) 0.778(0.10)

a3 0.459(0.22) 0.460(0.06) 0.568(0.16) 0.496(0.10) 0.511(0.08) 0.488(0.08) 0.496(0.09)

a4 0.496(0.27) 0.516(0.10) 0.519(0.26) 0.505(0.16) 0.530(0.14) 0.521(0.17) 0.551(0.17)

a1 0.644(0.32) 0.683(0.07) 0.628(0.24) 0.646(0.17) 0.696(0.09) 0.680(0.12) 0.699(0.12)

Continued on next page

176
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.4 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

RF

a7 0.314(0.18) 0.365(0.04) 0.338(0.14) 0.381(0.11) 0.379(0.06) 0.368(0.07) 0.355(0.10)

boston 0.909(0.04) 0.873(0.05) 0.911(0.04) 0.913(0.04) 0.884(0.04) 0.880(0.05) 0.893(0.04)

a2 0.291(0.38) 0.551(0.09) 0.443(0.29) 0.481(0.28) 0.561(0.14) 0.604(0.17) 0.633(0.19)

a5 0.244(0.32) 0.518(0.05) 0.497(0.24) 0.532(0.19) 0.554(0.11) 0.551(0.11) 0.569(0.10)

fuelCons 0.928(0.02) 0.864(0.03) 0.939(0.02) 0.936(0.03) 0.904(0.03) 0.910(0.04) 0.912(0.03)

availPwr 0.962(0.02) 0.936(0.03) 0.977(0.02) 0.977(0.02) 0.962(0.02) 0.969(0.02) 0.966(0.01)

cpuSm 0.525(0.05) 0.455(0.06) 0.529(0.06) 0.528(0.06) 0.486(0.06) 0.490(0.05) 0.486(0.06)

maxTorque 0.969(0.01) 0.928(0.03) 0.977(0.01) 0.981(0.01) 0.961(0.02) 0.965(0.02) 0.965(0.02)

bank8FM 0.947(0.01) 0.926(0.01) 0.944(0.01) 0.945(0.01) 0.936(0.01) 0.936(0.01) 0.936(0.01)

dAiler 0.752(0.04) 0.684(0.02) 0.711(0.04) 0.724(0.04) 0.688(0.02) 0.701(0.03) 0.693(0.02)

concreteStrength 0.933(0.22) 0.875(0.04) 0.971(0.03) 0.925(0.22) 0.944(0.04) 0.942(0.04) 0.957(0.03)

acceleration 0.933(0.02) 0.865(0.03) 0.947(0.02) 0.951(0.02) 0.925(0.03) 0.937(0.03) 0.928(0.03)

airfoild 0.244(0.18) 0.214(0.09) 0.207(0.11) 0.215(0.10) 0.201(0.10) 0.193(0.11) 0.238(0.10)

SVM

servo 0.369(0.11) 0.538(0.07) 0.592(0.08) 0.607(0.08) 0.572(0.07) 0.535(0.10) 0.544(0.09)

a6 0.258(0.23) 0.492(0.08) 0.500(0.09) 0.495(0.09) 0.494(0.08) 0.516(0.08) 0.511(0.09)

Abalone 0.767(0.04) 0.708(0.02) 0.714(0.02) 0.723(0.02) 0.688(0.02) 0.696(0.02) 0.690(0.01)

machineCpu 0.770(0.11) 0.763(0.08) 0.763(0.10) 0.775(0.09) 0.758(0.09) 0.769(0.09) 0.772(0.08)

a3 0.187(0.11) 0.452(0.08) 0.470(0.07) 0.455(0.07) 0.478(0.08) 0.466(0.06) 0.462(0.08)

a4 0.256(0.26) 0.518(0.09) 0.519(0.10) 0.507(0.08) 0.551(0.12) 0.528(0.12) 0.529(0.12)

a1 0.103(0.16) 0.620(0.08) 0.651(0.09) 0.654(0.07) 0.660(0.11) 0.661(0.12) 0.651(0.11)

a7 0.141(0.13) 0.349(0.05) 0.345(0.05) 0.358(0.06) 0.347(0.06) 0.369(0.08) 0.354(0.07)

boston 0.895(0.04) 0.855(0.04) 0.884(0.03) 0.886(0.04) 0.881(0.04) 0.876(0.04) 0.881(0.04)

a2 0.282(0.38) 0.492(0.12) 0.519(0.12) 0.514(0.18) 0.501(0.15) 0.522(0.17) 0.529(0.17)

a5 0.145(0.16) 0.513(0.09) 0.521(0.14) 0.544(0.12) 0.552(0.11) 0.562(0.11) 0.542(0.08)

fuelCons 0.908(0.04) 0.844(0.04) 0.897(0.04) 0.899(0.04) 0.869(0.03) 0.874(0.04) 0.876(0.04)

availPwr 0.934(0.02) 0.906(0.04) 0.936(0.02) 0.944(0.02) 0.930(0.01) 0.911(0.03) 0.925(0.02)

cpuSm 0.163(0.03) 0.178(0.03) 0.187(0.03) 0.195(0.03) 0.180(0.03) 0.193(0.03) 0.179(0.03)

maxTorque 0.973(0.01) 0.942(0.03) 0.972(0.01) 0.976(0.01) 0.969(0.01) 0.969(0.01) 0.968(0.01)

bank8FM 0.949(0.01) 0.952(0.01) 0.949(0.01) 0.953(0.01) 0.951(0.01) 0.951(0.01) 0.951(0.01)

dAiler 0.781(0.05) 0.711(0.02) 0.698(0.02) 0.749(0.03) 0.677(0.02) 0.681(0.02) 0.677(0.02)

Continued on next page

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
177

Table A.4 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

SVM

concreteStrength 0.855(0.15) 0.827(0.07) 0.875(0.05) 0.897(0.06) 0.877(0.05) 0.872(0.05) 0.870(0.05)

acceleration 0.876(0.08) 0.864(0.06) 0.865(0.04) 0.907(0.03) 0.869(0.04) 0.891(0.03) 0.874(0.04)

airfoild 0.166(0.11) 0.222(0.12) 0.265(0.15) 0.233(0.12) 0.247(0.11) 0.238(0.12) 0.239(0.12)

NNET

servo 0.644(0.14) 0.587(0.16) 0.708(0.17) 0.659(0.19) 0.648(0.18) 0.521(0.16) 0.525(0.16)

a6 0.175(0.19) 0.470(0.07) 0.465(0.07) 0.465(0.06) 0.473(0.06) 0.461(0.09) 0.471(0.07)

Abalone 0.707(0.06) 0.656(0.08) 0.663(0.10) 0.633(0.10) 0.650(0.08) 0.671(0.02) 0.660(0.05)

machineCpu 0.059(0.07) 0.454(0.07) 0.446(0.08) 0.457(0.08) 0.484(0.07) 0.466(0.07) 0.461(0.07)

a3 0.203(0.22) 0.434(0.05) 0.434(0.06) 0.430(0.05) 0.453(0.06) 0.439(0.06) 0.456(0.05)

a4 0.407(0.25) 0.427(0.13) 0.406(0.17) 0.442(0.15) 0.479(0.13) 0.434(0.16) 0.438(0.12)

a1 0.252(0.27) 0.400(0.24) 0.455(0.22) 0.327(0.26) 0.386(0.25) 0.421(0.27) 0.380(0.27)

a7 0.282(0.22) 0.326(0.05) 0.351(0.07) 0.346(0.07) 0.334(0.06) 0.338(0.06) 0.352(0.06)

boston 0.308(0.28) 0.324(0.20) 0.311(0.26) 0.346(0.27) 0.276(0.22) 0.280(0.23) 0.253(0.25)

a2 0.048(0.14) 0.325(0.15) 0.316(0.21) 0.344(0.22) 0.369(0.19) 0.421(0.19) 0.365(0.21)

a5 0.011(0.04) 0.363(0.15) 0.380(0.18) 0.322(0.21) 0.362(0.17) 0.416(0.12) 0.353(0.18)

fuelCons 0.065(0.15) 0.368(0.22) 0.255(0.20) 0.171(0.22) 0.290(0.24) 0.269(0.18) 0.280(0.22)

availPwr 0.094(0.12) 0.166(0.20) 0.173(0.26) 0.035(0.09) 0.056(0.13) 0.076(0.16) 0.047(0.10)

cpuSm 0.094(0.10) 0.317(0.24) 0.262(0.21) 0.340(0.33) 0.316(0.25) 0.218(0.22) 0.370(0.30)

maxTorque 0.093(0.18) 0.397(0.21) 0.261(0.23) 0.273(0.25) 0.237(0.16) 0.245(0.27) 0.370(0.24)

bank8FM 0.954(0.01) 0.890(0.10) 0.925(0.05) 0.925(0.08) 0.938(0.03) 0.937(0.03) 0.933(0.06)

dAiler 0.351(0.09) 0.301(0.04) 0.348(0.12) 0.322(0.05) 0.334(0.06) 0.332(0.11) 0.364(0.09)

concreteStrength 0.000(0.00) 0.258(0.20) 0.115(0.22) 0.053(0.11) 0.115(0.18) 0.164(0.17) 0.150(0.16)

acceleration 0.116(0.29) 0.268(0.20) 0.299(0.28) 0.174(0.24) 0.235(0.23) 0.298(0.24) 0.349(0.26)

airfoild 0.020(0.03) 0.078(0.07) 0.032(0.05) 0.014(0.03) 0.029(0.04) 0.038(0.04) 0.046(0.06)

178
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.5: Evaluation results concerning the specφ metric (average and standard deviation) for 20 data sets and all tested variants of 4

learners using unbiased pre-processing strategies.

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

MARS

servo 0.792(0.09) 0.788(0.09) 0.803(0.08) 0.790(0.09) 0.805(0.09) 0.781(0.10) 0.795(0.09)

a6 0.690(0.09) 0.696(0.10) 0.700(0.09) 0.695(0.09) 0.710(0.09) 0.697(0.10) 0.700(0.10)

Abalone 0.784(0.01) 0.828(0.01) 0.827(0.01) 0.825(0.01) 0.832(0.01) 0.830(0.01) 0.830(0.01)

machineCpu 0.887(0.05) 0.888(0.05) 0.887(0.05) 0.885(0.04) 0.887(0.05) 0.896(0.04) 0.891(0.05)

a3 0.695(0.10) 0.716(0.08) 0.723(0.10) 0.720(0.09) 0.716(0.08) 0.723(0.08) 0.721(0.09)

a4 0.720(0.08) 0.756(0.10) 0.758(0.11) 0.747(0.10) 0.746(0.09) 0.732(0.10) 0.754(0.09)

a1 0.816(0.07) 0.856(0.07) 0.855(0.06) 0.847(0.06) 0.851(0.07) 0.850(0.06) 0.865(0.07)

a7 0.544(0.18) 0.547(0.18) 0.530(0.18) 0.530(0.17) 0.540(0.19) 0.517(0.19) 0.517(0.22)

boston 0.937(0.03) 0.941(0.03) 0.945(0.03) 0.944(0.03) 0.943(0.03) 0.943(0.03) 0.943(0.03)

a2 0.691(0.25) 0.707(0.25) 0.696(0.26) 0.700(0.25) 0.702(0.25) 0.712(0.26) 0.709(0.26)

a5 0.664(0.24) 0.701(0.25) 0.707(0.25) 0.706(0.26) 0.706(0.26) 0.685(0.26) 0.702(0.25)

fuelCons 0.900(0.01) 0.923(0.01) 0.925(0.01) 0.917(0.01) 0.924(0.01) 0.930(0.01) 0.926(0.01)

availPwr 0.946(0.01) 0.952(0.01) 0.952(0.01) 0.952(0.01) 0.951(0.01) 0.950(0.01) 0.949(0.01)

cpuSm 0.345(0.04) 0.369(0.03) 0.361(0.04) 0.371(0.04) 0.373(0.03) 0.370(0.03) 0.375(0.03)

maxTorque 0.973(0.01) 0.991(0.00) 0.978(0.01) 0.983(0.01) 0.980(0.01) 0.981(0.01) 0.982(0.01)

bank8FM 0.961(0.00) 0.967(0.00) 0.967(0.00) 0.967(0.00) 0.966(0.00) 0.967(0.00) 0.966(0.00)

dAiler 0.807(0.01) 0.877(0.01) 0.878(0.01) 0.861(0.01) 0.881(0.01) 0.882(0.01) 0.882(0.01)

concreteStrength 0.929(0.02) 0.954(0.02) 0.959(0.01) 0.954(0.02) 0.956(0.02) 0.959(0.01) 0.959(0.01)

acceleration 0.941(0.01) 0.960(0.01) 0.958(0.01) 0.954(0.01) 0.959(0.01) 0.957(0.01) 0.957(0.01)

airfoild 0.346(0.08) 0.394(0.10) 0.394(0.11) 0.346(0.11) 0.407(0.11) 0.399(0.10) 0.392(0.11)

RF

servo 0.864(0.09) 0.853(0.08) 0.877(0.09) 0.860(0.11) 0.865(0.10) 0.808(0.11) 0.825(0.09)

a6 0.692(0.12) 0.717(0.12) 0.701(0.12) 0.714(0.12) 0.715(0.13) 0.696(0.11) 0.713(0.12)

Abalone 0.794(0.01) 0.830(0.01) 0.804(0.01) 0.815(0.01) 0.827(0.01) 0.828(0.01) 0.828(0.01)

machineCpu 0.893(0.05) 0.893(0.05) 0.891(0.05) 0.886(0.05) 0.894(0.05) 0.894(0.04) 0.895(0.05)

a3 0.698(0.09) 0.723(0.09) 0.717(0.10) 0.719(0.11) 0.744(0.08) 0.725(0.08) 0.720(0.09)

a4 0.738(0.08) 0.773(0.10) 0.748(0.08) 0.765(0.09) 0.762(0.08) 0.775(0.08) 0.773(0.08)

a1 0.828(0.07) 0.864(0.06) 0.836(0.07) 0.847(0.07) 0.850(0.07) 0.858(0.07) 0.855(0.07)

Continued on next page

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
179

Table A.5 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

RF

a7 0.555(0.18) 0.542(0.19) 0.587(0.20) 0.615(0.20) 0.592(0.19) 0.545(0.22) 0.567(0.20)

boston 0.942(0.03) 0.948(0.03) 0.947(0.03) 0.949(0.02) 0.947(0.03) 0.950(0.03) 0.948(0.03)

a2 0.686(0.25) 0.738(0.26) 0.697(0.25) 0.711(0.26) 0.724(0.26) 0.733(0.27) 0.725(0.26)

a5 0.677(0.25) 0.715(0.26) 0.694(0.26) 0.703(0.26) 0.710(0.26) 0.721(0.26) 0.719(0.26)

fuelCons 0.937(0.01) 0.935(0.01) 0.949(0.01) 0.951(0.01) 0.947(0.01) 0.945(0.01) 0.947(0.01)

availPwr 0.981(0.01) 0.977(0.01) 0.989(0.01) 0.989(0.01) 0.983(0.01) 0.986(0.01) 0.984(0.01)

cpuSm 0.651(0.04) 0.660(0.04) 0.661(0.04) 0.653(0.04) 0.661(0.04) 0.661(0.04) 0.659(0.04)

maxTorque 0.982(0.01) 0.980(0.01) 0.988(0.01) 0.989(0.01) 0.985(0.00) 0.986(0.00) 0.986(0.01)

bank8FM 0.966(0.00) 0.971(0.00) 0.967(0.00) 0.966(0.00) 0.972(0.00) 0.969(0.00) 0.972(0.00)

dAiler 0.825(0.01) 0.885(0.01) 0.829(0.01) 0.841(0.01) 0.874(0.01) 0.865(0.01) 0.874(0.01)

concreteStrength 0.957(0.02) 0.959(0.02) 0.964(0.02) 0.966(0.02) 0.963(0.02) 0.961(0.02) 0.963(0.02)

acceleration 0.962(0.01) 0.967(0.01) 0.972(0.01) 0.974(0.01) 0.973(0.01) 0.971(0.01) 0.973(0.01)

airfoild 0.400(0.14) 0.409(0.10) 0.392(0.10) 0.389(0.10) 0.391(0.11) 0.390(0.12) 0.422(0.10)

SVM

servo 0.601(0.13) 0.774(0.09) 0.822(0.08) 0.831(0.08) 0.804(0.08) 0.770(0.09) 0.776(0.09)

a6 0.657(0.08) 0.709(0.11) 0.712(0.10) 0.720(0.09) 0.711(0.09) 0.714(0.09) 0.716(0.09)

Abalone 0.773(0.01) 0.825(0.01) 0.827(0.01) 0.823(0.01) 0.833(0.01) 0.832(0.01) 0.833(0.01)

machineCpu 0.883(0.05) 0.890(0.05) 0.895(0.05) 0.891(0.05) 0.889(0.05) 0.893(0.05) 0.896(0.04)

a3 0.644(0.06) 0.716(0.09) 0.713(0.08) 0.708(0.08) 0.720(0.09) 0.712(0.08) 0.706(0.09)

a4 0.688(0.08) 0.749(0.09) 0.745(0.09) 0.744(0.09) 0.746(0.10) 0.760(0.08) 0.749(0.09)

a1 0.759(0.05) 0.844(0.06) 0.858(0.05) 0.853(0.06) 0.853(0.06) 0.850(0.06) 0.848(0.06)

a7 0.549(0.15) 0.487(0.21) 0.515(0.20) 0.527(0.21) 0.521(0.20) 0.540(0.20) 0.507(0.20)

boston 0.928(0.03) 0.942(0.03) 0.952(0.02) 0.952(0.02) 0.948(0.03) 0.950(0.02) 0.950(0.02)

a2 0.664(0.25) 0.696(0.25) 0.701(0.25) 0.687(0.25) 0.711(0.26) 0.697(0.25) 0.700(0.25)

a5 0.641(0.23) 0.707(0.26) 0.717(0.26) 0.719(0.26) 0.711(0.26) 0.718(0.26) 0.720(0.26)

fuelCons 0.935(0.01) 0.933(0.01) 0.938(0.01) 0.939(0.01) 0.936(0.01) 0.937(0.01) 0.938(0.01)

availPwr 0.964(0.01) 0.966(0.01) 0.970(0.01) 0.971(0.01) 0.968(0.01) 0.961(0.01) 0.967(0.01)

cpuSm 0.367(0.04) 0.355(0.04) 0.392(0.04) 0.399(0.04) 0.384(0.03) 0.396(0.03) 0.382(0.03)

maxTorque 0.984(0.00) 0.984(0.00) 0.985(0.00) 0.987(0.00) 0.984(0.00) 0.985(0.01) 0.984(0.00)

bank8FM 0.965(0.00) 0.966(0.00) 0.968(0.00) 0.970(0.00) 0.968(0.00) 0.968(0.00) 0.968(0.00)

dAiler 0.800(0.01) 0.877(0.01) 0.881(0.01) 0.860(0.01) 0.886(0.01) 0.885(0.01) 0.886(0.01)

Continued on next page

180
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.5 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

SVM

concreteStrength 0.925(0.02) 0.953(0.02) 0.962(0.01) 0.959(0.01) 0.962(0.01) 0.961(0.01) 0.962(0.01)

acceleration 0.933(0.01) 0.961(0.01) 0.959(0.01) 0.955(0.01) 0.959(0.01) 0.957(0.01) 0.958(0.01)

airfoild 0.354(0.10) 0.403(0.12) 0.440(0.11) 0.408(0.12) 0.429(0.11) 0.420(0.11) 0.417(0.11)

NNET

servo 0.802(0.10) 0.756(0.14) 0.828(0.12) 0.792(0.13) 0.787(0.14) 0.726(0.14) 0.713(0.14)

a6 0.665(0.10) 0.690(0.12) 0.702(0.11) 0.697(0.12) 0.698(0.12) 0.697(0.12) 0.706(0.11)

Abalone 0.785(0.02) 0.822(0.03) 0.824(0.03) 0.809(0.04) 0.828(0.03) 0.837(0.01) 0.833(0.02)

machineCpu 0.685(0.09) 0.711(0.10) 0.707(0.09) 0.719(0.08) 0.730(0.10) 0.723(0.09) 0.718(0.10)

a3 0.662(0.07) 0.690(0.09) 0.693(0.07) 0.692(0.08) 0.695(0.08) 0.693(0.08) 0.702(0.08)

a4 0.714(0.09) 0.740(0.10) 0.746(0.10) 0.755(0.08) 0.760(0.08) 0.745(0.09) 0.746(0.09)

a1 0.767(0.08) 0.815(0.07) 0.824(0.06) 0.816(0.06) 0.824(0.06) 0.814(0.07) 0.816(0.06)

a7 0.562(0.20) 0.520(0.19) 0.533(0.21) 0.544(0.19) 0.537(0.18) 0.527(0.19) 0.560(0.19)

boston 0.814(0.05) 0.855(0.04) 0.852(0.04) 0.858(0.04) 0.848(0.04) 0.847(0.04) 0.845(0.04)

a2 0.654(0.23) 0.703(0.25) 0.706(0.25) 0.710(0.25) 0.705(0.26) 0.714(0.26) 0.714(0.25)

a5 0.628(0.23) 0.687(0.25) 0.694(0.25) 0.692(0.25) 0.691(0.25) 0.689(0.25) 0.690(0.25)

fuelCons 0.602(0.04) 0.684(0.04) 0.655(0.05) 0.650(0.04) 0.672(0.06) 0.664(0.05) 0.675(0.06)

availPwr 0.729(0.04) 0.815(0.04) 0.808(0.04) 0.792(0.03) 0.796(0.04) 0.798(0.04) 0.796(0.03)

cpuSm 0.359(0.06) 0.364(0.13) 0.338(0.11) 0.356(0.15) 0.343(0.13) 0.319(0.13) 0.383(0.15)

maxTorque 0.751(0.03) 0.846(0.03) 0.838(0.03) 0.834(0.03) 0.837(0.03) 0.834(0.03) 0.838(0.03)

bank8FM 0.970(0.00) 0.965(0.02) 0.971(0.01) 0.968(0.01) 0.972(0.01) 0.973(0.01) 0.972(0.01)

dAiler 0.690(0.01) 0.721(0.02) 0.754(0.04) 0.723(0.02) 0.747(0.02) 0.742(0.04) 0.751(0.02)

concreteStrength 0.775(0.03) 0.886(0.03) 0.871(0.03) 0.864(0.02) 0.870(0.03) 0.876(0.03) 0.872(0.02)

acceleration 0.777(0.03) 0.869(0.02) 0.870(0.02) 0.856(0.02) 0.868(0.02) 0.873(0.03) 0.876(0.03)

airfoild 0.458(0.04) 0.342(0.05) 0.346(0.03) 0.361(0.03) 0.351(0.03) 0.345(0.03) 0.353(0.04)

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
181

Table A.6: Evaluation results concerning the NPvalφ metric (average and standard deviation) for 20 data sets and all tested variants

of 4 learners using unbiased pre-processing strategies.

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

MARS

servo 0.968(0.04) 0.977(0.06) 0.970(0.05) 0.936(0.04) 0.967(0.03) 1.000(0.01) 1.000(0.01)

a6 0.842(0.04) 0.766(0.13) 0.819(0.07) 0.799(0.06) 0.817(0.06) 0.801(0.06) 0.812(0.06)

Abalone 0.896(0.01) 0.822(0.01) 0.823(0.01) 0.823(0.01) 0.801(0.01) 0.795(0.01) 0.794(0.01)

machineCpu 0.977(0.02) 0.949(0.03) 0.958(0.02) 0.949(0.03) 0.961(0.02) 0.960(0.03) 0.955(0.02)

a3 0.836(0.05) 0.743(0.09) 0.771(0.07) 0.784(0.07) 0.788(0.06) 0.787(0.06) 0.788(0.06)

a4 0.869(0.05) 0.817(0.07) 0.812(0.06) 0.785(0.06) 0.820(0.06) 0.821(0.06) 0.825(0.06)

a1 0.934(0.04) 0.863(0.06) 0.881(0.05) 0.863(0.05) 0.890(0.04) 0.880(0.04) 0.886(0.05)

a7 0.873(0.05) 0.741(0.18) 0.799(0.08) 0.774(0.09) 0.819(0.10) 0.829(0.07) 0.818(0.08)

boston 0.992(0.02) 0.957(0.02) 0.965(0.02) 0.959(0.02) 0.968(0.02) 0.961(0.02) 0.966(0.02)

a2 0.914(0.04) 0.828(0.10) 0.838(0.05) 0.827(0.05) 0.839(0.06) 0.836(0.05) 0.846(0.05)

a5 0.901(0.04) 0.774(0.10) 0.832(0.05) 0.814(0.06) 0.839(0.07) 0.840(0.06) 0.833(0.06)

fuelCons 0.954(0.01) 0.934(0.01) 0.931(0.01) 0.941(0.01) 0.932(0.01) 0.922(0.01) 0.926(0.01)

availPwr 0.988(0.00) 0.968(0.01) 0.973(0.01) 0.981(0.00) 0.971(0.01) 0.965(0.01) 0.967(0.01)

cpuSm 0.854(0.01) 0.841(0.01) 0.840(0.01) 0.817(0.01) 0.846(0.01) 0.843(0.01) 0.845(0.01)

maxTorque 0.994(0.00) 0.988(0.00) 0.974(0.01) 0.987(0.01) 0.976(0.01) 0.975(0.01) 0.978(0.01)

bank8FM 0.995(0.00) 0.985(0.00) 0.984(0.00) 0.983(0.00) 0.986(0.00) 0.985(0.00) 0.985(0.00)

dAiler 0.942(0.00) 0.859(0.01) 0.856(0.01) 0.887(0.01) 0.828(0.01) 0.824(0.01) 0.827(0.01)

concreteStrength 0.998(0.01) 0.962(0.02) 0.969(0.01) 0.968(0.01) 0.980(0.01) 0.972(0.01) 0.977(0.01)

acceleration 0.990(0.01) 0.967(0.01) 0.968(0.01) 0.962(0.01) 0.971(0.01) 0.966(0.01) 0.969(0.01)

airfoild 0.835(0.02) 0.792(0.03) 0.801(0.02) 0.787(0.02) 0.816(0.02) 0.797(0.02) 0.804(0.02)

RF

servo 0.988(0.02) 1.000(0.02) 0.986(0.03) 0.979(0.02) 0.988(0.03) 1.000(0.01) 1.000(0.01)

a6 0.835(0.04) 0.742(0.05) 0.811(0.04) 0.795(0.05) 0.805(0.06) 0.768(0.06) 0.802(0.06)

Abalone 0.903(0.01) 0.842(0.01) 0.893(0.01) 0.867(0.01) 0.855(0.01) 0.850(0.01) 0.854(0.01)

machineCpu 0.982(0.02) 0.950(0.05) 0.983(0.03) 0.972(0.02) 0.977(0.02) 0.978(0.02) 0.976(0.02)

a3 0.838(0.05) 0.708(0.07) 0.823(0.04) 0.763(0.03) 0.781(0.06) 0.779(0.06) 0.796(0.07)

a4 0.875(0.04) 0.744(0.06) 0.866(0.04) 0.818(0.06) 0.812(0.04) 0.812(0.06) 0.832(0.04)

a1 0.929(0.03) 0.844(0.05) 0.928(0.04) 0.899(0.03) 0.899(0.04) 0.893(0.05) 0.905(0.04)

Continued on next page

182
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.6 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

RF

a7 0.856(0.06) 0.666(0.09) 0.836(0.05) 0.764(0.05) 0.756(0.08) 0.753(0.07) 0.761(0.06)

boston 0.992(0.01) 0.957(0.02) 0.989(0.01) 0.980(0.01) 0.984(0.02) 0.979(0.01) 0.985(0.02)

a2 0.912(0.04) 0.757(0.06) 0.905(0.05) 0.852(0.05) 0.864(0.05) 0.850(0.05) 0.865(0.04)

a5 0.900(0.04) 0.679(0.06) 0.886(0.04) 0.838(0.04) 0.847(0.05) 0.833(0.05) 0.840(0.04)

fuelCons 0.979(0.00) 0.946(0.01) 0.979(0.01) 0.970(0.01) 0.963(0.01) 0.959(0.01) 0.961(0.01)

availPwr 0.999(0.00) 0.981(0.01) 0.999(0.00) 0.998(0.00) 0.995(0.00) 0.996(0.00) 0.995(0.00)

cpuSm 0.862(0.01) 0.855(0.01) 0.862(0.01) 0.849(0.01) 0.864(0.01) 0.863(0.01) 0.862(0.01)

maxTorque 0.998(0.00) 0.973(0.01) 0.998(0.00) 0.998(0.00) 0.995(0.00) 0.993(0.00) 0.994(0.00)

bank8FM 0.991(0.00) 0.979(0.00) 0.990(0.00) 0.987(0.00) 0.988(0.00) 0.987(0.00) 0.988(0.00)

dAiler 0.946(0.00) 0.878(0.01) 0.942(0.00) 0.923(0.01) 0.906(0.01) 0.914(0.01) 0.909(0.01)

concreteStrength 1.000(0.01) 0.966(0.02) 0.999(0.01) 0.991(0.01) 0.994(0.01) 0.995(0.01) 0.993(0.01)

acceleration 0.996(0.01) 0.970(0.01) 0.995(0.00) 0.991(0.00) 0.989(0.01) 0.988(0.01) 0.988(0.01)

airfoild 0.839(0.02) 0.811(0.02) 0.841(0.01) 0.835(0.01) 0.838(0.02) 0.840(0.02) 0.845(0.01)

SVM

servo 0.909(0.05) 0.873(0.07) 0.884(0.07) 0.883(0.07) 0.878(0.06) 0.858(0.08) 0.879(0.07)

a6 0.896(0.04) 0.819(0.06) 0.818(0.05) 0.803(0.05) 0.822(0.04) 0.821(0.05) 0.823(0.05)

Abalone 0.913(0.01) 0.855(0.01) 0.858(0.01) 0.854(0.01) 0.838(0.01) 0.840(0.01) 0.836(0.01)

machineCpu 0.974(0.01) 0.949(0.02) 0.957(0.02) 0.956(0.02) 0.959(0.02) 0.958(0.02) 0.959(0.02)

a3 0.918(0.03) 0.787(0.07) 0.811(0.05) 0.787(0.08) 0.820(0.04) 0.790(0.06) 0.812(0.05)

a4 0.895(0.05) 0.811(0.07) 0.833(0.05) 0.817(0.08) 0.831(0.06) 0.836(0.06) 0.841(0.05)

a1 0.941(0.03) 0.830(0.07) 0.842(0.06) 0.842(0.06) 0.854(0.07) 0.849(0.06) 0.848(0.07)

a7 0.915(0.03) 0.780(0.06) 0.798(0.06) 0.781(0.07) 0.816(0.07) 0.797(0.06) 0.789(0.06)

boston 0.985(0.01) 0.950(0.02) 0.962(0.01) 0.962(0.01) 0.959(0.01) 0.958(0.01) 0.959(0.01)

a2 0.952(0.02) 0.801(0.07) 0.849(0.05) 0.813(0.06) 0.846(0.05) 0.840(0.05) 0.838(0.06)

a5 0.947(0.03) 0.817(0.07) 0.838(0.05) 0.825(0.05) 0.844(0.05) 0.844(0.05) 0.848(0.06)

fuelCons 0.970(0.01) 0.947(0.01) 0.965(0.01) 0.960(0.01) 0.954(0.01) 0.953(0.01) 0.953(0.01)

availPwr 0.992(0.00) 0.979(0.01) 0.986(0.00) 0.988(0.00) 0.984(0.00) 0.980(0.00) 0.982(0.00)

cpuSm 0.863(0.01) 0.800(0.01) 0.823(0.01) 0.823(0.01) 0.819(0.01) 0.817(0.01) 0.818(0.01)

maxTorque 0.996(0.00) 0.984(0.00) 0.993(0.00) 0.993(0.00) 0.989(0.00) 0.988(0.00) 0.988(0.00)

bank8FM 0.997(0.00) 0.990(0.00) 0.987(0.00) 0.984(0.00) 0.989(0.00) 0.987(0.00) 0.988(0.00)

dAiler 0.956(0.00) 0.879(0.01) 0.878(0.01) 0.907(0.00) 0.851(0.01) 0.853(0.01) 0.852(0.01)

Continued on next page

A
.1
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
U
N
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
183

Table A.6 – continued from previous page

Learner Data sets None RU RO WERCS SMOTER GN SMOGN

SVM

concreteStrength 0.992(0.01) 0.944(0.02) 0.955(0.01) 0.948(0.01) 0.955(0.01) 0.954(0.02) 0.954(0.01)

acceleration 0.995(0.01) 0.957(0.01) 0.963(0.01) 0.968(0.01) 0.961(0.01) 0.962(0.01) 0.960(0.01)

airfoild 0.853(0.02) 0.792(0.03) 0.821(0.02) 0.794(0.02) 0.823(0.02) 0.817(0.02) 0.819(0.02)

NNET

servo 0.934(0.03) 0.802(0.21) 0.942(0.12) 0.821(0.22) 0.848(0.25) 0.872(0.21) 0.799(0.22)

a6 0.814(0.05) 0.488(0.26) 0.455(0.30) 0.434(0.27) 0.617(0.28) 0.514(0.30) 0.519(0.31)

Abalone 0.910(0.01) 0.851(0.02) 0.857(0.02) 0.847(0.02) 0.847(0.02) 0.835(0.02) 0.842(0.02)

machineCpu 0.844(0.04) 0.367(0.43) 0.231(0.28) 0.505(0.42) 0.484(0.42) 0.457(0.44) 0.438(0.40)

a3 0.840(0.06) 0.630(0.19) 0.582(0.29) 0.530(0.24) 0.689(0.25) 0.633(0.30) 0.601(0.29)

a4 0.869(0.06) 0.620(0.21) 0.585(0.25) 0.573(0.21) 0.706(0.20) 0.590(0.22) 0.647(0.22)

a1 0.937(0.04) 0.792(0.11) 0.803(0.09) 0.704(0.09) 0.819(0.11) 0.816(0.11) 0.816(0.11)

a7 0.843(0.10) 0.631(0.28) 0.625(0.26) 0.600(0.26) 0.683(0.28) 0.677(0.26) 0.702(0.27)

boston 1.000(0.03) 0.777(0.10) 0.766(0.13) 0.741(0.15) 0.777(0.10) 0.783(0.12) 0.766(0.13)

a2 0.913(0.04) 0.729(0.11) 0.738(0.12) 0.707(0.10) 0.785(0.13) 0.805(0.13) 0.767(0.13)

a5 0.901(0.03) 0.713(0.21) 0.747(0.16) 0.730(0.13) 0.803(0.15) 0.827(0.15) 0.771(0.15)

fuelCons 0.946(0.01) 0.850(0.05) 0.896(0.06) 0.906(0.04) 0.870(0.07) 0.872(0.07) 0.850(0.07)

availPwr 1.000(0.02) 0.663(0.11) 0.604(0.21) 0.611(0.04) 0.606(0.07) 0.611(0.08) 0.603(0.06)

cpuSm 0.823(0.06) 0.487(0.21) 0.474(0.17) 0.467(0.14) 0.485(0.23) 0.529(0.18) 0.554(0.22)

maxTorque 1.000(0.01) 0.761(0.07) 0.713(0.09) 0.741(0.05) 0.722(0.07) 0.707(0.08) 0.728(0.08)

bank8FM 0.991(0.00) 0.969(0.03) 0.979(0.02) 0.976(0.02) 0.985(0.01) 0.983(0.01) 0.983(0.02)

dAiler 0.952(0.01) 0.884(0.03) 0.904(0.03) 0.915(0.01) 0.883(0.02) 0.885(0.02) 0.878(0.02)

concreteStrength 1.000(0.01) 0.854(0.06) 0.806(0.07) 0.816(0.03) 0.808(0.05) 0.830(0.05) 0.817(0.05)

acceleration 1.000(0.02) 0.760(0.06) 0.760(0.06) 0.801(0.04) 0.775(0.07) 0.784(0.07) 0.798(0.08)

airfoild 0.894(0.02) 0.608(0.09) 0.579(0.08) 0.604(0.03) 0.581(0.07) 0.578(0.07) 0.603(0.09)

A.2 Evaluation Results of Biased Pre-processing Strategies

Table A.7: Evaluation results concerning the F φ1 metric (average and standard deviation) for 20 data sets and all tested variants of 4

learners using biased pre-processing strategies.

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

MARS

servo 0.645(0.11) 0.630(0.13) 0.628(0.13) 0.634(0.13) 0.657(0.12) 0.628(0.13) 0.645(0.12) 0.635(0.13) 0.646(0.11)

a6 0.459(0.19) 0.517(0.10) 0.524(0.09) 0.509(0.11) 0.528(0.10) 0.539(0.09) 0.527(0.09) 0.528(0.11) 0.517(0.10)

Abalone 0.708(0.02) 0.736(0.01) 0.736(0.02) 0.735(0.01) 0.733(0.01) 0.730(0.01) 0.731(0.01) 0.732(0.01) 0.734(0.01)

machineCpu 0.797(0.09) 0.778(0.08) 0.757(0.11) 0.774(0.09) 0.780(0.09) 0.788(0.09) 0.783(0.08) 0.776(0.10) 0.782(0.08)

a3 0.498(0.21) 0.533(0.09) 0.526(0.08) 0.516(0.09) 0.526(0.09) 0.520(0.08) 0.529(0.09) 0.532(0.10) 0.532(0.08)

a4 0.481(0.20) 0.552(0.11) 0.525(0.12) 0.545(0.12) 0.552(0.10) 0.574(0.14) 0.586(0.10) 0.567(0.14) 0.584(0.10)

a1 0.573(0.25) 0.720(0.10) 0.706(0.11) 0.722(0.10) 0.722(0.10) 0.724(0.09) 0.724(0.10) 0.722(0.09) 0.728(0.09)

a7 0.294(0.17) 0.365(0.13) 0.355(0.15) 0.346(0.16) 0.361(0.14) 0.361(0.12) 0.340(0.14) 0.352(0.15) 0.360(0.13)

boston 0.894(0.04) 0.873(0.05) 0.883(0.04) 0.878(0.04) 0.883(0.04) 0.880(0.04) 0.884(0.04) 0.880(0.04) 0.882(0.04)

a2 0.260(0.38) 0.488(0.22) 0.527(0.20) 0.490(0.23) 0.522(0.20) 0.538(0.22) 0.537(0.21) 0.522(0.23) 0.524(0.22)

a5 0.146(0.21) 0.495(0.22) 0.511(0.22) 0.526(0.20) 0.525(0.21) 0.527(0.20) 0.532(0.20) 0.511(0.20) 0.522(0.21)

fuelCons 0.853(0.03) 0.865(0.03) 0.864(0.02) 0.867(0.03) 0.866(0.03) 0.862(0.02) 0.849(0.03) 0.875(0.02) 0.867(0.02)

availPwr 0.902(0.02) 0.900(0.02) 0.903(0.02) 0.900(0.02) 0.898(0.02) 0.881(0.02) 0.878(0.02) 0.901(0.02) 0.901(0.02)

cpuSm 0.142(0.03) 0.167(0.02) 0.170(0.03) 0.168(0.03) 0.170(0.02) 0.149(0.03) 0.149(0.03) 0.177(0.03) 0.177(0.03)

maxTorque 0.954(0.01) 0.980(0.01) 0.979(0.01) 0.980(0.01) 0.959(0.02) 0.959(0.02) 0.958(0.02) 0.956(0.02) 0.956(0.02)

bank8FM 0.943(0.01) 0.947(0.01) 0.947(0.01) 0.947(0.01) 0.947(0.01) 0.948(0.01) 0.947(0.01) 0.947(0.01) 0.947(0.01)

dAiler 0.736(0.03) 0.754(0.02) 0.758(0.02) 0.753(0.02) 0.746(0.02) 0.745(0.02) 0.745(0.02) 0.750(0.02) 0.750(0.02)

concreteStrength 0.886(0.03) 0.886(0.03) 0.882(0.04) 0.882(0.03) 0.898(0.03) 0.902(0.03) 0.899(0.03) 0.899(0.03) 0.896(0.03)

acceleration 0.895(0.03) 0.886(0.04) 0.885(0.04) 0.890(0.03) 0.898(0.03) 0.898(0.02) 0.896(0.03) 0.894(0.03) 0.892(0.03)

airfoild 0.116(0.08) 0.208(0.09) 0.202(0.10) 0.207(0.10) 0.214(0.11) 0.227(0.12) 0.207(0.11) 0.209(0.12) 0.204(0.13)

RF

servo 0.761(0.14) 0.730(0.12) 0.728(0.13) 0.723(0.13) 0.754(0.15) 0.732(0.15) 0.767(0.14) 0.740(0.14) 0.761(0.15)

a6 0.527(0.14) 0.534(0.12) 0.545(0.12) 0.532(0.11) 0.524(0.14) 0.525(0.12) 0.525(0.12) 0.525(0.13) 0.526(0.11)

Abalone 0.719(0.02) 0.726(0.02) 0.728(0.02) 0.725(0.02) 0.727(0.02) 0.727(0.01) 0.726(0.01) 0.726(0.02) 0.724(0.02)

machineCpu 0.797(0.09) 0.788(0.09) 0.795(0.09) 0.782(0.07) 0.792(0.09) 0.788(0.08) 0.776(0.08) 0.785(0.09) 0.784(0.09)

a3 0.453(0.20) 0.541(0.09) 0.541(0.07) 0.531(0.09) 0.566(0.09) 0.548(0.09) 0.555(0.09) 0.549(0.10) 0.558(0.10)

Continued on next page

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
185

Table A.7 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

RF

a4 0.506(0.24) 0.585(0.12) 0.585(0.10) 0.587(0.10) 0.577(0.13) 0.587(0.10) 0.603(0.12) 0.577(0.14) 0.562(0.14)

a1 0.621(0.29) 0.736(0.08) 0.746(0.10) 0.751(0.09) 0.727(0.09) 0.730(0.09) 0.731(0.08) 0.716(0.10) 0.731(0.09)

a7 0.303(0.19) 0.382(0.15) 0.368(0.16) 0.371(0.16) 0.404(0.15) 0.370(0.15) 0.386(0.14) 0.364(0.16) 0.388(0.16)

boston 0.902(0.04) 0.891(0.05) 0.897(0.05) 0.884(0.04) 0.896(0.04) 0.897(0.04) 0.901(0.05) 0.900(0.04) 0.900(0.05)

a2 0.243(0.36) 0.576(0.22) 0.561(0.21) 0.573(0.22) 0.555(0.23) 0.588(0.23) 0.591(0.22) 0.541(0.25) 0.556(0.25)

a5 0.209(0.30) 0.551(0.20) 0.553(0.21) 0.555(0.21) 0.548(0.22) 0.565(0.22) 0.541(0.21) 0.520(0.22) 0.530(0.23)

fuelCons 0.918(0.01) 0.894(0.02) 0.898(0.02) 0.889(0.02) 0.920(0.02) 0.915(0.02) 0.910(0.01) 0.923(0.02) 0.920(0.01)

availPwr 0.964(0.02) 0.951(0.02) 0.953(0.02) 0.948(0.02) 0.967(0.01) 0.966(0.02) 0.965(0.02) 0.967(0.01) 0.965(0.01)

cpuSm 0.508(0.05) 0.484(0.06) 0.493(0.06) 0.480(0.06) 0.498(0.06) 0.487(0.05) 0.485(0.05) 0.508(0.05) 0.507(0.06)

maxTorque 0.967(0.01) 0.949(0.02) 0.955(0.01) 0.945(0.02) 0.968(0.01) 0.970(0.01) 0.966(0.01) 0.971(0.01) 0.967(0.01)

bank8FM 0.946(0.01) 0.941(0.01) 0.942(0.01) 0.941(0.01) 0.946(0.01) 0.946(0.01) 0.945(0.01) 0.949(0.01) 0.947(0.01)

dAiler 0.735(0.03) 0.753(0.01) 0.757(0.02) 0.752(0.01) 0.746(0.02) 0.750(0.02) 0.745(0.02) 0.749(0.02) 0.748(0.02)

concreteStrength 0.907(0.21) 0.907(0.03) 0.910(0.03) 0.902(0.04) 0.942(0.03) 0.928(0.09) 0.936(0.03) 0.911(0.12) 0.911(0.12)

acceleration 0.934(0.02) 0.906(0.02) 0.914(0.03) 0.905(0.02) 0.941(0.02) 0.938(0.02) 0.935(0.02) 0.944(0.02) 0.940(0.02)

airfoild 0.219(0.15) 0.214(0.09) 0.235(0.10) 0.228(0.12) 0.195(0.10) 0.219(0.09) 0.193(0.10) 0.191(0.11) 0.170(0.11)

SVM

servo 0.366(0.12) 0.612(0.10) 0.635(0.10) 0.615(0.10) 0.648(0.10) 0.653(0.11) 0.648(0.10) 0.643(0.11) 0.634(0.10)

a6 0.229(0.18) 0.526(0.11) 0.530(0.11) 0.534(0.09) 0.522(0.10) 0.535(0.10) 0.545(0.10) 0.505(0.09) 0.522(0.10)

Abalone 0.712(0.03) 0.735(0.02) 0.734(0.02) 0.733(0.02) 0.734(0.01) 0.733(0.01) 0.733(0.01) 0.733(0.02) 0.734(0.01)

machineCpu 0.780(0.10) 0.785(0.07) 0.779(0.08) 0.782(0.08) 0.782(0.08) 0.791(0.08) 0.789(0.07) 0.787(0.08) 0.778(0.09)

a3 0.181(0.10) 0.520(0.10) 0.525(0.10) 0.520(0.09) 0.532(0.10) 0.543(0.09) 0.539(0.09) 0.534(0.10) 0.521(0.10)

a4 0.252(0.24) 0.568(0.10) 0.557(0.10) 0.547(0.11) 0.578(0.12) 0.574(0.15) 0.574(0.11) 0.570(0.15) 0.579(0.11)

a1 0.113(0.18) 0.690(0.08) 0.677(0.08) 0.698(0.07) 0.715(0.09) 0.715(0.09) 0.726(0.08) 0.704(0.10) 0.714(0.09)

a7 0.107(0.10) 0.325(0.16) 0.342(0.14) 0.316(0.16) 0.343(0.15) 0.353(0.14) 0.349(0.15) 0.331(0.15) 0.339(0.16)

boston 0.883(0.04) 0.878(0.04) 0.878(0.04) 0.878(0.04) 0.896(0.04) 0.899(0.04) 0.898(0.04) 0.895(0.04) 0.893(0.04)

a2 0.232(0.34) 0.494(0.22) 0.478(0.22) 0.498(0.24) 0.504(0.24) 0.515(0.24) 0.506(0.25) 0.458(0.27) 0.456(0.26)

a5 0.139(0.17) 0.534(0.21) 0.530(0.21) 0.530(0.22) 0.547(0.22) 0.558(0.22) 0.548(0.21) 0.529(0.23) 0.498(0.24)

fuelCons 0.908(0.02) 0.880(0.03) 0.884(0.03) 0.876(0.03) 0.892(0.02) 0.889(0.02) 0.888(0.02) 0.899(0.02) 0.896(0.02)

availPwr 0.935(0.01) 0.924(0.02) 0.928(0.02) 0.924(0.02) 0.938(0.01) 0.922(0.02) 0.922(0.02) 0.938(0.01) 0.938(0.01)

cpuSm 0.161(0.03) 0.166(0.03) 0.168(0.03) 0.168(0.03) 0.179(0.03) 0.176(0.03) 0.172(0.03) 0.185(0.03) 0.183(0.03)

maxTorque 0.973(0.01) 0.958(0.02) 0.965(0.01) 0.960(0.02) 0.972(0.01) 0.970(0.01) 0.969(0.01) 0.971(0.01) 0.970(0.01)

Continued on next page

186
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.7 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

SVM

bank8FM 0.947(0.01) 0.949(0.01) 0.949(0.01) 0.948(0.01) 0.950(0.01) 0.949(0.01) 0.949(0.01) 0.950(0.01) 0.950(0.01)

dAiler 0.728(0.03) 0.761(0.02) 0.762(0.02) 0.759(0.02) 0.751(0.01) 0.747(0.01) 0.748(0.01) 0.758(0.02) 0.757(0.01)

concreteStrength 0.840(0.14) 0.875(0.04) 0.888(0.04) 0.879(0.04) 0.909(0.03) 0.909(0.03) 0.909(0.03) 0.911(0.03) 0.911(0.03)

acceleration 0.872(0.07) 0.898(0.03) 0.900(0.04) 0.895(0.04) 0.899(0.02) 0.895(0.02) 0.896(0.02) 0.906(0.02) 0.905(0.02)

airfoild 0.158(0.09) 0.216(0.12) 0.210(0.11) 0.221(0.11) 0.240(0.11) 0.218(0.09) 0.226(0.10) 0.245(0.12) 0.249(0.12)

NNET

servo 0.654(0.14) 0.619(0.18) 0.667(0.18) 0.641(0.18) 0.666(0.18) 0.664(0.19) 0.696(0.20) 0.664(0.18) 0.685(0.17)

a6 0.176(0.19) 0.515(0.11) 0.518(0.11) 0.508(0.12) 0.518(0.11) 0.509(0.10) 0.509(0.11) 0.501(0.11) 0.507(0.11)

Abalone 0.693(0.06) 0.704(0.08) 0.708(0.07) 0.706(0.07) 0.708(0.08) 0.716(0.07) 0.717(0.07) 0.711(0.08) 0.711(0.08)

machineCpu 0.062(0.08) 0.531(0.10) 0.537(0.08) 0.540(0.09) 0.555(0.09) 0.396(0.27) 0.308(0.28) 0.552(0.09) 0.542(0.08)

a3 0.197(0.21) 0.507(0.08) 0.508(0.08) 0.497(0.08) 0.513(0.08) 0.510(0.07) 0.502(0.08) 0.512(0.08) 0.502(0.10)

a4 0.422(0.25) 0.504(0.15) 0.487(0.17) 0.499(0.13) 0.548(0.14) 0.548(0.13) 0.554(0.13) 0.564(0.13) 0.567(0.14)

a1 0.243(0.26) 0.433(0.24) 0.484(0.19) 0.462(0.22) 0.416(0.26) 0.345(0.25) 0.368(0.24) 0.394(0.28) 0.399(0.27)

a7 0.263(0.23) 0.347(0.14) 0.338(0.14) 0.362(0.15) 0.359(0.14) 0.345(0.15) 0.360(0.15) 0.359(0.15) 0.358(0.15)

boston 0.311(0.29) 0.355(0.21) 0.376(0.22) 0.369(0.22) 0.298(0.24) 0.351(0.23) 0.345(0.26) 0.332(0.26) 0.346(0.24)

a2 0.044(0.13) 0.334(0.22) 0.356(0.25) 0.376(0.22) 0.374(0.26) 0.364(0.27) 0.361(0.28) 0.378(0.26) 0.354(0.27)

a5 0.011(0.04) 0.399(0.23) 0.383(0.23) 0.388(0.23) 0.378(0.24) 0.385(0.25) 0.377(0.25) 0.415(0.25) 0.405(0.25)

fuelCons 0.056(0.13) 0.375(0.20) 0.354(0.23) 0.341(0.23) 0.302(0.24) 0.260(0.23) 0.277(0.25) 0.349(0.19) 0.347(0.22)

availPwr 0.096(0.12) 0.180(0.21) 0.152(0.17) 0.157(0.17) 0.060(0.14) 0.052(0.14) 0.045(0.13) 0.041(0.12) 0.038(0.11)

cpuSm 0.084(0.07) 0.246(0.17) 0.218(0.16) 0.241(0.16) 0.230(0.17) 0.194(0.16) 0.201(0.16) 0.195(0.18) 0.220(0.17)

maxTorque 0.088(0.17) 0.443(0.22) 0.412(0.26) 0.437(0.23) 0.270(0.18) 0.232(0.26) 0.171(0.20) 0.302(0.27) 0.311(0.25)

bank8FM 0.953(0.01) 0.898(0.10) 0.898(0.10) 0.898(0.10) 0.946(0.03) 0.920(0.06) 0.927(0.05) 0.924(0.10) 0.935(0.07)

dAiler 0.329(0.08) 0.332(0.03) 0.334(0.03) 0.340(0.06) 0.374(0.06) 0.389(0.10) 0.390(0.10) 0.398(0.11) 0.385(0.10)

concreteStrength 0.000(0.00) 0.293(0.23) 0.245(0.21) 0.296(0.19) 0.127(0.19) 0.097(0.19) 0.132(0.20) 0.214(0.25) 0.212(0.26)

acceleration 0.099(0.24) 0.310(0.22) 0.300(0.22) 0.373(0.23) 0.259(0.25) 0.271(0.28) 0.273(0.28) 0.386(0.25) 0.382(0.26)

airfoild 0.020(0.03) 0.070(0.06) 0.069(0.06) 0.070(0.06) 0.029(0.04) 0.032(0.05) 0.028(0.04) 0.044(0.06) 0.038(0.05)

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
187

Table A.8: Evaluation results concerning the G−Meanφ metric (average and standard deviation) for 20 data sets and all tested variants

of 4 learners using biased pre-processing strategies.

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

MARS

servo 0.734(0.12) 0.738(0.12) 0.735(0.12) 0.741(0.13) 0.759(0.12) 0.737(0.12) 0.749(0.12) 0.739(0.12) 0.745(0.11)

a6 0.596(0.11) 0.629(0.14) 0.644(0.13) 0.629(0.14) 0.642(0.13) 0.653(0.11) 0.642(0.12) 0.637(0.13) 0.631(0.12)

Abalone 0.734(0.02) 0.803(0.02) 0.796(0.02) 0.805(0.02) 0.813(0.02) 0.815(0.02) 0.814(0.02) 0.808(0.02) 0.807(0.02)

machineCpu 0.845(0.07) 0.851(0.07) 0.828(0.09) 0.850(0.08) 0.847(0.08) 0.857(0.08) 0.860(0.07) 0.849(0.06) 0.848(0.06)

a3 0.601(0.12) 0.679(0.11) 0.665(0.11) 0.671(0.13) 0.663(0.10) 0.671(0.11) 0.669(0.11) 0.665(0.11) 0.667(0.10)

a4 0.638(0.11) 0.710(0.14) 0.672(0.15) 0.696(0.13) 0.689(0.12) 0.696(0.15) 0.714(0.13) 0.693(0.15) 0.717(0.11)

a1 0.757(0.10) 0.825(0.09) 0.820(0.08) 0.823(0.09) 0.815(0.09) 0.822(0.10) 0.828(0.10) 0.813(0.09) 0.823(0.09)

a7 0.440(0.18) 0.497(0.20) 0.473(0.21) 0.462(0.22) 0.484(0.21) 0.476(0.18) 0.451(0.20) 0.469(0.23) 0.479(0.19)

boston 0.914(0.05) 0.923(0.04) 0.923(0.04) 0.924(0.04) 0.924(0.04) 0.924(0.04) 0.926(0.04) 0.917(0.05) 0.920(0.04)

a2 0.623(0.25) 0.679(0.25) 0.675(0.25) 0.664(0.27) 0.660(0.25) 0.677(0.27) 0.676(0.27) 0.663(0.26) 0.668(0.26)

a5 0.587(0.23) 0.667(0.26) 0.681(0.26) 0.676(0.26) 0.663(0.26) 0.651(0.26) 0.670(0.26) 0.637(0.26) 0.657(0.26)

fuelCons 0.878(0.02) 0.910(0.02) 0.911(0.02) 0.914(0.02) 0.913(0.02) 0.915(0.02) 0.907(0.02) 0.914(0.01) 0.911(0.02)

availPwr 0.925(0.02) 0.934(0.01) 0.935(0.01) 0.935(0.01) 0.933(0.01) 0.923(0.02) 0.921(0.01) 0.934(0.01) 0.933(0.01)

cpuSm 0.220(0.03) 0.247(0.03) 0.251(0.03) 0.248(0.03) 0.250(0.03) 0.228(0.04) 0.228(0.04) 0.259(0.03) 0.259(0.03)

maxTorque 0.964(0.01) 0.988(0.00) 0.986(0.01) 0.988(0.00) 0.973(0.01) 0.971(0.01) 0.972(0.01) 0.972(0.01) 0.971(0.01)

bank8FM 0.950(0.01) 0.957(0.01) 0.956(0.01) 0.957(0.01) 0.957(0.01) 0.958(0.01) 0.957(0.01) 0.955(0.01) 0.955(0.01)

dAiler 0.748(0.02) 0.849(0.02) 0.844(0.02) 0.850(0.02) 0.859(0.02) 0.862(0.02) 0.861(0.02) 0.848(0.02) 0.847(0.02)

concreteStrength 0.904(0.03) 0.942(0.03) 0.944(0.03) 0.947(0.02) 0.944(0.03) 0.945(0.02) 0.946(0.02) 0.942(0.02) 0.941(0.03)

acceleration 0.919(0.02) 0.948(0.02) 0.946(0.02) 0.947(0.02) 0.946(0.02) 0.946(0.01) 0.945(0.02) 0.942(0.02) 0.941(0.02)

airfoild 0.229(0.07) 0.283(0.10) 0.272(0.12) 0.283(0.12) 0.294(0.12) 0.308(0.13) 0.288(0.11) 0.286(0.12) 0.277(0.12)

RF

servo 0.816(0.12) 0.813(0.11) 0.807(0.12) 0.808(0.12) 0.822(0.14) 0.810(0.13) 0.827(0.12) 0.818(0.13) 0.824(0.13)

a6 0.600(0.15) 0.664(0.17) 0.667(0.16) 0.660(0.16) 0.645(0.17) 0.632(0.16) 0.645(0.14) 0.635(0.17) 0.648(0.15)

Abalone 0.748(0.02) 0.808(0.02) 0.801(0.02) 0.809(0.02) 0.802(0.02) 0.806(0.02) 0.805(0.02) 0.796(0.02) 0.795(0.02)

machineCpu 0.853(0.07) 0.856(0.07) 0.853(0.07) 0.856(0.06) 0.855(0.07) 0.844(0.06) 0.844(0.06) 0.847(0.07) 0.852(0.07)

a3 0.606(0.11) 0.693(0.12) 0.679(0.10) 0.682(0.12) 0.691(0.11) 0.676(0.11) 0.690(0.11) 0.669(0.11) 0.681(0.11)

a4 0.662(0.11) 0.729(0.14) 0.732(0.11) 0.739(0.12) 0.703(0.11) 0.714(0.11) 0.717(0.11) 0.709(0.11) 0.714(0.10)

a1 0.772(0.10) 0.834(0.09) 0.827(0.10) 0.845(0.09) 0.809(0.10) 0.807(0.10) 0.822(0.10) 0.800(0.10) 0.814(0.10)

Continued on next page

188
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.8 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

RF

a7 0.450(0.18) 0.504(0.23) 0.482(0.23) 0.490(0.23) 0.535(0.21) 0.481(0.21) 0.497(0.20) 0.481(0.22) 0.501(0.21)

boston 0.920(0.05) 0.930(0.04) 0.928(0.04) 0.930(0.04) 0.928(0.04) 0.930(0.05) 0.931(0.04) 0.928(0.05) 0.927(0.04)

a2 0.615(0.24) 0.711(0.27) 0.690(0.26) 0.705(0.27) 0.675(0.25) 0.691(0.27) 0.692(0.26) 0.674(0.26) 0.674(0.25)

a5 0.604(0.24) 0.692(0.26) 0.700(0.26) 0.699(0.27) 0.660(0.26) 0.662(0.26) 0.667(0.26) 0.646(0.26) 0.651(0.26)

fuelCons 0.922(0.01) 0.931(0.02) 0.931(0.02) 0.931(0.02) 0.942(0.01) 0.938(0.01) 0.940(0.02) 0.938(0.01) 0.940(0.01)

availPwr 0.973(0.01) 0.972(0.01) 0.972(0.01) 0.972(0.01) 0.977(0.01) 0.976(0.01) 0.976(0.01) 0.976(0.01) 0.976(0.01)

cpuSm 0.566(0.05) 0.584(0.06) 0.580(0.05) 0.580(0.05) 0.581(0.05) 0.576(0.05) 0.576(0.05) 0.582(0.05) 0.584(0.06)

maxTorque 0.974(0.01) 0.975(0.01) 0.975(0.01) 0.975(0.01) 0.980(0.01) 0.980(0.01) 0.980(0.01) 0.979(0.01) 0.979(0.01)

bank8FM 0.955(0.01) 0.964(0.01) 0.964(0.01) 0.965(0.00) 0.965(0.00) 0.964(0.01) 0.964(0.01) 0.963(0.00) 0.964(0.00)

dAiler 0.770(0.02) 0.861(0.02) 0.854(0.02) 0.865(0.02) 0.843(0.02) 0.846(0.02) 0.844(0.02) 0.832(0.02) 0.830(0.02)

concreteStrength 0.942(0.02) 0.951(0.02) 0.949(0.02) 0.950(0.02) 0.952(0.02) 0.954(0.02) 0.957(0.02) 0.949(0.02) 0.951(0.02)

acceleration 0.948(0.02) 0.959(0.01) 0.957(0.01) 0.958(0.01) 0.965(0.01) 0.960(0.01) 0.960(0.01) 0.962(0.01) 0.962(0.01)

airfoild 0.287(0.14) 0.298(0.10) 0.332(0.11) 0.304(0.12) 0.278(0.11) 0.310(0.10) 0.277(0.12) 0.267(0.11) 0.245(0.10)

SVM

servo 0.497(0.14) 0.744(0.12) 0.756(0.11) 0.755(0.12) 0.778(0.11) 0.775(0.12) 0.777(0.12) 0.763(0.12) 0.762(0.12)

a6 0.550(0.10) 0.640(0.14) 0.640(0.12) 0.647(0.11) 0.634(0.12) 0.635(0.12) 0.647(0.12) 0.613(0.11) 0.635(0.12)

Abalone 0.717(0.02) 0.794(0.02) 0.782(0.02) 0.795(0.02) 0.809(0.02) 0.812(0.02) 0.811(0.02) 0.800(0.02) 0.800(0.02)

machineCpu 0.839(0.08) 0.851(0.07) 0.843(0.07) 0.850(0.07) 0.849(0.07) 0.856(0.07) 0.858(0.07) 0.850(0.07) 0.845(0.07)

a3 0.536(0.07) 0.671(0.12) 0.661(0.11) 0.660(0.12) 0.662(0.12) 0.680(0.12) 0.671(0.11) 0.658(0.12) 0.646(0.12)

a4 0.597(0.10) 0.696(0.13) 0.678(0.13) 0.692(0.11) 0.682(0.13) 0.716(0.12) 0.695(0.12) 0.695(0.12) 0.682(0.13)

a1 0.679(0.06) 0.815(0.09) 0.806(0.08) 0.827(0.08) 0.822(0.09) 0.830(0.09) 0.828(0.09) 0.813(0.09) 0.815(0.09)

a7 0.434(0.14) 0.423(0.22) 0.440(0.20) 0.414(0.22) 0.452(0.21) 0.466(0.19) 0.462(0.21) 0.435(0.20) 0.437(0.22)

boston 0.900(0.04) 0.923(0.04) 0.922(0.04) 0.924(0.03) 0.930(0.04) 0.935(0.03) 0.935(0.03) 0.925(0.04) 0.925(0.04)

a2 0.591(0.24) 0.655(0.26) 0.634(0.25) 0.644(0.26) 0.665(0.26) 0.652(0.26) 0.656(0.26) 0.629(0.25) 0.626(0.24)

a5 0.558(0.21) 0.674(0.27) 0.671(0.26) 0.678(0.27) 0.665(0.26) 0.664(0.26) 0.665(0.26) 0.657(0.26) 0.654(0.26)

fuelCons 0.921(0.02) 0.927(0.02) 0.926(0.02) 0.925(0.02) 0.927(0.02) 0.925(0.02) 0.926(0.02) 0.923(0.02) 0.925(0.02)

availPwr 0.950(0.01) 0.955(0.01) 0.955(0.01) 0.955(0.01) 0.957(0.01) 0.949(0.01) 0.949(0.01) 0.957(0.01) 0.957(0.01)

cpuSm 0.241(0.03) 0.238(0.04) 0.241(0.04) 0.241(0.04) 0.262(0.04) 0.260(0.04) 0.256(0.04) 0.264(0.04) 0.262(0.04)

maxTorque 0.979(0.01) 0.980(0.00) 0.980(0.00) 0.979(0.00) 0.980(0.01) 0.978(0.01) 0.978(0.01) 0.979(0.01) 0.979(0.01)

bank8FM 0.955(0.01) 0.955(0.01) 0.955(0.01) 0.955(0.01) 0.958(0.01) 0.959(0.01) 0.958(0.01) 0.957(0.01) 0.956(0.01)

dAiler 0.740(0.02) 0.848(0.02) 0.843(0.01) 0.849(0.01) 0.864(0.01) 0.867(0.01) 0.867(0.01) 0.851(0.02) 0.850(0.02)

Continued on next page

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
189

Table A.8 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

SVM

concreteStrength 0.899(0.03) 0.943(0.02) 0.944(0.02) 0.946(0.02) 0.953(0.02) 0.953(0.02) 0.953(0.02) 0.950(0.02) 0.949(0.02)

acceleration 0.907(0.02) 0.949(0.02) 0.946(0.02) 0.948(0.02) 0.946(0.02) 0.947(0.01) 0.948(0.01) 0.941(0.02) 0.941(0.02)

airfoild 0.237(0.09) 0.294(0.12) 0.287(0.12) 0.296(0.11) 0.318(0.11) 0.296(0.10) 0.302(0.10) 0.325(0.12) 0.327(0.12)

NNET

servo 0.746(0.13) 0.708(0.17) 0.748(0.16) 0.728(0.17) 0.738(0.17) 0.737(0.18) 0.762(0.18) 0.739(0.16) 0.754(0.16)

a6 0.562(0.12) 0.637(0.16) 0.649(0.15) 0.647(0.15) 0.641(0.16) 0.629(0.15) 0.632(0.15) 0.626(0.15) 0.635(0.15)

Abalone 0.736(0.03) 0.798(0.04) 0.790(0.04) 0.800(0.04) 0.808(0.05) 0.818(0.04) 0.818(0.04) 0.802(0.04) 0.801(0.04)

machineCpu 0.582(0.11) 0.689(0.14) 0.697(0.14) 0.693(0.14) 0.700(0.14) 0.686(0.14) 0.674(0.14) 0.705(0.13) 0.690(0.13)

a3 0.559(0.09) 0.656(0.13) 0.650(0.12) 0.644(0.11) 0.648(0.11) 0.652(0.11) 0.644(0.11) 0.646(0.11) 0.642(0.11)

a4 0.635(0.12) 0.702(0.13) 0.702(0.13) 0.689(0.13) 0.715(0.12) 0.709(0.12) 0.717(0.12) 0.719(0.12) 0.719(0.13)

a1 0.694(0.10) 0.779(0.09) 0.775(0.09) 0.780(0.09) 0.787(0.08) 0.776(0.09) 0.780(0.08) 0.781(0.10) 0.777(0.09)

a7 0.468(0.21) 0.472(0.20) 0.459(0.20) 0.487(0.21) 0.487(0.20) 0.464(0.21) 0.490(0.22) 0.488(0.21) 0.484(0.22)

boston 0.748(0.07) 0.821(0.05) 0.828(0.05) 0.819(0.05) 0.810(0.05) 0.818(0.05) 0.814(0.05) 0.815(0.06) 0.816(0.06)

a2 0.574(0.22) 0.675(0.26) 0.664(0.25) 0.684(0.26) 0.671(0.26) 0.679(0.26) 0.682(0.26) 0.669(0.25) 0.669(0.25)

a5 0.540(0.21) 0.664(0.26) 0.660(0.26) 0.666(0.26) 0.659(0.26) 0.656(0.26) 0.660(0.26) 0.662(0.26) 0.661(0.26)

fuelCons 0.518(0.04) 0.626(0.05) 0.639(0.05) 0.621(0.06) 0.609(0.08) 0.607(0.07) 0.607(0.08) 0.618(0.07) 0.625(0.07)

availPwr 0.637(0.05) 0.776(0.05) 0.772(0.05) 0.769(0.05) 0.755(0.05) 0.743(0.04) 0.742(0.04) 0.756(0.05) 0.753(0.04)

cpuSm 0.241(0.06) 0.279(0.13) 0.253(0.13) 0.277(0.13) 0.257(0.13) 0.262(0.11) 0.274(0.12) 0.240(0.14) 0.263(0.14)

maxTorque 0.667(0.04) 0.809(0.04) 0.813(0.04) 0.803(0.04) 0.797(0.04) 0.798(0.04) 0.788(0.04) 0.802(0.04) 0.796(0.04)

bank8FM 0.962(0.01) 0.956(0.02) 0.956(0.02) 0.956(0.02) 0.965(0.01) 0.960(0.01) 0.961(0.01) 0.961(0.02) 0.963(0.02)

dAiler 0.607(0.02) 0.653(0.03) 0.655(0.03) 0.654(0.03) 0.688(0.03) 0.687(0.04) 0.685(0.04) 0.690(0.04) 0.686(0.04)

concreteStrength 0.700(0.03) 0.856(0.04) 0.861(0.03) 0.856(0.04) 0.832(0.04) 0.830(0.04) 0.831(0.04) 0.848(0.04) 0.843(0.04)

acceleration 0.699(0.04) 0.834(0.03) 0.842(0.03) 0.840(0.03) 0.831(0.03) 0.822(0.04) 0.824(0.04) 0.838(0.04) 0.836(0.03)

airfoild 0.341(0.04) 0.241(0.05) 0.229(0.05) 0.244(0.05) 0.249(0.03) 0.246(0.04) 0.252(0.03) 0.238(0.05) 0.243(0.04)

190
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.9: Evaluation results concerning the precφ metric (average and standard deviation) for 20 data sets and all tested variants of 4

learners using biased pre-processing strategies.

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

MARS

servo 0.614(0.10) 0.585(0.13) 0.583(0.13) 0.588(0.13) 0.611(0.12) 0.581(0.13) 0.599(0.12) 0.591(0.13) 0.607(0.11)

a6 0.475(0.20) 0.485(0.06) 0.480(0.06) 0.467(0.07) 0.491(0.07) 0.500(0.06) 0.489(0.06) 0.497(0.08) 0.484(0.07)

Abalone 0.731(0.03) 0.698(0.02) 0.707(0.02) 0.693(0.01) 0.679(0.01) 0.673(0.01) 0.675(0.01) 0.684(0.01) 0.688(0.01)

machineCpu 0.794(0.11) 0.748(0.09) 0.737(0.12) 0.742(0.10) 0.759(0.10) 0.764(0.10) 0.751(0.10) 0.754(0.12) 0.762(0.10)

a3 0.531(0.25) 0.463(0.10) 0.461(0.07) 0.438(0.05) 0.467(0.08) 0.449(0.07) 0.465(0.08) 0.473(0.09) 0.472(0.08)

a4 0.482(0.25) 0.478(0.09) 0.467(0.10) 0.484(0.11) 0.498(0.09) 0.528(0.13) 0.528(0.09) 0.518(0.13) 0.524(0.09)

a1 0.573(0.28) 0.668(0.11) 0.651(0.12) 0.668(0.11) 0.680(0.11) 0.677(0.10) 0.669(0.11) 0.683(0.11) 0.683(0.10)

a7 0.307(0.15) 0.338(0.06) 0.346(0.06) 0.344(0.06) 0.346(0.05) 0.343(0.05) 0.335(0.05) 0.347(0.05) 0.342(0.05)

boston 0.898(0.04) 0.847(0.06) 0.866(0.05) 0.852(0.06) 0.862(0.05) 0.859(0.05) 0.863(0.05) 0.867(0.05) 0.866(0.05)

a2 0.308(0.41) 0.462(0.13) 0.486(0.10) 0.463(0.12) 0.505(0.08) 0.518(0.10) 0.521(0.09) 0.514(0.13) 0.512(0.11)

a5 0.156(0.22) 0.466(0.12) 0.486(0.11) 0.495(0.07) 0.520(0.10) 0.528(0.06) 0.519(0.08) 0.513(0.09) 0.514(0.10)

fuelCons 0.851(0.05) 0.835(0.05) 0.833(0.04) 0.837(0.05) 0.833(0.04) 0.823(0.03) 0.807(0.04) 0.850(0.04) 0.837(0.04)

availPwr 0.900(0.02) 0.884(0.03) 0.888(0.02) 0.884(0.03) 0.882(0.03) 0.860(0.02) 0.858(0.02) 0.887(0.03) 0.887(0.02)

cpuSm 0.144(0.03) 0.168(0.02) 0.171(0.02) 0.169(0.02) 0.170(0.02) 0.149(0.02) 0.149(0.02) 0.178(0.03) 0.177(0.03)

maxTorque 0.954(0.02) 0.974(0.02) 0.975(0.02) 0.975(0.02) 0.953(0.02) 0.954(0.02) 0.953(0.02) 0.948(0.03) 0.949(0.03)

bank8FM 0.948(0.01) 0.948(0.01) 0.947(0.01) 0.948(0.01) 0.948(0.01) 0.947(0.01) 0.947(0.01) 0.950(0.01) 0.950(0.01)

dAiler 0.786(0.04) 0.697(0.02) 0.709(0.02) 0.694(0.02) 0.673(0.02) 0.669(0.02) 0.669(0.02) 0.691(0.02) 0.691(0.02)

concreteStrength 0.895(0.06) 0.847(0.05) 0.838(0.06) 0.834(0.05) 0.868(0.05) 0.873(0.05) 0.869(0.05) 0.872(0.05) 0.868(0.05)

acceleration 0.892(0.05) 0.843(0.06) 0.843(0.06) 0.849(0.05) 0.865(0.04) 0.865(0.04) 0.863(0.04) 0.864(0.04) 0.861(0.05)

airfoild 0.118(0.09) 0.215(0.09) 0.215(0.10) 0.217(0.10) 0.218(0.12) 0.229(0.12) 0.211(0.11) 0.218(0.14) 0.220(0.17)

RF

servo 0.750(0.14) 0.691(0.12) 0.695(0.13) 0.683(0.13) 0.730(0.15) 0.701(0.14) 0.749(0.14) 0.707(0.14) 0.741(0.16)

a6 0.549(0.14) 0.482(0.07) 0.499(0.06) 0.482(0.07) 0.490(0.10) 0.502(0.08) 0.488(0.09) 0.494(0.09) 0.484(0.08)

Abalone 0.736(0.03) 0.675(0.02) 0.686(0.02) 0.672(0.02) 0.682(0.02) 0.678(0.02) 0.677(0.01) 0.687(0.02) 0.686(0.02)

machineCpu 0.783(0.09) 0.761(0.10) 0.775(0.09) 0.750(0.08) 0.770(0.09) 0.774(0.08) 0.752(0.09) 0.766(0.10) 0.759(0.10)

a3 0.459(0.22) 0.460(0.06) 0.472(0.06) 0.452(0.06) 0.511(0.08) 0.495(0.10) 0.493(0.09) 0.507(0.10) 0.508(0.09)

a4 0.496(0.27) 0.516(0.10) 0.513(0.09) 0.512(0.08) 0.530(0.14) 0.534(0.10) 0.562(0.13) 0.534(0.16) 0.505(0.15)

a1 0.644(0.32) 0.683(0.07) 0.709(0.10) 0.698(0.09) 0.696(0.09) 0.707(0.11) 0.693(0.09) 0.688(0.11) 0.699(0.10)

Continued on next page

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
191

Table A.9 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

RF

a7 0.314(0.18) 0.365(0.04) 0.360(0.05) 0.364(0.05) 0.379(0.06) 0.365(0.06) 0.377(0.05) 0.365(0.06) 0.380(0.06)

boston 0.909(0.04) 0.873(0.05) 0.885(0.05) 0.858(0.05) 0.884(0.04) 0.884(0.04) 0.888(0.04) 0.892(0.04) 0.892(0.05)

a2 0.291(0.38) 0.551(0.09) 0.558(0.09) 0.555(0.07) 0.561(0.14) 0.602(0.12) 0.614(0.11) 0.554(0.17) 0.582(0.16)

a5 0.244(0.32) 0.518(0.05) 0.524(0.07) 0.528(0.06) 0.554(0.11) 0.589(0.09) 0.538(0.10) 0.528(0.14) 0.541(0.15)

fuelCons 0.928(0.02) 0.864(0.03) 0.871(0.04) 0.854(0.03) 0.904(0.03) 0.899(0.03) 0.887(0.03) 0.915(0.03) 0.905(0.03)

availPwr 0.962(0.02) 0.936(0.03) 0.941(0.02) 0.931(0.03) 0.962(0.02) 0.963(0.02) 0.962(0.02) 0.965(0.01) 0.961(0.02)

cpuSm 0.525(0.05) 0.455(0.06) 0.476(0.05) 0.451(0.05) 0.486(0.06) 0.470(0.05) 0.466(0.05) 0.505(0.05) 0.502(0.06)

maxTorque 0.969(0.01) 0.928(0.03) 0.940(0.02) 0.921(0.03) 0.961(0.02) 0.966(0.01) 0.957(0.02) 0.968(0.01) 0.960(0.02)

bank8FM 0.947(0.01) 0.926(0.01) 0.928(0.01) 0.925(0.01) 0.936(0.01) 0.937(0.01) 0.933(0.01) 0.942(0.01) 0.938(0.01)

dAiler 0.752(0.04) 0.684(0.02) 0.698(0.02) 0.680(0.02) 0.688(0.02) 0.693(0.02) 0.687(0.02) 0.705(0.02) 0.706(0.02)

concreteStrength 0.933(0.22) 0.875(0.04) 0.883(0.05) 0.866(0.06) 0.944(0.04) 0.928(0.10) 0.925(0.05) 0.910(0.13) 0.906(0.13)

acceleration 0.933(0.02) 0.865(0.03) 0.882(0.04) 0.865(0.03) 0.925(0.03) 0.926(0.02) 0.920(0.03) 0.934(0.03) 0.927(0.03)

airfoild 0.244(0.18) 0.214(0.09) 0.228(0.09) 0.237(0.13) 0.201(0.10) 0.220(0.09) 0.198(0.10) 0.206(0.12) 0.183(0.12)

SVM

servo 0.369(0.11) 0.538(0.07) 0.572(0.08) 0.533(0.08) 0.572(0.07) 0.584(0.09) 0.572(0.08) 0.577(0.09) 0.562(0.07)

a6 0.258(0.23) 0.492(0.08) 0.505(0.10) 0.498(0.08) 0.494(0.08) 0.521(0.09) 0.523(0.09) 0.485(0.09) 0.492(0.10)

Abalone 0.767(0.04) 0.708(0.02) 0.722(0.02) 0.703(0.02) 0.688(0.02) 0.683(0.01) 0.683(0.02) 0.697(0.02) 0.698(0.02)

machineCpu 0.770(0.11) 0.763(0.08) 0.761(0.09) 0.757(0.09) 0.758(0.09) 0.768(0.09) 0.762(0.08) 0.768(0.09) 0.756(0.10)

a3 0.187(0.11) 0.452(0.08) 0.464(0.08) 0.455(0.07) 0.478(0.08) 0.482(0.08) 0.481(0.07) 0.489(0.09) 0.476(0.08)

a4 0.256(0.26) 0.518(0.09) 0.513(0.09) 0.491(0.10) 0.551(0.12) 0.529(0.14) 0.533(0.10) 0.541(0.15) 0.551(0.11)

a1 0.103(0.16) 0.620(0.08) 0.606(0.09) 0.622(0.07) 0.660(0.11) 0.652(0.10) 0.670(0.09) 0.651(0.12) 0.666(0.11)

a7 0.141(0.13) 0.349(0.05) 0.354(0.06) 0.335(0.07) 0.347(0.06) 0.348(0.05) 0.345(0.06) 0.340(0.06) 0.354(0.07)

boston 0.895(0.04) 0.855(0.04) 0.857(0.05) 0.853(0.05) 0.881(0.04) 0.882(0.04) 0.878(0.04) 0.886(0.04) 0.882(0.04)

a2 0.282(0.38) 0.492(0.12) 0.481(0.13) 0.502(0.15) 0.501(0.15) 0.530(0.15) 0.516(0.15) 0.474(0.20) 0.469(0.19)

a5 0.145(0.16) 0.513(0.09) 0.514(0.09) 0.520(0.12) 0.552(0.11) 0.572(0.10) 0.551(0.10) 0.541(0.13) 0.499(0.16)

fuelCons 0.908(0.04) 0.844(0.04) 0.853(0.05) 0.838(0.04) 0.869(0.03) 0.864(0.04) 0.861(0.04) 0.886(0.03) 0.877(0.03)

availPwr 0.934(0.02) 0.906(0.04) 0.914(0.03) 0.906(0.03) 0.930(0.01) 0.908(0.02) 0.908(0.02) 0.931(0.02) 0.930(0.01)

cpuSm 0.163(0.03) 0.178(0.03) 0.181(0.03) 0.180(0.02) 0.180(0.03) 0.173(0.03) 0.170(0.03) 0.191(0.03) 0.189(0.03)

maxTorque 0.973(0.01) 0.942(0.03) 0.956(0.02) 0.947(0.03) 0.969(0.01) 0.968(0.01) 0.966(0.01) 0.968(0.01) 0.967(0.01)

bank8FM 0.949(0.01) 0.952(0.01) 0.952(0.01) 0.952(0.01) 0.951(0.01) 0.950(0.01) 0.949(0.01) 0.954(0.01) 0.954(0.01)

dAiler 0.781(0.05) 0.711(0.02) 0.718(0.02) 0.707(0.02) 0.677(0.02) 0.669(0.01) 0.670(0.01) 0.703(0.02) 0.702(0.02)

Continued on next page

192
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.9 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

SVM

concreteStrength 0.855(0.15) 0.827(0.07) 0.848(0.06) 0.830(0.06) 0.877(0.05) 0.878(0.05) 0.877(0.05) 0.885(0.05) 0.886(0.05)

acceleration 0.876(0.08) 0.864(0.06) 0.872(0.06) 0.859(0.06) 0.869(0.04) 0.860(0.04) 0.860(0.04) 0.886(0.03) 0.885(0.03)

airfoild 0.166(0.11) 0.222(0.12) 0.214(0.10) 0.231(0.11) 0.247(0.11) 0.225(0.10) 0.234(0.11) 0.248(0.13) 0.254(0.13)

NNET

servo 0.644(0.14) 0.587(0.16) 0.638(0.17) 0.608(0.17) 0.648(0.18) 0.644(0.18) 0.681(0.19) 0.643(0.18) 0.667(0.17)

a6 0.175(0.19) 0.470(0.07) 0.470(0.06) 0.455(0.08) 0.473(0.06) 0.469(0.05) 0.469(0.06) 0.462(0.06) 0.465(0.07)

Abalone 0.707(0.06) 0.656(0.08) 0.668(0.07) 0.655(0.06) 0.650(0.08) 0.651(0.06) 0.652(0.06) 0.662(0.07) 0.663(0.07)

machineCpu 0.059(0.07) 0.454(0.07) 0.452(0.05) 0.462(0.06) 0.484(0.07) 0.361(0.24) 0.276(0.24) 0.479(0.07) 0.468(0.05)

a3 0.203(0.22) 0.434(0.05) 0.439(0.05) 0.427(0.05) 0.453(0.06) 0.444(0.05) 0.441(0.06) 0.452(0.06) 0.443(0.08)

a4 0.407(0.25) 0.427(0.13) 0.409(0.15) 0.425(0.12) 0.479(0.13) 0.481(0.12) 0.486(0.13) 0.497(0.12) 0.501(0.13)

a1 0.252(0.27) 0.400(0.24) 0.439(0.18) 0.418(0.20) 0.386(0.25) 0.319(0.23) 0.338(0.23) 0.363(0.26) 0.371(0.26)

a7 0.282(0.22) 0.326(0.05) 0.322(0.06) 0.338(0.06) 0.334(0.06) 0.332(0.06) 0.338(0.06) 0.336(0.06) 0.338(0.06)

boston 0.308(0.28) 0.324(0.20) 0.343(0.20) 0.335(0.20) 0.276(0.22) 0.324(0.22) 0.318(0.24) 0.312(0.25) 0.324(0.23)

a2 0.048(0.14) 0.325(0.15) 0.342(0.19) 0.361(0.14) 0.369(0.19) 0.355(0.20) 0.352(0.22) 0.373(0.21) 0.338(0.21)

a5 0.011(0.04) 0.363(0.15) 0.355(0.15) 0.354(0.15) 0.362(0.17) 0.372(0.18) 0.359(0.19) 0.382(0.16) 0.378(0.18)

fuelCons 0.065(0.15) 0.368(0.22) 0.343(0.24) 0.337(0.24) 0.290(0.24) 0.246(0.23) 0.262(0.25) 0.324(0.19) 0.325(0.22)

availPwr 0.094(0.12) 0.166(0.20) 0.142(0.16) 0.147(0.16) 0.056(0.13) 0.049(0.13) 0.043(0.12) 0.038(0.11) 0.035(0.11)

cpuSm 0.094(0.10) 0.317(0.24) 0.284(0.23) 0.304(0.23) 0.316(0.25) 0.267(0.29) 0.271(0.27) 0.253(0.24) 0.282(0.24)

maxTorque 0.093(0.18) 0.397(0.21) 0.366(0.24) 0.390(0.21) 0.237(0.16) 0.209(0.24) 0.157(0.18) 0.270(0.25) 0.278(0.23)

bank8FM 0.954(0.01) 0.890(0.10) 0.891(0.10) 0.891(0.10) 0.938(0.03) 0.912(0.06) 0.919(0.06) 0.918(0.10) 0.929(0.07)

dAiler 0.351(0.09) 0.301(0.04) 0.303(0.04) 0.312(0.07) 0.334(0.06) 0.349(0.10) 0.352(0.11) 0.364(0.12) 0.349(0.10)

concreteStrength 0.000(0.00) 0.258(0.20) 0.217(0.18) 0.258(0.17) 0.115(0.18) 0.087(0.17) 0.120(0.18) 0.190(0.22) 0.191(0.23)

acceleration 0.116(0.29) 0.268(0.20) 0.258(0.20) 0.323(0.21) 0.235(0.23) 0.259(0.27) 0.254(0.27) 0.337(0.23) 0.335(0.23)

airfoild 0.020(0.03) 0.078(0.07) 0.082(0.06) 0.079(0.06) 0.029(0.04) 0.034(0.05) 0.029(0.04) 0.046(0.06) 0.040(0.05)

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
193

Table A.10: Evaluation results concerning the recφ metric (average and standard deviation) for 20 data sets and all tested variants of 4

learners using biased pre-processing strategies.

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

MARS

servo 0.683(0.14) 0.694(0.15) 0.690(0.15) 0.698(0.15) 0.718(0.14) 0.693(0.15) 0.706(0.14) 0.694(0.15) 0.700(0.14)

a6 0.517(0.13) 0.573(0.16) 0.590(0.16) 0.574(0.16) 0.583(0.15) 0.594(0.14) 0.583(0.15) 0.577(0.16) 0.569(0.14)

Abalone 0.687(0.02) 0.780(0.02) 0.769(0.02) 0.782(0.02) 0.795(0.02) 0.799(0.02) 0.798(0.02) 0.787(0.02) 0.786(0.02)

machineCpu 0.806(0.09) 0.816(0.09) 0.787(0.11) 0.815(0.10) 0.809(0.10) 0.823(0.10) 0.827(0.09) 0.812(0.08) 0.811(0.08)

a3 0.522(0.13) 0.645(0.13) 0.627(0.13) 0.640(0.16) 0.616(0.13) 0.631(0.14) 0.625(0.13) 0.619(0.14) 0.621(0.12)

a4 0.568(0.13) 0.669(0.17) 0.624(0.18) 0.650(0.16) 0.638(0.15) 0.648(0.18) 0.669(0.15) 0.643(0.18) 0.671(0.14)

a1 0.704(0.12) 0.795(0.12) 0.789(0.10) 0.794(0.12) 0.783(0.12) 0.790(0.12) 0.799(0.13) 0.779(0.12) 0.791(0.12)

a7 0.360(0.18) 0.457(0.22) 0.431(0.22) 0.423(0.23) 0.440(0.22) 0.424(0.20) 0.401(0.22) 0.425(0.25) 0.430(0.21)

boston 0.892(0.06) 0.905(0.05) 0.905(0.05) 0.907(0.05) 0.907(0.05) 0.905(0.05) 0.908(0.05) 0.897(0.06) 0.900(0.05)

a2 0.564(0.24) 0.655(0.26) 0.646(0.25) 0.636(0.28) 0.623(0.26) 0.643(0.27) 0.645(0.28) 0.623(0.26) 0.631(0.27)

a5 0.521(0.23) 0.637(0.26) 0.658(0.27) 0.651(0.27) 0.624(0.27) 0.609(0.27) 0.633(0.26) 0.592(0.27) 0.616(0.26)

fuelCons 0.857(0.02) 0.898(0.02) 0.899(0.02) 0.902(0.02) 0.902(0.03) 0.905(0.03) 0.895(0.03) 0.903(0.02) 0.899(0.02)

availPwr 0.904(0.02) 0.916(0.02) 0.918(0.02) 0.918(0.02) 0.916(0.02) 0.903(0.02) 0.900(0.02) 0.916(0.01) 0.915(0.01)

cpuSm 0.141(0.03) 0.166(0.03) 0.170(0.03) 0.167(0.03) 0.169(0.03) 0.150(0.03) 0.150(0.03) 0.177(0.03) 0.177(0.03)

maxTorque 0.955(0.01) 0.985(0.01) 0.983(0.01) 0.985(0.01) 0.966(0.02) 0.963(0.02) 0.964(0.02) 0.965(0.02) 0.964(0.02)

bank8FM 0.938(0.01) 0.947(0.01) 0.947(0.01) 0.947(0.01) 0.947(0.01) 0.948(0.01) 0.948(0.01) 0.945(0.01) 0.945(0.01)

dAiler 0.692(0.02) 0.822(0.02) 0.815(0.02) 0.824(0.02) 0.837(0.02) 0.841(0.02) 0.840(0.02) 0.821(0.02) 0.821(0.02)

concreteStrength 0.880(0.04) 0.931(0.04) 0.934(0.03) 0.937(0.03) 0.932(0.03) 0.934(0.03) 0.934(0.03) 0.929(0.03) 0.928(0.03)

acceleration 0.899(0.03) 0.937(0.02) 0.934(0.02) 0.936(0.02) 0.934(0.02) 0.933(0.02) 0.932(0.02) 0.929(0.02) 0.928(0.02)

airfoild 0.155(0.07) 0.206(0.09) 0.197(0.11) 0.208(0.11) 0.216(0.11) 0.231(0.12) 0.211(0.11) 0.209(0.12) 0.201(0.11)

RF

servo 0.773(0.14) 0.777(0.14) 0.768(0.14) 0.772(0.14) 0.784(0.17) 0.770(0.16) 0.788(0.15) 0.779(0.16) 0.786(0.16)

a6 0.523(0.17) 0.621(0.21) 0.620(0.19) 0.614(0.19) 0.586(0.21) 0.568(0.18) 0.583(0.17) 0.575(0.20) 0.589(0.18)

Abalone 0.704(0.02) 0.787(0.02) 0.776(0.02) 0.788(0.02) 0.777(0.02) 0.784(0.02) 0.782(0.02) 0.770(0.02) 0.768(0.02)

machineCpu 0.815(0.09) 0.821(0.09) 0.816(0.09) 0.820(0.08) 0.818(0.09) 0.804(0.08) 0.803(0.08) 0.809(0.10) 0.814(0.09)

a3 0.528(0.12) 0.667(0.15) 0.643(0.12) 0.654(0.14) 0.644(0.13) 0.627(0.13) 0.645(0.13) 0.615(0.14) 0.630(0.14)

a4 0.595(0.13) 0.690(0.17) 0.692(0.14) 0.702(0.16) 0.650(0.14) 0.663(0.14) 0.667(0.14) 0.657(0.14) 0.663(0.13)

a1 0.721(0.12) 0.806(0.11) 0.796(0.12) 0.820(0.12) 0.771(0.12) 0.768(0.13) 0.788(0.12) 0.760(0.13) 0.778(0.13)

Continued on next page

194
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.10 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

RF

a7 0.368(0.17) 0.477(0.26) 0.452(0.26) 0.461(0.26) 0.489(0.23) 0.427(0.21) 0.444(0.21) 0.428(0.22) 0.451(0.22)

boston 0.898(0.06) 0.912(0.05) 0.910(0.05) 0.913(0.05) 0.909(0.06) 0.913(0.06) 0.914(0.06) 0.909(0.06) 0.909(0.06)

a2 0.554(0.24) 0.686(0.27) 0.660(0.26) 0.679(0.27) 0.631(0.25) 0.652(0.27) 0.652(0.26) 0.629(0.25) 0.629(0.25)

a5 0.541(0.23) 0.672(0.27) 0.680(0.27) 0.676(0.28) 0.617(0.26) 0.618(0.27) 0.626(0.27) 0.598(0.26) 0.604(0.26)

fuelCons 0.908(0.02) 0.928(0.02) 0.927(0.02) 0.928(0.02) 0.938(0.02) 0.932(0.02) 0.935(0.02) 0.932(0.02) 0.935(0.02)

availPwr 0.965(0.02) 0.966(0.01) 0.966(0.01) 0.966(0.01) 0.971(0.01) 0.969(0.02) 0.969(0.02) 0.970(0.02) 0.969(0.02)

cpuSm 0.492(0.05) 0.518(0.07) 0.512(0.06) 0.513(0.06) 0.511(0.06) 0.506(0.06) 0.506(0.06) 0.511(0.06) 0.514(0.06)

maxTorque 0.966(0.01) 0.971(0.01) 0.971(0.01) 0.971(0.01) 0.975(0.01) 0.974(0.01) 0.975(0.01) 0.973(0.01) 0.973(0.01)

bank8FM 0.945(0.01) 0.957(0.01) 0.956(0.01) 0.958(0.01) 0.957(0.01) 0.956(0.01) 0.957(0.01) 0.955(0.01) 0.956(0.01)

dAiler 0.720(0.02) 0.837(0.02) 0.827(0.02) 0.843(0.02) 0.814(0.02) 0.817(0.02) 0.815(0.02) 0.798(0.02) 0.796(0.02)

concreteStrength 0.927(0.03) 0.943(0.03) 0.941(0.03) 0.943(0.03) 0.941(0.03) 0.944(0.03) 0.949(0.03) 0.937(0.03) 0.941(0.03)

acceleration 0.935(0.02) 0.951(0.02) 0.948(0.02) 0.950(0.02) 0.958(0.02) 0.951(0.02) 0.951(0.02) 0.953(0.02) 0.954(0.02)

airfoild 0.210(0.13) 0.219(0.10) 0.255(0.11) 0.227(0.12) 0.200(0.09) 0.229(0.09) 0.200(0.10) 0.189(0.09) 0.169(0.09)

SVM

servo 0.421(0.14) 0.717(0.14) 0.723(0.13) 0.735(0.14) 0.754(0.14) 0.746(0.15) 0.753(0.15) 0.732(0.15) 0.734(0.14)

a6 0.462(0.11) 0.582(0.17) 0.577(0.15) 0.587(0.14) 0.568(0.14) 0.567(0.14) 0.583(0.14) 0.541(0.13) 0.569(0.14)

Abalone 0.665(0.02) 0.764(0.02) 0.748(0.02) 0.766(0.02) 0.786(0.02) 0.791(0.02) 0.790(0.02) 0.774(0.02) 0.773(0.02)

machineCpu 0.798(0.10) 0.814(0.09) 0.804(0.09) 0.813(0.09) 0.811(0.09) 0.820(0.09) 0.823(0.09) 0.813(0.09) 0.807(0.10)

a3 0.447(0.08) 0.631(0.15) 0.614(0.14) 0.619(0.15) 0.610(0.15) 0.635(0.14) 0.624(0.14) 0.605(0.15) 0.590(0.14)

a4 0.519(0.11) 0.649(0.16) 0.628(0.16) 0.644(0.14) 0.627(0.16) 0.669(0.14) 0.643(0.15) 0.640(0.14) 0.627(0.16)

a1 0.608(0.08) 0.789(0.11) 0.779(0.10) 0.806(0.10) 0.792(0.11) 0.802(0.11) 0.800(0.11) 0.780(0.12) 0.782(0.12)

a7 0.345(0.13) 0.373(0.23) 0.383(0.21) 0.361(0.23) 0.398(0.22) 0.409(0.19) 0.409(0.21) 0.374(0.21) 0.380(0.23)

boston 0.873(0.05) 0.904(0.05) 0.903(0.05) 0.906(0.04) 0.913(0.05) 0.919(0.04) 0.919(0.04) 0.906(0.05) 0.907(0.05)

a2 0.529(0.24) 0.619(0.26) 0.591(0.26) 0.606(0.27) 0.625(0.26) 0.608(0.27) 0.613(0.26) 0.578(0.25) 0.575(0.24)

a5 0.487(0.20) 0.645(0.28) 0.637(0.26) 0.645(0.28) 0.624(0.27) 0.620(0.27) 0.624(0.27) 0.615(0.27) 0.613(0.27)

fuelCons 0.908(0.02) 0.920(0.02) 0.920(0.02) 0.919(0.02) 0.918(0.03) 0.916(0.02) 0.917(0.03) 0.913(0.03) 0.916(0.03)

availPwr 0.937(0.01) 0.943(0.01) 0.944(0.01) 0.944(0.01) 0.945(0.01) 0.936(0.02) 0.936(0.02) 0.945(0.01) 0.945(0.01)

cpuSm 0.159(0.03) 0.160(0.04) 0.162(0.03) 0.162(0.03) 0.179(0.03) 0.178(0.04) 0.174(0.04) 0.181(0.03) 0.179(0.03)

maxTorque 0.973(0.01) 0.975(0.01) 0.975(0.01) 0.975(0.01) 0.975(0.01) 0.973(0.01) 0.973(0.01) 0.974(0.01) 0.974(0.01)

bank8FM 0.945(0.01) 0.945(0.01) 0.945(0.01) 0.945(0.01) 0.948(0.01) 0.949(0.01) 0.949(0.01) 0.946(0.01) 0.946(0.01)

dAiler 0.684(0.02) 0.820(0.02) 0.813(0.02) 0.821(0.02) 0.843(0.02) 0.847(0.02) 0.847(0.02) 0.824(0.02) 0.823(0.02)

Continued on next page

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
195

Table A.10 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

SVM

concreteStrength 0.874(0.04) 0.934(0.03) 0.934(0.03) 0.937(0.03) 0.945(0.03) 0.945(0.03) 0.945(0.03) 0.940(0.03) 0.939(0.03)

acceleration 0.883(0.03) 0.937(0.02) 0.933(0.03) 0.936(0.02) 0.933(0.02) 0.935(0.02) 0.935(0.02) 0.927(0.02) 0.927(0.02)

airfoild 0.162(0.08) 0.218(0.12) 0.212(0.11) 0.218(0.11) 0.238(0.11) 0.217(0.10) 0.222(0.10) 0.246(0.12) 0.248(0.12)

NNET

servo 0.699(0.15) 0.666(0.19) 0.709(0.19) 0.690(0.20) 0.694(0.19) 0.694(0.20) 0.720(0.20) 0.697(0.18) 0.713(0.18)

a6 0.479(0.14) 0.593(0.20) 0.606(0.19) 0.605(0.19) 0.594(0.19) 0.577(0.18) 0.580(0.18) 0.572(0.18) 0.585(0.18)

Abalone 0.690(0.04) 0.774(0.05) 0.763(0.04) 0.777(0.04) 0.790(0.06) 0.803(0.05) 0.803(0.05) 0.779(0.05) 0.779(0.05)

machineCpu 0.496(0.12) 0.671(0.18) 0.687(0.18) 0.674(0.18) 0.676(0.18) 0.640(0.17) 0.626(0.18) 0.683(0.17) 0.665(0.17)

a3 0.473(0.10) 0.627(0.16) 0.618(0.15) 0.610(0.14) 0.606(0.13) 0.616(0.14) 0.603(0.14) 0.605(0.14) 0.598(0.14)

a4 0.567(0.14) 0.668(0.16) 0.667(0.16) 0.651(0.16) 0.674(0.15) 0.669(0.15) 0.679(0.15) 0.680(0.15) 0.680(0.16)

a1 0.629(0.13) 0.747(0.11) 0.741(0.11) 0.745(0.12) 0.752(0.11) 0.740(0.12) 0.744(0.10) 0.747(0.12) 0.741(0.11)

a7 0.395(0.21) 0.434(0.22) 0.417(0.21) 0.450(0.22) 0.446(0.22) 0.421(0.23) 0.453(0.24) 0.449(0.23) 0.444(0.23)

boston 0.688(0.09) 0.790(0.06) 0.800(0.06) 0.786(0.06) 0.774(0.06) 0.783(0.06) 0.777(0.07) 0.780(0.07) 0.781(0.07)

a2 0.505(0.21) 0.650(0.27) 0.636(0.26) 0.660(0.27) 0.641(0.27) 0.651(0.27) 0.654(0.27) 0.633(0.26) 0.635(0.25)

a5 0.466(0.19) 0.644(0.27) 0.639(0.27) 0.644(0.27) 0.631(0.27) 0.626(0.27) 0.631(0.27) 0.636(0.27) 0.634(0.27)

fuelCons 0.445(0.05) 0.573(0.06) 0.590(0.06) 0.567(0.07) 0.555(0.10) 0.550(0.09) 0.551(0.10) 0.566(0.09) 0.573(0.09)

availPwr 0.558(0.06) 0.740(0.06) 0.735(0.06) 0.731(0.06) 0.715(0.06) 0.697(0.05) 0.695(0.05) 0.718(0.06) 0.714(0.05)

cpuSm 0.164(0.06) 0.217(0.13) 0.193(0.13) 0.214(0.12) 0.198(0.13) 0.198(0.11) 0.209(0.12) 0.181(0.14) 0.201(0.14)

maxTorque 0.593(0.05) 0.774(0.05) 0.779(0.05) 0.766(0.05) 0.759(0.05) 0.759(0.05) 0.747(0.05) 0.767(0.05) 0.759(0.05)

bank8FM 0.953(0.01) 0.947(0.03) 0.947(0.03) 0.947(0.03) 0.958(0.01) 0.951(0.02) 0.953(0.02) 0.953(0.03) 0.955(0.02)

dAiler 0.535(0.02) 0.594(0.04) 0.595(0.04) 0.595(0.04) 0.636(0.03) 0.635(0.05) 0.634(0.05) 0.637(0.04) 0.633(0.04)

concreteStrength 0.632(0.04) 0.827(0.05) 0.834(0.04) 0.827(0.05) 0.796(0.05) 0.793(0.05) 0.795(0.05) 0.817(0.05) 0.810(0.05)

acceleration 0.629(0.05) 0.801(0.04) 0.811(0.04) 0.808(0.04) 0.796(0.04) 0.782(0.05) 0.785(0.05) 0.807(0.05) 0.804(0.05)

airfoild 0.254(0.04) 0.170(0.04) 0.161(0.05) 0.174(0.05) 0.177(0.03) 0.174(0.04) 0.179(0.03) 0.169(0.04) 0.172(0.04)

196
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.11: Evaluation results concerning the specφ metric (average and standard deviation) for 20 data sets and all tested variants of

4 learners using biased pre-processing strategies.

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

MARS

servo 0.792(0.09) 0.788(0.09) 0.786(0.09) 0.790(0.09) 0.805(0.09) 0.787(0.09) 0.797(0.09) 0.789(0.09) 0.796(0.08)

a6 0.690(0.09) 0.696(0.10) 0.706(0.09) 0.694(0.11) 0.710(0.09) 0.722(0.08) 0.711(0.09) 0.708(0.10) 0.703(0.10)

Abalone 0.784(0.01) 0.828(0.01) 0.824(0.01) 0.829(0.01) 0.832(0.01) 0.831(0.01) 0.831(0.01) 0.830(0.01) 0.830(0.01)

machineCpu 0.887(0.05) 0.888(0.05) 0.873(0.06) 0.887(0.05) 0.887(0.05) 0.894(0.05) 0.896(0.05) 0.889(0.04) 0.888(0.04)

a3 0.695(0.10) 0.716(0.08) 0.707(0.08) 0.706(0.10) 0.716(0.08) 0.717(0.08) 0.719(0.08) 0.717(0.09) 0.719(0.08)

a4 0.720(0.08) 0.756(0.10) 0.728(0.11) 0.748(0.09) 0.746(0.09) 0.752(0.11) 0.765(0.09) 0.750(0.12) 0.769(0.08)

a1 0.816(0.07) 0.856(0.07) 0.854(0.06) 0.855(0.07) 0.851(0.07) 0.856(0.07) 0.860(0.07) 0.851(0.07) 0.856(0.07)

a7 0.544(0.18) 0.547(0.18) 0.527(0.19) 0.513(0.21) 0.540(0.19) 0.540(0.17) 0.515(0.19) 0.525(0.21) 0.540(0.17)

boston 0.937(0.03) 0.941(0.03) 0.942(0.03) 0.942(0.03) 0.943(0.03) 0.942(0.03) 0.944(0.03) 0.938(0.03) 0.940(0.03)

a2 0.691(0.25) 0.707(0.25) 0.707(0.25) 0.697(0.26) 0.702(0.25) 0.715(0.26) 0.713(0.26) 0.710(0.26) 0.710(0.26)

a5 0.664(0.24) 0.701(0.25) 0.708(0.26) 0.705(0.26) 0.706(0.26) 0.700(0.26) 0.712(0.26) 0.688(0.25) 0.702(0.25)

fuelCons 0.900(0.01) 0.923(0.01) 0.923(0.01) 0.926(0.01) 0.924(0.01) 0.925(0.01) 0.919(0.01) 0.925(0.01) 0.923(0.01)

availPwr 0.946(0.01) 0.952(0.01) 0.953(0.01) 0.952(0.01) 0.951(0.01) 0.944(0.01) 0.942(0.01) 0.951(0.01) 0.951(0.01)

cpuSm 0.345(0.04) 0.369(0.03) 0.373(0.03) 0.370(0.03) 0.373(0.03) 0.348(0.04) 0.348(0.04) 0.382(0.03) 0.382(0.03)

maxTorque 0.973(0.01) 0.991(0.00) 0.990(0.01) 0.991(0.00) 0.980(0.01) 0.979(0.01) 0.979(0.01) 0.979(0.01) 0.979(0.01)

bank8FM 0.961(0.00) 0.967(0.00) 0.966(0.00) 0.967(0.00) 0.966(0.00) 0.967(0.00) 0.967(0.00) 0.965(0.00) 0.965(0.00)

dAiler 0.807(0.01) 0.877(0.01) 0.874(0.01) 0.878(0.01) 0.881(0.01) 0.883(0.01) 0.882(0.01) 0.875(0.01) 0.875(0.01)

concreteStrength 0.929(0.02) 0.954(0.02) 0.955(0.02) 0.957(0.01) 0.956(0.02) 0.957(0.02) 0.957(0.02) 0.954(0.02) 0.954(0.02)

acceleration 0.941(0.01) 0.960(0.01) 0.958(0.01) 0.959(0.01) 0.959(0.01) 0.959(0.01) 0.958(0.01) 0.955(0.01) 0.955(0.01)

airfoild 0.346(0.08) 0.394(0.10) 0.382(0.11) 0.392(0.12) 0.407(0.11) 0.418(0.12) 0.400(0.11) 0.398(0.11) 0.389(0.12)

RF

servo 0.864(0.09) 0.853(0.08) 0.850(0.09) 0.848(0.09) 0.865(0.10) 0.854(0.10) 0.869(0.09) 0.860(0.10) 0.866(0.10)

a6 0.692(0.12) 0.717(0.12) 0.721(0.12) 0.715(0.11) 0.715(0.13) 0.708(0.12) 0.716(0.10) 0.708(0.13) 0.717(0.11)

Abalone 0.794(0.01) 0.830(0.01) 0.827(0.01) 0.830(0.01) 0.827(0.01) 0.829(0.01) 0.828(0.01) 0.824(0.01) 0.823(0.01)

machineCpu 0.893(0.05) 0.893(0.05) 0.892(0.05) 0.894(0.04) 0.894(0.05) 0.887(0.04) 0.886(0.04) 0.889(0.05) 0.892(0.05)

a3 0.698(0.09) 0.723(0.09) 0.718(0.07) 0.713(0.09) 0.744(0.08) 0.731(0.08) 0.741(0.08) 0.731(0.09) 0.739(0.08)

a4 0.738(0.08) 0.773(0.10) 0.776(0.08) 0.781(0.09) 0.762(0.08) 0.771(0.08) 0.773(0.08) 0.769(0.08) 0.771(0.08)

a1 0.828(0.07) 0.864(0.06) 0.861(0.07) 0.871(0.06) 0.850(0.07) 0.849(0.07) 0.859(0.07) 0.844(0.07) 0.853(0.07)

Continued on next page

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
197

Table A.11 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

RF

a7 0.555(0.18) 0.542(0.19) 0.523(0.20) 0.532(0.20) 0.592(0.19) 0.548(0.19) 0.561(0.18) 0.548(0.20) 0.564(0.19)

boston 0.942(0.03) 0.948(0.03) 0.947(0.03) 0.947(0.03) 0.947(0.03) 0.948(0.03) 0.949(0.03) 0.947(0.03) 0.947(0.03)

a2 0.686(0.25) 0.738(0.26) 0.723(0.26) 0.734(0.26) 0.724(0.26) 0.736(0.27) 0.736(0.26) 0.725(0.26) 0.725(0.26)

a5 0.677(0.25) 0.715(0.26) 0.722(0.26) 0.725(0.26) 0.710(0.26) 0.713(0.26) 0.714(0.26) 0.702(0.26) 0.704(0.26)

fuelCons 0.937(0.01) 0.935(0.01) 0.936(0.01) 0.935(0.01) 0.947(0.01) 0.943(0.01) 0.944(0.01) 0.944(0.01) 0.946(0.01)

availPwr 0.981(0.01) 0.977(0.01) 0.978(0.01) 0.977(0.01) 0.983(0.01) 0.983(0.01) 0.983(0.01) 0.983(0.01) 0.983(0.01)

cpuSm 0.651(0.04) 0.660(0.04) 0.657(0.04) 0.657(0.04) 0.661(0.04) 0.656(0.04) 0.655(0.04) 0.662(0.04) 0.663(0.04)

maxTorque 0.982(0.01) 0.980(0.01) 0.980(0.01) 0.979(0.01) 0.985(0.00) 0.985(0.01) 0.985(0.01) 0.985(0.01) 0.985(0.01)

bank8FM 0.966(0.00) 0.971(0.00) 0.971(0.00) 0.971(0.00) 0.972(0.00) 0.971(0.00) 0.972(0.00) 0.971(0.00) 0.971(0.00)

dAiler 0.825(0.01) 0.885(0.01) 0.881(0.01) 0.887(0.01) 0.874(0.01) 0.876(0.01) 0.874(0.01) 0.867(0.01) 0.865(0.01)

concreteStrength 0.957(0.02) 0.959(0.02) 0.958(0.02) 0.958(0.01) 0.963(0.02) 0.964(0.02) 0.966(0.01) 0.961(0.02) 0.962(0.02)

acceleration 0.962(0.01) 0.967(0.01) 0.966(0.01) 0.967(0.01) 0.973(0.01) 0.970(0.01) 0.970(0.01) 0.971(0.01) 0.971(0.01)

airfoild 0.400(0.14) 0.409(0.10) 0.437(0.11) 0.412(0.12) 0.391(0.11) 0.425(0.10) 0.389(0.12) 0.382(0.11) 0.359(0.11)

SVM

servo 0.601(0.13) 0.774(0.09) 0.793(0.08) 0.778(0.09) 0.804(0.08) 0.806(0.09) 0.804(0.09) 0.798(0.09) 0.793(0.09)

a6 0.657(0.08) 0.709(0.11) 0.713(0.09) 0.716(0.08) 0.711(0.09) 0.714(0.09) 0.721(0.09) 0.698(0.08) 0.711(0.09)

Abalone 0.773(0.01) 0.825(0.01) 0.817(0.01) 0.825(0.01) 0.833(0.01) 0.834(0.01) 0.833(0.01) 0.828(0.01) 0.828(0.01)

machineCpu 0.883(0.05) 0.890(0.05) 0.885(0.05) 0.889(0.05) 0.889(0.05) 0.894(0.05) 0.895(0.05) 0.890(0.05) 0.886(0.05)

a3 0.644(0.06) 0.716(0.09) 0.714(0.08) 0.706(0.09) 0.720(0.09) 0.730(0.08) 0.725(0.08) 0.719(0.09) 0.711(0.09)

a4 0.688(0.08) 0.749(0.09) 0.734(0.10) 0.746(0.08) 0.746(0.10) 0.770(0.08) 0.754(0.09) 0.757(0.09) 0.746(0.10)

a1 0.759(0.05) 0.844(0.06) 0.835(0.06) 0.849(0.06) 0.853(0.06) 0.860(0.06) 0.858(0.06) 0.849(0.07) 0.850(0.07)

a7 0.549(0.15) 0.487(0.21) 0.511(0.19) 0.484(0.20) 0.521(0.20) 0.537(0.18) 0.530(0.19) 0.511(0.20) 0.511(0.21)

boston 0.928(0.03) 0.942(0.03) 0.942(0.03) 0.943(0.02) 0.948(0.03) 0.951(0.02) 0.951(0.02) 0.945(0.03) 0.945(0.03)

a2 0.664(0.25) 0.696(0.25) 0.682(0.25) 0.689(0.26) 0.711(0.26) 0.703(0.26) 0.704(0.26) 0.689(0.25) 0.685(0.25)

a5 0.641(0.23) 0.707(0.26) 0.709(0.26) 0.714(0.26) 0.711(0.26) 0.713(0.26) 0.712(0.26) 0.706(0.26) 0.702(0.26)

fuelCons 0.935(0.01) 0.933(0.01) 0.933(0.01) 0.931(0.01) 0.936(0.01) 0.935(0.01) 0.936(0.01) 0.934(0.01) 0.935(0.01)

availPwr 0.964(0.01) 0.966(0.01) 0.966(0.01) 0.966(0.01) 0.968(0.01) 0.963(0.01) 0.963(0.01) 0.968(0.01) 0.968(0.01)

cpuSm 0.367(0.04) 0.355(0.04) 0.358(0.04) 0.358(0.04) 0.384(0.03) 0.381(0.04) 0.377(0.04) 0.386(0.04) 0.384(0.04)

maxTorque 0.984(0.00) 0.984(0.00) 0.985(0.00) 0.984(0.00) 0.984(0.00) 0.984(0.00) 0.984(0.01) 0.984(0.00) 0.984(0.00)

bank8FM 0.965(0.00) 0.966(0.00) 0.966(0.00) 0.966(0.00) 0.968(0.00) 0.968(0.00) 0.968(0.00) 0.967(0.00) 0.966(0.00)

dAiler 0.800(0.01) 0.877(0.01) 0.874(0.01) 0.878(0.01) 0.886(0.01) 0.887(0.01) 0.887(0.01) 0.879(0.01) 0.878(0.01)

Continued on next page

198
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.11 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

SVM

concreteStrength 0.925(0.02) 0.953(0.02) 0.955(0.01) 0.955(0.02) 0.962(0.01) 0.962(0.01) 0.962(0.01) 0.960(0.01) 0.959(0.01)

acceleration 0.933(0.01) 0.961(0.01) 0.959(0.01) 0.960(0.01) 0.959(0.01) 0.960(0.01) 0.960(0.01) 0.956(0.01) 0.956(0.01)

airfoild 0.354(0.10) 0.403(0.12) 0.394(0.12) 0.406(0.11) 0.429(0.11) 0.410(0.10) 0.415(0.10) 0.435(0.12) 0.438(0.11)

NNET

servo 0.802(0.10) 0.756(0.14) 0.792(0.14) 0.771(0.14) 0.787(0.14) 0.786(0.14) 0.810(0.14) 0.786(0.14) 0.801(0.13)

a6 0.665(0.10) 0.690(0.12) 0.699(0.11) 0.697(0.11) 0.698(0.12) 0.689(0.11) 0.693(0.11) 0.688(0.11) 0.693(0.11)

Abalone 0.785(0.02) 0.822(0.03) 0.819(0.03) 0.824(0.03) 0.828(0.03) 0.833(0.03) 0.833(0.03) 0.825(0.03) 0.824(0.03)

machineCpu 0.685(0.09) 0.711(0.10) 0.712(0.10) 0.716(0.10) 0.730(0.10) 0.740(0.10) 0.730(0.11) 0.730(0.09) 0.719(0.09)

a3 0.662(0.07) 0.690(0.09) 0.687(0.09) 0.682(0.08) 0.695(0.08) 0.693(0.08) 0.691(0.08) 0.693(0.08) 0.692(0.08)

a4 0.714(0.09) 0.740(0.10) 0.742(0.09) 0.734(0.09) 0.760(0.08) 0.754(0.09) 0.759(0.08) 0.763(0.09) 0.763(0.09)

a1 0.767(0.08) 0.815(0.07) 0.813(0.06) 0.818(0.07) 0.824(0.06) 0.815(0.07) 0.819(0.06) 0.819(0.07) 0.816(0.06)

a7 0.562(0.20) 0.520(0.19) 0.511(0.19) 0.533(0.19) 0.537(0.18) 0.518(0.20) 0.538(0.20) 0.539(0.19) 0.535(0.20)

boston 0.814(0.05) 0.855(0.04) 0.858(0.03) 0.855(0.04) 0.848(0.04) 0.854(0.04) 0.852(0.04) 0.851(0.04) 0.853(0.04)

a2 0.654(0.23) 0.703(0.25) 0.696(0.25) 0.710(0.25) 0.705(0.26) 0.711(0.26) 0.713(0.26) 0.709(0.25) 0.708(0.25)

a5 0.628(0.23) 0.687(0.25) 0.685(0.25) 0.692(0.25) 0.691(0.25) 0.690(0.25) 0.693(0.25) 0.693(0.25) 0.692(0.25)

fuelCons 0.602(0.04) 0.684(0.04) 0.694(0.04) 0.682(0.04) 0.672(0.06) 0.672(0.06) 0.671(0.06) 0.678(0.06) 0.684(0.05)

availPwr 0.729(0.04) 0.815(0.04) 0.811(0.04) 0.810(0.04) 0.796(0.04) 0.793(0.03) 0.792(0.03) 0.795(0.03) 0.793(0.03)

cpuSm 0.359(0.06) 0.364(0.13) 0.339(0.12) 0.364(0.12) 0.343(0.13) 0.355(0.10) 0.367(0.11) 0.329(0.13) 0.352(0.13)

maxTorque 0.751(0.03) 0.846(0.03) 0.847(0.03) 0.842(0.03) 0.837(0.03) 0.839(0.03) 0.832(0.03) 0.840(0.03) 0.835(0.03)

bank8FM 0.970(0.00) 0.965(0.02) 0.965(0.02) 0.965(0.02) 0.972(0.01) 0.968(0.01) 0.969(0.01) 0.969(0.02) 0.970(0.01)

dAiler 0.690(0.01) 0.721(0.02) 0.723(0.02) 0.722(0.02) 0.747(0.02) 0.746(0.03) 0.744(0.03) 0.749(0.03) 0.746(0.03)

concreteStrength 0.775(0.03) 0.886(0.03) 0.889(0.02) 0.886(0.03) 0.870(0.03) 0.868(0.03) 0.870(0.03) 0.880(0.03) 0.877(0.03)

acceleration 0.777(0.03) 0.869(0.02) 0.873(0.02) 0.873(0.02) 0.868(0.02) 0.864(0.02) 0.866(0.03) 0.870(0.03) 0.869(0.02)

airfoild 0.458(0.04) 0.342(0.05) 0.328(0.05) 0.345(0.05) 0.351(0.03) 0.348(0.04) 0.354(0.03) 0.339(0.05) 0.344(0.04)

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
199

Table A.12: Evaluation results concerning the NPvalφ metric (average and standard deviation) for 20 data sets and all tested variants

of 4 learners using biased pre-processing strategies.

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

MARS

servo 0.968(0.04) 0.977(0.06) 0.972(0.05) 0.978(0.06) 0.967(0.03) 0.974(0.03) 0.966(0.03) 0.971(0.04) 0.964(0.05)

a6 0.842(0.04) 0.766(0.13) 0.799(0.08) 0.821(0.06) 0.817(0.06) 0.834(0.05) 0.825(0.05) 0.828(0.07) 0.822(0.07)

Abalone 0.896(0.01) 0.822(0.01) 0.820(0.01) 0.823(0.01) 0.801(0.01) 0.782(0.01) 0.787(0.01) 0.815(0.01) 0.819(0.01)

machineCpu 0.977(0.02) 0.949(0.03) 0.959(0.02) 0.949(0.03) 0.961(0.02) 0.957(0.03) 0.958(0.03) 0.965(0.02) 0.966(0.02)

a3 0.836(0.05) 0.743(0.09) 0.651(0.22) 0.761(0.11) 0.788(0.06) 0.801(0.07) 0.803(0.07) 0.806(0.06) 0.804(0.06)

a4 0.869(0.05) 0.817(0.07) 0.793(0.07) 0.796(0.06) 0.820(0.06) 0.816(0.05) 0.818(0.06) 0.824(0.06) 0.829(0.05)

a1 0.934(0.04) 0.863(0.06) 0.882(0.05) 0.877(0.05) 0.890(0.04) 0.886(0.05) 0.887(0.05) 0.905(0.04) 0.912(0.04)

a7 0.873(0.05) 0.741(0.18) 0.728(0.22) 0.731(0.22) 0.819(0.10) 0.831(0.09) 0.826(0.07) 0.836(0.07) 0.819(0.09)

boston 0.992(0.02) 0.957(0.02) 0.960(0.02) 0.955(0.02) 0.968(0.02) 0.963(0.02) 0.962(0.02) 0.967(0.02) 0.972(0.02)

a2 0.914(0.04) 0.828(0.10) 0.789(0.11) 0.834(0.09) 0.839(0.06) 0.851(0.06) 0.835(0.05) 0.846(0.05) 0.839(0.06)

a5 0.901(0.04) 0.774(0.10) 0.760(0.14) 0.820(0.09) 0.839(0.07) 0.845(0.05) 0.855(0.06) 0.839(0.05) 0.825(0.06)

fuelCons 0.954(0.01) 0.934(0.01) 0.929(0.01) 0.933(0.01) 0.932(0.01) 0.927(0.01) 0.927(0.01) 0.933(0.01) 0.938(0.01)

availPwr 0.988(0.00) 0.968(0.01) 0.971(0.01) 0.971(0.01) 0.971(0.01) 0.960(0.01) 0.960(0.01) 0.974(0.01) 0.973(0.01)

cpuSm 0.854(0.01) 0.841(0.01) 0.835(0.01) 0.844(0.01) 0.846(0.01) 0.815(0.01) 0.816(0.01) 0.851(0.01) 0.853(0.01)

maxTorque 0.994(0.00) 0.988(0.00) 0.987(0.01) 0.988(0.00) 0.976(0.01) 0.974(0.01) 0.974(0.01) 0.978(0.01) 0.977(0.01)

bank8FM 0.995(0.00) 0.985(0.00) 0.985(0.00) 0.985(0.00) 0.986(0.00) 0.985(0.00) 0.986(0.00) 0.988(0.00) 0.989(0.00)

dAiler 0.942(0.00) 0.859(0.01) 0.862(0.01) 0.859(0.01) 0.828(0.01) 0.818(0.01) 0.821(0.01) 0.858(0.01) 0.859(0.01)

concreteStrength 0.998(0.01) 0.962(0.02) 0.955(0.02) 0.958(0.02) 0.980(0.01) 0.978(0.01) 0.978(0.01) 0.983(0.01) 0.982(0.01)

acceleration 0.990(0.01) 0.967(0.01) 0.971(0.01) 0.972(0.01) 0.971(0.01) 0.960(0.01) 0.960(0.01) 0.979(0.01) 0.979(0.01)

airfoild 0.835(0.02) 0.792(0.03) 0.781(0.03) 0.795(0.02) 0.816(0.02) 0.813(0.02) 0.815(0.02) 0.813(0.02) 0.817(0.02)

RF

servo 0.988(0.02) 1.000(0.02) 0.998(0.02) 1.000(0.02) 0.988(0.03) 0.989(0.03) 0.982(0.03) 0.992(0.02) 0.992(0.03)

a6 0.835(0.04) 0.742(0.05) 0.739(0.06) 0.740(0.06) 0.805(0.06) 0.794(0.06) 0.810(0.06) 0.803(0.06) 0.808(0.06)

Abalone 0.903(0.01) 0.842(0.01) 0.833(0.01) 0.847(0.01) 0.855(0.01) 0.845(0.01) 0.851(0.01) 0.865(0.01) 0.869(0.01)

machineCpu 0.982(0.02) 0.950(0.05) 0.954(0.03) 0.955(0.03) 0.977(0.02) 0.971(0.03) 0.979(0.02) 0.970(0.03) 0.975(0.02)

a3 0.838(0.05) 0.708(0.07) 0.677(0.07) 0.693(0.06) 0.781(0.06) 0.807(0.07) 0.792(0.06) 0.809(0.05) 0.797(0.06)

a4 0.875(0.04) 0.744(0.06) 0.737(0.05) 0.739(0.04) 0.812(0.04) 0.809(0.05) 0.807(0.04) 0.820(0.04) 0.822(0.04)

a1 0.929(0.03) 0.844(0.05) 0.843(0.05) 0.853(0.06) 0.899(0.04) 0.893(0.04) 0.911(0.04) 0.913(0.04) 0.921(0.04)

Continued on next page

200
A
P
P
E
N
D
IX

A
.
P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
R
E
S
U
L
T
S
F
O
R
IM

B
A
L
A
N
C
E
D
R
E
G
R
E
S
S
IO

N
Table A.12 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

RF

a7 0.856(0.06) 0.666(0.09) 0.641(0.08) 0.666(0.08) 0.756(0.08) 0.757(0.06) 0.767(0.08) 0.764(0.07) 0.761(0.06)

boston 0.992(0.01) 0.957(0.02) 0.947(0.02) 0.959(0.03) 0.984(0.02) 0.981(0.02) 0.983(0.01) 0.980(0.02) 0.982(0.02)

a2 0.912(0.04) 0.757(0.06) 0.758(0.07) 0.753(0.05) 0.864(0.05) 0.859(0.06) 0.849(0.06) 0.864(0.06) 0.847(0.06)

a5 0.900(0.04) 0.679(0.06) 0.705(0.04) 0.730(0.07) 0.847(0.05) 0.860(0.05) 0.854(0.04) 0.854(0.04) 0.854(0.05)

fuelCons 0.979(0.00) 0.946(0.01) 0.945(0.01) 0.945(0.01) 0.963(0.01) 0.963(0.01) 0.963(0.01) 0.965(0.01) 0.965(0.01)

availPwr 0.999(0.00) 0.981(0.01) 0.981(0.01) 0.981(0.01) 0.995(0.00) 0.995(0.00) 0.995(0.00) 0.996(0.00) 0.996(0.00)

cpuSm 0.862(0.01) 0.855(0.01) 0.847(0.01) 0.854(0.01) 0.864(0.01) 0.858(0.01) 0.859(0.01) 0.865(0.01) 0.867(0.01)

maxTorque 0.998(0.00) 0.973(0.01) 0.975(0.01) 0.976(0.01) 0.995(0.00) 0.994(0.00) 0.995(0.00) 0.995(0.00) 0.995(0.00)

bank8FM 0.991(0.00) 0.979(0.00) 0.979(0.00) 0.977(0.00) 0.988(0.00) 0.987(0.00) 0.988(0.00) 0.988(0.00) 0.989(0.00)

dAiler 0.946(0.00) 0.878(0.01) 0.871(0.01) 0.877(0.01) 0.906(0.01) 0.901(0.01) 0.905(0.01) 0.917(0.01) 0.921(0.00)

concreteStrength 1.000(0.01) 0.966(0.02) 0.951(0.02) 0.954(0.02) 0.994(0.01) 0.991(0.01) 0.996(0.01) 0.994(0.01) 0.997(0.01)

acceleration 0.996(0.01) 0.970(0.01) 0.970(0.01) 0.975(0.01) 0.989(0.01) 0.989(0.01) 0.989(0.01) 0.991(0.01) 0.991(0.01)

airfoild 0.839(0.02) 0.811(0.02) 0.792(0.03) 0.808(0.02) 0.838(0.02) 0.845(0.01) 0.843(0.01) 0.842(0.02) 0.837(0.02)

SVM

servo 0.909(0.05) 0.873(0.07) 0.894(0.06) 0.868(0.08) 0.878(0.06) 0.898(0.06) 0.879(0.08) 0.898(0.06) 0.883(0.07)

a6 0.896(0.04) 0.819(0.06) 0.801(0.05) 0.817(0.05) 0.822(0.04) 0.817(0.04) 0.805(0.05) 0.828(0.05) 0.825(0.05)

Abalone 0.913(0.01) 0.855(0.01) 0.863(0.01) 0.854(0.01) 0.838(0.01) 0.825(0.01) 0.830(0.01) 0.848(0.01) 0.851(0.01)

machineCpu 0.974(0.01) 0.949(0.02) 0.963(0.02) 0.949(0.02) 0.959(0.02) 0.955(0.02) 0.953(0.03) 0.962(0.02) 0.959(0.02)

a3 0.918(0.03) 0.787(0.07) 0.797(0.06) 0.769(0.07) 0.820(0.04) 0.816(0.07) 0.815(0.06) 0.812(0.06) 0.816(0.06)

a4 0.895(0.05) 0.811(0.07) 0.811(0.06) 0.813(0.06) 0.831(0.06) 0.827(0.05) 0.818(0.06) 0.837(0.05) 0.831(0.05)

a1 0.941(0.03) 0.830(0.07) 0.843(0.06) 0.824(0.07) 0.854(0.07) 0.858(0.06) 0.850(0.07) 0.874(0.06) 0.869(0.06)

a7 0.915(0.03) 0.780(0.06) 0.789(0.07) 0.784(0.07) 0.816(0.07) 0.815(0.07) 0.811(0.07) 0.807(0.07) 0.804(0.07)

boston 0.985(0.01) 0.950(0.02) 0.952(0.02) 0.948(0.02) 0.959(0.01) 0.955(0.01) 0.957(0.02) 0.962(0.01) 0.963(0.01)

a2 0.952(0.02) 0.801(0.07) 0.816(0.06) 0.821(0.07) 0.846(0.05) 0.842(0.06) 0.841(0.06) 0.856(0.05) 0.851(0.05)

a5 0.947(0.03) 0.817(0.07) 0.826(0.06) 0.830(0.06) 0.844(0.05) 0.850(0.05) 0.842(0.05) 0.853(0.05) 0.837(0.06)

fuelCons 0.970(0.01) 0.947(0.01) 0.947(0.01) 0.944(0.01) 0.954(0.01) 0.951(0.01) 0.951(0.01) 0.957(0.01) 0.957(0.01)

availPwr 0.992(0.00) 0.979(0.01) 0.981(0.00) 0.980(0.01) 0.984(0.00) 0.979(0.00) 0.978(0.01) 0.985(0.00) 0.985(0.00)

cpuSm 0.863(0.01) 0.800(0.01) 0.800(0.01) 0.800(0.01) 0.819(0.01) 0.840(0.01) 0.840(0.01) 0.820(0.01) 0.821(0.01)

maxTorque 0.996(0.00) 0.984(0.00) 0.985(0.00) 0.983(0.00) 0.989(0.00) 0.989(0.00) 0.989(0.00) 0.989(0.00) 0.988(0.00)

bank8FM 0.997(0.00) 0.990(0.00) 0.989(0.00) 0.990(0.00) 0.989(0.00) 0.988(0.00) 0.988(0.00) 0.990(0.00) 0.991(0.00)

dAiler 0.956(0.00) 0.879(0.01) 0.883(0.01) 0.879(0.01) 0.851(0.01) 0.845(0.01) 0.846(0.01) 0.875(0.01) 0.876(0.01)

Continued on next page

A
.2
.

E
V
A
L
U
A
T
IO

N
R
E
S
U
L
T
S
O
F
B
IA

S
E
D

P
R
E
-P

R
O
C
E
S
S
IN

G
S
T
R
A
T
E
G
IE

S
201

Table A.12 – continued from previous page

Learner Data sets None U. . U.F. U.S. S. . S.F.F S.S.F S.F.S S.S.S

SVM

concreteStrength 0.992(0.01) 0.944(0.02) 0.941(0.02) 0.943(0.02) 0.955(0.01) 0.954(0.01) 0.954(0.01) 0.961(0.01) 0.960(0.01)

acceleration 0.995(0.01) 0.957(0.01) 0.962(0.01) 0.956(0.01) 0.961(0.01) 0.953(0.01) 0.952(0.01) 0.971(0.01) 0.970(0.01)

airfoild 0.853(0.02) 0.792(0.03) 0.776(0.03) 0.794(0.03) 0.823(0.02) 0.823(0.02) 0.825(0.02) 0.826(0.02) 0.827(0.02)

NNET

servo 0.934(0.03) 0.802(0.21) 0.877(0.19) 0.807(0.20) 0.848(0.25) 0.872(0.21) 0.910(0.17) 0.849(0.21) 0.851(0.21)

a6 0.814(0.05) 0.488(0.26) 0.518(0.29) 0.539(0.28) 0.617(0.28) 0.629(0.30) 0.645(0.30) 0.641(0.30) 0.602(0.30)

Abalone 0.910(0.01) 0.851(0.02) 0.848(0.02) 0.854(0.02) 0.847(0.02) 0.830(0.02) 0.837(0.02) 0.862(0.02) 0.865(0.02)

machineCpu 0.844(0.04) 0.367(0.43) 0.326(0.38) 0.395(0.44) 0.484(0.42) 0.655(0.29) 0.655(0.23) 0.424(0.29) 0.416(0.40)

a3 0.840(0.06) 0.630(0.19) 0.646(0.20) 0.649(0.21) 0.689(0.25) 0.670(0.26) 0.671(0.27) 0.644(0.29) 0.687(0.27)

a4 0.869(0.06) 0.620(0.21) 0.570(0.21) 0.640(0.21) 0.706(0.20) 0.676(0.21) 0.655(0.23) 0.724(0.18) 0.690(0.21)

a1 0.937(0.04) 0.792(0.11) 0.809(0.09) 0.829(0.10) 0.819(0.11) 0.786(0.11) 0.803(0.11) 0.816(0.12) 0.816(0.12)

a7 0.843(0.10) 0.631(0.28) 0.622(0.28) 0.656(0.26) 0.683(0.28) 0.687(0.28) 0.674(0.29) 0.717(0.27) 0.739(0.24)

boston 1.000(0.03) 0.777(0.10) 0.782(0.13) 0.803(0.11) 0.777(0.10) 0.795(0.11) 0.804(0.12) 0.781(0.13) 0.791(0.11)

a2 0.913(0.04) 0.729(0.11) 0.752(0.12) 0.778(0.12) 0.785(0.13) 0.777(0.14) 0.778(0.14) 0.792(0.12) 0.775(0.12)

a5 0.901(0.03) 0.713(0.21) 0.767(0.16) 0.786(0.14) 0.803(0.15) 0.806(0.15) 0.788(0.15) 0.790(0.17) 0.778(0.18)

fuelCons 0.946(0.01) 0.850(0.05) 0.826(0.06) 0.841(0.05) 0.870(0.07) 0.860(0.08) 0.862(0.08) 0.865(0.06) 0.854(0.07)

availPwr 1.000(0.02) 0.663(0.11) 0.651(0.09) 0.660(0.09) 0.606(0.07) 0.631(0.07) 0.631(0.07) 0.590(0.07) 0.589(0.06)

cpuSm 0.823(0.06) 0.487(0.21) 0.469(0.21) 0.498(0.21) 0.485(0.23) 0.551(0.11) 0.561(0.10) 0.546(0.21) 0.536(0.19)

maxTorque 1.000(0.01) 0.761(0.07) 0.745(0.08) 0.756(0.08) 0.722(0.07) 0.738(0.10) 0.715(0.06) 0.719(0.08) 0.721(0.08)

bank8FM 0.991(0.00) 0.969(0.03) 0.969(0.03) 0.970(0.03) 0.985(0.01) 0.977(0.02) 0.980(0.02) 0.978(0.03) 0.983(0.02)

dAiler 0.952(0.01) 0.884(0.03) 0.883(0.02) 0.885(0.02) 0.883(0.02) 0.882(0.02) 0.883(0.02) 0.882(0.02) 0.885(0.02)

concreteStrength 1.000(0.01) 0.854(0.06) 0.815(0.06) 0.856(0.06) 0.808(0.05) 0.803(0.06) 0.813(0.05) 0.819(0.08) 0.829(0.08)

acceleration 1.000(0.02) 0.760(0.06) 0.748(0.06) 0.775(0.06) 0.775(0.07) 0.796(0.06) 0.811(0.06) 0.780(0.09) 0.775(0.08)

airfoild 0.894(0.02) 0.608(0.09) 0.588(0.10) 0.611(0.09) 0.581(0.07) 0.597(0.08) 0.594(0.06) 0.599(0.11) 0.594(0.09)

202APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

A.3 Evaluation Results of Pre-processing Strategies with Dif-

ferent Data Distribution Modifications Applied

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.4

0.5

0.6

0.7

0.550

0.575

0.600

0.625

0.62

0.64

0.66

0.68

0.60

0.65

0.70

0.75

Strategies

F
1φ

balance

Not Balance

Figure A.1: Results of F φ1 measure on servo data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES203

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.2

0.3

0.4

0.5

0.525

0.530

0.535

0.540

0.545

0.48

0.49

0.50

0.51

0.52

0.53

0.15

0.25

0.35

0.45

0.55

Strategies

F
1φ

balance

Not Balance

Figure A.2: Results of F φ1 measure on a6 data set, by learner, with pre-processing strategies

set to either balancing or to consider other not balancing variants.

204APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.72

0.73

0.74

0.720

0.724

0.728

0.720

0.725

0.730

0.735

0.50

0.55

0.60

0.65

0.70

0.75

Strategies

F
1φ

balance

Not Balance

Figure A.3: Results of F φ1 measure on Abalone data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES205

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.72

0.74

0.76

0.76

0.77

0.78

0.79

0.80

0.81

0.75

0.77

0.79

0.0

0.2

0.4

Strategies

F
1φ

balance

Not Balance

Figure A.4: Results of F φ1 measure on machineCpu data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

206APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.1

0.2

0.3

0.4

0.5

0.40

0.45

0.50

0.55

0.51

0.52

0.53

0.54

0.55

0.25

0.35

0.45

0.55

Strategies

F
1φ

balance

Not Balance

Figure A.5: Results of F φ1 measure on a3 data set, by learner, with pre-processing strategies

set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES207

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.2

0.3

0.4

0.5

0.6

0.48

0.52

0.56

0.60

0.49

0.50

0.51

0.52

0.53

0.3

0.4

0.5

Strategies

F
1φ

balance

Not Balance

Figure A.6: Results of F φ1 measure on a4 data set, by learner, with pre-processing strategies

set to either balancing or to consider other not balancing variants.

208APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.0

0.2

0.4

0.6

0.64

0.68

0.72

0.76

0.64

0.66

0.68

0.70

0.72

0.0

0.1

0.2

0.3

0.4

Strategies

F
1φ

balance

Not Balance

Figure A.7: Results of F φ1 measure on a1 data set, by learner, with pre-processing strategies

set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES209

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.0

0.1

0.2

0.3

0.300

0.325

0.350

0.375

0.400

0.31

0.33

0.35

0.37

0.20

0.25

0.30

0.35

0.40

Strategies

F
1φ

balance

Not Balance

Figure A.8: Results of F φ1 measure on a7 data set, by learner, with pre-processing strategies

set to either balancing or to consider other not balancing variants.

210APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.2

0.4

0.6

0.2

0.3

0.4

0.5

0.6

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.0

0.1

0.2

0.3

0.4

Strategies

F
1φ

balance

Not Balance

Figure A.9: Results of F φ1 measure on a2 data set, by learner, with pre-processing strategies

set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES211

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.0

0.2

0.4

0.6

0.1

0.2

0.3

0.4

0.5

0.425

0.450

0.475

0.500

0.525

0.550

0.0

0.1

0.2

0.3

0.4

Strategies

F
1φ

balance

Not Balance

Figure A.10: Results of F φ1 measure on a5 data set, by learner, with pre-processing strategies

set to either balancing or to consider other not balancing variants.

212APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.885

0.890

0.895

0.900

0.905

0.910

0.89

0.90

0.91

0.92

0.93

0.94

0.880

0.885

0.890

0.895

0.900

0.0

0.1

0.2

Strategies

F
1φ

balance

Not Balance

Figure A.11: Results of F φ1 measure on fuelCons data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES213

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.92

0.93

0.94

0.95

0.95

0.96

0.97

0.91

0.92

0.93

0.94

0.0

0.1

0.2

0.3

0.4

Strategies

F
1φ

balance

Not Balance

Figure A.12: Results of F φ1 measure on availPwr data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

214APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.16

0.17

0.18

0.19

0.48

0.49

0.50

0.15

0.16

0.17

0.15

0.20

0.25

0.30

Strategies

F
1φ

balance

Not Balance

Figure A.13: Results of F φ1 measure on cpuSm data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES215

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.95

0.96

0.97

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.955

0.960

0.965

0.970

0.0

0.1

0.2

0.3

0.4

Strategies

F
1φ

balance

Not Balance

Figure A.14: Results of F φ1 measure on maxTorque data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

216APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.942

0.943

0.944

0.90

0.91

0.92

0.943

0.944

0.945

0.90

0.92

0.94

Strategies

F
1φ

balance

Not Balance

Figure A.15: Results of F φ1 measure on bank8FM data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES217

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.90

0.91

0.92

0.93

0.94

0.84

0.87

0.90

0.93

0.900

0.905

0.910

0.915

0.920

0.00

0.01

0.02

0.03

0.04

Strategies

F
1φ

balance

Not Balance

Figure A.16: Results of F φ1 measure on concreteStrength data set, by learner, with pre-

processing strategies set to either balancing or to consider other not balancing variants.

218APPENDIX A. PRE-PROCESSING STRATEGIES RESULTS FOR IMBALANCED REGRESSION

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.900

0.905

0.910

0.915

0.91

0.92

0.93

0.94

0.95

0.88

0.89

0.90

0.91

0.92

0.1

0.2

0.3

Strategies

F
1φ

balance

Not Balance

Figure A.17: Results of F φ1 measure on acceleration data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

A.3. RESULTS OF PRE-PROCESSINGWITH DIFFERENTDISTRIBUTION CHANGES219

NNET RF

MARS SVM

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

N
on

e

R
U

R
O

G
N

W
E

R
C

S

S
M

O
T

E
R

S
M

O
G

N

0.200

0.225

0.250

0.275

0.300

0.325

0.05

0.10

0.15

0.08

0.12

0.16

0.20

0.0000

0.0025

0.0050

0.0075

0.0100

Strategies

F
1φ

balance

Not Balance

Figure A.18: Results of F φ1 measure on airfoild data set, by learner, with pre-processing

strategies set to either balancing or to consider other not balancing variants.

Glossary

AOC Area Over the RROC Curve. 24

AUC-PR Area Under the PR Curve. xxi, 42, 44

AUC-ROC Area Under the ROC Curve. xxi, 40–42, 44, 94

AUC-ROCIV Area Under the ROCIV Curve. 41, 44

CBO Cluster-Based Over-sampling. 52

CWA Mean Class Weighted Accuracy . 39

EA Evolutionary Algorithm. 52

G-Mean Geometric-Mean. 38, 39, 94, 95

GA Genetic Algorithm. 31

GN Introduction of Gaussian Noise. xxii, 127, 128, 132, 133, 138, 143, 144, 155

k-NN k-Nearest Neighbours. 49

MAE Mean Absolute Error. 43, 97

MC Mean Cost. 22, 23

MSE Mean Squared Error. 43, 97

MU Mean Utility. 23, 24, 43, 88

NMC Normalised Mean Cost. 23

NMU Normalised Mean Utility. 43, 74, 88, 109

NNET Neural Network. 28, 30, 31, 48, 54, 153

OSS One Sided Selection. 52

221

222 Glossary

PR Curve Precision-Recall Curve. xxi, 41, 42

REC Curve Regression Error Characteristic Curve. xxi, 24, 26, 44, 45

REC Surface Regression Error Characteristic Surface. xxi, 45

RO Random Over-sampling. xxii, 122, 123, 125, 143, 144, 155

ROC Receiver Operating Characteristics curve. xxi, 24, 40–42

ROCIV Instance Varying Receiver Operating Characteristics curve. 41

ROSE Random Over Sampling Examples. 53

RROC Curve ROC Space for Regression. xxi, 24, 25

RU Random Under-sampling. xxii, 121–123, 143, 144, 149, 155

SMOGN SMOTER with Gaussian Noise. xxii, 132, 133, 135, 143, 144, 155

SMOTE Synthetic Minority Over-sampling TEchnique. xxi, 53, 54, 128, 130

SMOTER SMOTE for Regression. xxii, 128, 130, 132, 133, 138, 143, 144, 149, 155

SVM Support Vector Machine. 28, 31, 48, 49, 52, 54

UBDM Utility Based Data Mining. 9, 10

WERCS WEighted Relevance-based Combination Strategy. xxii, 123, 125–127, 143, 144,

153, 155

References

Naoki Abe, Bianca Zadrozny, and John Langford. An iterative method for multi-class cost-

sensitive learning. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 3–11. ACM, 2004.

Ni Ailing, Shujie Yang, Xiaofeng Zhu, and Shichao Zhang. Learning classification rules under

multiple costs. Asian Journal of Information Technology, 4(11):1080–1085, 2005.

Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying support vector machines

to imbalanced datasets. In Machine Learning: ECML 2004, pages 39–50. Springer, 2004.

Roberto Alejo, Vicente Garćıa, José Mart́ınez Sotoca, Ramón Alberto Mollineda, and

José Salvador Sánchez. Improving the performance of the rbf neural networks trained

with imbalanced samples. In Computational and Ambient Intelligence, pages 162–169.

Springer, 2007.

Roberto Alejo, J. A Antonio, Rosa Maria Valdovinos, and J. Horacio Pacheco-Sánchez.

Assessments metrics for multi-class imbalance learning: A preliminary study. In Pattern

Recognition, pages 335–343. Springer, 2013.

Shun-ichi Amari and Si Wu. Improving support vector machine classifiers by modifying

kernel functions. Neural Networks, 12(6):783–789, 1999.

Francis R Bach, David Heckerman, and Eric Horvitz. Considering cost asymmetry in learning

classifiers. Journal of Machine Learning Research, 7(Aug):1713–1741, 2006.

Alejandro Correa Bahnsen, Djamila Aouada, and Björn Ottersten. Example-dependent

cost-sensitive decision trees. Expert Systems with Applications, 42(19):6609–6619, 2015.

Lúıs Carlos Gouveia Báıa. Actionable forecasting and activity monitoring: applications to

financial trading. Master’s thesis, Faculty of Sciences - University of Porto, 2015.

Gaurav Bansal, Atish P. Sinha, and Huimin Zhao. Tuning data mining methods for cost-

sensitive regression: a study in loan charge-off forecasting. Journal of Management

Information Systems, 25(3):315–336, 2008.

223

224 REFERENCES

Ricardo Barandela, José Salvador Sánchez, Vicente Garcıa, and Edgar Rangel. Strategies

for learning in class imbalance problems. Pattern Recognition, 36(3):849–851, 2003.

Vincent Barnab-Lortie, Colin Bellinger, and Nathalie Japkowicz. Active learning for one-

class classification. In Proceedings of ICMLA’2015, 2015.

Sukarna Barua, Monirul Islam, Xin Yao, and Kazuyuki Murase. Mwmote-majority weighted

minority oversampling technique for imbalanced data set learning. 2012.

Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A study of the

behavior of several methods for balancing machine learning training data. ACM SIGKDD

Explorations Newsletter, 6(1):20–29, 2004.

Rukshan Batuwita and Vasile Palade. A new performance measure for class imbalance

learning. application to bioinformatics problems. In Machine Learning and Applications,

2009. ICMLA’09. International Conference on, pages 545–550. IEEE, 2009.

Rukshan Batuwita and Vasile Palade. Efficient resampling methods for training support

vector machines with imbalanced datasets. In Neural Networks (IJCNN), The 2010

International Joint Conference on, pages 1–8. IEEE, 2010a.

Rukshan Batuwita and Vasile Palade. Fsvm-cil: fuzzy support vector machines for class

imbalance learning. Fuzzy Systems, IEEE Transactions on, 18(3):558–571, 2010b.

Rukshan Batuwita and Vasile Palade. Adjusted geometric-mean: a novel performance

measure for imbalanced bioinformatics datasets learning. Journal of Bioinformatics and

Computational Biology, 10(04), 2012.

Colin Bellinger, Shiven Sharma, and Nathalie Japkowicz. One-class versus binary classifi-

cation: Which and when? In Machine Learning and Applications (ICMLA), 2012 11th

International Conference on, volume 2, pages 102–106. IEEE, 2012.

Colin Bellinger, Nathalie Japkowicz, and Christopher Drummond. Synthetic oversampling

for advanced radioactive threat detection. In Proceedings ICML’2015, 2015.

Colin Bellinger, Christopher Drummond, and Nathalie Japkowicz. Manifold-based synthetic

oversampling with manifold conformance estimation. Machine Learning, 107(3):605–637,

2018.

Jinbo Bi and Kristin P Bennett. Regression error characteristic curves. In Proc. of the 20th

Int. Conf. on Machine Learning, pages 43–50, 2003.

Jerzy B laszczyński and Jerzy Stefanowski. Neighbourhood sampling in bagging for

imbalanced data. Neurocomputing, 150:529–542, 2015.

Adam Blum. Neural networks in c++. NY: Wiley, 697, 1992.

REFERENCES 225

Jeffrey P Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and Carla E Brodley. Pruning

decision trees with misclassification costs. In European Conference on Machine Learning,

pages 131–136. Springer, 1998.

Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine

learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

Paula Branco. Re-sampling approaches for regression tasks under imbalanced domains.

Master’s thesis, Dep. Computer Science, Faculty of Sciences - University of Porto, 2014.

Paula Branco, Luis Torgo, and Rita P Ribeiro. A survey of predictive modelling under

imbalanced distributions. arXiv preprint arXiv:1505.01658, 2015.

Paula Branco, Rita P Ribeiro, and Luis Torgo. UBL: an R package for utility-based learning.

arXiv preprint arXiv:1604.08079, 2016a.

Paula Branco, Lúıs Torgo, and Rita P Ribeiro. A survey of predictive modeling on

imbalanced domains. ACM Computing Surveys (CSUR), 49(2):31, 2016b.

Paula Branco, Lúıs Torgo, and Rita P Ribeiro. Exploring resampling with neighborhood bias

on imbalanced regression problems. In Portuguese Conference on Artificial Intelligence,

pages 513–524. Springer, 2017a.

Paula Branco, Lúıs Torgo, and Rita P Ribeiro. Relevance-based evaluation metrics for multi-

class imbalanced domains. In Pacific-Asia Conference on Knowledge Discovery and Data

Mining, pages 698–710. Springer, 2017b.

Paula Branco, Lúıs Torgo, and Rita P Ribeiro. SMOGN: a pre-processing approach for

imbalanced regression. In First International Workshop on Learning with Imbalanced

Domains: Theory and Applications, pages 36–50, 2017c.

Paula Branco, Lúıs Torgo, Rita P Ribeiro, Eibe Frank, Bernhard Pfahringer, and

Markus Michael Rau. Learning through utility optimization in regression tasks. In Data

Science and Advanced Analytics (DSAA), 2017 IEEE International Conference on, pages

30–39. IEEE, 2017d.

Paula Branco, Lúıs Torgo, and Rita P Ribeiro. MetaUtil: Meta learning for utility

maximization in regression. In International Conference on Discovery Science (to appear).

Springer, 2018a.

Paula Branco, Lúıs Torgo, and Rita P Ribeiro. Resampling with neighbourhood bias on

imbalanced domains. Expert Systems, 2018b.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

226 REFERENCES

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification

and regression trees. wadsworth & brooks. Monterey, CA, 1984.

Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M Buhmann.

The balanced accuracy and its posterior distribution. In Pattern recognition (ICPR), 2010

20th international conference on, pages 3121–3124. IEEE, 2010.

R. Brüggemann, P. B Sørensen, D. Lerche, and L. Carlsen. Estimation of averaged ranks by

a local partial order model#. Journal of chemical information and computer sciences, 44

(2):618–625, 2004.

Chumphol Bunkhumpornpat and Sitthichoke Subpaiboonkit. Safe level graph for synthetic

minority over-sampling techniques. In Communications and Information Technologies

(ISCIT), 2013 13th International Symposium on, pages 570–575. IEEE, 2013.

Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap. Safe-

level-smote: Safe-level-synthetic minority over-sampling technique for handling the class

imbalanced problem. In Advances in Knowledge Discovery and Data Mining, pages 475–

482. Springer, 2009.

Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap. Mute:

Majority under-sampling technique. In Information, Communications and Signal Pro-

cessing (ICICS) 2011 8th International Conference on, pages 1–4. IEEE, 2011.

Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok Lursinsap. Dbsmote:

Density-based synthetic minority over-sampling technique. Applied Intelligence, 36(3):

664–684, 2012.

Michael C Burl, Lars Asker, Padhraic Smyth, Usama Fayyad, Pietro Perona, Larry

Crumpler, and Jayne Aubele. Learning to recognize volcanoes on venus. Machine Learning,

30(2):165–194, 1998.

Michael Cain and Christian Janssen. Real estate price prediction under asymmetric loss.

Annals of the Institute of Statistical Mathematics, 47(3):401–414, 1995.

Peng Cao, Dazhe Zhao, and Osmar R Zäıane. A pso-based cost-sensitive neural network for

imbalanced data classification. In Trends and Applications in Knowledge Discovery and

Data Mining, pages 452–463. Springer, 2013.

Cristiano Leite Castro and Antônio de Pádua Braga. Novel cost-sensitive approach to

improve the multilayer perceptron performance on imbalanced data. IEEE Trans. Neural

Netw. Learning Syst., 24(6):888–899, 2013.

Edward Y Chang, Beitao Li, Gang Wu, and Kingshy Goh. Statistical learning for effective

visual information retrieval. In ICIP (3), pages 609–612, 2003.

REFERENCES 227

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. P. Kegelmeyer. Smote:

Synthetic minority over-sampling technique. JAIR, 16:321–357, 2002.

Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer.

Smoteboost: Improving prediction of the minority class in boosting. In Knowledge

Discovery in Databases: PKDD 2003, pages 107–119. Springer, 2003.

Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: special issue on

learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1–6,

2004.

Nitesh V. Chawla, Lawrence O. Hall, and Ajay Joshi. Wrapper-based computation and

evaluation of sampling methods for imbalanced datasets. In Proceedings of the 1st

international workshop on Utility-based data mining, pages 24–33. ACM, 2005.

Nitesh V. Chawla, David A. Cieslak, Lawrence O. Hall, and Ajay Joshi. Automatically

countering imbalance and its empirical relationship to cost. Data Mining and Knowledge

Discovery, 17(2):225–252, 2008.

Chao Chen, Andy Liaw, and Leo Breiman. Using random forest to learn imbalanced data.

University of California, Berkeley, 2004.

Sheng Chen, Haibo He, and Edwardo A. Garcia. Ramoboost: Ranked minority oversampling

in boosting. Neural Networks, IEEE Transactions on, 21(10):1624–1642, 2010.

Peter F. Christoffersen and Francis X. Diebold. Further results on forecasting and model

selection under asymmetric loss. Journal of applied econometrics, 11(5):561–571, 1996.

Peter F. Christoffersen and Francis X. Diebold. Optimal prediction under asymmetric loss.

Econometric theory, 13(06):808–817, 1997.

Yu-Meei Chyi. Classification analysis techniques for skewed class distribution problems. Mas-

ter Thesis, Department of Information Management, National Sun Yat-Sen University,

2003.

David A. Cieslak and Nitesh V. Chawla. Learning decision trees for unbalanced data. In

Machine Learning and Knowledge Discovery in Databases, pages 241–256. Springer, 2008.

David A. Cieslak, Thomas R. Hoens, Nitesh V. Chawla, and W Philip Kegelmeyer. Hellinger

distance decision trees are robust and skew-insensitive. Data Mining and Knowledge

Discovery, 24(1):136–158, 2012.

Gilles Cohen, Mélanie Hilario, Hugo Sax, Stéphane Hugonnet, and Antoine Geissbuhler.

Learning from imbalanced data in surveillance of nosocomial infection. Artificial

Intelligence in Medicine, 37(1):7–18, 2006.

228 REFERENCES

Noel AC Cressie. Statistics for spatial data: Wiley series in probability and mathematical

statistics. Find this article online, 1993.

Sven F. Crone, Stefan Lessmann, and Robert Stahlbock. Utility based data mining for time

series analysis: cost-sensitive learning for neural network predictors. In Proceedings of the

1st international workshop on Utility-based data mining, pages 59–68. ACM, 2005.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314, 1989.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In

ICML’06: Proc. of the 23rd Int. Conf. on Machine Learning, ACM ICPS, pages 233–240.

ACM, 2006.

Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier

Corporation, 2007.

Maŕıa Dolores Del Castillo and José Ignacio Serrano. A multistrategy approach for digital

text categorization from imbalanced documents. ACM SIGKDD Explorations Newsletter,

6(1):70–79, 2004.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of

Machine Learning Research, 7:1–30, 2006.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel. e1071: Misc Functions

of the Department of Statistics (e1071), TU Wien, 2011.

Pedro Domingos. Knowledge acquisition from examples via multiple models. In Machine

Learning - International Workshop Then Conference -, pages 98–106. Morgan Kaufmann

Publishers, INC., 1997.

Pedro Domingos. Metacost: A general method for making classifiers cost-sensitive. In

KDD’99: Proceedings of the 5th International Conference on Knowledge Discovery and

Data Mining, pages 155–164. ACM Press, 1999.

John Doucette and Malcolm I. Heywood. Gp classification under imbalanced data sets:

Active sub-sampling and auc approximation. In Genetic Programming, pages 266–277.

Springer, 2008.

Dennis J. Drown, Taghi M. Khoshgoftaar, and Naeem Seliya. Evolutionary sampling and

software quality modeling of high-assurance systems. Systems, Man and Cybernetics, Part

A: Systems and Humans, IEEE Transactions on, 39(5):1097–1107, 2009.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

REFERENCES 229

Chris Drummond and Robert C. Holte. Explicitly representing expected cost: an alternative

to roc representation. In KDD’00: Proc. of the 6th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining, pages 198–207. ACM, 2000a.

Chris Drummond and Robert C Holte. Explicitly representing expected cost: An alternative

to roc representation. In Proceedings of the sixth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 198–207. ACM, 2000b.

Chris Drummond and Robert C. Holte. Exploiting the cost (in) sensitivity of decision tree

splitting criteria. In ICML, pages 239–246, 2000c.

Chris Drummond and Robert C. Holte. C4. 5, class imbalance, and cost sensitivity: why

under-sampling beats over-sampling. In Workshop on Learning from Imbalanced Datasets

II, volume 11. Citeseer, 2003.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley &

Sons, 2012.

James P. Egan. Signal detection theory and {ROC} analysis. 1975.

Charles Elkan. The foundations of cost-sensitive learning. In IJCAI’01: Proc. of 17th

Int. Joint Conf. of Artificial Intelligence, volume 1, pages 973–978. Morgan Kaufmann

Publishers, 2001.

Şeyda Ertekin. Adaptive oversampling for imbalanced data classification. In Information

Sciences and Systems 2013, pages 261–269. Springer, 2013.

Şeyda Ertekin, Jian Huang, Leon Bottou, and Lee Giles. Learning on the border: active

learning in imbalanced data classification. In Proceedings of the sixteenth ACM conference

on Conference on information and knowledge management, pages 127–136. ACM, 2007a.

Şeyda Ertekin, Jian Huang, and C Lee Giles. Active learning for class imbalance problem.

In Proceedings of the 30th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 823–824. ACM, 2007b.

Andrew Estabrooks and Nathalie Japkowicz. A mixture-of-experts framework for learning

from imbalanced data sets. In Advances in Intelligent Data Analysis, pages 34–43.

Springer, 2001.

Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple resampling method for

learning from imbalanced data sets. Computational Intelligence, 20(1):18–36, 2004.

Wei Fan, Salvatore J. Stolfo, Junxin Zhang, and Philip K. Chan. Adacost: misclassification

cost-sensitive boosting. In ICML, pages 97–105. Citeseer, 1999.

230 REFERENCES

Tom Fawcett. Roc graphs with instance-varying costs. Pattern Recognition Letters, 27(8):

882–891, 2006a.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874,

2006b.

Tom Fawcett and Foster Provost. Activity monitoring: Noticing interesting changes in

behavior. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 53–62. ACM, 1999.

Alberto Fernández, Salvador Garćıa, Maŕıa José del Jesus, and Francisco Herrera. A study

of the behaviour of linguistic fuzzy rule based classification systems in the framework of

imbalanced data-sets. Fuzzy Sets and Systems, 159(18):2378–2398, 2008.

Alberto Fernández, Maŕıa José del Jesus, and Francisco Herrera. On the 2-tuples based

genetic tuning performance for fuzzy rule based classification systems in imbalanced data-

sets. Information Sciences, 180(8):1268–1291, 2010.

César Ferri, Peter Flach, and José Hernández-Orallo. Learning decision trees using the area

under the roc curve. In ICML, volume 2, pages 139–146, 2002.

César Ferri, Peter Flach, José Hernández-Orallo, and Athmane Senad. Modifying roc curves

to incorporate predicted probabilities. In Proceedings of the second workshop on ROC

analysis in machine learning, pages 33–40, 2005.

César Ferri, José Hernández-Orallo, and R Modroiu. An experimental comparison of

performance measures for classification. Pattern Recognition Letters, 30(1):27–38, 2009.

César Ferri, José Hernández-Orallo, and Peter A Flach. Brier curves: a new cost-based

visualisation of classifier performance. In Proceedings of the 28th International Conference

on Machine Learning (ICML-11), pages 585–592, 2011a.

César Ferri, José Hernández-Orallo, and Peter A Flach. A coherent interpretation of auc as a

measure of aggregated classification performance. In Proceedings of the 28th International

Conference on Machine Learning (ICML-11), pages 657–664, 2011b.

Andrew O. Finley and Sudipto Banerjee. MBA: Multilevel B-spline Approximation, 2014.

URL https://CRAN.R-project.org/package=MBA. R package version 0.0-8.

Eibe Frank and Remco R Bouckaert. Conditional density estimation with class probability

estimators. In Asian Conference on Machine Learning, pages 65–81. Springer, 2009.

Yoav Freund. Boosting a weak learning algorithm by majority. Information and computation,

121(2):256–285, 1995.

https://CRAN.R-project.org/package=MBA

REFERENCES 231

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. In European conference on computational learning theory,

pages 23–37. Springer, 1995.

Giorgio Fumera and Fabio Roli. Cost-sensitive learning in support vector machines. VIII

Convegno Associazione Italiana per L’Intelligenza Artificiale, 2002.

Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, and Francisco

Herrera. A review on ensembles for the class imbalance problem: bagging-, boosting-,

and hybrid-based approaches. Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, 42(4):463–484, 2012.

Mikel Galar, Alberto Fernández, Edurne Barrenechea, and Francisco Herrera. Eusboost:

Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling.

Pattern Recognition, 2013.

Ming Gao, Xia Hong, Sheng Chen, Chris J Harris, and Emad Khalaf. Pdfos: Pdf estimation

based over-sampling for imbalanced two-class problems. Neurocomputing, 138:248–259,

2014.

Joaqúın Garćıa, Salvador Derrac, Isaac Triguero, Cristobal J Carmona, and Francisco Her-

rera. Evolutionary-based selection of generalized instances for imbalanced classification.

Knowledge-Based Systems, 25(1):3–12, 2012.

Salvador Garćıa and Francisco Herrera. Evolutionary undersampling for classification with

imbalanced datasets: Proposals and taxonomy. Evolutionary Computation, 17(3):275–306,

2009.

Salvador Garćıa, José Ramón Cano, Alberto Fernández, and Francisco Herrera. A proposal

of evolutionary prototype selection for class imbalance problems. In Intelligent Data

Engineering and Automated Learning–IDEAL 2006, pages 1415–1423. Springer, 2006.

Vicente Garćıa, Ramón Alberto Mollineda, and José Salvador Sánchez. A new performance

evaluation method for two-class imbalanced problems. In Structural, Syntactic, and

Statistical Pattern Recognition, pages 917–925. Springer, 2008.

Vicente Garćıa, Ramón Alberto Mollineda, and José Salvador Sánchez. Index of balanced

accuracy: A performance measure for skewed class distributions. In Pattern Recognition

and Image Analysis, pages 441–448. Springer, 2009.

Vicente Garćıa, Ramón Alberto Mollineda, and José Salvador Sánchez. Theoretical analysis

of a performance measure for imbalanced data. In Pattern Recognition (ICPR), 2010 20th

International Conference on, pages 617–620. IEEE, 2010.

232 REFERENCES

Peter Geibel, Ulf Brefeld, and Fritz Wysotzki. Perceptron and svm learning with generalized

cost models. Intelligent Data Analysis, 8(5):439–455, 2004.

Alireza Ghasemi, Mohammad T Manzuri, Hamid R Rabiee, Mohammad H Rohban, and

Siavash Haghiri. Active one-class learning by kernel density estimation. In Machine

Learning for Signal Processing (MLSP), 2011 IEEE International Workshop on, pages

1–6. IEEE, 2011a.

Alireza Ghasemi, Hamid R Rabiee, Mohsen Fadaee, Mohammad T Manzuri, and Moham-

mad H Rohban. Active learning from positive and unlabeled data. In Data Mining

Workshops (ICDMW), 2011 IEEE 11th International Conference on, pages 244–250.

IEEE, 2011b.

Clive W. Granger. Outline of forecast theory using generalized cost functions. Spanish

Economic Review, 1(2):161–173, 1999.

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: A new over-sampling

method in imbalanced data sets learning. In Advances in intelligent computing, pages

878–887. Springer, 2005.

David J. Hand. Measuring classifier performance: a coherent alternative to the area under

the roc curve. Machine learning, 77(1):103–123, 2009.

Peter. E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Information

Theory, 14:515–516, 1968.

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic

sampling approach for imbalanced learning. In Neural Networks, 2008. IJCNN 2008.(IEEE

World Congress on Computational Intelligence). IEEE International Joint Conference on,

pages 1322–1328. IEEE, 2008.

José Hernández-Orallo. Soft (gaussian cde) regression models and loss functions. arXiv

preprint arXiv:1211.1043, 2012.

José Hernández-Orallo. {ROC} curves for regression. Pattern Recognition, 46(12):3395 –

3411, 2013. ISSN 0031-3203. doi: http://dx.doi.org/10.1016/j.patcog.2013.06.014. URL

http://www.sciencedirect.com/science/article/pii/S0031320313002665.

José Hernández-Orallo. Probabilistic reframing for cost-sensitive regression. ACM Trans.

Knowl. Discov. Data, 8(4):17:1–17:55, August 2014. ISSN 1556-4681. doi: 10.1145/

2641758. URL http://doi.acm.org/10.1145/2641758.

José Hernández-Orallo, Peter Flach, and César Ferri. A unified view of performance metrics:

Translating threshold choice into expected classification loss. The Journal of Machine

Learning Research, 13(1):2813–2869, 2012.

http://www.sciencedirect.com/science/article/pii/S0031320313002665
http://doi.acm.org/10.1145/2641758

REFERENCES 233

José Hernández-Orallo, Adolfo Mart́ınez-Usó, Ricardo BC Prudêncio, Meelis Kull, Peter

Flach, Chowdhury Farhan Ahmed, and Nicolas Lachiche. Reframing in context: A

systematic approach for model reuse in machine learning. AI Communications, 29(5):

551–566, 2016.

P.H. Hiemstra, E.J. Pebesma, C.J.W. Twenhöfel, and G.B.M. Heuvelink. Real-

time automatic interpolation of ambient gamma dose rates from the dutch

radioactivity monitoring network. Computers & Geosciences, 2008. DOI:

http://dx.doi.org/10.1016/j.cageo.2008.10.011.

Robert C. Holte, Liane E. Acker, and Bruce W. Porter. Concept learning and the problem

of small disjuncts. In IJCAI, volume 89, pages 813–818. Citeseer, 1989.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2):251–257, 1991.

Shengguo Hu, Yanfeng Liang, Lintao Ma, and Ying He. Msmote: improving classification

performance when training data is imbalanced. In Computer Science and Engineering,

2009. WCSE’09. Second International Workshop on, volume 2, pages 13–17. IEEE, 2009.

Kaizhu Huang, Haiqin Yang, Irwin King, and Michael R. Lyu. Learning classifiers from

imbalanced data based on biased minimax probability machine. In Computer Vision and

Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society

Conference on, volume 2, pages II–558. IEEE, 2004.

Jae Pil Hwang, Seongkeun Park, and Euntai Kim. A new weighted approach to imbalanced

data classification problem via support vector machine with quadratic cost function. Expert

Systems with Applications, 38(7):8580–8585, 2011.

Tasadduq Imam, Kai Ming Ting, and Joarder Kamruzzaman. z-svm: An svm for improved

classification of imbalanced data. In AI 2006: Advances in Artificial Intelligence, pages

264–273. Springer, 2006.

Natalie Japkowicz. Assessment metrics for imbalanced learning. In Haibo He and Yunqian

Ma, editors, Imbalanced learning: foundations, algorithms, and applications. John Wiley

& Sons, 2013.

Nathalie Japkowicz. Learning from imbalanced data sets: a comparison of various strategies.

In AAAI workshop on learning from imbalanced data sets, volume 68. Menlo Park, CA,

2000a.

Nathalie Japkowicz. The class imbalance problem: Significance and strategies. In Proc. of

the Int’l Conf. on Artificial Intelligence, 2000b.

234 REFERENCES

Nathalie Japkowicz, Catherine Myers, and Mark Gluck. A novelty detection approach to

classification. In IJCAI, pages 518–523, 1995.

Piyasak Jeatrakul, Kok Wai Wong, and Chun Che Fung. Classification of imbalanced data by

combining the complementary neural network and smote algorithm. In Neural Information

Processing. Models and Applications, pages 152–159. Springer, 2010.

Taeho Jo and Nathalie Japkowicz. Class imbalances versus small disjuncts. ACM SIGKDD

Explorations Newsletter, 6(1):40–49, 2004.

Mahesh V. Joshi, Vipin Kumar, and Ramesh C. Agarwal. Evaluating boosting algorithms to

classify rare classes: Comparison and improvements. In Data Mining, 2001. ICDM 2001,

Proceedings IEEE International Conference on, pages 257–264. IEEE, 2001.

Jaz S Kandola and John Shawe-Taylor. Refining kernels for regression and uneven

classification problems. In AISTATS, 2003.

Pilsung Kang and Sungzoon Cho. Eus svms: Ensemble of under-sampled svms for data

imbalance problems. In Neural Information Processing, pages 837–846. Springer, 2006.

Grigoris I Karakoulas and John Shawe-Taylor. Optimizing classifers for imbalanced training

sets. In Advances in neural information processing systems, pages 253–259, 1999.

Taghi M Khoshgoftaar, Chris Seiffert, Jason Van Hulse, Amri Napolitano, and Andres

Folleco. Learning with limited minority class data. In Machine Learning and Applications,

2007. ICMLA 2007. Sixth International Conference on, pages 348–353. IEEE, 2007.

Sotiris Kotsiantis and Panagiotis Pintelas. Mixture of expert agents for handling imbalanced

data sets. Annals of Mathematics, Computing & Teleinformatics, 1(1):46–55, 2003.

B. Krawczyk. Learning from imbalanced data: open challenges and future directions.

Progress in Artificial Intelligence, pages 1–12, 2016.

Marek Kretowski and Marek Grześ. Evolutionary induction of decision trees for misclassifica-

tion cost minimization. In International Conference on Adaptive and Natural Computing

Algorithms, pages 1–10. Springer, 2007.

Miroslav Kubat and Stan Matwin. Addressing the curse of imbalanced training sets: One-

sided selection. In Proc. of the 14th Int. Conf. on Machine Learning, pages 179–186.

Morgan Kaufmann, 1997.

Miroslav Kubat, Robert C Holte, and Stan Matwin. Machine learning for the detection of

oil spills in satellite radar images. Machine learning, 30(2-3):195–215, 1998.

Matjaz Kukar and Igor Kononenko. Cost-sensitive learning with neural networks. In ECAI,

pages 445–449, 1998.

REFERENCES 235

Jorma Laurikkala. Improving identification of difficult small classes by balancing class

distribution. Springer, 2001.

Hyoung-joo Lee and Sungzoon Cho. The novelty detection approach for different degrees of

class imbalance. In Neural Information Processing, pages 21–30. Springer, 2006.

Sauchi Stephen Lee. Regularization in skewed binary classification. Computational Statistics,

14(2):277, 1999.

Sauchi Stephen Lee. Noisy replication in skewed binary classification. Computational

statistics & data analysis, 34(2):165–191, 2000.

Seungyong Lee, George Wolberg, and Sung Yong Shin. Scattered data interpolation with

multilevel b-splines. IEEE transactions on visualization and computer graphics, 3(3):228–

244, 1997.

Tae-Hwy Lee. Loss functions in time series forecasting. International encyclopedia of the

social sciences, 2008.

Chen Li, Chen Jing, and Gao Xin-tao. An improved p-svm method used to deal with

imbalanced data sets. In Intelligent Computing and Intelligent Systems, 2009. ICIS 2009.

IEEE International Conference on, volume 1, pages 118–122. IEEE, 2009.

Jin Li, Xiaoli Li, and Xin Yao. Cost-sensitive classification with genetic programming. In

Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 3, pages 2114–

2121. IEEE, 2005.

Kewen Li, Wenrong Zhang, Qinghua Lu, and Xianghua Fang. An improved smote imbalanced

data classification method based on support degree. In Identification, Information and

Knowledge in the Internet of Things (IIKI), 2014 International Conference on, pages

34–38. IEEE, 2014.

Peng Li, Pei-Li Qiao, and Yuan-Chao Liu. A hybrid re-sampling method for svm learning

from imbalanced data sets. In Fuzzy Systems and Knowledge Discovery, 2008. FSKD’08.

Fifth International Conference on, volume 2, pages 65–69. IEEE, 2008.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R News, 2

(3):18–22, 2002.

Pin Lim, Chi Keong Goh, and Kay Chen Tan. Evolutionary cluster-based synthetic

oversampling ensemble (eco-ensemble) for imbalance learning. IEEE transactions on

cybernetics, 47(9):2850–2861, 2017.

FY Lin and S McClean. The prediction of financial distress using a cost sensitive approach

and prior probabilities. In Workshop on Cost-Sensitive Learning at the Seventeenth

International Conference on Machine Learning (WCSL at ICML-2000), 2000.

236 REFERENCES

Yi Lin, Yoonkyung Lee, and Grace Wahba. Support vector machines for classification in

nonstandard situations. Machine learning, 46(1):191–202, 2002.

Charles X. Ling and Victor S. Sheng. Cost-sensitive learning. In Claude Sammut and

Geoffrey I. Webb, editors, Encyclopedia of Machine Learning, pages 231–235. Springer

US, Boston, MA, 2011a.

Charles X. Ling and Victor S. Sheng. Cost-sensitive learning and the class imbalance

problem. In Claude Sammut and Geoffrey I. Webb, editors, Encyclopedia of Machine

Learning, pages 167–168. Springer, Boston, MA, 2011b.

Charles X Ling, Qiang Yang, Jianning Wang, and Shichao Zhang. Decision trees with

minimal costs. In Proceedings of the twenty-first international conference on Machine

learning, page 69. ACM, 2004.

Charles X Ling, Victor S Sheng, Tilmann Bruckhaus, and Nazim H Madhavji. Maximum

profit mining and its application in software development. In Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining, pages

929–934. ACM, 2006.

Alexander Liu, Joydeep Ghosh, and Cheryl E. Martin. Generative oversampling for mining

imbalanced datasets. In DMIN, pages 66–72, 2007.

Wei Liu, Sanjay Chawla, David A. Cieslak, and Nitesh V. Chawla. A robust decision tree

algorithm for imbalanced data sets. In SDM, volume 10, pages 766–777. SIAM, 2010.

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-

imbalance learning. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 39(2):539–550, 2009.

Yang Liu, Aijun An, and Xiangji Huang. Boosting prediction accuracy on imbalanced

datasets with svm ensembles. In Advances in Knowledge Discovery and Data Mining,

pages 107–118. Springer, 2006.

Susan Lomax and Sunil Vadera. A survey of cost-sensitive decision tree induction algorithms.

ACM Computing Surveys (CSUR), 45(2):16, 2013.

Tomasz Maciejewski and Jerzy Stefanowski. Local neighbourhood extension of smote for

mining imbalanced data. In Computational Intelligence and Data Mining (CIDM), 2011

IEEE Symposium on, pages 104–111. IEEE, 2011.

Satyam Maheshwari, Jitendra Agrawal, and Sanjeev Sharma. A new approach for

classification of highly imbalanced datasets using evolutionary algorithms. Intl. J. Sci.

Eng. Res, 2:1–5, 2011.

REFERENCES 237

Marcus A Maloof. Learning when data sets are imbalanced and when costs are unequal and

unknown. In ICML-2003 workshop on learning from imbalanced data sets II, volume 2,

pages 2–1, 2003.

Larry Manevitz and Malik Yousef. One-class svms for document classification. the Journal

of machine Learning research, 2:139–154, 2002.

Inderjeet Mani and Jianping Zhang. knn approach to unbalanced data distributions: a case

study involving information extraction. In Proceedings of Workshop on Learning from

Imbalanced Datasets, 2003.

Dragos Margineantu. Building ensembles of classifiers for loss minimization. Computing

Science and Statistics, pages 190–194, 1999.

Dragos Margineantu. On class probability estimates and cost-sensitive evaluation of

classifiers. In Workshop on Cost-Sensitive Learning at the 17th International Conference

on Machine Learning, 2000.

Dragos D Margineantu. Class probability estimation and cost-sensitive classification

decisions. In ECML, pages 270–281. Springer, 2002.

Dragos Dorin Margineantu. Methods for cost-sensitive learning. PhD thesis, 2001.

José Manuel Mart́ınez-Garćıa, Carmen Paz Suárez-Araujo, and Patricio Garćıa Báez. Sneom:

a sanger network based extended over-sampling method. application to imbalanced

biomedical datasets. In Neural Information Processing, pages 584–592. Springer, 2012.

Hamed Masnadi-Shirazi and Nuno Vasconcelos. Asymmetric boosting. In Proceedings of the

24th international conference on Machine learning, pages 609–619. ACM, 2007.

Hamed Masnadi-Shirazi, Nuno Vasconcelos, and Arya Iranmehr. Cost-sensitive support

vector machines. arXiv preprint arXiv:1212.0975, 2012.

David Mease, Abraham Wyner, and Andreas Buja. Cost-weighted boosting with jittering

and over/under-sampling: Jous-boost. J. Machine Learning Research, 8:409–439, 2007.

Giovanna Menardi and Nicola Torelli. Training and assessing classification rules with

imbalanced data. Data Mining and Knowledge Discovery, pages 1–31, 2010.

Charles E Metz. Basic principles of roc analysis. In Seminars in nuclear medicine, volume

8 No.4, pages 283–298. Elsevier, 1978.

Ying Mi. Imbalanced classification based on active learning smote. Research Journal of

Applied Sciences, 5, 2013.

S. Milborrow. earth: Multivariate Adaptive Regression Spline Models. Derived from

mda:mars by Trevor Hastie and Rob Tibshirani., 2012.

238 REFERENCES

Stephanie L Moret, William T Langford, and Dragos D Margineantu. Learning to predict

channel stability using biogeomorphic features. Ecological Modelling, 191(1):47–57, 2006.

Douglas Mossman. Three-way rocs. Medical Decision Making, 19(1):78–89, 1999.

Satuluri Naganjaneyulu and Mrithyumjaya Rao Kuppa. A novel framework for class

imbalance learning using intelligent under-sampling. Progress in Artificial Intelligence,

2(1):73–84, 2013.

Munehiro Nakamura, Yusuke Kajiwara, Atsushi Otsuka, and Haruhiko Kimura. Lvq-

smote–learning vector quantization based synthetic minority over–sampling technique for

biomedical data. BioData mining, 6(1):16, 2013.

Krystyna Napiera la, Jerzy Stefanowski, and Szymon Wilk. Learning from imbalanced data

in presence of noisy and borderline examples. In Rough Sets and Current Trends in

Computing, pages 158–167. Springer, 2010.

Wing WY Ng, Jiankun Hu, Daniel S Yeung, Sha Yin, and Fabio Roli. Diversified sensitivity-

based undersampling for imbalance classification problems. 2014.

Nir Ofek, Lior Rokach, Roni Stern, and Asaf Shabtai. Fast-cbus: A fast clustering-based

undersampling method for addressing the class imbalance problem. Neurocomputing, 243:

88–102, 2017.

Sang-Hoon Oh. Error back-propagation algorithm for classification of imbalanced data.

Neurocomputing, 74(6):1058–1061, 2011.

Adam Omielan and Sunil Vadera. Ecco: A new evolutionary classifier with cost optimisation.

Intelligent Information Processing VI, pages 97–105, 2012.

Michael Pazzani, Christopher Merz, Patrick Murphy, Kamal Ali, Timothy Hume, and

Clifford Brunk. Reducing misclassification costs. In Proceedings of the Eleventh

International Conference on Machine Learning, pages 217–225, 1994.

Edzer J. Pebesma. Multivariable geostatistics in s: the gstat package. Computers &

Geosciences, 30:683–691, 2004.

Clifton Phua, Damminda Alahakoon, and Vincent Lee. Minority report in fraud detection:

classification of skewed data. ACM SIGKDD Explorations Newsletter, 6(1):50–59, 2004.

Foster Provost and Tom Fawcett. Robust classification for imprecise environments. Machine

learning, 42(3):203–231, 2001.

Foster J Provost and Tom Fawcett. Analysis and visualization of classifier performance:

Comparison under imprecise class and cost distributions. In KDD, volume 97, pages

43–48, 1997.

REFERENCES 239

Foster J Provost, Tom Fawcett, and Ron Kohavi. The case against accuracy estimation for

comparing induction algorithms. In ICML’98: Proc. of the 15th Int. Conf. on Machine

Learning, pages 445–453. Morgan Kaufmann Publishers, 1998.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2018. URL http://www.R-project.org/.

Enislay Ramentol, Yailé Caballero, Rafael Bello, and Francisco Herrera. Smote-rsb*:

a hybrid preprocessing approach based on oversampling and undersampling for high

imbalanced data-sets using smote and rough sets theory. Knowledge and Information

Systems, 33(2):245–265, 2012a.

Enislay Ramentol, Nelle Verbiest, Rafael Bello, Yailé Caballero, Chris Cornelis, and

Francisco Herrera. Smote-frst: a new resampling method using fuzzy rough set theory. In

10th International FLINS conference on uncertainty modelling in knowledge engineering

and decision making (to appear), 2012b.

Romesh Ranawana and Vasile Palade. Optimized precision-a new measure for classifier

performance evaluation. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress

on, pages 2254–2261. IEEE, 2006.

Bhavani Raskutti and Adam Kowalczyk. Extreme re-balancing for svms: a case study. ACM

Sigkdd Explorations Newsletter, 6(1):60–69, 2004.

Markus Michael Rau, Stella Seitz, Fabrice Brimioulle, Eibe Frank, Oliver Friedrich, Daniel

Gruen, and Ben Hoyle. Accurate photometric redshift probability density estimation–

method comparison and application. Monthly Notices of the Royal Astronomical Society,

452(4):3710–3725, 2015.

Rita P Ribeiro. Utility-based Regression. PhD thesis, Dep. Computer Science, Faculty of

Sciences - University of Porto, 2011.

Rita P Ribeiro and Lúıs Torgo. Predicting harmful algae blooms. In Progress in Artificial

Intelligence, pages 308–312. Springer, 2003.

Cornelis V. Rijsbergen. Information retrieval. dept. of computer science, university of

glasgow, 2nd edition. 1979.

Juan J Rodŕıguez, José-Francisco Dı́ez-Pastor, Jesús Maudes, and César Garćıa-Osorio.

Disturbing neighbors ensembles of trees for imbalanced data. In Machine Learning and

Applications (ICMLA), 2012 11th International Conference on, volume 2, pages 83–88.

IEEE, 2012.

José A Sáez, Julián Luengo, Jerzy Stefanowski, and Francisco Herrera. Smote–ipf:

Addressing the noisy and borderline examples problem in imbalanced classification by

a re-sampling method with filtering. Information Sciences, 291:184–203, 2015.

http://www.R-project.org/

240 REFERENCES

Juan Pablo Sánchez-Crisostomo, Roberto Alejo, Erika López-González, Rosa Maŕıa Val-

dovinos, and J Horacio Pacheco-Sánchez. Empirical analysis of assessments metrics for

multi-class imbalance learning on the back-propagation context. In Advances in Swarm

Intelligence, pages 17–23. Springer, 2014.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C

Williamson. Estimating the support of a high-dimensional distribution. Neural com-

putation, 13(7):1443–1471, 2001.

Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Rusboost: A

hybrid approach to alleviating class imbalance. Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on, 40(1):185–197, 2010.

Shiven Sharma, Colin Bellinger, and Nathalie Japkowicz. Clustering based one-class

classification for compliance verification of the comprehensive nuclear-test-ban treaty. In

Advances in Artificial Intelligence, pages 181–193. Springer, 2012.

Victor S Sheng and Charles X Ling. Thresholding for making classifiers cost-sensitive. In

AAAI, pages 476–481, 2006.

Bernard W Silverman. Density estimation for statistics and data analysis, volume 26. CRC

press, 1986.

Parinaz Sobhani, Herna Viktor, and Stan Matwin. Learning from imbalanced data using

ensemble methods and cluster-based undersampling. In New Frontiers in Mining Complex

Patterns, pages 69–83. Springer, 2014.

Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for

classification tasks. Information Processing & Management, 45(4):427–437, 2009.

Jie Song, Xiaoling Lu, and Xizhi Wu. An improved adaboost algorithm for unbalanced

classification data. In Fuzzy Systems and Knowledge Discovery, 2009. FSKD’09. Sixth

International Conference on, volume 1, pages 109–113. IEEE, 2009.

Panote Songwattanasiri and Krung Sinapiromsaran. Smoute: Synthetics minority over-

sampling and under-sampling techniques for class imbalanced problem. In Proceedings

of the Annual International Conference on Computer Science Education: Innovation and

Technology, Special Track: Knowledge Discovery, pages 78–83, 2010.

Jerzy Stefanowski and Szymon Wilk. Selective pre-processing of imbalanced data for

improving classification performance. In Data Warehousing and Knowledge Discovery,

pages 283–292. Springer, 2008.

REFERENCES 241

Yanmin Sun, Mohamed S Kamel, and Yang Wang. Boosting for learning multiple classes

with imbalanced class distribution. In Data Mining, 2006. ICDM’06. Sixth International

Conference on, pages 592–602. IEEE, 2006.

Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang Wang. Cost-sensitive

boosting for classification of imbalanced data. Pattern Recognition, 40(12):3358–3378,

2007.

Aik Tan, David Gilbert, and Yves Deville. Multi-class protein fold classification using a new

ensemble machine learning approach. 2003.

Yuchun Tang and Yan-Qing Zhang. Granular svm with repetitive undersampling for

highly imbalanced protein homology prediction. In Granular Computing, 2006 IEEE

International Conference on, pages 457–460. IEEE, 2006.

Yuchun Tang, Yan-Qing Zhang, Nitesh V. Chawla, and Sven Krasser. Svms modeling for

highly imbalanced classification. Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 39(1):281–288, 2009.

Dacheng Tao, Xiaoou Tang, Xuelong Li, and Xindong Wu. Asymmetric bagging and random

subspace for support vector machines-based relevance feedback in image retrieval. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 28(7):1088–1099, 2006.

Nguyen Thai-Nghe, Zeno Gantner, and Lars Schmidt-Thieme. A new evaluation measure

for learning from imbalanced data. In Neural Networks (IJCNN), The 2011 International

Joint Conference on, pages 537–542. IEEE, 2011.

Kai Ming Ting. Inducing cost-sensitive trees via instance weighting. In European Symposium

on Principles of Data Mining and Knowledge Discovery, pages 139–147. Springer, 1998.

Kai Ming Ting. A comparative study of cost-sensitive boosting algorithms. In In Proceedings

of the 17th International Conference on Machine Learning. Citeseer, 2000a.

Kai Ming Ting. An empirical study of metacost using boosting algorithms. In European

Conference on Machine Learning, pages 413–425. Springer, 2000b.

Kai Ming Ting. An instance-weighting method to induce cost-sensitive trees. IEEE

Transactions on Knowledge and Data Engineering, 14(3):659–665, 2002.

Kai Ming Ting and Zijian Zheng. Boosting trees for cost-sensitive classifications. In European

Conference on Machine Learning, pages 190–195. Springer, 1998.

L. Torgo. An infra-structure for performance estimation and experimental comparison of

predictive models in R. CoRR, abs/1412.0436, 2014.

242 REFERENCES

Lúıs Torgo. Regression error characteristic surfaces. In KDD’05: Proc. of the 11th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 697–702. ACM

Press, 2005.

Luis Torgo. Data mining with R: learning with case studies. CRC press, Boca Raton, New

York, UK, 2016.

Lúıs Torgo and Rita P Ribeiro. Predicting outliers. In Knowledge Discovery in Databases:

PKDD 2003, pages 447–458. Springer, 2003.

Lúıs Torgo and Rita P Ribeiro. Utility-based regression. In PKDD’07: Proc. of 11th

European Conf. on Principles and Practice of Knowledge Discovery in Databases, pages

597–604. Springer, 2007.

Lúıs Torgo and Rita P Ribeiro. Precision and recall in regression. In DS’09: 12th Int. Conf.

on Discovery Science, pages 332–346. Springer, 2009.

Lúıs Torgo, Rita P Ribeiro, Bernhard Pfahringer, and Paula Branco. Smote for regression.

In Progress in Artificial Intelligence, pages 378–389. Springer, 2013.

Lúıs Torgo, Paula Branco, Rita P Ribeiro, and Bernhard Pfahringer. Resampling strategies

for regression. Expert Systems, 32(3):465–476, 2015.

Peter D Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic

decision tree induction algorithm. Journal of artificial intelligence research, 2:369–409,

1995.

Peter D. Turney. Types of cost in inductive concept learning. CoRR, cs.LG/0212034, 2002.

URL http://arxiv.org/abs/cs.LG/0212034.

Sunil Vadera. Csnl: A cost-sensitive non-linear decision tree algorithm. ACM Transactions

on Knowledge Discovery from Data (TKDD), 4(2):6, 2010.

Jason Van Hulse, Taghi M Khoshgoftaar, and Amri Napolitano. Experimental perspectives

on learning from imbalanced data. In Proceedings of the 24th international conference on

Machine learning, pages 935–942. ACM, 2007.

Madireddi Vasu and Vadlamani Ravi. A hybrid under-sampling approach for mining

unbalanced datasets: applications to banking and insurance. International Journal of

Data Mining, Modelling and Management, 3(1):75–105, 2011.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York,

fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4.

Nele Verbiest, Enislay Ramentol, Chris Cornelis, and Francisco Herrera. Improving smote

with fuzzy rough prototype selection to detect noise in imbalanced classification data. In

Advances in Artificial Intelligence–IBERAMIA 2012, pages 169–178. Springer, 2012.

http://arxiv.org/abs/cs.LG/0212034
http://www.stats.ox.ac.uk/pub/MASS4

REFERENCES 243

E. Grosse W. S. Cleveland and W. M. Shyu. Local regression models. In John M Chambers

and Trevor J Hastie, editors, Statistical models in S, chapter 8. CRC Press, Inc., 1991.

Kiri L Wagstaff, Nina L Lanza, David R Thompson, Thomas G Dietterich, and Martha S

Gilmore. Guiding scientific discovery with explanations using demud. In AAAI, 2013.

Byron C Wallace, Kevin Small, Carla E Brodley, and Thomas A Trikalinos. Class imbalance,

redux. In Data Mining (ICDM), 2011 IEEE 11th International Conference on, pages 754–

763. IEEE, 2011.

Chunru Wan, Lipo Wang, and Kai Ming Ting. Introducing cost-sensitive neural networks.

In Proceedings of the 2nd International Conference on Information, Communications and

Signal Processing, Singapore, pages 445–449, 1999.

Benjamin X Wang and Nathalie Japkowicz. Boosting support vector machines for imbalanced

data sets. Knowledge and information systems, 25(1):1–20, 2010.

He-Yong Wang. Combination approach of smote and biased-svm for imbalanced datasets.

In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational

Intelligence). IEEE International Joint Conference on, pages 228–231. IEEE, 2008.

Shuo Wang and Xin Yao. Diversity analysis on imbalanced data sets by using ensemble

models. In Computational Intelligence and Data Mining, 2009. CIDM’09. IEEE

Symposium on, pages 324–331. IEEE, 2009.

Deng Weiguo, Wang Li, Wang Yiyang, and Qian Zhong. An improved svm-km model for

imbalanced datasets. In Industrial Control and Electronics Engineering (ICICEE), 2012

International Conference on, pages 100–103. IEEE, 2012.

Gary Weiss, Maytal Saar-Tsechansky, and Bianca Zadrozny (editors). UBDM’05: Proceed-

ings of the 1st international workshop on utility-based data mining. held in the context of

the 11th ACM SIGKDD international conference on knowledge discovery and data mining

(KDD’05). 2005.

Gary M Weiss. Mining with rarity: a unifying framework. SIGKDD Explorations Newsletter,

6(1):7–19, 2004.

Gary M Weiss. Foundations of imbalanced learning. In Haibo He and Yunqian Ma, editors,

Imbalanced learning: foundations, algorithms, and applications. John Wiley & Sons, 2013.

Gary M Weiss and Foster J Provost. Learning when training data are costly: the effect of

class distribution on tree induction. J. Artif. Intell. Res.(JAIR), 19:315–354, 2003.

Cheng G Weng and Josiah Poon. A new evaluation measure for imbalanced datasets. In

Proceedings of the 7th Australasian Data Mining Conference-Volume 87, pages 27–32.

Australian Computer Society, Inc., 2008.

244 REFERENCES

Gang Wu and Edward Y Chang. Adaptive feature-space conformal transformation for

imbalanced-data learning. In Proceedings of the 20th International Conference on Machine

Learning (ICML-03), pages 816–823, 2003a.

Gang Wu and Edward Y Chang. Class-boundary alignment for imbalanced dataset learning.

In ICML 2003 workshop on learning from imbalanced data sets II, Washington, DC, pages

49–56, 2003b.

Gang Wu and Edward Y Chang. Kba: Kernel boundary alignment considering imbalanced

data distribution. Knowledge and Data Engineering, IEEE Transactions on, 17(6):786–

795, 2005.

Shaomin Wu, Peter Flach, and César Ferri. An improved model selection heuristic for auc.

In ECML, pages 478–489. Springer, 2007.

Xiaoyun Wu and Rohini K Srihari. New\’{\i}-support vector machines and their sequential

minimal optimization. In Proceedings of the 20th International Conference on Machine

Learning (ICML-03), pages 824–831, 2003.

Jin Xiao, Ling Xie, Changzheng He, and Xiaoyi Jiang. Dynamic classifier ensemble

model for customer classification with imbalanced class distribution. Expert Systems with

Applications, 39(3):3668–3675, 2012.

Yaya Xie, Xiu Li, EWT Ngai, and Weiyun Ying. Customer churn prediction using improved

balanced random forests. Expert Systems with Applications, 36(3):5445–5449, 2009.

Fan Yang, Hua-zhen Wang, Hong Mi, Wei-wen Cai, et al. Using random forest for reliable

classification and cost-sensitive learning for medical diagnosis. BMC bioinformatics, 10

(1):S22, 2009.

Qiang Yang and Xindong Wu. 10 challenging problems in data mining research. International

Journal of Information Technology & Decision Making, 5(04):597–604, 2006.

Zeping Yang and Daqi Gao. An active under-sampling approach for imbalanced data

classification. In Computational Intelligence and Design (ISCID), 2012 Fifth International

Symposium on, volume 2, pages 270–273. IEEE, 2012.

Show-Jane Yen and Yue-Shi Lee. Under-sampling approaches for improving prediction of

the minority class in an imbalanced dataset. In Intelligent Control and Automation, pages

731–740. Springer, 2006.

Show-Jane Yen and Yue-Shi Lee. Cluster-based under-sampling approaches for imbalanced

data distributions. Expert Systems with Applications, 36(3):5718–5727, 2009.

Yang Yong. The research of imbalanced data set of sample sampling method based on

k-means cluster and genetic algorithm. Energy Procedia, 17:164–170, 2012.

REFERENCES 245

Kihoon Yoon and Stephen Kwek. An unsupervised learning approach to resolving the

data imbalanced issue in supervised learning problems in functional genomics. In Hybrid

Intelligent Systems, 2005. HIS’05. Fifth International Conference on, pages 6–pp. IEEE,

2005.

Dai Yuanhong, Chen Hongchang, and Peng Tao. Cost-sensitive support vector machine

based on weighted attribute. In Information Technology and Applications, 2009. IFITA’09.

International Forum on, volume 1, pages 690–692. IEEE, 2009.

Bianca Zadrozny and Charles Elkan. Learning and making decisions when costs and

probabilities are both unknown. In KDD’01: Proceedings of the 7th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 204–213. ACM

Press, 2001.

Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive learning by cost-

proportionate example weighting. In Data Mining, 2003. ICDM 2003. Third IEEE

International Conference on, pages 435–442. IEEE, 2003.

Bianca Zadrozny, Gary Weiss, and Maytal Saar-Tsechansky (editors). UBDM’06: Proceed-

ings of the 2nd international workshop on utility-based data mining. held in the context of

the 12th ACM SIGKDD international conference on knowledge discovery and data mining

(KDD’ 06). 2006.

Arnold Zellner. Bayesian estimation and prediction using asymmetric loss functions. Journal

of the American Statistical Association, 81(394):446–451, 1986.

Dongmei Zhang, Wei Liu, Xiaosheng Gong, and Hui Jin. A novel improved smote resampling

algorithm based on fractal. Journal of Computational Information Systems, 7(6):2204–

2211, 2011.

Huaxiang Zhang and Mingfang Li. Rwo-sampling: A random walk over-sampling approach

to imbalanced data classification. Information Fusion, 20:99–116, 2014.

Shichao Zhang, Xiaofeng Zhu, Jilian Zhang, and Chengqi Zhang. Cost-time sensitive decision

tree with missing values. Knowledge Science, Engineering and Management, pages 447–

459, 2007.

Huimin Zhao, Atish P Sinha, and Gaurav Bansal. An extended tuning method for cost-

sensitive regression and forecasting. Decision Support Systems, 51(3):372–383, 2011.

Jun Zheng. Cost-sensitive boosting neural networks for software defect prediction. Expert

Systems with Applications, 37(6):4537–4543, 2010.

Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neural networks with methods

addressing the class imbalance problem. Knowledge and Data Engineering, IEEE

Transactions on, 18(1):63–77, 2006.

246 REFERENCES

Zhi-Hua Zhou and Xu-Ying Liu. On multi-class cost-sensitive learning. Computational

Intelligence, 26(3):232–257, 2010.

Jingbo Zhu and Eduard H Hovy. Active learning for word sense disambiguation with methods

for addressing the class imbalance problem. In EMNLP-CoNLL, volume 7, pages 783–790,

2007.

Ling Zhuang and Honghua Dai. Parameter optimization of kernel-based one-class classifier

on imbalance learning. Journal of Computers, 1(7):32–40, 2006a.

Ling Zhuang and Honghua Dai. Parameter estimation of one-class svm on imbalance text

classification. In Advances in Artificial Intelligence, pages 538–549. Springer, 2006b.

