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Natércia Fortuna
University of Porto and CEF.UP

natercia.fortuna@gmail.com

May 11, 2015

∗We acknowledge Fundação para a Ciência e Tecnologia for the financial support given
through the PhD scholarship SFRH/BD/78763/2011 and in the framework of the project
Pest-OE/EGE/UI4105/2014.

1



Abstract

We develop an empirical method to detect price collusion from the
analysis of observed data. Our approach describes the supply side
of the industry as a switching regression with two regimes, collusion
and competition, which is estimated using a modified EM algorithm,
based on the two-stages least squares method. We use simulated data
to show that our algorithm is able to accurately predict collusion and
to obtain unbiased estimates for the parameters of the switching re-
gression. Our conclusions can be extended to other forms of collusion
and to other economic problems.

1 Introduction

Collusion is one of the most serious economic crimes committed against
society, whose effects contaminate the entire economic system. In-
deed, as a result of the actions of cartels, millions of people have
access denied everyday to a large variety of goods and services that
are too expensive for their own budgets, although the markets could
efficiently provide them at low prices. Individuals who afford such
expensive goods are forced to pay for them a greater fraction of their
income and are able to buy less of alternative goods. Downstream
companies that rely on cartelized producers face higher costs and are
forced to charge higher prices to their customers as well, having less
money available to distribute among their workers and shareholders.
By reducing the level of output transacted, cartels are also a source
of low employment and even low wages, particularly among highly
skilled workers who have invested considerable time and money on
formation and training. But worse of all, because collusion is not a
zero sum game, the gains earned by cartels are far exceeded by the
damage imposed on the consumers, workers, administrators, and even
shareholders of competitive firms, causing society to lose as a whole
in a manner that can hardly be measured.

Unlike more traditional crimes as murder, robbery, bribery, extor-
tion and fraud, which affect the integrity and wealth of individuals
in a very perceivable way, the costs of collusion are dispersed over a
large number of victims who rarely realize they have been injured at
all, making collusion extremely hard to detect. Even so, every time
a cartel fixes prices or restrains competition in the internal market, a
trace is left in the pattern of economic data that can be tracked by
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proper statistical tools. Therefore, in the same way murders and rob-
beries are investigated with advanced techniques of forensic science to
analyze DNA, fingerprints, footwear impressions and blood spatter,
it is possible to develop analogous advanced econometric methods to
screen the data and to constantly seek evidence of collusion.

While the empirical analysis of economic data may be extremely
useful to uncover cartels that have successfully remained in secret, it
is important to keep in mind that these methods cannot be used as
hard evidence to prove guilt in the court of law. Nevertheless, we
believe they can still be applied as, using the wording of Harrington
(2005), a screening and verification device to identify the industries
worthy of further investigation. It should be their main purpose to
improve an efficient allocation of antitrust authorities’ resources to-
wards the industries with higher likelihood of collusion, contributing
to an increasing number of uncovered cartels. Moreover, in case hard
evidence is collected and firms are actually condemned, the same em-
pirical methods can be used to estimate the overcharge of the cartel,
in order to determine the adequate fee or sentence.

Despite the existence of some empirical models to detect collu-
sion in the economic literature, so far none has been systematically
used by competition authorities, whose investigation continues to rely
mainly on whistle blowers. In reality, most models are still too com-
plex, hard to implement, require the collection of a lot of data and
must be adjusted case-by-case, creating a great problem for competi-
tion authorities who lack the time and resources to investigate every
industry in such detail. Furthermore, there is still little evidence that
those models are able, indeed, to accurately distinguish competition
from collusion, once they have not been rigorously tested in the two
distinct scenarios.

As a result, it is our purpose in this paper not only to present a
parsimonious and computationally efficient method that can be eas-
ily applied by antitrust authorities to detect collusion, but also to
prove that our approach is accurate and robust. For that, we de-
scribe the supply side of the industry as a switching regression with
two regimes, collusion and competition, which is estimated by an
expectation-maximization algorithm specifically designed to our prob-
lem. Using simulated data, we show that our algorithm is able to
accurately predict collusion and to obtain unbiased estimates for the
parameters of the switching regression. In fact, we explain how to cor-
rect any estimation bias that arises from the misidentification of the
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regimes and how to deal with the endogeneity problem in the supply
equation. Resorting to simulated data has the enormous advantage
of knowing exactly when firms are colluding and having access to the
real parameters of the population, which enable us to determine the
success rate of the method and to evaluate how close the estimates
obtained are to the true underlying values. A similar procedure was
followed by Paha (2011), who simulated an industry in order to evalu-
ate different empirical methods to determine the overcharge of cartels.

In the next section we review some previous models of collusion
detection in the literature, in order to sustain the direction of our
particular approach. In Section 3 we briefly illustrate switching re-
gressions in a simple application. In Section 4 we explain how to
detect collusion with a switching regression, which is estimated using
an expectation-maximization algorithm. In Section 5 we identify the
estimation bias that results from the misidentification of competitive
and collusive periods, and we explain how to correct it. In Section 7
we discuss the identification problem of the supply equation due to
the endogeneity of the quantity transacted. In Section 8 we present
a new EM algorithm which solves the identification problem and is
able to estimate consistently the parameters of the model. Section
9 discusses a statistical test for structural breaks. Lastly, Section 10
concludes.

2 Literature Review

Most empirical models of collusion detection described in the literature
can be divided into three main groups: the models based on statistical
features of data, the ones based on price-cost margins and those based
on structural breaks.

The models in the first group attempt to identify features of data
that are consistent with either competition or collusion, by testing,
for example, if price levels are correlated after controlling for demand
or cost factors. In this respect, Bajari and Ye (2003) test for the pres-
ence of collusion in procurement auctions conducted by construction
firms of the seal coating industry, in the Midwest, between 1994 and
1998. Their methodology involves checking whether firms’ bids are
independent and exchangeable (that is, if a permutation of the costs
of firms leads to a permutation of their bids), two properties that
should be verified in a competitive bidding scenario. Similar tests
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were conducted earlier by Porter and Zona (1993), who analyzed bid-
der collusion by highways construction firms, in Long Island, in the
80s; and by Baldwin, Marshall and Richard (1997), who investigated
collusion between purchasers of timber of the Forest Service in Pa-
cific Northwest, in the 70s. Unfortunately, these models are usually
narrowed to detect collusion in auctions and they cannot be easily
extended to the analysis of other industries, where properties like in-
dependence and exchangeability may fail to distinguish collusion from
competition.

The second group of models measures price-cost margins or other
performance indices to access the degree of market power in a partic-
ular industry, which is then compared with a competitive benchmark
(usually another industry or market).1 However, attempting to in-
fer collusion from price-cost margins may lead to spurious results.
Foremost, there is rarely good cost data available in most databases
and one may be forced to use indirect methods based on cost estima-
tions.2 But even more importantly, since price-cost margins depend
on so many economic factors as product differentiation, market size,
patents, barriers to entry and regulation, high margins are not ex-
clusively observed in cartels and there are many profitable industries
without any evidence of collusion. A more modern approach uses
economic theory to decompose the observed price-cost margins into
unilateral effects (which may be the outcome of product differentia-
tion or market structure) and coordinated effects, testing then whether
the later are statistically significant. Such approach was initially de-
veloped by Nevo (2001) to show the absence of coordinated strategies
in the breakfast cereal industry in United States and it was followed
by Slade (2004) to study the brewing industry in United Kingdom.
Unfortunately, this not only requires good cost data, but also the esti-
mation of demand using discrete choice models (see Berry, 1994) and
the computation of several price-competition equilibria.

Finally, the third group of models searches for structural breaks
in time series, in order to identify the moments in time when cartels
are created or closed. As long as there is some a priori information
that may suggest breakpoints in data, structural changes can easily be
checked using a Chow test (1960). If the econometrician does not have

1This analysis is related to the structure, conduct and performance paradigm attributed
to Bain (1951), which dominated empirical industrial economics in the second half of the
twentieth century.

2In this respect, see Bresnahan (1989).
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any clues about possible breakpoints, a structural change in the whole
time series can still be sought by following Quandt (1960). In any
case, one must be very cautious with this approach, since the struc-
tural break may be triggered by other reasons than collusion. A much
more refined technique was proposed by Porter (1983) to identify the
time periods when the Joint Executive Committee was operational,
a famous railroad cartel in the 1880s that faced alternative periods
of collusion and reversion to Nash equilibrium. His method consists
in the joint estimation of two simple linear equations, a homogeneous
market demand and a supply relationship described by a switching
regression with two regimes, collusion and competition. Using a ver-
sion of the EM algorithm for the estimation of switching regressions,
Porter was able to identify the regime observed in each period. Since
then some authors have extended Porter’s model to other industries,
as Almoguera, Douglas and Herrera (2007), who studied the Organi-
zation of Petroleum Exporting Countries (OPEC) between 1974 and
2004 and tested for switches between collusive and non-cooperative
periods.

The model proposed in this paper belongs to the last group and
is closely related to Porter (1983), which among the methods previ-
ously described, has the advantage of requiring few data, having good
precision and being universally applied to most industries with little
modifications. Indeed, as a long as a cartel is able to successfully affect
prices in any degree, some breaks in data must be observed at some
point. Still, there are two important features that distinguish our
model from Porter’s. Firstly, we do not estimate the demand equa-
tion, which is particularly useful when we do not know its functional
form or we do not observe many demand side variables. Secondly,
our switching regression is estimated with a modified EM algorithm
that uses only analytical estimators at each iterative step (like TSLS).
This makes our method faster, easier to compute and less sensitive to
initial points.

Before actually presenting our own methodology to detect collu-
sion, we will now illustrate the role and predictive power of switching
regressions in a more simple example.

6



3 An illustratitive example

Switching regression models have been increasingly applied not only in
economics, but also in natural sciences, to study the behavior of popu-
lations whose structural parameters vary across two or more regimes.
In what follows, we briefly illustrate one of many possible applications
of switching regressions.

Imagine a large population composed of adult men and women,
not necessarily in the same proportion, and suppose it is our task to
estimate the average height per gender from a random sample of ob-
servations. However, as a major drawback, suppose that the gender
of each individual is unknown and there is no information about the
fraction of men and women in the population. In fact, there is ab-
solutely no data available but a finite sample of randomly extracted
heights. In such circumstances, how can we predict the average height
of males and females?

At first sight, this problem appears to be unsolvable. Yet, due to
the fact that men are, in average, taller than women, the dataset of
heights of the entire population can be actually approximated to a
mixture of two normal distributions, as illustrated in Figure 1. Then,
all we need is to identify the two uniform normal distributions for
men and women that originated the envelop distribution, as depicted
in Figure 2. Naturally, one must account that some tall women are
higher than short or average men, just as the opposite is also true,
reason why the two density curves in Figure 2 intersect each other.

Fortunately, that is precisely what switching regressions do. By
describing the height of individuals as a switching regression with
two unobserved regimes, male and female, we are able to estimate
with good precision men’s average height, women’s average height,
the fraction of men and women in the total population and, most
impressive, the probability of each individual being a man or a woman
given the height observed.

The estimation of the illustrative problem previously described is
certainly as impressive as it is entirely useless, once there are hardly
any databases where the gender of individuals is unknown. Still, if
we apply the same principles to a dataset of prices and other control
variables, we may have come up with a good mechanism to distinguish
competitive from collusive regimes, as we will now show.
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Figure 2: Distribution of heights by gender
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4 Detecting Collusion

It is well established in the economic literature that cartels alternate
consecutive periods of cooperation with temporary periods of punish-
ment, or reversion to Nash, whenever a deviation occurs.3 This typical
behavior imprints a peculiar pattern in observed prices or other rele-
vant variables, whose data generating process becomes characterized
by switches between collusive and competitive regimes. Even a cartel
that is successfully sustained without any deviations from the collu-
sive path must, at some point in time, be either created or terminated,
leading to a structural break in data that separates the two opposed
regimes.

To see how this information can be used to detect collusion, con-
sider a simple industry composed of a small number of firms selling
a homogeneous product and repeatedly interacting along a horizontal
time period. Then, if firms coordinate prices in a formal cartel, the
supply relationship of the industry will be described by a regression
of the type:

Pt =

{
MCt + βcQt + uct , if St = 1

MCt + βnQt + unt , if St = 0
(1)

where Pt is the price, MCt are marginal cost related variables, Qt is
the quantity produced, uct and unt are normal unobserved errors with
constant variance σ2, and St is a state variable that takes the value
1 in collusive periods and 0 in competitive periods. Introducing St in
the supply relationship, equation (1) can be also expressed as:

Pt = MCt + βcQtSt + βnQt(1− St) + ut. (2)

Naturally, if the state variable St was observable, equation (2)
could be easily estimated by least squares. Notwithstanding, just as in
the illustrative example in the previous section we did not know which
observations corresponded to men or women, we also ignore here in
which periods firms compete or collude. As a result, we face the more
complex challenge of estimating not only the structural parameters βc
and βn, but also the state variable St. This problem can be solved by
estimating equation (2) as a switching regression model following the
methodology in Quandt (1972),4 as we will now illustrate.

3See Green and Porter (1984).
4For an alternative methodology to estimate switching regressions, see Goldfeld and

Quandt (1972).
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Suppose that, in the industry under analysis, the regime opera-
tional at time t is independently set as collusion or competition, with
a constant but unknown probability:

St =

{
1, with probability λ

0, with probability 1− λ
. (3)

This is equivalent to say that St follows a Bernoulli distribution
with parameter λ, where the value of λ can be interpreted as the frac-
tion of collusive periods in the whole time series or, similarly, as the
unconditional probability of collusion, while 1 − λ has the analogous
interpretation for competition. We could also assume St to be gener-
ated by other stochastic processes such as a Markov chain, with few
implications on the estimation results.

Under this simplifying assumption, Kiefer (1978) proved that there
is an unique, consistent and asymptotically efficient estimator for the
coefficients of the switching regression in equation (2), which corre-
sponds to a local maximum of the likelihood function

L =

T∏
t=1

{
λf(Pt|St = 1) + (1− λ)f(Pt|St = 0)

}
, (4)

where f(.) is the probability density function of Pt conditional on that
a specific regime was observed.

Unfortunately, because the maximizing conditions of the likelihood
function above are non-linear and have several roots, it is not easy
to detect which root corresponds to our consistent estimator. One
common solution is to use an EM algorithm, a computational method
that iteratively repeats an expectation step and a maximization step,
until converging to the consistent root.

In order to illustrate the mechanisms behind the EM algorithm,
consider again the switching regression

Pt = MCt+βcQtSt+βnQt(1−St)+ut, St =

{
1, prob. λ

0, prob. 1− λ
(5)

and define Wt as the probability that the regime at time t is collusion
conditional on the price observed:

Wt = f(St = 1|Pt). (6)
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At the maximization step of the algorithm, given an initial guess
for the unobserved series of Wt, we must obtain initial estimates for
the parameters βc, βn and σ in equation (5). This can easily be done
by maximizing the following likelihood function:

L =
T∏
t=1

f(Pt|Wt), Pt ∼ N(MCt + βcQtWt + βnQt(1−Wt), σ). (7)

Alternatively, one can follow Kiefer (1980) and simply estimate the
next regression by ordinary least squares:

Pt = MCt + βcQtWt + βnQt(1−Wt) + ut. (8)

In addition, the initial guesses for Wt can be used further to com-
pute the unconditional probability of collusion λ as the mean of all
conditional probabilities:

λ =
T∑
t=1

Wt. (9)

Next, at the expectation step of the algorithm, we must revise our
expectations of the conditional probabilities of collusion Wt, taking
into account the estimates of βc, βn, σ and λ obtained during the
previous step. Using Bayes rule,

Wt = f(St = 1|Pt) =

=
f(St = 1)f(Pt|St = 1)

f(St = 1)f(Pt|St = 1) + f(St = 0)f(Pt|St = 0)
. (10)

Replacing the unconditional probabilities with λ:

Wt =
λf(Pt|St = 1)

λf(Pt|St = 1) + (1− λ)f(Pt|St = 0)
. (11)

Given the new values of Wt computed from equation (11), the
maximization and expectation steps can be then iteratively repeated
until convergence is reached. The algorithm stops when the coefficient
of correlation between two successive estimates of Wt series is near one.

Kiefer (1980) proves that the estimates obtained by the EM al-
gorithm correspond, in fact, to a local maximum of the likelihood
function in (4). In the next section we will actually implement this
algorithm to simulated data, to check whether it converges, indeed, to
the consistent estimator of the switching regression.
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5 Simulation

We have presented a powerful algorithm to identify structural breaks,
which can be used to detect switches between collusion and compe-
tition along a time series. But before this algorithm can be actually
applied to real data and start detecting cartels, it must be tested in a
controlled environment, so that its predictive power can be properly
evaluated. The best way to do this is to create a simulated industry,
for which we define the true values of the structural parameters and
determine when firms compete or collude. Then, without using such
information, we should be able to consistently estimate the structural
parameters and to identify the switches between regimes.

We simulate seven different populations or industries, whose true
underlying parameters are listed in Table 1. For each population,
we extract a sample of 100 000 observations as follows: the variables
marginal cost MCt and quantity transacted Qt are randomly with-
drawn from two bounded normal distributions; the state variable St is
randomly drawn from a Bernoulli distribution that takes value 1 (col-
lusion) with success probability λ; and the dependent variable price Pt

is generated according to equation (5) and using the beta coefficients
in Table 1.

Note also that the first six populations in study have the same
underlying parameters, except for an increasing standard deviation of
the error term, as it is our desire to assess how the algorithm behaves
in increasingly worse conditions. The fraction of collusive periods, λ,
is set only to 0.2, because estimation is harder when one of the regimes
dominates the time series. Then, in population 7 we define λ equal to
0.8 to see what happens when the other regime dominates.

Population βc βn σ λ
1 0.5 0.25 1 0.2
2 0.5 0.25 2 0.2
3 0.5 0.25 3 0.2
4 0.5 0.25 4 0.2
5 0.5 0.25 5 0.2
6 0.5 0.25 6 0.2
7 0.5 0.25 5 0.8

Table 1: Parameters of the population
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Population β̂c β̂n σ̂ λ̂ R2

1 0.5007 0.2508 0.9992 0.2000 0.9984
2 0.5023 0.2516 1.9769 0.2001 0.8766
3 0.5107 0.2463 2.7441 0.1990 0.7937
4 0.5319 0.2393 3.3878 0.1921 0.7368
5 0.5821 0.2452 4.1345 0.1675 0.6731
6 Na Na Na Na Na
7 0.5142 0.1772 4.1430 0.8300 0.6861

Table 2: Estimation output of the OLS EM algorithm

Using solely the simulated data on prices, quantities and marginal
costs (and not the serie St, which is unobservable), we run the EM
algorithm described in the last section, whose Matlab code is available
in Appendix 1. Table 2 displays the estimation results for the seven
populations.

The estimates obtained for populations 1 and 2 are quite accurate,
as they are close to the true values in Table 1. Nonetheless, in popu-
lations 3 to 5, where the volatility of the error is successively higher,
there is a clearly growing estimation bias. In fact, the parameters σ
and λ are systematically underestimated, whereas the absolute differ-
ence between the parameters βc and βn is overestimated. A similar
pattern is found in population 7, with the exception that λ is overes-
timated, due to the fact that collusive periods dominate the sample.
Finally, the algorithm fails to converge in population 6, where the
standard deviation of the error is too high.

The results in Table 2 suggest that the EM algorithm, as currently
described in the literature, is unable to obtain consistent estimates for
the coefficients of the switching regression, at least when the error is
sufficiently volatile. The dimension of the estimation bias is particu-
larly serious if taken into account that we used a very large sample,
with 100 000 observations. Much greater bias are expected to occur
for samples with a more realistic size.

After a deep analysis of the code and running several tests to iso-
lated parts of the algorithm, it came to our conclusion that the bias
had to be originated by the introduction of the conditional probability
Wt in regression (8), during the maximization step. In fact, by sub-
stituting the state variable St, which only takes the extreme values
0 or 1, with the conditional probability Wt, which ranges between 0
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and 1, we allow the switching regression to fit better the data and
thus to underestimate the standard deviation of the error. Intuitively,
when an arbitrary price at time t is observed somewhere between the
collusive and competitive expected prices, the algorithm estimates a
conditional probability of collusion Wt around 50% and the fitted price
becomes the average value between the collusive and competitive lev-
els, leading to a very small residual. The estimation of residuals below
the true errors for all intermediate prices leads to the underestimation
of σ in Table 2.

Hereafter, there is a contamination effect on the remaining esti-
mated values. Because the value of σ affects the density function of
Pt, the conditional probabilities of collusion Wt are miscalculated in
equation (11), being all high prices excessively attributed to collusion
and all low prices associated to competition, when this is not neces-
sarily the case. As a result, when competitive regimes dominate the
sample, Wt’s are in average under evaluated and, through equation
(9), λ is underestimated. When collusive regimes are more frequent,
Wt’s are in average over evaluated and λ is overestimated.

In addition, the excessive association of high prices to collusion
and low prices to competition leads to the overestimation of βc and
underestimation of βn. Intuitively, when a price observed under col-
lusion is very high, we are able to correctly identify the operative
regime, but when a collusive price is particularly low, we misiden-
tify the regime as competition. As a result, average collusive prices
appear to be higher than what they really are and the parameters
associated with collusion are overestimated. The opposite occurs at
the competitive regime, whose average prices and parameters tend to
be underestimated.

This phenomenon is graphically illustrated below. In Figure 3,
where the standard deviation of the error is very small (like in pop-
ulations 1 and 2), all observations are classified at the correct regime
and the betas are consistently estimated as the slope of the two lines
that intersect the midpoint between each pair of observations. How-
ever, in Figure 4, where the volatility of the error is higher, the two
intermediate observations are misclassified at the wrong regime, caus-
ing betas to be wrongly estimated as the slope of the two dashed lines.
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6 Correcting the Estimation Bias

The inability of the EM algorithm in Kiefer (1980) to converge, in
some conditions, to the consistent root of the switching regression
raises a serious concern to our empirical approach. Indeed, if it is
our desire to detect collusion by identifying switching regimes in data,
we must correct somehow the estimation bias detected in the last
section. Clearly, any solution proposed should involve removing the
conditional probability Wt from the maximization step and finding
an alternative mechanism to estimate the beta coefficients and the
standard deviation of the error.

A possible solution is to replace Wt in equation (8) with some
estimated series of the regime, Ŝt, which only takes values 0 or 1.
This way, by considering that each observation is either explained by
competition or collusion, and not by a linear combination of the two
regimes, we should be able to measure the true size of the errors. The
central question is, therefore, how to get an estimated series Ŝt.

The most obvious hypothesis is to consider that collusion is ob-
served at periods with high probability of collusion, according to the
following rule:

Ŝt =

{
1, if Wt ≥ 0.5

0, if Wt < 0.5
. (12)

Nevertheless, equation (12) has the disadvantage of considering
that all higher prices are observed under collusion and all lower prices
correspond to competition, which seems a very unlikely distribution.
Instead, we propose a more subtle and sophisticated rule, which con-
sists in randomly attributing a regime to each time period according
to the probability of observing that regime, that is:

Ŝt =

{
1, with probability Wt

0, with probability 1−Wt

. (13)

In other words, each observation of Ŝt is withdrawn from a Bernoulli
distribution with probability of success Wt. To understand the reason-
ing behind equation (13), suppose that ten observations of the sample
have 90% probability of belonging to the collusive regime. Then, nine
of those observations will be classified as collusion and one as compe-
tition, to reflect the fact that sometimes competitive prices are higher
due to unobserved factors, just as some women are taller than men.
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This way, the rule in equation (13) not only guarantees that the esti-
mated series Ŝt is a dummy variable composed of zeros and ones, but
also that it follows a similar distribution to that of the unobserved St.

After computing Ŝt, the beta parameters and standard deviation
of the error can be estimated by running the next regression by least
squares:

Pt = MCt + βcQtŜt + βnQt(1− Ŝt) + ut. (14)

We introduce equations (13) and (14) in the maximization step of
the EM algorithm, whose new code is available in Appendix 2. In order
to evaluate the quality of our proposed corrections, we use the modified
algorithm to reestimate the coefficients of the seven populations with
the same data samples than before. The new estimation results are
displayed in Table 3.

Population β̂b β̂n σ̂ λ̂ R2

1 0.5007 0.2508 0.9992 0.2000 0.9652
2 0.5014 0.2516 2.0014 0.2001 0.8735
3 0.4991 0.2492 3.0035 0.1998 0.7528
4 0.4979 0.2477 3.9951 0.1994 0.6339
5 0.5011 0.2512 4.9856 0.1995 0.5247
6 0.4976 0.2465 5.9591 0.2007 0.4393
7 0.5081 0.2591 5.0196 0.7974 0.5393

Table 3: Estimation output of the modified OLS EM algorithm

Few comments need to be made to the new estimation output, as
the results speak for themselves. In fact, all estimates obtained for
the seven populations are very close to the true underlying parame-
ters, even for population 6 for which the previous algorithm failed to
converge to any solution. Besides, there appears to be no bias in any
particular direction, pointing to consistency of results.

Given the considerable improvement of our estimation method,
does this mean we are finally ready to implement the algorithm to
actual data and start detecting real cartels? Not yet. But we are
getting there.
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7 Endogeneity Problem

So far, for exposition purposes, we have discussed the estimation of
a switching supply function in a very simplified scenario, where the
variable price is endogenously set by firms and the quantity transacted
is exogenously determined by a random distribution. Nonetheless, the
later assumption does not usually hold in reality, since the quantity
purchased by consumers is also affected by the market price, creating
an endogeneity problem. For that reason, we will now focus our anal-
ysis on the estimation of a more realistic model of the industry, where
prices and quantities observed at time t are the simultaneous solution
of the following system of demand and supply:{

Qt = β0 + β1Yt + β2Pt + vt

Pt = MCt + βcQtSt + βnQt(1− St) + ut
, (15)

where Yt is the income, vt and ut are the error terms of the de-
mand and supply functions (with zero mean and constant standard
deviation), and all the remaining variables have the same meaning as
in Section 4.

In order to assess the predictive power of our empirical methodol-
ogy under this more realistic setting, we simulate six new populations
whose parameters are reported in Table 4. As before, a random sample
of 100 000 observations is extracted for each population: the exoge-
nous series Yt and MCt are withdrawn from bounded normal distribu-
tions, St is withdrawn from a Bernoulli distribution with probability
of success λ and the endogenous series Pt and Qt are calculated as the
solution of system (15).

Pop β0 β1 β2 βc βn σv σu λ
8 50 5 -2 0.5 0.25 1 1 0.2
9 50 5 -2 0.5 0.25 2 2 0.2
10 50 5 -2 0.5 0.25 3 3 0.2
11 50 5 -2 0.5 0.25 4 4 0.2
12 50 5 -2 0.5 0.25 5 5 0.2
13 50 5 -2 0.5 0.25 6 6 0.2

Table 4: Parameters of the population

After running the modified EM algorithm proposed in the last
section, we obtain the estimation output in Table 5.
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Population β̂c β̂n σ̂u λ̂ R2

8 0.2153 0.2057 4.2756 0.3568 0.3828
9 0.4740 0.2292 1.9898 0.1903 0.8705
10 0.4417 0.2017 3.0286 0.1639 0.7249
11 0.4035 0.1671 4.0849 0.1290 0.5438
12 0.3641 0.1340 5.0733 0.0931 0.3580
13 0.3391 0.1070 5.9015 0.0694 0.2308

Table 5: Estimation output of the OLS EM Algorithm

As we can see, the estimates obtained for the parameters of the
supply equation are erratic and far way from the true underlying val-
ues. With the exception of population 8, where the algorithm appears
to diverge to a meaningless solution, we can actually find a pattern
for the bias observed: the two beta coefficients and the probability of
collusion λ are systematically underestimated. Furthermore the over-
all estimation bias grows exponentially with the standard deviation of
the errors.

Unlike before, the inconsistent results are a direct consequence of
endogeneity. In fact, when an unobserved shock in supply (ut) affects
the market price, there is a feedback effect on the quantity transacted
through the demand equation, leading to correlation between Qt and
ut. For that reason, any attempt during the maximization step to esti-
mate the supply equation by least squares is inconsistent and leads to
the underestimation of betas, due to the negative slope of the demand
equation.

The correlation between Qt and ut also distorts the expectation
step, leading to the under evaluation of the probability of collusion
at low price observations and the over evaluation of the probability
of collusion at high price observations (note that when a price is low,
demand raises the quantity purchased and the relation between the
two variables is better explained by a competitive coefficient). Once
in populations 9 to 13 most observations correspond to competition,
the probability of collusion is more often under evaluated and λ is
underestimated.

It is therefore imperative to introduce further modifications in the
maximization and expectation steps of the algorithm.
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8 The 2SLS EM Algorithm

It has become clear that when prices and quantities observed are the
outcome of the supply and demand relations described in system (15),
the supply equation of the industry cannot be estimated by traditional
methods based on least squares. In these circumstances, the econo-
metrician typically observes a map of dispersed points (see Figure 5),
from which he is not able to identify a supply relationship between
prices and quantities. In order to solve the identification problem, he
must at least observe one exogenous variable for each equation, like
the income and marginal cost, so that each price-quantity combina-
tion can be explained as a particular equilibrium resulting from shifts
in demand and supply (see Figure 6).

If the series St was observed, there would be several methods avail-
able to estimate the coefficients of system (15). Using an instrumental
variable approach, we could either estimate the supply equation by
two-stages least squares (2SLS) or the whole system by three-stage
least squares (3SLS). Alternatively one could use limited information
maximum likelihood (LIML) or full information maximum likelihood
(FIML) as the analogous maximum likelihood estimators. Since in our
model St is unknown, one of these methods must be combined with
the switching regression techniques exposed in the earlier sections,
turning the analysis much more complex.

Such procedure was conducted by Porter (1983), who successfully
introduced FIML in all iterative steps of the EM algorithm, in order
to identify switches between collusive and competitive regimes at the
Joint Executive Committee railroad cartel. However, following his
approach comes with a high cost. Firstly, FIML estimation is com-
putationally heavy, time consuming and extremely sensitive to initial
points, making it particularly hard to converge to the solution when
the sample is large. Secondly, the good properties of FIML, like con-
sistency and asymptotic efficiency, depend on the assumption that the
distribution of the errors is well specified. Thirdly, FIML requires the
estimation of the complete system of equations, even if there is few
information available about demand.

While the estimation of a switching regression by FIML is achiev-
able for a professional researcher focusing entirely on the analysis of a
single industry, it does not seem so attractive for competition authori-
ties who have limited time and resources. For that reason, we propose
instead a new EM algorithm that solves the identification problem
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using two-stage least squares, a simple and parsimonious analytical
method that is easy to compute, has good properties and does not
rely on much information a priori. In what follows, we describe in
detail how to introduce 2SLS in the maximization and expectation
steps of the EM algorithm.

First of all, we start by solving system (15) with respect to the
endogenous variables Pt and Qt, in order to obtain the reduced form
equations for prices and quantities:

Qt =αcSt + γcStMCt + δcStYt + vct+

αn(1− St) + γn(1− St)MCt + δn(1− St)Yt + vnt .
(16)

Pt =ρcSt + θcStMCt + φcStYt + uct+

ρn(1− St) + θn(1− St)MCt + φn(1− St)Yt + unt .
(17)

During the maximization step, the first stage of 2SLS consists in
estimating equation (16) by least squares, using updated expectations
of the regimes (Ŝt). Then, the estimation output can be used to
compute fitted values for the quantity transacted Q̂t:

Q̂t =α̂1Ŝt + α̂2ŜtMCt + α̂3ŜtYt+

α̂4(1− Ŝt) + α̂5MCt(1− Ŝt) + α̂6Yt(1− Ŝt).
(18)

At the second stage of TSLS, Qt is replaced with Q̂t in the original
supply function:

Pt = MCt + βcQ̂tSt + βnQ̂t(1− St) + εt. (19)

Because the fitted quantity Q̂t is a function of exogenous variables
only and is not correlated with εt, equation (19) can now be run by
OLS to obtain consistent estimates for the beta coefficients.

With regards to the expectation step of the algorithm, we must
revise the conditional probabilities of collusion Wt, given the estimates
obtained for the coefficients. Once the new model is composed of two
endogenous variables driven by demand and supply, Wt must now be
defined as the probability of collusion conditional on the observations
of Pt and Qt, in order to incorporate the fact that the collusion not
only affects prices but also quantities. Using Bayes rule:

Wt = f(St = 1|Pt ∩Qt) =

=
λf(Pt ∩Qt|St = 1)

λf(Pt ∩Qt|St = 1) + (1− λ)f(Pt ∩Qt|St = 0)
. (20)
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As before, λ is calculated by equation (9) as the average value
of all Wt’s obtained in the previous iteration of the algorithm. The
probabilities f(Pt ∩ Qt|St = 1) and f(Pt ∩ Qt|St = 0) are computed
from the normal multivariate distribution that results from equations
(16) and (17):

[Qt, Pt|St] ∼ N(µµµ,ΣΣΣ),

where µµµ =

[
E(Qt) = αi + γiMCt + δiYt
E(Pt) = ρi + θiMCt + φiYt

]
ΣΣΣ =

[
σ2(vit) σ(vit, u

i
t)

σ(vit, u
i
t) σ2(uit)

]
i =

{
c, if St = 1

n, ifSt = 0
.

(21)

Finally, after revising the conditional probabilities Wt, the pre-
dicted regimes Ŝt can be determined according to the rule in equation
(13). The maximization and expectation steps are then iteratively
repeated until convergence is reached.

All computations previously described were introduced in the TSLS
EM algorithm, which can be used to estimate once more the param-
eters of populations 8 to 13 (code available in Appendix 3). After
running the TSLS EM algorithm to the 100 000 observation samples
previously collected, we obtained the estimation output in Table 6.

Population β̂c β̂n σ̂u λ̂ R2

8 0.4996 0.2497 1.0010 0.2000 0.9662
9 0.5001 0.2498 1.9930 0.2004 0.8701
10 0.5003 0.2505 3.0020 0.1997 0.7297
11 0.5011 0.2505 4.0195 0.2007 0.5583
12 0.4963 0.2488 5.0048 0.2004 0.3752
13 0.4994 0.2503 5.9700 0.2001 0.2128

Table 6: Estimation output of the TSLS EM Algorithm

The new algorithm was clearly able to correct endogeneity and
converge to the consistent root for all populations, once the estimates
obtained in Table 6 are very close to the true values in Table 4. Most
impressive, even in population 13, which is poorly described by a re-
gression with a 0.2128 R2, the results obtained have great precision.
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We are finally getting closer to an accurate method of collusion detec-
tion that can be actually applied to real data.

9 Testing for Structural Breaks

We have developed a fast and parsimonious algorithm to consistently
estimate the supply side of an industry as a regression that switches
between two regimes, competition and collusion. All the previous
analysis was developed under the assumption that structural breaks
do exist, that is, it was assumed that each regime is observed at least
in some periods. A relevant question that must now be addressed is
how the algorithm behaves when no structural break occurs (λ is equal
to zero or one).

For that, consider the switching supply regression rewritten in ma-
trix notation:

Pt = MCt + βcQtSt + βnQt(1− St) + ut ⇐⇒ P = Xβββ + U,

where X =

MC1 Q1S1 Q1(1− S1)
... ... ...

MCT QTST QT (1− ST )

 and βββ =

 1
βc
βn

 . (22)

When firms either compete or collude along the whole time series,
the variable St or 1−St is a row of zeros and the matrix of regressors
X is singular. Therefore, if the EM algorithm is able to converge to
the true values of the state variable, it will attempt at some point to
invert a singular matrix during the maximization step, generating an
error.

Interestingly, the algorithm often converges instead to a meaning-
less random solution, estimating a value for lambda between zero and
one and identifying both regimes in the dataset. Indeed, despite the
absence of structural breaks, the EM algorithm allows the regime to
switch along time in order to improve the fitting of the data, attribut-
ing observations with highly positive errors to collusion and observa-
tions with highly negative errors to competition. Unfortunately this
means we cannot actually rely on the estimation output of the switch-
ing regression, unless we know for sure that the data was generated
by a mixture of the two regimes. To overcome this problem we must
implement some statistical test to check whether there is evidence of
structural breaks.
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We may be initially tempted to use a Wald test or a likelihood
ratio test to verify whether the fitted state variable Ŝt is statistically
significant, case in which we conclude the time series is a mixture
of two distinct regimes. However, the test statistics of the switching
regression model do not have the traditional distributions under the
null and cannot be used to conduct such analysis. For that reason,
several authors have proposed a modified likelihood ratio test to check
the hypothesis of a homogeneous model against a mixture of two or
more regimes,5 as Chen and Kalbfleisch (2004) and Zhu and Zhang
(2003). Still, these methods are quite hard to implement, as they
involve finding lower and upper bounds, as well as the asymptotic
behavior of the distribution of the test statistic.

In this paper we propose a much more simple and convenient ap-
proach. Instead of studying the complex distribution of the switching
regression estimator and respective test statistics, we focus our anal-
ysis on the original TSLS estimator. To illustrate this, consider again
a dataset generated by the system in (15) and suppose we estimate
the following simple regression by TSLS, using Yt as an instrumental
variable:

Pt = MCt + βQt + ut. (23)

On the one hand, if the regime remains unchanged along time, the
TSLS estimator is consistent and it follows directly that the resid-
uals have a normal distribution, as observed in Figure 7. On the
other hand, if the time series has structural breaks separating the two
regimes, the TSLS estimator is no longer consistent and the residuals
are given by:

et =

{
(βn − β̂TSLS)Qt + ut, if St = 0

(βc − β̂TSLS)Qt + ut, if St = 1
. (24)

where β̂TSLS is the TSLS estimator of regression (23). In other words,
in the presence of structural breaks, the residuals are generated by a
mixture of two normal distributions with different mean, as observed
in Figure 8.

The clear distinction between the two distributions in the homo-
geneous and mixture models can be used to obtain evidence for struc-
tural breaks. Indeed, we can test for normality of the residuals follow-
ing Jarque and Bera (1987), whose null hypothesis is that the residuals

5For hypotheses tests of two against more regimes see Dannemann and Holzmann
(2010).
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Figure 7: Histogram of the residuals of a homogeneous model

Figure 8: Histogram of the residuals of a mixture model
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follow a normal distribution with unknown mean and variance. If the
null is rejected, it raises suspicions that there are structural breaks
and we can then run the EM algorithm to verify whether the industry
is well explained by a switching regression model.

We conduct several simulation experiments to evaluate the Jarque-
Bera test as a tool to detect the presence of structural breaks in the
time series. As before, we simulate an industry with random levels of
income and marginal costs and we generate the prices and quantities
transacted as a solution of the system (15). The true values of the
parameters are as follows:

β0 β1 β2 βc βn σv
50 5 -2 0.5 0.25 1

Table 7: Parameters of the population

For each simulation experiment we collect a random sample of
observations from the population, estimate equation (23) by TSLS to
obtain the residuals and run the Jarque-Bera test for a 5% significance
level. Then we replicate the previous steps several times and calculate
the type I and type II errors, whose results are displayed in Table 8.

To calculate the type I error we set λ equal to 0, so that firms
always compete and there are no structural breaks in the data. Next
we compute the fraction of replications where the Jarque-Bera test
rejects the null hypothesis of normality, suggesting structural breaks.
To calculate the type II error we set λ equal to 0.2 to obtain a sample
with a mixture of collusive and competitive periods. Then we compute
the fraction of replications where the Jarque-Bera test fails to reject
the null hypothesis, suggesting a homogeneous model.

From the observation of Table 8 we conclude that, for all exper-
iments, the type I error is very close to the 5% significance level,
meaning that the test is well elaborated and can be used to check for
structural breaks. In addition, from the analysis of the type II error,
we conclude that the power of the test is maximum (equal to one)
when the number of observations is very large. Howsoever, when we
collect a smaller sample of 100 or 200 observations, the test may lose
some power if the error term becomes too volatile. For instance, in
experiment 13, for a sample of 100 observation and a standard devi-
ation of the error equal to 3, the Jarque-Bera test fails to reject the
null hypothesis of normality in 12,4% of the cases where the null is
false. In order words, the power of the test is only 0.876.
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Experim. Observations Replications σu Type I Er. Type II Er.

1 10 000 100 2 0.05 0
2 10 000 100 3 0.04 0
3 10 000 100 4 0.09 0
5 1000 500 2 0.06 0
6 1000 500 3 0.032 0
7 1000 500 4 0.044 0
9 200 500 2 0.05 0
10 200 500 3 0.05 0
11 200 500 4 0.048 0.236
12 100 500 2 0.054 0
13 100 500 3 0.05 0.124
14 100 500 4 0.058 0.666

Table 8: Jarque-Bera test

The ability of the Jarque-Bera test to detect structural breaks de-
pends, of course, on the assumption that the error term of the supply
equation follows a normal distribution (actually almost all statistical
inference depends on that assumption). While this should not rep-
resent a major problem for large samples in which the central limit
theorem can be applied, for small samples it may be useful to run al-
ternative tests to check whether the results remain valid using different
distributions, as the logistic.

In conclusion, the Jarque-Bera test appears to be an easy, fast and
functional method to test for structural breaks. When it rejects the
hypothesis of a homogeneous model, it can be complemented with the
EM algorithm to verify if the industry can be accurately described by
a switching regression of collusive and competitive regimes.

10 Conclusions

The pattern of economic data is the result of multiple complex inter-
actions in the economy, some of which correspond to socially valuable
transactions and others to criminal activities with high social costs.
Modern econometric tools can be used to dissect the available data
and detect some of those criminal behaviors that would otherwise re-
main unknown. In this paper, we discussed the estimation of switching
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regressions as a particularly useful method to detect collusion.
Although switching regression models have been broadly applied

in various fields of social and natural sciences, the difficult estimation
techniques behind them remain a black box for many researchers. We
attempted here to get inside the black box in a controlled simulation
environment in order to identify some common estimation problems,
provide feasible solutions and present a better intuitive understanding
of the results obtained.

Firstly, we have discussed some conditions under which the tra-
ditional EM algorithm fails to converge to the consistent root of the
switching regression, while providing the computational procedures
required to correct the estimation bias. Secondly, we have addressed
the endogeneity problem in the estimation of supply, when the data
observed is the result of a system of supply and demand equations.
We overcame this problem by extending the rationality of the TSLS
estimator to the maximization and expectation steps of the EM algo-
rithm. Thirdly, we have shown that estimating a switching regression
alone does not provide absolute evidence that the time series is com-
posed by a mixture of collusive and competitive regimes. To test
whether there are, indeed, structural breaks in data, we proposed the
implementation of the Jarque-Bera normality test for the residuals.

We believe the empirical methods presented in this paper are easy
to implement, computationally efficient and do not rely on much in-
formation a priori. And so, they can be actually implemented by
competition authorities who face time and resource constrains. There
is, of course, room for improving our empirical analysis of collusion.
Future research should focus, for instance, on how to deal with indus-
tries with differentiated products, firms with multiple products and
more complex supply functions that account for other forms of collu-
sion. Perhaps the continuous development of advanced econometric
tools to detect collusion will turn competition authorities, over time,
into real collusive scene investigators.

References

Abrantes-Metz, R., Froeb, L., Geweke, J., and Taylor, C. T. (2006).
A variance screen for collusion. International Journal of Industrial
Organization, 24(3):467–486.

Almoguera, P. A., Douglas, C. C., and Herrera, A. M. (2011). Test-

29



ing for the cartel in opec: non-cooperative collusion or just non-
cooperative? Oxford Review of Economic Policy, 27(1):144–168.

Bain, J. S. (1951). Relation of profit rate to industry concentration:
American manufacturing, 1936-1940. The Quarterly Journal of Eco-
nomics, 65(3):293–324.

Bajari, P. and Ye, L. (2003). Deciding between competition and col-
lusion. Review of Economics and Statistics, 85(4):971–989.

Baldwin, L. H., Marshall, R. C., and Richard, J. (1997). Bidder col-
lusion at forest service timber sales. Journal of Political Economy,
105(4):657–699.

Berry, S. T. (1994). Estimating Discrete-Choice Models of Product
Differentiation. RAND Journal of Economics, 25(2):242–262.

Bresnahan, T. F. (1989). Empirical studies of industries with market
power. In Schmalensee, R. and Willig, R., editors, Handbook of
Industrial Organization, volume 2 of Handbook of Industrial Orga-
nization, chapter 17, pages 1011–1057. Elsevier.

Chen, J. and Kalbfleisch, J. D. (2005). Modified likelihood ratio test
in finite mixture models with a structural parameter. Journal of
Statistical Planning and Inference, 129(1–2):93 – 107. {IISA} 2002
DeKalb Conference.

Chow, G. C. (1960). Tests of equality between sets of coefficients in
two linear regressions. Econometrica, 28(3):591–605.

Dannemann, J. and Holzmann, H. (2010). Testing for two components
in a switching regression model. Computational Statistics & Data
Analysis, 54(6):1592–1604.

Goldfeld, S. and Quandt, R. (1972). Nonlinear methods in econo-
metrics. Contributions to economic analysis. North-Holland Pub.
Co.

Green, E. J. and Porter, R. H. (1984). Noncooperative collusion under
imperfect price information. Econometrica, 52(1):pp. 87–100.

Joseph E. Harrington, J. (2005). Detecting Cartels. Economics Work-
ing Paper Archive 526, The Johns Hopkins University,Department
of Economics.

30



Kiefer, N. (1978). Discrete parameter variation: Efficient estimation
of a switching regression model. Econometrica, 46(2):427–34.

Kiefer, N. M. (1980). A note on switching regressions and logistic
discrimination. Econometrica, 48(4):1065–1069.

Nevo, A. (2001). Measuring market power in the ready-to-eat cereal
industry. Econometrica, 69(2):307–342.

Paha, J. (2010). Empirical methods in the analysis of collusion.
MAGKS Papers on Economics 201033, Philipps-Universit́’at Mar-
burg, Faculty of Business Administration and Economics, Depart-
ment of Economics.

Porter, R. H. (1983). A study of cartel stability: The joint executive
committee, 1880-1886. The Bell Journal of Economics, 14(2):301–
314.

Porter, R. H. and Zona, J. D. (1993). Detection of bid rigging in
procurement auctions. Journal of Political Economy, 101(3):518–
538.

Quandt, R. E. (1960). Tests of the hypothesis that a linear regres-
sion system obeys two separate regimes. Journal of the American
Statistical Association, 55(290):324–330.

Quandt, R. E. (1972). A new approach to estimating switching regres-
sions. Journal of the American Statistical Association, 67(338):306–
310.

Slade, M. E. (2004). Market power and joint dominance in u.k. brew-
ing. The Journal of Industrial Economics, 52(1):133–163.

Zhu, H.-T. and Zhang, H. (2004). Hypothesis testing in mixture re-
gression models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 66(1):3–16.

31


