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Abstract

Many real-world processes exhibit both relational structure and uncertainty, and
Machine Learning approaches should be able to deal with these aspects. Prob-
abilistic Inductive Logic Programming (PILP), a subset of Statistical Relational
Learning, uses Inductive Logic Programming (ILP) extended with probabilistic facts
to produce meaningful and interpretable models. This merger between First Order
Logic (FOL) theories and uncertainty makes PILP an adequate tool for knowledge
representation and extraction. However, this flexibility in PILP systems is coupled
with an exponential search space growth when looking for good models (inherited
from ILP), and so often only a subset of all possible models is explored due to
limited resources. Furthermore, the probabilistic evaluation of FOL theories, from
the underlying probabilistic logic language and its solver, is also computationally
demanding. In order to mitigate this problem, this thesis introduces novel PILP
pruning strategies that can help reduce the time taken to generate good probabilistic
theories, and shows how they can be applied in several distinct parts of the PILP
search space. It also describes a safe pruning criterion which guarantees that
the optimal model is not pruned away when used in combination with one of
the pruning strategies, as well as two alternative more aggressive criteria that
do not provide this guarantee. Because these pruning criteria are based on the
data’s probabilistic characteristics, the use of pruning strategies results in minimum
information loss, which in turn maintains the quality of the generated theories while
causing a significant reduction in average execution time. Experiments performed
using benchmarks from di↵erent areas and two PILP systems (one developed during
this thesis and another from the literature) show that the pruning strategies are
e↵ective in maintaining predictive accuracy for all criteria and experimental settings,
and reducing the execution time when using some of the more aggressive strategies
and criteria, compared to using no pruning. Finally, a real world study using
medical data was conducted and the resulting PILP models were more accurate in
identifying false negatives when compared to other techniques.
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Resumo

Existe um interesse crescente em técnicas de Machine Learning que sejam capazes
de lidar com processos que exibem simultaneamente uma estrutura relacional
nos seus dados e um grau de incerteza associado a eles. A Programação Lógica
Indutiva Probabilı́stica (PILP) – um método de Statistical Relational Learning – é
uma extensão de Programação Lógica Indutiva (ILP) que utiliza factos e regras com
um valor probabilı́stico para gerar modelos relevantes e facilmente interpretáveis
por humanos. Esta combinação entre teorias lógicas e incerteza faz com que PILP
seja uma técnica interessante para a representação e extração de conhecimento.
No entanto, a flexibilidade inerente aos sistemas PILP está também associada
a um problema de crescimento exponencial do espaço de procura dos modelos
(semelhante àquele encontrado em ILP). Esta é a razão pela qual é frequente avaliar
apenas alguns dos modelos possı́veis, quando existem limitações relativas aos
recursos computacionais disponı́veis. Para além disso, a complexidade de avaliação
de teorias probabilı́sticas, devida à linguagem lógica probabilı́stica e ao seu método
de inferência, é igualmente elevada. Com o objetivo de mitigar este problema,
esta tese propõe um conjunto de estratégias de corte do espaço de procura de PILP
que ajudam a reduzir o tempo necessário para gerar teorias probabilı́sticas de boa
qualidade. Estas estratégias podem ser usadas com vários critérios de corte, um dos
quais garante que o modelo ótimo é sempre avaliado, enquanto que os outros são
mais agressivos mas não oferecem essa garantia. Dado que as estratégias de corte são
baseadas nas caracterı́sticas probabilı́sticas dos dados, o seu uso resulta numa perda
mı́nima de informação e portanto a qualidade dos modelos gerados é geralmente
mantida, enquanto que o tempo de execução do programa é significativamente
reduzido. Vários conjuntos de dados e dois sistemas PILP (um deles desenvolvido
durante este trabalho de tese) foram utilizados para validar as estratégias e critérios
de corte propostos. Os resultados experimentais mostram que (i) as estratégias de
corte não reduzem significativamente a qualidade dos modelos gerados em nenhum
caso, e (ii) os critérios mais agressivos de corte reduzem o tempo de execução do
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programa. Finalmente, um estudo utilizando dados médicos reais mostrou que
os modelos PILP gerados para estes dados são competitivos a identificar os falsos
negativos, quando comparados com outras técnicas de Machine Learning.
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Chapter 1

Introduction

Relational Learning is the set of Data Mining techniques used to discover non-
trivial knowledge in contexts where data may have complex relationships. Some
examples of such techniques are Inductive Logic Programming (ILP) [40, 36],
Graph Mining [11], Relational Data Mining [25] and Relational Reinforcement
Learning [26]. Whilst Relational Learning techniques have been applied to a fair
amount of problems, their discrete nature hinders them being used for solving
complex problems involving uncertainty. Many real-world processes exhibit re-
lational structure and uncertainty, and Machine Learning approaches should be
able to deal with both these aspects. Statistical Relational Learning (SRL) [19]
extends Relational Learning by: (i) allowing the training examples to be annotated
with probabilistic information known a priori, and (ii) producing models whose
prediction is a probability (as opposed to a class). SRL is particularly relevant to
produce and manipulate structured representations of data, and its aim is precisely
to capture the logic relations that lie beyond the low-level features and reason about
them.

SRL techniques need an underlying format to represent data. This work uses Prob-
abilistic Logic Programming (PLP) languages as their knowledge representation
framework. PLP languages are an extension of First Order Logic (FOL) where facts
and rules can have a probabilistic value. The expressive power of PLP allows for
coupling relations and uncertainty in the same knowledge representation frame-
work. There are many inference systems for PLP that can represent and manipulate
uncertainty, such as SLP [39], ICL [43], Prism [53], BLP [34], CLP(BN) [50], MLN [48],
ProbLog [35], among others.

By applying ILP techniques to a probabilistic logic setting (as opposed to deterministic)

13



14 CHAPTER 1. INTRODUCTION

it is possible to perform relational learning over uncertain data, and to produce
interpretable models composed of logical theories which have an inherent proba-
bilistic value associated. This process is thus called Probabilistic Inductive Logic
Programming (PILP), and it consists of performing structure learning over PLP in
order to produce models which are understandable by humans whilst still taking
uncertainty into account. PILP is thus based on a merge of ILP and the SRL fields.

1.1 Thesis Purpose

The PILP methodology learns a predictive model from a set of probabilistic logic
facts and rules. A PILP model (or theory) corresponds to a set of FOL rules and
predicts probabilities using the logical rules in the model to perform probabilistic
inference over the probabilities of the facts. PILP algorithms use a set of Probabilistic
Examples (PE) and additional probabilistic logical information about the domain,
the Probabilistic Background Knowledge (PBK), to find a model that explains the
PE. PILP can perform structure learning – the logic rules compose a theory that
models the structure of the PE w.r.t PBK – but also parameter learning – which
can find probabilities for the background knowledge or for the rules learnt [18, 3].
PILP di↵ers from other SRL techniques in (i) the data being represented as logical
predicates and the model being a logical theory itself, and (ii) the focus on learning
the (logical) structure of the data inductively, by using ILP algorithms to find the
logical model which best explains the data.

One of the limitations of PILP systems is that they inherit the exponential search
space from ILP, and must in addition evaluate the fitness of each candidate model
by computing, for each example, the likelihood of that example given the model.
Because PILP is based on probabilistic logic data, this can be very time consuming
since the evaluation process must consider all possible worlds where the theory in
the model may be true. For a small number of facts and rules in the PBK this
is not a problem, but computation grows exponentially as the size of the PBK is
increased [27].

The purpose of this thesis is to improve the scalability of PILP by investigating
pruning strategies for PILP search space traversal. This work introduces three
distinct pruning strategies that can be applied to the PILP algorithm and are aimed
at making the best possible use of available resources. Fitness pruning is a type
of beam search which implements a polynomially bound complexity on the PILP
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search space by selecting a subset of candidate theories to be combined, as opposed
to calculating all possible combinations. Estimation pruning is a strategy aimed
at improving the performance of PILP systems through the use of estimators that
can replace the probabilistic evaluation of theories and thus prevent unnecessary
theory evaluation. This strategy estimates the utility of candidate theories based
on information previously available so as to prune some candidates away before
they undergo exact probabilistic evaluation. Finally, prediction pruning prunes the
PILP search space based on evaluated theories by taking into account the logical
operation that will be performed next (conjunction or disjunction). Unlike the other
two pruning strategies, prediction pruning can guarantee safety, meaning that the
optimal model is never pruned away (depending on pruning setting).

Furthermore, this work investigates three possible criteria for pruning: safe, soft and
hard. The safe criterion can only be applied in the prediction pruning strategy and
it guarantees that the optimal model is never pruned away. Soft and hard pruning
criteria are applicable to both estimation and prediction pruning and they perform
a more aggressive prune of the search space. Because these criteria are based on
the data’s probabilistic characteristics, the pruning strategies result in minimum
information loss, which in turn maintains the quality of the generated theories
while causing a significant reduction in average execution time.

In order to assess the impact of these pruning strategies, the PILP system SkILL
was created. Unlike other systems in the literature, SkILL supports the exhaustive
search of the PILP search space, and does so by first traversing the AND search
space, and only then traversing the OR search space. This configuration is the
most adequate to individually assess the impact of each pruning strategy, for both
these logical operations, and varying criteria. Even though the full capabilities of
the pruning strategies introduced here can be better showcased using the SkILL
system, the concepts are general to any PILP engine.

An experimental analysis performed using three PILP benchmarks from di↵erent
areas (biology, web and medical) shows that all three criteria maintain predictive
accuracy for all experimental settings. Furthermore, the more aggressive criteria
reduce execution time compared to using no pruning, without loss of predictive
accuracy. Finally, in limited resource settings better candidate models are explored
when compared to using no pruning. The proposed pruning strategies were also
implemented in another PILP system, ProbFOIL+ [18], and results show that they
are e↵ective in increasing accuracy when using a beam search strategy.
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1.2 Main Contributions

This works consists of the design, implementation and evaluation of a set of pruning
strategies for PILP. To the best of the author’s knowledge, these pruning strategies
are the first designed specifically for the PILP probabilistic logic search space, and
they make use of the probabilistic information of candidate theories. Because the
probabilistic information of candidate PILP theories can be used in di↵erent ways,
three pruning criteria to be used in conjunction with the pruning strategies are also
proposed. Furthermore, the SkILL PILP system, also a part of this work, focuses
on providing tools for the exhaustive traversal of the PILP search space and for
assessing the impact of pruning strategies in PILP candidate theories evaluated. In
more detail, the main contributions of this work are as follows.

PILP Search Space Description The PILP search space can be divided in the AND
search space (which explores rules) and the OR search space (which explores
theories). The relation between the logical operations of conjunction and
disjunction, the predictions of theories, and their specificity/generality make
pruning the PILP search space possible.

Pruning Strategies Based on a thorough PILP search space understanding, three
pruning strategies are proposed in this work: fitness pruning, estimation
pruning and prediction pruning. Di↵erent pruning strategies target di↵erent
characteristics of the PILP search space traversal, but their main purpose is
to make the exploration of the PILP search space as e�cient as possible. The
pruning strategies can be used separately or in combination with each other,
and they can each use di↵erent pruning criteria, for either search space.

Pruning Criteria In estimation and prediction pruning, the decision to prune a
candidate theory away can be made based on di↵erent pruning criteria. This
work proposes three pruning criteria with varying degrees of aggression: safe,
soft and hard pruning criteria. All of the pruning criteria take into account
the predictions of a candidate theory, and how they are positioned w.r.t. the
example (target) values. In the case of estimation pruning, the estimates of a
candidate theory are used in lieu of the actual predictions computed through
exact probabilistic evaluation.

The SkILL System Specifically for this work, the SkILL system was designed for
the purpose of allowing for a thorough study of the impact of the pruning
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strategies, both for the AND and the OR search space. Unlike other systems
in the literature, it allows for exhaustive traversal of the search space, and the
search of the AND and the OR sarch spaces are conducted in separate stages
so as to make the individual impact of pruning strategies more evident.

Performance Evaluation This work conducts a performance study for all pruning
strategies and criteria (both individually and combined with each other). The
performance of the pruning strategies proposed in this work takes into account
the execution time of the program, as well as the predictive accuracy of the
final optimal model chosen.

Real World Application A PILP breast cancer benchmark using data from non-
definitive biopsies is constructed and an exploratory study of these data is
proposed. This study builds a PILP model for the breast cancer data which
predicts malignancy of the tumours and is statistically indistinguishable from
the medical doctor’s predictions. The PILP model was shown to predict
consistently higher values for malignancy of tumours when compared to other
techniques, which is a desirable feature in medical decision support systems.

1.3 Thesis Overview

This thesis document is composed of eight chapters, organised as follows.

1 Introduction presents the main context of this thesis, introducing Relational
Learning and PILP in particular. This chapter also enumerates the main
contributions of this work, namely the pruning strategies, pruning criteria,
the SkILL system and experimental evaluation developed. Finally, it presents
an overview of the thesis contents.

2 Deterministic ILP focuses on explaining ILP and its search space. This chapter
contains mostly background and it starts out with a short overview of Logic
Programming and how the ILP learning methodology can be implemented on
this framework. It then moves on to detailing the AND and OR ILP search
spaces and how they can be traversed. Then, ILP mode declarations and loss
functions are briefly described, followed by some ILP related work regarding
the search space traversal by greedy algorithms.
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3 Probabilistic ILP describes how ILP can be extended to use Probabilistic Logic
Languages as its FOL knowledge representation. This chapter starts out by
explaining possible world semantics and how they map to logic FOL rules.
It then moves on to describe PILP and the main di↵erences between this
approach and deterministic ILP, focusing again on the AND and OR search
space traversal. Then, a short analysis of the size of the PILP search space is
presented, and finally some related work approaches are contextualised and
described.

4 Pruning Strategies introduces the three pruning strategies developed during
this thesis work in detail. This chapter starts out by giving an overview of
the pruning strategies and how they fit within PILP search space traversal.
Then, the three pruning strategies are described in detail: fitness pruning,
estimation pruning and prediction pruning. Pruning strategies can be used
with varying pruning criteria, and so this chapter also describes the pruning
criteria developed during this work: the hard, soft and safe pruning criteria.
The latter is described in more detail since it allows for pruning theories and
still guaranteeing that the optimal model is kept.

5 The SkILL System presents the PILP system that was developed during this
dissertation, and whose focus is to enable the exhaustive traversal of the PILP
search space. This chapter presents SkILL’s general architecture, as well as its
main level-based algorithm for the AND and OR search spaces, along with its
parameters. All pruning strategies and criteria developed during this work
are implemented in this system, and can be used either individually or in
combination with each other.

6 Experiments presents the PILP benchmarks used for the experimental evaluation
of the pruning strategies developed during this dissertation. Each pruning
strategy is evaluated independently, and then the experimental evaluation
proceeds to assess the e↵ect of combining fitness pruning and prediction
pruning, and fitness, estimation and prediction pruning. Finally, experiments
using the PILP system ProbFOIL+ and using the pruning strategies in this
system are presented.

7 Real World Applications describe non-trivial knowledge extraction experiments
performed on one of the PILP benchmarks. This benchmark is composed of
breast cancer data and it was annotated with physician input in several ways,
described in detail in this chapter. Then, the PILP approach was compared
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with other classifier methods and it was found to have a higher recall that
both the expert predictions and other classifiers’ prediction. Furthermore,
two models using PILP predictions and medical doctors’ predictions were
developed and assessed in this chapter.

8 Conclusion describes the main contributions of this work and how they were
attained, as well as presenting some future work directions.
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Chapter 2

Deterministic ILP

This chapter presents the background of Logic Programming and Inductive Logic
Programming (ILP). In particular, the search space of ILP and the basic algorithm
to traverse it are described, as well as the language bias and the loss functions for
ILP model evaluation.

2.1 Logic Programming

Since the mid-1900’s until the present time numerous programming languages have
been developed. As such, a need arose to identify common features amongst the
programming languages so as to classify them accordingly. Therefore, four main
paradigms have emerged from this process, matching every programming language
to one of these categories: imperative programming, functional programming, logic
programming or object-oriented programming.

Imperative programming semantic is composed of strict translations from machine
language to a set of user commands, whilst object oriented languages are the most
recent paradigm and focus on modular code where methods can easily be reused.
Logic and functional languages can be grouped under the declarative programming
paradigm, and they aim at creating a detachment between a program’s goal and
its execution details by enhancing the declarative characteristics of the language in
preference to its control. This allows the programmer to focus on defining the
solution to a problem (declarative semantics), rather than how that solution will be
executed (procedural semantics) [37].

However, whilst functional programming is concerned with features such as re-
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cursion or pattern matching, logic programming languages are focused on the
process of automatically reasoning about knowledge contained in the program.
There is also a theoretical di↵erence between functional programming and logic
programming: the former uses lambda calculus and the latter predicate calculus.
Since the latter are a subset of declarative languages, they maintain the characteristic
that the programmer is only required to specify what a program should do, and
the execution environment is responsible for executing the specification in a fairly
e�cient way. Because the programmer does not focus on the execution details of
the algorithm, this paradigm results in a detachment between the logic goals of the
program and its execution goals, which can be explored towards greater e�ciency.

There are various languages in the logic programming category, such as the Data-
log [8] or Godel [32] languages, but only the Prolog family will be discussed here
since the remaining languages are out of the scope of this work. Prolog first appeared
in 1972 [10], in result of extensive research on an experiment whose aim was to
develop a strategy for computers to interpret natural language. Since then, it has
evolved and branched out into a number of distributions such as SWI-Prolog [57],
SICStus Prolog [7] or Yap Prolog [51].

In 1969, Cordell Green adapted Alan Robinson’s resolution algorithm to create an
automatic theorem proving procedure [30] applicable to first-order logic systems,
from where the numerous declarative programming languages in existence today
stem. In particular, Prolog’s syntax is composed of clauses that can be expressed as a
conjunction of literals, also known as Horn clauses. This type of logical construction
is a subgroup of first-order logic where the implications can contain at most one
positive literal as a consequent, and as such it is not only resoluble and complete
given a set of axioms but it is also closed – the resolvent of two Horn clauses is also
a Horn clause. This fact makes it possible and convenient to recursively solve these
clauses using inference rules based on SLD resolution [30].

In 1983, David Warren introduced a memory architecture and an instruction set, later
named the Warren Abstract Machine (or WAM) [56], meant to e�ciently translate
Prolog code to lower level instructions, then to be resolved. The WAM still presently
sets a relevant standard amongst Prolog compilers [1]. It is important to note that
whilst the order of the terms in a clause is mathematically indi↵erent, it can be
computationally taxing.

Prolog is then a language composed of rules and terms, and their mutual interaction.
It has been argued that the logic programming paradigm should have been named
the relational programming paradigm [37] since that terminology better describes
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the nature of the language.

A term is the basic Prolog language entity, and it can be an atom (starts with lower-
case letters or is enclosed in single quotation marks), a number (float, integer), or
a compound term (also named a functor). A term can also be a free variable (its
name starts with an upper-case letter or an underscore) which is type-less until it
is bound, meaning that a value is then assigned to the variable. Since Prolog has
no destructive assignment of variables, unification for each variable can occur only
once. However, backtracking allows for unbinding already unified variables, since
Prolog stores choice points and can restore a previous program state so as to explore
alternative rules.

A rule in Prolog is necessarily a Horn clause, composed by a head and a body, and
follows the structure presented in Eq. 2.1.

head : �body literal1, body literal2, ...body literalN. (2.1)

A rule’s head and body are related by the operator :-, which is an implication: for
the head to be true, the body must also be true. A rule can have no body – the
equivalent to 2.2.

head : �true. (2.2)

Or simply:

head. (2.3)

In these cases the rule is named a fact and represents a statement that is always true
in the program’s scope. The set of rules and facts of a Prolog program is called its
clauses. The rule/fact names in a program are also called predicates, and a predicate
can have several clauses with the same arity (number of predicate arguments).

The body of a rule is composed of a sequence of literals, or goals, interacting with one
another through connectives, or operators; in this case ,/2 corresponds to the AND
connective. Each goal represents a call to a predicate, which is then determined to
be true or fail. It is thus evident that the execution of a Prolog program requires
both a goal selection rule to determine which goal is to be called next, and a search
rule to choose which alternative of a goal to explore, if several exist. Prolog’s
resolution employs left-to-right goal selection and a depth-first search strategy,
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and each resolution step taken is called reduction or logical inference. Consider the
following example of a basic Prolog program illustrating most of these concepts.

student(joana).

student(miguel).

professor(ines).

professor(ricardo).

advised_by(joana, ines).

advised_by(joana, ricardo).

advised_by(miguel, ricardo).

This program introduces four entities: Joana, Miguel, Inês and Ricardo, which in
this example are people. There are four facts of arity one, which are encoded by two
predicates: student/1 and professor/1. These facts encode the knowledge that
Joana and Miguel are students, and that Inês and Ricardo are professors. Note that
logical facts are a particular type of clause which is composed of only a head, i.e.
the body (antecedents) of facts is always true and when this is not the case (when
the head of the clause has antecedents), the clause is a rule.

The advised_by/2 clauses di↵er from the student/1 and professor/1 facts because
they encode a relation between people. In this case, they state that Joana is advised
by Inês and also by Ricardo, and that Miguel is advised by Ricardo.

Consider now that the program also contains a predicate co_authors/2 which
expresses a conditional rule between its head and body literals: if P is a professor, S
is a student and S is advised by P, then P and S are co-authors.

co_authors(P, S) :-

professor(P),

student(S),

advised_by(S, P).

Because co_authors/2 also expresses a relation between two variables (S and P), it
is said to have arity 2. The di↵erence between the relation expressed by co_authors
/2 and advised_by/2 is that the former is a conditional relation, whilst the latter
is always true. The body of a rule such as co_authors/2 is composed by a set of
literals (again, ordering of these literals only impacts the order in which solutions
for the rule are computed, it does not change the set of possible solutions). The
meaning of this set of literals corresponds to the logical conjunction of all of them.
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For instance, the rule for co_authors/2 stated that both professor(P), student(S)
and advised_by(S, P)must be true so that the rule is verified.

It is also possible to combine literals disjunctively by combining several rules
(clauses) with the same head.

co_authors(P, S) :-

professor(P),

student(S),

advised_by(S, P).

co_authors(P, S) :-

professor(P),

professor(S),

advised_by(X, P),

advised_by(X, S),

Adding a second rule for co_authors/2 results in a new theory for co_authors/2.
The meaning of this theory is that P and S are co-authors if either P is a professor,
S is a student and P is an advisor of S, or if P and S are both professors and both
advisors of the same student X. Note that the rules in a theory are disjunctive w.r.t.
each other – the theory is verified if any of its rules are true. Conversely, rules are
only true if all of their literals (sub-goals) are true, since the literals are mutually
conjunctive.

Theories such as co_authors/2 can be queried to produce positive and negative
examples, meaning sets of values for P and S that verify the theory, and sets of
values which do not, respectively. The next example contains some queries one
could now pose regarding the program shown earlier.

?- student(ricardo).

no

?- student(Someone).

Someone=joana?

;

Someone=miguel?

;

no

?- co_authors(ines, Someone).

Someone=joana?

;
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Someone=ricardo?

;

no

For instance, {P = ines, S = joana} is a positive example of co_authors/2 and
{P = miguel, S = joana} is a negative example of co_authors/2.

The aim of ILP is to reverse engineer this process: given positive and negative
examples of some phenomenon (for instance co_authors/2), find the theory which
best explains the positive and negative examples. In the deterministic case, this
means that the theory should succeed for every positive example, and fail for every
negative example.

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) [36] is a machine learning branch which stands
out due to its suitability for relational data analysis. ILP’s main goal is to construct
a theory which can explain a set of observations - known as examples - and that can
then be used for assessing the quality of the produced predictive model [40]. In fact,
these two approaches are also known as predictive and descriptive ILP, respectively,
and their nature is often related to the way explanations are computed for a given
problem; in the most frequent case – predictive ILP – learning from entailment is
most commonly used. Learning from interpretations is also a possible setting for
ILP theory computation, but it has been shown that it can be reduced to a learning
from entailment scenario [47, 46].

ILP has a strong theoretical background, inherited from logic programming, and
a good experimental approach due to its machine learning basis. Its strong theo-
retical nature allows for representing problems in a formal way while also o↵ering
great expressiveness that other machine learning approaches cannot match. Its
experimental approach provides the capability to solve practical applications for
inductive learning which can be targeted to solve specific problems.

The main advantage of ILP is, however, its capability to provide classifiers that are
interpretable by humans, which makes it popular in di↵erent scientific domains.
This research area is quite relevant in several field such as Knowledge Acquisi-
tion, Inductive Program Synthesis, Inductive Data Engineering, and Knowledge
Discovery in Databases [36].
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Even though many other classic Data Mining methods have been shown to be
e↵ective and are very widely used in numerous fields of knowledge, a shift in
paradigm may be in order since the amount of data produced grows daily, making
human validation of conclusions intractable. Ideally, one would like knowledge
discovery methods to reach the same conclusion as an expert in the area would, in
a much shorter time frame, and this can be emulated through ILP models.

The ILP learning algorithm requires that part of that data consists of background
knowledge (BK), which are often of a relational nature. The BK can be thought of as
the support knowledge that one would have when making the observations on the
system. It is therefore crucial to have structured and well-suited BK for learning.

%% Background Knowledge (BK)

student(joana).

student(miguel).

professor(ines).

professor(ricardo).

advised_by(joana, ines).

advised_by(joana, ricardo).

%% Positive Examples (E+)

co_authors(joana, ines).

co_authors(miguel, ricardo).

co_authors(ricardo, ines).

%% Negative Examples (E-)

co_authors(joana, joana).

co_authors(joana, miguel).

co_authors(ines, miguel).

The observations (or examples) given to the system can be named positive (E+) or
negative (E�), though negative examples are not required in descriptive settings.
Examples are also facts, but this time regarding the relation whose pattern the
system is attempting to determine; positive examples are cases in which the relation
is verified to be true whilst negative examples are cases in which the relation is false.

From this example, an ILP system could learn this model (theory) for the data.

co_authors(P, S) :-
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professor(P),

student(S),

advised_by(S, P).

co_authors(P, S) :-

professor(P),

professor(S),

advised_by(X, P),

advised_by(X, S),

This theory for co_auhtors/2 has coverage of 100% of positive examples and 0% of
negative examples, making it an optimal choice for a theory to explain this dataset.

The process of theory (or hypothesis) induction in ILP was first formalized by
Muggleton and de Raedt’s in 1995 [40]. Its normal semantics are composed of four
statements which must be met by the models generated by the system. The symbol
|= stands for logical entailment.

Prior Necessity BK 6|= E+, meaning that the theories to be found must be di↵erent
from the trivial true hypothesis.

Prior Satisfability BK^E� 6|= ⇤, which guarantees that the problem can be modelled
by at least one theory.

Posterior Su�ciency BK ^ H |= E+, which means that the generated theories
explains the positive examples.

Posterior Satisfability BK ^ E� ^ H |= ⇤, so that the generated theories do not
explain the negative examples.

The two latter statements (posterior su�ciency and posterior satisfability) are often
relaxed in practice; this can be done in several ways like attempting to minimize
the number of misclassified positive and/or negative examples.

One would thus expect that, for all theories, there would be a form of assessment
of their explanatory value, or justification. Since there will often be more than one
hypothesis fitting the four semantic statements for a given problem, the system
must order them according to a preference, thus introducing a preference bias in the
system.

In addition to the justification of a theory, the process by which it is formed - or
abduction - must also be considered. The naı̈ve approach of theory abduction is to
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just simply form all correct models under the syntactic bias of the language and
compare their justifications in order to choose the best. However, this leads to an
enormous search space and is computationally infeasible in many cases. As such,
the notion of generalization and specification have arisen as ways to prune the search
space.

Generalization A theory G is said to be more general than a theory S i↵ G |= S.

Specification A theory S is said to be more specific than a theory G i↵ G |= S.

These two concepts (generalization and specification) are the basis for theoretical
search space pruning, since better results cannot be obtained from generalization of
a theory that is inconsistent with negative examples or from specialization of a rule
which is inconsistent with positive examples.

2.2.1 Search Space Description and Traversal

The theories used to explain examples in ILP are built from the predicates that
are present in the program’s BK. In the example mentioned before, there are three
distinct predicates in the BK: student/1, professor/1 and advised_by/2. The rule
(AND) search space is composed by all rules whose body contains one or more
literals generated from those predicates and BK. The number of literals in the body
of a rule is termed the rule length. An example of a rule of length one is co_authors
(P, S):- professor(P) and an example of a rule of length two is co_authors(P
, S):- professor(P), student(S). Depending on the mode declarations (to be
presented next), it might also be the case that the same predicate can be repeated in
a rule with di↵erent arguments. However, for the description of the search space,
repeated predicates in rules can be mimicked by introducing auxiliary predicates
(for instance). Therefore, for the sake of simplicity, this case is not considered in the
explanation below.

Rules can be combined using logical conjunction to form longer more specific rules.
The more literals are contained in the body of a rule (the greater its length), the more
specific the rule is. The AND search space is then composed of all rules of various
lengths which can be formed from the existing literals. More formally, let Predicates
be the set of distinct predicates in the BK. For each predicate, a set of literals can be
generated by instantiating each argument with either a constant from the BK or a
variable. This set of literals for predicate p can be denoted by L(p).
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Thus, the set of literals in the search space can be defined as shown below.

Literals =
[

p 2 Predicates

L(p) (2.4)

Therefore, the AND search space Rules can now be defined as the power set of
Literals, assuming that the mode declarations allow all possible combinations of
distinct literals.

Rules = P(Literals) (2.5)

Given the three predicates introduced in the example

Predicatesex =
n
student/1, professor/1, advised by/2

o
(2.6)

the set of possible literals Literals is equal to

Literalsex =
n
student(X), student(joana), student(ines), student(ricardo),

student(miguel), professor(X), professor(joana),

professor(ines), professor(ricardo), professor(miguel),

advised by(X,X), advised by(X,Y), advised by(joana,X),

advised by(joana,joana), advised by(joana,ines),

advised by(joana,ricardo), advised by(joana,miguel),

. . . ,

advised by(miguel,ricardo), advised by(miguel,miguel)
o

(2.7)

The set of rules Rules contains every possible combination of literals from Literals
and it can also be represented as a lattice where the bottom element is the empty
rule co_authors(P, S):- true, which corresponds to the ? set of literals and is
trivially true. The top of the rule lattice is the most specific element, or the element
ofP(Literals) whose length is equal to |Literals|. Each level of the rule lattice increases
in specificity (from bottom to top) and increases in generality (from top to bottom).
Elements in the same level of the lattice are rules of the same length.

The theory (OR) search space can be defined in a similar way. Theories are formed
by combining a set of distinct rules using logical disjunction. The number of rules
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in a theory corresponds to its length. All rules are thus theories of length one. An
example of a theory of length two is

co_authors(S, P):-

professor(P).

co_authors(S, P):-

student(S).

Adding a rule to a theory makes it more general. The OR search space is the set of
all theories Theories such that:

Theories = P(Rules) (2.8)

Similarly to rules, theories can be represented in a theory lattice. The bottom element
of the theory lattice is the empty set of rules, which is trivially false. The top element
of the theory lattice is the most general theory which can be formed from the Rules
set, and it contains all its elements, thus making its length equal to |Rules|. Because
theories are combined using logical disjunction (as opposed to logical conjunction
for rules), the generality ordering in the lattice is in the opposite direction of that of
the rule lattice. In the theory lattice, the bottom element is the most specific element,
and the first level of the lattice (starting from bottom) is composed of theories of
length one, the second level of theories of length two and so on, until the longest
most general element is reached. Therefore, theories increase in generality (and
decrease in specificity) from bottom to top.

Fully exploring the ILP search space is equivalent to evaluating each theory in the
theory lattice in order to determine the best theory according to a given metric.
Algorithm 2.1 shows a complete general-to-specific procedure to exhaustively tra-
verse the rule lattice (AND search space) based on [17]. Because this algorithm
shows the exhaustive traversal of the search space, options to stop early or to order
or prune the candidate set (beam search) are not included. A similar procedure
can also be applied to the theory lattice (OR search space), using specific to general
ordering instead.

Algorithm 2.1 starts out by initialising a set of candidate rules with the most general
element in the rule lattice (line 1 in Alg. 2.1), as well as the set of all rules, or
theories of length 1, T1 as an empty set (line 2 in Alg. 2.1). The algorithm then
traverses the search space exhaustively by popping an element r from the candidate
set and evaluating it (lines 4 and 5 in Alg. 2.1). Evaluation of a rule (or theory)
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Algorithm 2.1 generic general to speci f ic and(BK,E)
1: Candidates = {true}
2: T1 = ;

3: while Candidates , ; do
4: r = pop(Candidates)
5: T1 = T1 [ evaluation(r,BK,E)
6: Candidates = Candidates [ re f inements(r,BK)
7: return T1

can be performed using di↵erent loss functions against examples and allows for
determining the best rule in the search space. The evaluation results are appended
to the rule as meta-data. The evaluated rule is then added to the set of all rules T1

and the rules refinements are generated and added to the candidate set (lines 5 and
6 in Alg. 2.1). The refinements of a rule r are obtained by specifying this rule, i.e.
by generating rules of greater length which contain all the literals present in r. A
way in which refinements of r may be generated is by combining rules of length
1 with r, resulting in rules of greater length. This procedure is then repeated until
the candidate set is empty and there are no more rules to be evaluated (lines 3–7 in
Alg. 2.1).

For the purpose of this work it is important to respect the partial ordering of the
search space lattice, since this allows for a clearer assessment of the e↵ect of pruning
the search spaces, at each level of the lattice. Therefore, the procedures used to
traverse the AND and OR search spaces used in this work (Alg. 2.2 and 2.3) use
an explicit level-wise exploration approach. Even though the order of search space
traversal can be the same in Alg. 2.1 and Alg. 2.2/2.3 (Alg. 2.1 can be configured
to traverse the search space in a breadth-first fashion), a level-based algorithm
ensures that, for each level of the lattice, there are separate candidate generation
and evaluation stages. In Alg. 2.1, a theory is evaluated and its refinements are
added to the queue, whilst in Alg. 2.2 and 2.3, all evaluations for one level of the
lattice are performed in one step, and only then are all refinements for the theories in
that level generated. This di↵erence in approach allows for a level-based assessment
of the e↵ect of pruning strategies.

Algorithm 2.2 presents a procedure to explore the rule lattice. Since the first level
of the theory lattice is composed of all theories of length one, i.e. all rules, the AND
search space can be explored first (which corresponds to exploring the first level of
the theory lattice).
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Algorithm 2.2 and search space(BK,E)
1: N = 1
2: R1 = generate rules o f length one(BK,E)
3: T1 = R1 = RN = evaluation(R1,BK,E)
4: RN+1 = combine rules(R1,RN)
5: while RN+1 , ; do
6: RN+1 = evaluation(RN+1,BK,E)
7: T1 = T1 [ RN+1

8: RN = RN+1

9: RN+1 = combine rules(R1,RN)
10: N = N + 1
11: return T1

Algorithm 2.2 explores the rule lattice in a direction of increasing specificity. The
algorithm starts out by generating and evaluating rules of length one from the
BK and E (i.e. rules containing only one literal), and then by using these rules to
generate combinations RN+1 for the next iteration (lines 1–3). Rules RN+1 are then
evaluated and stored in the set of theories of length one T1 (lines 5 and 6), and this
process is repeated until the combination of R1 and RN yields no valid rules, i.e., is
empty (lines 4–8). Once this procedure is completed, the algorithm has exhaustively
explored the AND search space and returns the set of all rules, which is also the set
of all theories of length one (line 9). The set of theories of length one T1 is then used
to start searching the OR search space as shown in Algorithm 2.3.

Algorithm 2.3 or search space(T1)
1: TAll = TN = T1

2: TN+1 = combine theories(T1,TN)
3: while TN+1 , ; do
4: TN+1 = evaluation(TN+1,BK,E)
5: TAll = TAll [ TN+1

6: TN = TN+1

7: TN+1 = combine theories(T1,TN)
8: return TAll

Algorithm 2.3 is similar to the one for the AND search space. It starts out by
combining theories of length one to generate the theories TN+1 for the next iteration
(line 2). Then it proceeds to evaluating these theories, storing them in TAll and
generating the theories for the next iteration (lines 3–7). This process is repeated
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until the set of theories TN+1 for the next iteration is empty, meaning that no more
valid candidates can be generated and the theory lattice is fully explored (line 3).
The variable TAll now contains the set of all theories in the OR search space.

2.2.2 Language bias

The search space of ILP is the space of all theories which can be formed using
the literals in the BK. However, not all possible rules in this space are relevant to
the problem, and so it is common to define a declarative language bias using mode
declarations in order to specify which rules are valid within the AND search space.

The language bias defines a number of mode declarations for specifying the way in
which the literals in the BK can fit together, using types. An example of the mode
declarations for the co_authors/2 example is presented next.

:- modeh(2, co_authors(+professor , -student)).

:- modeb(1, student(+student)).

:- modeb(1, professor(+professor)).

:- modeb(2, advised_by(+professor , -student)).

Mode declarations can be either head declarations modeh (only one for the target
predicate co_authors/2 being learnt) or body declarations modeb. Each predicate in
either modeh or modebhas its arguments annotated with types (in this case arguments
are of type student and professor). Arguments also have associated prefixes,
which can be + or -. These prefixes denote whether the argument is instantiated (or
not) before the predicate is called. If the argument’s prefix is a +, then it must be
instantiated before the predicate is called. This argument is called an input argument
and an example of this type of argument is the first argument in the declaration
of professor/1. Conversely, if the argument’s prefix is a -, the argument does
not need to be instantiated before a call to the predicate is made, and is therefore
called an output argument. An example the second argument in the declaration of
advised_by/2.

This information can greatly reduce the AND search space, as it specifies a lan-
guage bias that the final theory must be in accordance with. Rules which are in
violation of the type system defined above are never generated. For instance, the
rule co_authors(S, P):- professor(S), professor(P)will never be considered
because the second argument of co_authors/2 must be of type student (line 1 of
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mode declarations), whilst the argument of professor/1must be of type professor
instead. Note that this language bias example is meant to illustrate the usage of
the argument types, but was not used for the illustrative example presented before,
since it would reduce the number of generated rules, and exclude the theory of
interest. In particular, the second rule co_authors/2 in that theory applies to cases
where both P and S are professors, and the language bias presented here prevents
that case. In order to generate that theory for the example above, the types student
and professorwould have to be merged into only one type (e.g. person). Because
the problem presented here is meant as a toy example, the usefulness of the mode
declarations is not fully showcased. However, in real-world problems, a language
bias is commonly used to reduce the AND search space. Furthermore, there is a
semantic motivation to use this type system, since ILP is usually applied in the
supervised learning setting, in particular for tasks where the aim is to extract non
trivial knowledge about a phenomenon from a dataset in the form of logical rules.
To this end, rules which are known to be semantically not valid are not of interest
as a logical model of the problem.

2.2.3 Loss Function and Theory Evaluation

ILP theories describe a given target predicate in terms of the clauses contained in
the BK and evaluate that description based on positive and negative examples, E+

and E�, of the target predicate. For this purpose, di↵erent theories from the ILP
search space are evaluated w.r.t. the set of examples E = E+ [E� and their fitness to
describe the problem is assessed according to some loss function.

Predictions of an ILP model (i.e. a theory) are either 1 or 0 (true or false, respectively)
and for the purpose of this work, they will be interpreted as numeric values. This
interpretation is not strictly necessary to compute these metrics in ILP, but this
distance based approach extends directly to PILP and predictions ranging between
0 and 1.

For each example, the ILP theory can be used to compute a prediction. For some
theory t, an example i (positive or negative) and its corresponding value ei (1 for
positive, 0 for negative), the theory’s prediction pi is defined as follows.

pi = t(i) (2.9)

The closer this prediction is to the original example value ei, the better that model
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is, for that example i. The best possible ILP model for a problem would predict the
example value ei, for each example, as shown in Eq. 2.10.

8i : ei � pi = 0 (2.10)

ILP loss functions can also be defined in terms of the distance di between a prediction
pi and an example value ei.

di = ei � pi (2.11)

For ILP (in the deterministic case), this distance di will be either -1, 0 or 1. If
the distance is zero, then the prediction of the model is correct. Otherwise, the
prediction is incorrect.

Several metrics considering distance di over all points are possible, namely Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). These metrics calculate
the fitness of a theory t based on the linear or quadratic average distance between its
predictions and the example values, respectively, over all examples i 2 E = E+ [E�.
These metrics are naturally also applicable to the deterministic case.

MAE(t) =
1
|E|

X

i2E

|di| (2.12)

RMSE(t) =

s
1
|E|

X

i2E

di
2 (2.13)

Alternatively, loss functions can be defined in terms of true positive (TPi), true
negative (TNi), false positive (FPi) and false negative (FNi) parts of examples.

TPi = min(ei, pi)

TNi = min(1 � ei, 1 � pi)

FPi = max(0, 1 � ei � TNi)

FNi = max(0, ei � TPi)

(2.14)

The overall TP, TN, FP and FN values for a theory t are calculated by summing over
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all examples.

TP(t) =
X

i2E

TPi TN(t) =
X

i2E

TNi

FP(t) =
X

i2E

FPi FN(t) =
X

i2E

FNi

(2.15)

Accuracy is used in classification problems to assess the number of correct predic-
tions in proportion to all predictions made. Accuracy Acc can be defined in terms
of either MAE or TP, TN, FP, FN metrics. The two formulations are equivalent, as
shown in Eq. 2.16.

Acc(t) =
TP(t) + TN(t)

TP(t) + TN(t) + FP(t) + FN(t)

=
1
|E|

X

i2E

⇣
TPi + TNi

⌘

=
1
|E|

X

i2E

⇣
min(ei, pi) +min(1 � ei, 1 � pi)

⌘

=
1
|E|

X

i2E

⇣
1 � |ei � pi|

⌘

=
1
|E|

X

i2E

⇣
1 � |di|

⌘

= 1 �MAE(t)

(2.16)

In a probabilistic setting, Acc as defined in Eq. 2.16 is commonly referred to as PAcc.

2.3 Related Work

Most ILP systems in the literature do not traverse the ILP search space exhaustively,
since that process would be computationally taxing. Instead, they are based on
a greedy algorithm such as FOIL [45], and traverse the ILP search space in a
greedy way. A simple greedy procedure is presented in Alg. 2.4, where BK is
the Background Knowledge, E is the set of positive and negative examples (E+ and
E�, respectively), and L is the set of all literals in the BK. The lower case letters r
and t denote one rule and one theory (respectively), as opposed to a set of rules or
theories (as was the case in Algs. 2.2 and 2.3).
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Algorithm 2.4 FOIL algorithm(BK,E,L)
1: tN = { f alse}
2: E+ = positive examples(E)
3: while E+ , ; do
4: rN = {true}
5: E� = negative examples(E)
6: while E� , ; do
7: r1 = choose literal(L,E)
8: rN = rN ^ r1

9: E� = E� \ {e 2 E� : rN 6|= e}
10: tN = tN _ rN

11: E+ = E+ \ {e 2 E+ : tN |= e}
12: return tN

In Alg. 2.4, the inner loop (lines 6–9) occurs in AND search space, and the outer loop
(lines 3–11) in OR search space. The outer loop builds a theory tN composed of rules
rN built in the inner loop. In order to build a rule, a single literal is selected greedily
from the BK taking into account the examples (line 7 in Alg. 2.4). This requires
some evaluation to be performed at this point, since the literal is chosen based on
a ranking given by a scoring metric. Once this literal is selected, it is added to the
rule rN (line 8 in Alg. 2.4), and only the negative examples that are still entailed by
this new rule are kept for the next iteration of the inner loop (line 9 in Alg. 2.4). The
decision on which examples to keep for the next iteration also requires evaluation
of the rule against the examples.

The outer loop performs a similar operation to the inner loop. The rule rN produced
by the inner loop is added to the current theory tN (line 10 in Alg. 2.4), and this time
positive examples which entail the new theory are removed from the set of positive
examples to cover (line 11 in Alg. 2.4). Again, removal of positive examples includes
a form of evaluation of the current theory against them. Finally, the algorithm
returns the final theory found, when there are no more positive examples to cover.

Several modifications can be done to Algorithm 2.4, such as to relax the stopping
conditions in the loops, add other stopping conditions or use a beam instead of only
one rule or theory [24]. Nevertheless, this algorithm is not suitable to thoroughly
assess pruning strategies in the ILP search space for two reasons: (i) it does not
fully traverse the search space, and (ii) it does not respect the partial ordering of
theories (i.e. traverse the search space lattice in order), therefore making it di�cult
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to assess whether the pruning strategy is impacting the AND or the OR search space.
Furthermore, this search strategy does not guarantees that no element of greater
length (more specific/general) will be evaluated before all elements of shorter length
(less specific/general) are processed, therefore not respecting the partial ordering of
the lattice.

The fact that this algorithm is not suitable for testing pruning strategies does
not mean that they can not be applied to such an algorithm. Pruning strategies
are applicable to greedy algorithms and have been shown to have an impact in
performance (see Section 6). Still, respecting the partial ordering or theories makes
for a clearer evaluation and testing procedure for pruning strategies, which is the
goal of this thesis work.
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Chapter 3

Probabilistic ILP

This chapter introduces Probabilistic Logic Programming and explains the way in
which uncertainty is used to extend Logic Programming. Then, the concept of
Probabilistic ILP is introduced, and the connection to ILP and Logic Programming
established. Finally, a complexity analysis of PILP and a description of PILP systems
in the literature are given.

3.1 Probabilistic Logic Programming

One of the limitations of Logic Programming is that, whilst it can be easily used
to express relational data, it does not allow for any measure of uncertainty. The
ability to take uncertainty into account when building a declarative model of a real-
world phenomenon can result in a closer representation of reality. The Probabilistic
Logic Programming paradigm addresses this issue by encoding knowledge as facts
or rules which are believed to be true to some degree or with a given frequency,
instead of using crisp true or false statements. One way to incorporate uncertainty
into Logic Programming consists of using Sato’s distribution semantics [52], where
a program in Logic Programming is generalised to a distribution over a set of logic
programs that share the original definite clauses, but di↵er in the set of facts.

There are several Prolog-based Probabilistic Logic Languages in the literature, such
as SLP [39], ICL [43, 44], PRISM [53, 54], BLP [34, 33], CLP(BN) [50, 49], ProbLog [21,
35], among others, but only ProbLog will be discussed here since a comparison of
Probabilistic Logic Languages is out of the scope of this work (for such a comparison
see [20]).

41
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ProbLog is based on the possible world semantics [35]. Each clause pj :: cj in the
program represents an independent binary random variable, meaning that it can
either be true with probability pj or false with probability 1�pj. Each set of possible
choices over all clauses of the program represents a possible world !i, where !+i
is the set of clauses that are true in that particular world, and !�i = !i \ !+i is
the set of clauses that are false. Since these clauses have a probabilistic value, a
ProbLog program defining a probabilistic distribution over the possible worlds can
be formalized as shown in Equation 3.1.

P(!i) =
Y

cj2!+i

pj

Y

cj2!�i

(1 � pj) (3.1)

A ProbLog query q is said to be true in all worlds wq where wq |= q, and false in all
other worlds. As such, the success probability of a query is given by the sum of the
probabilities of all worlds where it is found to be true, as denoted in Equation 3.2.

P(q) =
X

!i|=q

P(!i) (3.2)

Using ProbLog’s notation, the deterministic advised_by/2 facts can thus be ex-
tended with uncertainty as follows:

student(joana).

professor(ines).

professor(ricardo).

0.7 :: advised_by(joana, ines).

0.9 :: advised_by(joana, ricardo).

In this case, the probabilities annotated above can be interpreted as frequencies.
The new probabilistic facts now state that Joana is advised by Inês 70% of the
time, and advised by Ricardo 90% of the time. This program is composed of
four mutually exclusive worlds defined by the two advised_by/2 facts which have
probabilistic annotations. The worlds and their respective probabilities are shown
below (assuming mutual independence between the advised_by/2 facts). Note that
the success probabilities for all four worlds sum to one, as expected.

Joana is advised by Inês and Ricardo simultaneously This possible world describes
the situation in which Inês and Ricardo are both performing advisor duties
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for their student Joana, meaning that both advised_by/2 facts are true. The
success probability of this world can be calculated by taking the product of
the truth probability of both facts. As such, the probability of success of this
world is 0.7 ⇥ 0.9 = 0.63. This is the most likely of all possible worlds for this
program.

Only Inês is advising Joana but not Ricardo. This corresponds to the setting where
the first advised_by/2 fact is true but the second one is false. The success
probability of this world is equal to 0.7 ⇥ (1 � 0.9) = 0.07.

Only Ricardo is advising Joana but not Inês. This case is similar to the previous
point, only this time the first fact is false and the second true. The probability
of success for this world is (1 � 0.7) ⇥ 0.9 = 0.27.

Neither Inês nor Ricardo are advising Joana In this case, both advised_by/2 facts
are false. This world is the less likely of all possible worlds and its success
probability is equal to (1 � 0.7) ⇥ (1 � 0.9) = 0.03.

The probabilistic information above is taken into account by ProbLog when queries
are posed, in addition to the logic semantics of the program. Queries can still
be posed about these facts, and in addition to the logical part of the program, a
probability of success is returned. This probability is computed using probabilistic
inference over the logical facts and rules of the program.

?- advised_by(ines,Someone).

no (P = 0.0)

?- advised_by(joana,ricardo).

yes (P = 0.9)

?- advised_by(joana,Someone).

Someone=ines? (P = 0.7)

;

Someone=ricardo? (P = 0.9)

;

no (P = 0.0)
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3.2 From Deterministic to Probabilistic ILP

Probabilistic Inductive Logic Programming (PILP) di↵ers from deterministic ILP in
that facts have success probabilities ranging between 0 and 1, as opposed to being
either 0 or 1 (false or true, respectively). In this setting, there are no longer positive
and negative examples, but only target probabilities for each example. The aim of
a PILP theory is to produce probability values for each example which are as close
as possible to the target probability for that example.

Probabilistic ILP is a subset of Statistical Relational Learning (SRL) that handles sta-
tistical relational learning by using a probabilistic First Order Logic (FOL) language
to represent data and their induced models. This technique merges technologies
from the SRL and ILP [40] fields in order to automatically compose theories as
understandable FOL sentences based on data annotated with probabilistic informa-
tion. Similarly to ILP, PILP algorithms use a set of Probabilistic Examples (PE) and
logical information pertaining complex relations expressed as logic facts and rules,
Probabilistic Background Knowledge (or PBK), to find a FOL model or explanation
that explains the PE. PILP focuses on structure learning – the logic rules compose a
theory that models the structure of the PE w.r.t PBK – but parameter learning can
also be incorporated in this technique by tuning the probabilistic output of the rules
which are learnt [18]. PILP di↵ers from other SRL techniques in (i) the data being
represented as logical predicates and the model being a logical theory itself, and
(ii) the focus on learning the (logical) structure of the data inductively, by using ILP
algorithms to find the logical model which best explains the data.

Introducing probabilistic information in ILP to create PILP allows for modelling
uncertain or noisy data, which in turn results in a closer representation of reality –
instead of using crisp true or false statements, PILP can model facts or rules which
are believed to be true to some degree or with a given frequency. Probabilities in
a logic setting can also be used to transform rules that use numerical arguments
as weights in annotated probabilistic data. One of ILP’s shortcomings is dealing
with numerical arguments, which are usually binned. Converting these numerical
arguments to probabilities in the PILP setting solves this problem, with the added
benefit that it implicitly reduces the overall theory search space, since the predicates
have now one less (numerical) argument to be taken into account when generating
theories. Furthermore, in cases where the full conditional probability table is not
known, the PBK can still be annotated with marginal probabilities (e.g., if available
from other sources) and these annotations will still be taken into account when
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building the final theory model. Additionally, in cases where there are privacy
concerns, a similar approach can be used to avoid using the patient instances
explicitly, while still considering some of the information contained in the original
data, by aggregating data from multiple patients.

As explained in Chapter 2, traditional ILP FOL rules describe a given target predicate
in terms of the clauses contained in the Background Knowledge (BK) and evaluate
that description based on positive and negative examples (E) of the target predicate.
For this purpose, di↵erent rules are generated from the BK and E and their fitness
to describe the problem is assessed according to a loss function. It is also common to
define a declarative language bias using mode declarations in order to specify which
rules are valid within the search space.

The aim of ILP is to find a set of rules (referred to as theory in this work) that entails
all positive examples and does not entail any of the negative examples, but in
practice it is common to relax these criteria and allow for some noise (misclassified
examples). PILP extends the ILP setting by introducing PBK, where FOL data
descriptions can be annotated with a probability value ranging from 0 to 1, and PE,
no longer positive or negative, also with a value ranging between 0 and 1.

Because PILP theories are still generated based on the logical structure of the data,
the ILP language bias translates directly to PILP. The process of generating theories
also mimics ILP, since they are based on the logical clauses in the PBK. Therefore the
search space algorithm of PILP has the same e�ciency issues of ILP’s. Furthermore,
PILP adds an extra level of complexity due to the probabilistic evaluation of theories
w.r.t. the examples.

Despite the similarities between ILP and PILP, there are several syntactic di↵erences
between them. Table 3.1 summarises these di↵erences using Prolog syntax for ILP
and ProbLog syntax for PILP.

Table 3.1: Main syntactic di↵erences between ILP and PILP
Examples

Background Knowledge Classifier
(Horn clauses) (theory)

ILP
target(e_pos).

fact1(e_pos,propA). fact2(e_pos,propB). target(E):-

fact1(e_neg,propC). fact2(e_neg,propD). fact2(E,V),def_cl1(V,V).

target(e_neg).
def_cl1(X,Y):- fact1(E,X),fact2(E,Y). #

def_cl2(Y):- fact2(E,Y),def_cl1(X,Y). truth value 2 {TRUE,FALSE}

PILP pe::target(e).

p f 1A::fact1(e,propA). p f 2B::fact2(e,propB). target(E):-

p f 1C::fact1(e,propC). p f 2D::fact2(e,propD). fact2(E,V),def_cl1(V,V).

pc1::def_cl1(X,Y):- fact1(E,X),fact2(E,Y). #

pc2::def_cl2(Y):- fact2(E,Y),def_cl1(X,Y). truth value 2 [0, 1]
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3.2.1 From Rules to Probabilities

Because PILP theories are still generated based on the logical information of the data,
the ILP language bias translates directly to PILP. The process of generating theories
also mimics ILP, since they are based on the logical clauses in the PBK. However,
facts and rules in the PBK can now be annotated with a probabilistic value ranging
from 0 to 1, which can represent either statistical information or the degree of belief
in a statement (using type I or type II probability structures, respectively) [31].

As such, the previous co_authors/2 and advised_by/2 predicate can now be
annotated with a probabilistic value. The fact that the PBK is now composed of
probabilistic facts and rules alters the semantics of the logical part of the predicates
as well, when compared to the deterministic version. For instance, in this case,
the probabilistic value annotated in advised_by/2 can refer to the proportion of
time that the student’s advisor tasks are performed by a professor. If a professor
is present in every meeting, reviews all the reports and papers, and deals with all
the administrative tasks of a student, then this value is set to one. If, conversely,
the professor does not advise the student at all, the value is set to 0. This semantics
is very di↵erent from the deterministic version, where the information represented
by the advised_by/2 facts is just whether the professor is an advisor or co-advisor
of a student. In the probabilistic version of this example, non-o�cial advisor can
be listed as performing advisor tasks for a student, as shown by the two new
advised_by/2 facts presented next.

0.70 :: advised_by(joana, ines).

0.90 :: advised_by(joana, ricardo).

0.10 :: advised_by(miguel, ines).

0.05 :: advised_by(pedro, ricardo).

Similarly, the co_authors/2 predicate can now refer to the proportion of papers in
the last year where the second researcher also participated. If the first researcher
participated in every paper that the first researcher published, then that fact is
annotated with one. If the second researcher did not participate in any of the
publications of the first researcher, then the predicate will be annotated with
zero. This semantics is very di↵erent from the deterministic version, where the
information represented by the co_authors/2 facts is just whether the researchers
publish together (at some point in time, always, in the last year, . . . ). In particular,
note that the probabilistic semantics of the co_authors/2 predicate makes it non-
symmetric, contrary to the deterministic version – the second researcher may have
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Table 3.2: Probabilistic value for every possible set of choices for the binary random
variables introduced in the PBK (shaded cells contain the probabilistic value for
when the fact is false). The last column presents the world probability for the set of
choices in that row. The sum of the world probabilities is one.

(joana, ines) (joana, ricardo) (miguel, ines) (pedro, ricardo) World probability

1 0.7 0.9 0.15 0.05 0.0047
2 0.7 0.9 0.15 0.95 0.0898
3 0.7 0.9 0.85 0.05 0.0268
4 0.7 0.9 0.85 0.95 0.5087
5 0.7 0.1 0.15 0.05 0.0005
6 0.7 0.1 0.15 0.95 0.0100
7 0.7 0.1 0.85 0.05 0.0030
8 0.7 0.1 0.85 0.95 0.0565
9 0.3 0.9 0.15 0.05 0.0020
10 0.3 0.9 0.15 0.95 0.0385
11 0.3 0.9 0.85 0.05 0.0115
12 0.3 0.9 0.85 0.95 0.2180
13 0.3 0.1 0.15 0.05 0.0002
14 0.3 0.1 0.15 0.95 0.0043
15 0.3 0.1 0.85 0.05 0.0013
16 0.3 0.1 0.85 0.95 0.0242

1.0000

been an author in all the publications of the first researcher in the last year (a ratio
of 1), but the first researcher may only have participated in 10% of the second
researcher’s papers.

As mentioned before, in this work, probabilities are annotated according to ProbLog’s
syntax, using possible world semantics [20]. Each fact pj :: cj in the PBK represents
an independent binary random variable in ProbLog, meaning that it can either
be true with probability pj or false with probability 1 � pj. This means that each
probabilistic fact introduces a probabilistic choice in the model. For instance, the
second fact in the PBK 0.70 :: advised_by(ines, joana) can be chosen to be
true with probability 70% and false with probability 30%. For the probabilistic facts
presented above, the choices and world probabilities are presented in Table 3.2.

From the table it can be seen that the success probability of (for instance) advised_by
(joana, Someone) is the sum of all the world probabilities where either advised_by
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(joana, ines) or advised_by(joana, ricardo) is true (rows 1–12 in Table 3.2),
totalling 0.97.

When a rule is generated in PILP, its success probability (i.e. the success probability
of the body) is calculated for each example. This value is called the prediction of the
rule for an example. As such, di↵erent literals in the body of a rule will generate
di↵erent success probabilities for an example, depending on the probabilities of
probabilistic facts in the underlying model.

Suppose the following values were given for PE:

1.00 :: co_authors(joana, ines).

1.00 :: co_authors(joana, ricardo).

0.20 :: co_authors(ines, ricardo).

0.10 :: co_authors(ricardo, ines).

Based on the PBK, di↵erent PILP rules will predict di↵erent values for each of the
examples. These predictions are shown in Table 3.3.

One important di↵erence between ILP and PILP lies in the assessment of the fitness
of theories – in PILP the loss function must be able to evaluate probabilistic inputs.
As such, the aim of PILP systems is to find theories which most closely predict the
value of the examples (also ranging between 0 and 1), or rather that minimize the
error between predictions and the examples’ values.

Even though the prediction (success probability) of a rule changes according to the
literals contained in its body, the probabilistic model generated from the PBK is not
altered during the learning and evaluation stages of the learning algorithm. The
search for the best theory in PILP thus consists of finding the theory whose success
probabilities (for all examples) have the best fitness w.r.t. the probabilistic example
values (according to some loss function) given a probabilistic model specified in the
PBK. In the case of the three rules presented in Table 3.3, the third rule obtains the
best result using both the MAE and the RMSE metric.

Table 3.3: Rule predictions for the four examples presented above and metrics MAE
and RMSE (ca stands for co_authors/2)

Rules e1 = 1.00 e2 = 1.00 e3 = 0.2 e4 = 0.1 MAE RMSE

ca(X, Y):- professor(X) 0.0 0.0 1.0 1.0 0.93 0.86
ca(X, Y):- student(Y) 0.0 0.0 0.0 0.0 0.58 0.51
ca(X, Y):- advised_by(X, Y) 0.7 0.9 0.0 0.0 0.18 0.04
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Extending these concepts to the probabilistic setting allow for defining standard
scoring metrics such as probabilistic accuracy (or PAcc), as introduced by De Raedt et
al. in [22]. PAcc can also be represented in terms of the mean absolute error (MAE)
between predictions and example values as used by Chen et al. in [9]. These two
formulations are equivalent.

3.2.2 PILP Search Space Traversal

Similarly to ILP, fully exploring the PILP search space is equivalent to evaluating
each theory in the theory lattice in order to determine the best theory according to
a given metric. The exhaustive procedure to explore the search space, starting by
exploring the rule space (AND search) and only then proceeding to the theory space
(OR search) is given in Algorithms 3.1 and 3.2.

Algorithm 3.1 and search space(PBK,PE)
1: R1 = generate rules o f length one(PBK,PE)
2: T1 = R1 = RN = prob evaluation(R1,PBK,PE)
3: RN+1 = combine rules(R1,RN)
4: while RN+1 , ; do
5: RN+1 =

prob evaluation(RN+1,PBK,PE)
6: T1 = T1 [ RN+1

7: RN = RN+1

8: RN+1 = combine rules(R1,RN)
9: return T1

Algorithm 3.2 or search space(T1,PBK,PE)
1: TAll = TN = T1

2: TN+1 = combine theories(T1,TN)
3: while TN+1 , ; do
4: TN+1 = prob evaluation(TN+1,PBK,PE)
5: TAll = TAll [ TN+1

6: TN = TN+1

7: TN+1 = combine theories(T1,TN)
8: return TAll

Algorithms 3.1 and 3.2 are similar to the ILP algorithm in that they start out with
rules (or theories) of shorter length and proceed to specify (or generalise) them.
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Figure 3.1: Overview of naive PILP search space traversal

The main di↵erence between ILP and PILP algorithms consists of the evaluation of
theories. In the case of ILP, it is a discrete evaluation which verifies the truth value
of a theory for all the examples. In the case of PILP, the probability of success is
computed for each example (lines 2/5 and 4 in Algorithms 3.1 and 3.2, respectively).
This is also the reason for the greater execution time and complexity of PILP when
compared to ILP: the cost of a probabilistic evaluation is much greater than that of
computing the truth value of a theory.

Figure 3.1 shows a depiction of the PILP algorithms. On the top left rules of length
one R1 are generated from the probabilistic BK and examples, and they are combined
through logical conjunction (increasing specificity) into longer rules. The result of
this combination is stored in theories T1 to the top right of the figure, and this process
is repeated until no more combinations of rules can be generated. A similar process
occurs for the OR search space (lower half of the figure), where theories of length
one T1 are used to generate combinations of longer more general theories for the
next iteration, again until no more valid candidates are possible. All theories in the
search space are then stored in TAll, and from those the best model can be selected,
according to some metric.
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3.2.3 Size of the PILP Search Space

The size of PILP search space depends on several distinct factors, namely the number
of constants and probabilistic facts in the PBK, |Constants| and |Facts|, the number of
examples in PE, |Examples|, and the number of distinct predicates |Predicates| in the
PBK. The set of literals that can be generated for a given predicate p is defined as
L(p). The cardinality of this set is bound by the number of constants in the PBK as
shown in Equation 3.3.

|L(p)|  |Constants|arity(p) + V (3.3)

Predicates may have arguments that can be bound in di↵erent ways when building
rules (free variables or constants), as described by the mode declarations of the
program, but this factor is dependent on each PILP program and cannot be described
in general. This is denoted in Equation 3.3 as the term V.

Thus, the set of literals in the search space can be defined as shown below.

Literals =
[

p2Predicates

L(p) (3.4)

Assuming that the mode declarations allow all possible combinations of distinct
literals, the number of rules and theories in the search space can now be defined in
terms of the power sets of literals as follows:

|Rules| = |P(Literals)| = 2|Literals|

|Theories| = |P(Rules)| = 2|Rules| = 22|Literals|
= 4|Literals|

(3.5)

Equation 3.5 shows that the size of the theory search space is exponential on the
number of distinct literals generated from the PBK.

The probabilistic evaluation of each theory generated during the search space
traversal requires a probabilistic query per example in the PE. This is necessary
since the evaluation metrics require a prediction pi for each example i so that the
theory can be evaluated. Therefore, the number of probabilistic evaluations of a
theory is equal to the number of examples |Examples|.

Furthermore, for each theory and each query to that theory, the probabilistic eval-
uation of that query becomes more taxing with a growing number of probabilistic
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facts in the PBK, since exact probabilistic evaluation is of exponential complexity
on the tree width of the underlying graph represented by the Horn clauses in the
PBK [27]. Equation 3.6 shows how the number of worlds in a probabilistic logic
program relates to the number of probabilistic facts in the PBK.

|Worlds| = 2|Facts| (3.6)

Equation 3.6 shows that each new fact added to the underlying probabilistic model
results in an exponential increase in the number of worlds, since it corresponds
to introducing a new random binary variable. This means that the complexity of
obtaining one prediction for a theory in the PILP search space is exponential on the
number of probabilistic facts in the PBK.

Therefore, the time complexity of the PILP search space traversal and theory
evaluation is

O(4|Literals|
· |Examples| · 2|Facts|) (3.7)

3.3 Related Work

Probabilistic Inductive Logic Programming is a Statistical Relational Learning (SRL) [29]
method which can perform structure learning over probabilistic examples using
a database of FOL facts and rules, also probabilistic. SRL is a field of research
which encompasses many di↵erent methods such as Probabilistic Relational Mod-
els (PRM) [28], Markov Logic Networks (MLN) [48], Bayesian Logic Programs
(BLP) [34] or Stochastic Logic Programs (SLP) [39], but the focus of this work is in
PILP methods.

Figure 3.2 shows an (incomplete) overview of the SRL field focusing on the PILP
method and systems (highlighted in blue).

There are currently three PILP systems in the literature: ProbFOIL, SLIPCOVER
and SkILL.

In 2011, Raedt and Thon presented the first ProbFOIL version [22], based on the
probabilistic inference language ProbLog [35]. ProbFOIL extends the standard ILP
setting by being able to induce FOL theories from a BK annotated with probabilistic
information. ProbFOIL uses a sequential covering algorithm which greedily adds
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Figure 3.2: Overview of SRL field showing PILP systems in more detail

rules to the theory based on a local scoring metric, and similarly, to build each rule
it adds literals taking into consideration the mode declarations. This process stops
when adding another rule to the theory does not decrease the value of the loss
function. ProbFOIL uses probabilistic accuracy as a global score and experimental
results show that ProbFOIL can find the expected theories in two toy datasets, but
also a few unwanted rules that are due to noise in the data [22]. Another contribution
of this work was to extend standard machine learning metrics such as precision,
accuracy and m-estimate to the probabilistic setting. This makes it possible to define
the contingency tables of the examples, and interpret the probabilistic predictions
in terms of their true positive and negative parts.

ProbFOIL+ [18] extends ProbFOIL by being able to tune the prediction of a theory
by finding a weight for each rule in that theory. Because there is a priori probabilistic
information annotated in the BK, every theory outputs a probabilistic value for a
given example that is calculated based on that information. ProbFOIL+ improves
the precision of that prediction by finding the weight (between 0 and 1) that
maximizes precision of a rule for all examples. The ProbFOIL+ algorithm is similar
to that of ProbFOIL, and so every time a rule is being added to the theory, the
best weight is computed and added to that rule, which is then integrated in the
theory. This can be seen as a form of boosting, since the importance of each rule in
the theory is being adjusted, even though the possibility for adjustment is limited
(the weight must be between 0 and 1). ProbFOIL+ was tested against regression
learners in a propositional setting and was found to be comparable; experiments
showed that ProbFOIL+ achieves higher precision results when compared to the
first ProbFOIL [18].

SLIPCASE and SLIPCOVER are based on the probabilistic logic language of LPAD [55],
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which has the same representative capacity of ProbLog. SLIPCASE [2] can generate
theories by performing refinements over an user given theory. These refinements
are based on user-defined mode declarations, and for each possible refinement a
log-likelihood metric is used to assess it. That value is then compared to the log-
likelihood of the original theory, without the refinement, and a decision is made
on whether to continue refining that rule or to stop. SLIPCASE performs a beam
search, and so in each step it produces and evaluates every possible refinement
for that theory. Refinements on a given theory consist of performing standard ILP
operations such as adding or removing a literal from a rule, adding a rule with an
empty body or removing a rule.

SLIPCOVER is an extension of SLIPCASE which introduces the new ability to
perform generative learning in the search space. SLIPCOVER still requires a target
predicate, but it also gathers a set of good theories which can explain predicates
from the BK other than the target predicate – this process can be viewed as a form
of deep learning [4], since these intermediate theories will be used to explain the
target predicate. The learning process of SLIPCOVER is similar to the SLIPCASE
strategy, since it calculates, for each rule, possible refinements and their respective
log-likelihood using a beam search strategy. Once this operation is completed, the
algorithm’s second stage consists of learning the parameters for the rules generated
earlier. This is done by adding the non-target theories to the BK and learning a theory
for the target w.r.t to them, which allows for more information to be incorporated
in the final target theory, since it is using another level of abstraction due to the
non-target theories that are now being used.

The SKILL system is a result of this work and it implements an exhaustive search
algorithm based on traversing the AND search space, followed by traversing the
OR search space. Since PILP’s search space is exponential and traversing it is a
computationally taxing task, SkILL supports several pruning strategies which can
reduce the execution time and maintain quality of the final model, namely fitness
pruning [13], estimation pruning [12] and prediction pruning. Fitness pruning
selects populations of candidate rules and theories so that the exhaustive algorithm
is reduced to polynomially bound complexity on user-defined parameters [13].
Estimation pruning avoids the costly operation of exact probabilistic evaluation
of theories by estimating the value of a combination of theories based on its
sub-theories [12]. Estimation pruning is aimed at reducing the execution time
since it avoids probabilistic evaluation, but unlike the prediction pruning strategy
introduced here, it is not safe – estimation pruning may discard the best theory,
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whilst this never happens when using prediction pruning. These three pruning
strategies implemented in SkILL are however orthogonal to the system used and
can be applied to any PILP system. Prediction pruning proposes a methodology
whose aim is to improve the quality of the explored candidate models in a PILP
search space. Unlike fitness and estimation pruning approaches, prediction pruning
focuses on improving the quality of the search space. In doing so, it can direct
the search towards more promising candidates which can lead to a reduction in
execution time or an increase in predictive accuracy.

SkILL di↵ers from SLIPCOVER because it does not introduce new probabilistic
theories in the BK whose values can also be adjusted. However, SkILL’s algorithm
can take advantage of the probabilistic information of rules in order to avoid
performing inference for every refinement that is generated using the language
bias.

ProbFOIL+’s algorithm includes a refinement rejection criterion which is a com-
bination of three metrics that are calculated for each possible refinement: local
score, global score and significance. This rejection criterion is similar to SkILL’s
prediction pruning for the AND operation, since once a specification of a theory is
calculated, further refinements of it will not be pursued unless it passes the rejection
criterion. An important di↵erence between SkILL and ProbFOIL+ is that ProbFOIL+
introduces new negative examples from the constants and predicates appearing
in the positive examples by taking advantage of the closed world assumption.
Whilst this method can induce theories that are more specific (and therefore more
descriptive), it also results in a combinatorial increase in the number of examples, as
well as in an unbalanced prediction problem. This in turn can cause a large overhead
in the execution time and possible issues finding informative theories if the classes
become very unbalanced due to the added examples. Another relevant di↵erence
between the systems is that SkILL supports annotated disjunctions [55] as part of
the PBK (neither SkILL nor ProbFOIL+ can induce annotated disjunctions). An-
notated disjunctions can express mutually exclusive blocks of probabilistic clauses,
as opposed to mutually independent probabilistic clauses, which is the standard
representation in ProbLog.
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Chapter 4

Pruning Strategies

This chapter introduces the three pruning strategies developed for PILP algorithms,
starting out with an overview of how they can be used in the PILP search space
traversal algorithms, and then proceeding to present each pruning strategy indi-
vidually in detail.

4.1 Overview

The PILP search space can be split in two separate dimensions w.r.t. the operation
that is being used to traverse it. This means that there is a search space for rules
(theories of length one), which uses the AND operation to navigate between them,
and a search space for theories (of length greater than one), which in turn uses the
OR operation to generate new theories. In what follows, these two dimensions will
be referred as the AND search space and the OR search space, respectively. The PILP
search space can only build theories based on rules that were previously generated
taking into account the language bias of the problem.

Traversing the PILP search spaces exhaustively is of exponential complexity with
the size of the PBK (both literals and facts), as shown in Section 3.2.3, which requires
significant computational resources as datasets grow larger. To address this issue,
this thesis proposes three distinct ways to prune the PILP search space: fitness
pruning, prediction pruning and estimation pruning. These pruning strategies are
based on the probabilistic information of candidate theories and are applied in dif-
ferent parts of the PILP search space traversal process. Fitness pruning implements
a polynomial bound complexity on the PILP search space by selecting a subset

57
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of theories to be combined (as opposed to calculating all possible combinations).
Prediction pruning can safely reduce the search space based on the probabilistic
evaluation of candidate theories at each step in the rule and theory combination
procedure. Estimation pruning is designed to save computational time by avoiding
unnecessary exact probabilistic evaluation of both rules and theories which will
most likely be useless. The three pruning strategies can be used individually or in
combination with each other, as shown in Algorithms 4.1 and 4.2.

Algorithm 4.1 and search space with simpli f ied pruning(PBK,PE)
1: R1 = generate rules o f length one(PBK,PE)
2: T1 = R1 = prob evaluation(R1,PBK,PE)
3: R1 = RN = AND prediction pruning(R1)
4: RN+1 = combine rules with AND f itness pruning(R1,RN)
5: while RN+1 , ; do
6: RN+1 = AND estimation pruning(RN+1)
7: RN+1 = prob evaluation(RN+1,PBK,PE)
8: T1 = T1 [ RN+1

9: RN = AND prediction pruning(RN+1)
10: RN+1 = combine rules with AND f itness pruning(R1,RN)
11: return T1

Algorithm 4.2 or search space with simpli f ied pruning(T1,PBK,PE)
1: TAll = T1

2: T1 = TN = OR prediction pruning(T1)
3: TN+1 = combine theories with OR f itness pruning(T1,TN)
4: while TN+1 , ; do
5: TN+1 = OR estimation pruning(TN+1)
6: TN+1 = prob evaluation(TN+1,PBK,PE)
7: TAll = TAll [ TN+1

8: TN = OR prediction pruning(TN+1)
9: TN+1 = combine theories with OR f itness pruning(T1,TN)

10: return TAll

Algorithms 4.1 and 4.2 show a simplified version of how the three pruning strategies
can be applied to the AND and OR search space in PILP. Prediction pruning is ap-
plied over previously evaluated rules and theories to remove candidates that can not
be improved on during the next iteration (lines 3 and 9 in Alg. 4.1 and lines 2 and 8 in
Alg. 4.2, respectively). Rules or theories are then selected from the set of candidates
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after prediction pruning to make combinations of length N + 1. This combination
process can now use fitness pruning to limit the number of combinations (lines 4
and 10 in Alg. 4.1 and lines 3 and 9 in Alg. 4.2, respectively). Before candidates
of length N + 1 are evaluated probabilistically, estimation pruning can be applied
to determine whether some combinations produced are not interesting for exact
evaluation (line 6 in Alg. 4.1 and line 5 in Alg. 4.2, respectively).

Each pruning strategy is presented next, in more detail.

4.2 Fitness Pruning

Fitness pruning consists of limiting the number of candidate theories in each
iteration to a maximum MaxLen. The advantage of this approach is that it imposes
a polynomial limit on the exponential complexity of the search space, and therefore
makes the runtime of the program shorter. At the end of each iteration in the PILP
algorithm, fitness pruning will select a limited number of candidate theories to be
used for the next iteration, from all the theories that were evaluated at that stage.
This is done by defining two sets – Primary and Secondary. The number of elements
of these sets is such that:

|Primary| ⇥ |Secondary| =MaxLen (4.1)

For each stage of the AND and OR search spaces, fitness pruning first selects
candidate theories for these sets up to their cardinality, and then new theories are
generated by combining all members from each set using the respective AND or
OR operation.

By default, when traversing the AND search space, the Primary set contains all rules
of length one (with one literal) and the Secondary set is filled, in each iteration, with
the set of rules generated in the previous iteration (initially the rules of length one,
then the rules of length two, three and so on). Similarly, for the OR search space,
the Primary set contains all rules generated in the AND search process (theories of
length one) and the Secondary set is filled, in each iteration, with the set of theories
generated in the previous iteration (initially the theories of length one, then the
theories of length two, three and so on). With fitness pruning, the user defines a
maximum length for the Primary set MaxLenP and another independent maximum
length for the Secondary set MaxLenS, such that the total number of candidates is
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calculated by multiplying the maximum length or both sets as follows:

MaxLen =MaxLenP ⇥MaxLenS (4.2)

In the particular case where |Primary| = |Secondary| = 1, fitness pruning corre-
sponds to fully traversing the search space, and evaluating all possible combinations
of theories for each iteration. Furthermore, in the case where |Secondary| = 1, fitness
pruning is equivalent to a beam search with beam width of |Primary|.

The selection of the rules/theories that will be part of the Primary and Secondary
sets used for combination can be done according to di↵erent metrics, which are
equivalent to the loss functions introduced in Section 2.2.3: for instance RMSE (root
mean squared error) or PAcc (probabilistic accuracy). The selection is performed by
ordering all candidate theories according to the chosen metric and populating the
sets with the top theories. The Primary and Secondary sets can use di↵erent metrics,
which gives the user more control over which candidates to favour when building
the Primary and Secondary sets, when compared to beam search.

In addition to the loss functions, a Random (stochastic selection) metric can be used.
The random metric introduces a stochastic selection of candidate theories in this
process. Using deterministic ranks based on the quality of theories may in some
cases result in sets of very similar theories due to the restricted nature of the selection.
The random metric solves this issue by combining stochastically selected candidates,
as opposed to only good ones based on a deterministic metric. There may be cases
when using a weaker candidate in a combination may actually result in a final
theory of better quality. Depending on the given ranking metrics, fitness pruning can
generate theories in a fully stochastic way, use best theories or create a heterogeneous
mix. If a stochastic metric is chosen, the selection process is distinct for each iteration.

This procedure can be exemplified using the advised_by toy example presented in
Chapter 3. For that example, rules of length one which can be generated (and their
MAE and RMSE) are presented in Table 4.1.

If the defined maximum sizes for Primary and Secondary are then 2 and 3 respectively,
and the chosen metrics MAE and RMSE respectively, the following sets would be
generated:

Primary =
n⇣
co author(X, Y), 0.15

⌘
,

⇣
student(X), 0.28

⌘o (4.3)
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Table 4.1: Rules of length one and their respective MAE and RMSE
Rules1 MAE RMSE

ab(X, Y):- student(X) 0.28 0.21
ab(X, Y):- student(Y) 0.58 0.51
ab(X, Y):- professor(X) 0.73 0.66
ab(X, Y):- professor(Y) 0.43 0.36
ab(X, Y):- co_author(X, X) 0.58 0.51
ab(X, Y):- co_author(X, Y) 0.15 0.03
ab(X, Y):- co_author(Y, X) 0.58 0.51

Secondary1 =
n⇣
co author(X, Y), 0.03

⌘
,

⇣
student(X), 0.21

⌘
,

⇣
professor(Y), 0.36

⌘o
(4.4)

Once the Primary and Secondary1 sets are populated, the rules for the next iteration
will be generated from the members which are present in these sets only, resulting
in the set of Rules2 containing only three members.

Rules2 =
n
co author(X, Y), student(X),

co author(X, Y), professor(Y),

student(X), professor(Y)
o

(4.5)

In this case, the Rules2 set does not contain six members because there are repeated
elements in the Primary and Sedondary sets. In general, candidate rules can also be
excluded from the sets because they do not comply with the language bias of the
problem, though this does not happen in the case of this example.

The fact that fitness pruning uses ranking metrics and fixed-size sets makes its
complexity polynomially bound on user-defined parameters. As the datasets grow
larger than a few examples, the probabilistic evaluation of theories represents the
largest proportion of execution time, making the theory-generation procedure and
other control operations negligible. If fitness pruning was not used to select sets,
the overall number of probabilistic evaluations1 would be

PTMaxLength
l=1

�
|T1|

l
�
, where

1A theory is evaluated probabilistically against the set of all probabilistic examples.
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TMaxLength is the maximum theory length and T1 is the set of theories of length
one. It is easy to see that using sets of fixed size for each iteration, the number
of probabilistic evaluations will be at most |T1| + (TMaxLength � 1) ⇥ PrimarySize ⇥
SecondarySize, which is much less than all possible combinations of theories in the
search space.

4.3 Prediction Pruning

The aim of prediction pruning is to allow the search to focus on good candidate
theories, and not allowing candidates which are below a threshold of quality to
transition to the next iteration, particularly in scenarios where there are limited
resources.

Unlike fitness pruning, the decision on whether a candidate theory should be
further explored is made based on the theory’s individual prediction values for
each example. Depending on which search space is being explored, the criterion to
exclude theories will di↵er. When two rules ra and rb are combined using logical
conjunction (the AND operation), a more specific rule ra,b = ra ^ rb will result. This is
due to the fact that more literals in the body of the rule must succeed simultaneously
so that the rule can be verified.

In the probabilistic setting, a rule r is composed of a logical part l(r) and a prediction
value p(r) ranging from 0 to 1. The prediction value of rule r for a given example i,
pi(r) is equal to the sum of the probabilities P(!n) of each world!n in the program in
which !n |= li(r) for that same example i. This means that for the more specific rule
ra,b to be true, both ra and rb must be true simultaneously, i.e. only the worlds where
both ra and rb are true can be considered. This is equivalent to the intersection of
the set of worlds which entail l(ra) and l(rb), taking also into account the variable
groundings for ra and rb. Therefore, the prediction value of a specific rule for an
example i can be defined in terms of the prediction values of less specific rules which
compose it.

pi(ra,b) =
X

!n|=li(ra,b)

P(!n) =

X

!n|=li(ra)\
!n|=li(rb)

P(!n) (4.6)
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From Equation 4.6, it follows that, for an example i, the prediction value of a more
specific rule pi(ra,b) will always be less than or equal to the prediction value of pi(ra)
and pi(rb).

|{!n : !n |= li(ra,b)}|  |{!n : !n |= li(ra)}|

|{!n : !n |= li(ra,b)}|  |{!n : !n |= li(rb)}|
(4.7)

In Equation 4.7, set theory principles state that the intersection of the worlds which
entail li(ra) and the worlds which entail li(rb) will always be smaller than either set (in
the case where {!n : !n |= li(ra)} and {!n : !n |= li(rb)} are the same, the intersection
is equal to them). Therefore, the prediction value of rule pi(r) will be monotonically
decreasing with the application of the AND operation, since in each iteration the
rules become more specific (longer).

Having established this ordering allows prediction pruning to be applied over
previously evaluated rules to determine whether they are useless for further com-
bination, given some criterion. For a given example i, if the prediction value of
a rule pi(r) is less than the example value ei, then continuing to apply the AND
operation can only result in distancing pi(r) from ei further, since pi(r) can only
decrease from the application of the AND operation. As such, prediction pruning
excludes rules whose prediction values for all examples suggest that the theory is
already too specific when compared to the example values. When a rule is excluded
in the prediction pruning stage, the rule is still considered as a candidate for the best
model (since it was already probabilistically evaluated), but it does not transition
to the next iteration of the algorithm as a candidate.

A similar argument can be made for the OR operation and the generality of theories.
The disjunctive combination ta;b = ta _ tb of two theories ta and tb is true when either
ta, tb or both ta and tb are true. In the probabilistic setting, the prediction value pi(ta;b)
of ta;b for a given example i will be equal to the sum of the probabilities of each world
P(!n) in the program in which !n |= li(ta) or !n |= li(tb), meaning the union of these
sets of worlds. Similarly to rules, the prediction value of a more general theory
pi(ta;b) can be defined in terms of the prediction values of more specific theories pi(ta)
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and pi(tb).

pi(ta;b) =
X

!n|=li(ta;b)

P(!n) =

X

!n|=li(ta)[
!n|=li(tb)

P(!n) (4.8)

From Equation 4.8, it follows that the prediction values for a more general theory
ta;b will always be greater than or equal to the prediction value of ta and tb.

|{!n : !n |= li(ta;b)}| � |{!n : !n |= li(ta)}|

|{!n : !n |= li(ta;b)}| � |{!n : !n |= li(tb)}|
(4.9)

In Equation 4.9, set theory principles state that the union of the worlds which entail
ta and the worlds which entail tb will always be greater than either set (in the case
where {!n : !n |= ta} and {!n : !n |= tb} are the same, the union is equal to them).
Therefore, the prediction value pi(t) of a theory t will be monotonically increasing
with the application of the OR operation, since in each iteration in the OR search
space the theories become more general (longer).

The monotonic increasing prediction values for each example of a given theory
allows prediction pruning to be applied over previously evaluated theories to
determine whether they are useless for further combination, given some criterion.
Prediction pruning excludes theories whose prediction values for all examples
suggest that the theory is already too general when compared to the example
values. When a theory is excluded in the prediction pruning stage, the theory
is still considered as a candidate for the best model, but it does not transition to the
next iteration of the algorithm as a candidate.

4.4 Estimation Pruning

The aim of estimation pruning is to reduce execution time by preventing the proba-
bilistic evaluation of theories which are not good models for the system and would
thus be pruned away at a later stage according to some criterion. This pruning
strategy follows a similar approach to prediction pruning but instead of excluding
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theories based on their (previously calculated) probabilistic evaluation, estimation
pruning excludes theories whose estimation is too specific (for the AND operation)
or too general (for the OR operation) to be an interesting model according to the
given loss function. The advantage of this approach lies in the fact that, by avoiding
probabilistic evaluation on theories, the computational cost of traversing the search
space is significantly reduced, since the main time component of this task is precisely
the probabilistic evaluation of theories. However, the fact that estimations are used
(instead of prediction values obtained from probabilistic evaluation) introduces a
degree of uncertainty when applying the pruning criterion, since estimations are
not necessarily always a good approximation for theory prediction values.

Estimation pruning estimates the prediction values of a theory based on theories
of smaller length whose probabilistic evaluation has already been calculated at
a previous stage of the algorithm. In the case of rules, this can be achieved for
instance by decomposing a rule into two other rules of smaller length which are in
themselves valid rules in the AND search space. For example the rule

co_author(X,Y):- advised_by(X, Y), student(X).

can be decomposed in

co_author(X, Y):- advised_by(X, Y).

co_author(X, Y):- student(X).

If the probabilistic evaluations for the rules of smaller length are known, it is
possible to estimate the range in which the prediction values of the composed
rule will lie. In the OR search space, theories can also be decomposed in theories
of shorter length, and estimations made based on the probabilistic evaluation
of the composing theories. Similarly to prediction pruning, estimation pruning
excludes combinations of theories whose estimated prediction values suggest that
the resulting theory will be too specific (for the AND operation) or too general (for
the OR operation).

Thus, estimation pruning aims to reduce execution time by ruling out theories that
have poor estimations and exactly evaluating theories that have good estimations.
The decision on whether a theory is discarded is made based on some criterion
which is now directly applicable to the estimated probabilistic values in lieu of the
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exact prediction values of a theory2. The combination is then pruned away if it is
found to be useless. Conversely, if the combination is considered useful, then exact
probabilistic evaluation is performed and the theory and its exact evaluation are
saved for the next iteration. Since this pruning method is based on the estimation of
a combination of theories, it can be considered not safe in the sense that it is possible
to discard theories which might be better candidates than their estimations suggest.

The prediction value for an example i using a theory t is given by determining in
how many worlds (of all possible worlds in the PBK) li(t) is true. The challenge in
estimating the value of a probabilistic evaluation knowing the values of the theories
being combined lies in the fact that the amount of overlapping of the sets of worlds
corresponding to those two theories is unknown before evaluation. If two theories
are mutually exclusive (or disjoint) w.r.t. the PBK, then their overlap is null. On the
other hand, if a theory is more specific than another, the former will cover a subset
of the worlds covered by the latter. Theories can also be independent, meaning that
the probability that one theory is true in a world does not change the probability
that another theory is also true in that world.

Despite this uncertainty, it is possible to calculate the interval where the predictions
of a combination of two theories ta and tb will lie. The bounds of that interval are
determined by (i) the prediction values of the theories that are being combined, and
(ii) the operation being used to combine the theories. The minimum and maximum
boundaries of an estimation interval can be calculated by considering the theories’
prediction values point wise, i.e. determine the minimum and maximum possible
values for the combination of pi(ta) and pi(tb), for all examples. For each pair of
prediction values, the possible resulting prediction value for the combination of ta

and tb will vary monotonically from the minimum possible amount of overlap of
the world sets (mutual exclusivity, corresponding to disjoint sets) to the maximum
amount of overlap in the world sets (inclusiveness, corresponding to at least one of
the world sets being a subset of the other).

In the case of logical conjunction, the minimum possible value for a combination
of two predictions occurs if the sets of worlds for those predictions are as mutually
exclusive as possible, i.e. when the amount of overlap is minimum. This occurs
because the AND operation requires theories to be true in both sets of worlds.
Equation 4.10 shows the expression for the minimum boundary when using the

2Another option would be to use a probabilistic inference method which determines the prediction
values of a theory using an approximation, but this is outside of the scope of this work.
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AND operation.

min boundAND = max(0, pi(ta) + pi(tb) � 1) (4.10)

Therefore, the maximum boundary for the case of the AND operation happens if
one of the sets of worlds is a subset of the other, meaning that one of the theories is
included by the other. The expression for the maximum boundary using the AND
operation is given in Equation 4.11.

max boundAND = min(pi(ta), pi(tb)) (4.11)

Conversely, for logical disjunction, the minimum and maximum boundaries cor-
respond to the inclusive and mutually exclusive case, respectively. This is due to
the fact that, for the combination of two theories to be true using the OR operation,
only one of them needs to be true. Equations 4.12 and 4.13 show the expressions
used to calculate the minimum and maximum boundaries for the OR operation,
respectively.

min boundOR = max(pi(ta), pi(tb)) (4.12)

max boundOR = min(pi(ta) + pi(tb), 1) (4.13)

Based on the boundaries of the estimation interval, estimation pruning defines five
estimators that can be used to estimate the value of theories, namely: minimum,
maximum, center, independence and exclusion. These estimators predict di↵erent sets
of values inside the estimation interval, based on di↵erent set theory cases. The
minimum and maximum estimators correspond to the lower and upper boundaries
of the estimation interval (min and max estimators in Fig. 4.1, respectively). The
center estimator (ctr in Fig. 4.1) is the center of the estimation interval (halfway
between minimum and maximum). Equations 4.14 and 4.15 show the expressions to
calculate the center estimator for the AND and OR operations, respectively.

estimator centerAND =
1
2

(max(0, pi(ta) + pi(tb) � 1) +min(pi(ta), pi(tb))) (4.14)

estimator centerOR =
1
2

(max(pi(ta), t2(ei)) +min(pi(ta) + pi(tb), 1)) (4.15)
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The independence estimator (ind in Fig. 4.1) assumes that theories ta and tb are inde-
pendent and calculates the values of their combination accordingly. Equations 4.16
and 4.17 presents the expressions used to calculate the independence estimator for
the AND and the OR operations, respectively.

estimator independenceAND = pi(ta) ⇥ pi(tb) (4.16)

estimator independenceOR = pi(ta) + t2(ei) � pi(ta) ⇥ pi(tb) (4.17)

The exclusion estimator (not depicted in Fig. 4.1) assumes that the theories ta and
tb are as exclusive as possible. In the AND operation, the exclusion estimator is
equal to the minimum estimator, and in the OR operation, it is equal to the maximum
estimator. Equations 4.18 and 4.19 show the expressions used to calculate the
exclusion estimator for the AND and OR operation, respectively.

estimator exclusionAND = max(0, pi(ta) + pi(tb) � 1) (4.18)

estimator exclusionOR = min(pi(ta) + pi(tb), 1) (4.19)

The performance of an estimator may vary according to the type of data contained
in the PBK (independent data or mutually exclusive data, for instance).

Figure 4.1(a) depicts the prediction values of two theories ta and tb (in the y-axis,
ranging from 0 to 1), for three examples i = {1, 2, 3} (x-axis). The shaded area
represents the possible range for the prediction values of theories ta and tb when
using the AND operation to combine them. The same shaded area is visible in
Figure 4.1(b), where the estimation values are also plotted. The max and min
estimation values correspond to the upper and lower bounds of the shaded area,
meaning that they represent the extreme values of the possible prediction values
for the combination of theories ta and tb. The estimator ctr lies halfway between the
max and min prediction values, for each example, and the independent estimator
ind assumes theories ta and tb are independent for all examples and estimates the
value of the combination accordingly. This process is similar for the OR operation
(Figures 4.1(c) and 4.1(d)) and only the location of the shaded area varies, now
allowing for prediction values which are more general (higher in the y-axis) than
theories ta and tb, contrary to the case in the AND operation, where the prediction
values of the combination of theories ta and tb will be more specific than the theories.
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Figure 4.1: The x-axis contains three examples i = {1, 2, 3} and the y-axis represents
probabilistic values ranging from 0 to 1. Theories prediction values p(ta) and p(tb)
are depicted as circles and estimators min, max, ctr, ind as diamonds.

4.5 Pruning Criteria

For both prediction and estimation pruning, a criterion is necessary to decide
whether theories will be pruned away or not. Several criteria are possible, and
this work proposes three criteria for deciding if a theory is too specify/general: a
hard criterion, a soft criterion and a safe criterion. All criteria take into account the
predictions (or estimations) of a theory pi(t) for the available examples, as well as
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the example values ei themselves. Furthermore, the operation under which the
criterion is being applied must be taken into account.

The hard pruning criterion prunes a theory away if, in any example, the theory made
a prediction (or has an estimation) that was more specific (for the AND operation)
or more general (for the OR operation) than the annotated value for that example.
Equations 4.20 and 4.21 present the expressions for the hard pruning criterion for
the AND and OR search space, respectively.

9i : pi(t) < ei (4.20)

9i : pi(t) > ei (4.21)

On the other hand, the soft pruning criterion takes into account the theory’s
predictions (or estimations) for every example, and only prunes the theory away
if it is overall more specific (for the AND operation) or more general (for the OR
operation) than the annotated values of the examples. Equations 4.22 and 4.23
present the expressions for the soft pruning criterion for the AND and OR search
space, respectively.

X

i

⇣
pi(t) � ei

⌘
< 0 (4.22)

X

i

⇣
pi(t) � ei

⌘
> 0 (4.23)

The soft criterion di↵ers from the hard criterion in that it takes into account the
aggregate value of all examples, whilst the hard pruning criterion can discard
theories based on one example value only. On the other hand, the safe pruning
criterion excludes theories only when all of their predictions are found to be too
specific (for the AND operation) or too general (for the OR operation), and no
prediction can be improved by continuing with the search in that search space.

Figure 4.2 illustrates these concepts for a PILP setting with three examples and
four theories. For each example i, the example value ei (squares in black) and four
predictions (or estimations) of theories ta, tb, tc and td are plotted. The best possible
theory would predict exactly the same values as the annotated values, for every
example.
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(a) Pruning criteria for the AND search space
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Figure 4.2: Pruning criteria for AND and OR search spaces. The x-axis contains
three examples i = {1, 2, 3} and the y-axis represents probabilistic values ranging
from 0 to 1. Four theories’ prediction values p(ta), p(tb), p(tc) and p(td) are depicted
in di↵erent colours and markers. Example values are depicted as black squares

In Fig. 4.2(a), for the AND operation, the safe pruning criterion would prune away
td (red triangles) because, for every example, its prediction values are lower than
the example values. The soft criterion prunes tc (brown diamonds) and td (red
triangles) away because their prediction values are overall lower than the example
values. Finally, the hard pruning criterion would prune away all theories except
ta in Fig. 4.2(a). For example, tb is pruned away because its prediction for e = 1 is
lower than the example value. All pruning criteria would keep ta because all its
prediction (or estimation) values are higher than their respective example value.

An analogous reasoning can be made for the OR operation and higher prediction
values. The safe pruning criterion would prune ta (red triangles) because all its
prediction values are higher than the example values. The soft pruning criterion
would prune both ta (red triangles) and tb (brown diamonds) away because their
prediction values are overall higher than the example values. The hard pruning
criterion would prune away ta (red triangles), tb (brown diamonds) and tc (yellow
circles). No pruning criterion would prune away td because all its prediction (or
estimation) values are lower than the example values.

The theories pruned away by the safe criterion are a subset of the theories pruned
away by the soft criterion, and similarly the theories pruned away by the soft
criterion are a subset of those pruned away by the hard criterion.
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4.6 Safeness

One concern of using pruning strategies is whether theories whose utility is high
can be pruned away during the pruning process, and therefore the best theory lost
due to the use of pruning. A safe pruning strategy can thus be defined as a strategy
which only prunes away candidate theories which are assuredly not the best theory.
The safeness of a pruning strategy is defined in terms of the same evaluation metric
used for the traversal of the search space. This happens because the search space
traversal evaluation metric defines a ranking for the utility of candidate theories
and therefore also defines the first theory of that ranking, i.e. the best theory. In
order to guarantee safeness, the pruning strategy must use the same evaluation
ranking that is used during search space traversal to determine the best theory.

In general, fitness pruning can not be guaranteed to be a safe pruning strategy.
This is because the candidate theories of iteration j + 1 are combinations of the
most promising candidates of iteration j, according to some ranking. Even if this
ranking uses the same metric as the evaluation function, there is no guarantee
that a combination of two candidate theories which were not included in the
populations cannot be a better theory than all the candidate theories generated
from the population members. This can happen when two theories whose raking
is low combine to form a theory with much higher ranking. One way to ensure that
fitness pruning is a safe pruning strategy would be to include all possible theories
in the populations, which is equivalent to exhaustively traversing the search space
by definition.

Estimation pruning is also not a safe pruning strategy in general. In the case of
this pruning strategy, theories are pruned away based on an estimation of their
prediction values (i.e. before evaluation). If the estimate does not correspond
exactly to the predictions of the theory for every example, the decision on whether
to prune or keep the theory is made with inaccurate information. This therefore
makes it impossible to guarantee that the best theory will not be pruned away in
a setting where its estimated predictions are not as good as the actual prediction
values.

Prediction pruning, on the other hand, can be a safe pruning strategy given the
right conditions. This pruning strategy decides, for each evaluated theory, whether
candidate theories should be generated from it. In the case of AND operation,
candidate theories generated from another theory can only be more specific than
the original theory. Similarly, candidate theories generated from a theory using the
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OR operation can only be more general than the original theory. Therefore, if the
original theory is already too specific (for the AND operation) or too general (for the
OR operation), candidate theories generated from it can only be even more specific
(AND operation) or general (OR operation). This fact guarantees that under certain
conditions of specificity/generality of the original theory, prediction pruning can be
a safe pruning strategy. In addition, prediction pruning can only guarantee safeness
if it is not used in combination with another (unsafe) pruning strategy.

Evaluation metrics introduced in Chapter 2 do not directly take into account whether
the predictions of a theory are more or less specific than the example values, they
just use a loss function to determine the utility of a theory. However, the degree of
specificity of a theory can easily be assessed by considering the distance di between
the example value ei and the prediction of a theory for that example pi. If this
distance is a positive number, it means that the prediction of the theory is more
specific (less general) than the example value. Conversely, if di is a negative number,
the prediction of the theory is less specific (more general) than the example value.
Therefore, specificity of a theory can be calculated by taking into account the positive
and negative terms for the given evaluation metric.

MAE+(theory) =
#EX

i=1

�di>0 di

MAE�(theory) =
#EX

i=1

�di<0 di

MAE(theory) =MAE+(theory) +MAE�(theory)

(4.24)

RMSE+(theory) =
#EX

i=1

�di>0 d2
i

RMSE�(theory) = �
#EX

i=1

�di<0 d2
i

RMSE(theory) = RMSE+(theory) + RMSE�(theory)

(4.25)

Equations 4.24 and 4.25 show how to calculate the positive and negative terms
for metrics MAE and RMSE, respectively (� refers to the Dirac function used to
select only the examples where the condition is verified). Determining whether a
theory’s predictions are more or less specific than the example values can be done by
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examining the positive and negative terms for the given evaluation metric. When
the value of the positive term is equal to zero, it means that every prediction of
the theory is equal to or more general than the example values. When the value of
the negative term is equal to zero, then every prediction of the theory is equal to
or more specific than the example values. If both terms are equal to zero, then the
theory is predicting exactly the example values and it is the best possible theory in
the search space.

Based on this information, and knowing that the AND operation only produces
candidate theories which are increasingly more specific, when a theory is found to
be more specific than the example values (according to the applicable Equation 4.24
or 4.25), then candidate theories generated from it will be necessarily equal or more
specific. Therefore, it is safe to prune away these candidate theories, since they can
never perform better according to the chosen evaluation metric. This is because the
value of the negative term is equal to zero and cannot be reduced further, and the
value of the positive term can only increase. Similarly for the OR operation, when
the theory is found to be more general than the examples, it is safe to prune away
candidate theories that can be generated from it, since they will only be even more
general.

Therefore, a third safe pruning criterion can be defined for prediction pruning and
operations AND (Eq. 4.26) and OR (Eq. 4.27) as follows:

8i : eval metric�(pi) = 0 (4.26)

8i : eval metric+(pi) = 0 (4.27)

The safe pruning criterion presented in Equations 4.26 and 4.27 defines a pruning
condition which keeps all theories where at least one of its predictions has the
potential to be improved, according to the given evaluation metric. This safe
pruning criterion (for prediction pruning only) guarantees that no potentially better
theories will be pruned away during the pruning process.



Chapter 5

The SkILL System

This chapter describes the SkILL PILP system. This system is publicly available
atbitbucket.org/joanacortereal/skill. The general architecture of the system is explained,
followed by a description of the algorithms for traversing the AND and OR PILP
search spaces.

5.1 General Architecture

SkILL is a stochastic inductive logic learner which can extract readable relational
rules from a database of probabilistic data. SkILL’s rules are expressed as Horn
clauses (a subset of FOL) and so they can be used to extract non-trivial knowledge
about the dataset where they are inferred from. Additionally, these rules can be
used for prediction since they output a value ranging from 0 to 1, which can be
interpreted as a probability. Probabilistic values in SkILL can represent either
statistical information or the degree of belief in a statement (using type I or type II
probability structures [31], respectively). In more detail, SkILL’s inputs are:

PBK Probabilistic background knowledge representing the basic information known
about the problem. It can be composed of Horn clauses that can be annotated
with probabilistic information known a priori. Clauses can be facts, rules or
annotated disjunctions. If not annotated, it is assumed that their probabilistic
value is 1. By default, PBK clauses follow the ProbLog semantics.

PE Probabilistic examples represent the observations that the system is attempting
to explain. They also have probabilistic values a priori (1 if no probabilistic

75
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value is annotated). The best available theory will be the one that approximates
the examples values with minimum error.

LB language bias describing the target predicate and the semantically valid com-
binations of literals. SkILL uses the TopLog engine [41] from the GILPS ILP
system to generate all candidate ILP rules based on Mode-Directed Inverse
Entailment [38].

Parameters which define the sizes of the Primary and Secondary populations for
the AND and OR operations, which pruning strategies should be active and
which criterion should be used for each one of them. If these parameters are
not provided, the system uses default values.

The rule derivation process in TopLog is composed of three steps. In the first step,
an example is chosen as such that it can be proven from the PBK and the language
bias. For instance, co_authors(joana,ines) might be chosen as an example from
which to derive rules. Each successful derivation yields a ground clause entailed
by the language bias, which in this case would be

co_authors(joana, ines).

co_authors(joana, ines) :- student(joana).

co_authors(joana, ines) :- professor(ines).

co_authors(joana, ines) :- advised_by(joana, ines).

for rules containing at most one literal. In this way, both the derivation and the proof
are kept. In the second step, the proof is re-ordered (the rules may not be generated
in the correct order for variabilization) and finally a least general variabilisation is
performed in the third step. This would result in

co_authors(X, Y).

co_authors(X, Y) :- student(X).

co_authors(X, Y) :- professor(Y).

co_authors(X, Y) :- advised_by(X, Y).

for the rules shown above. Applying this process to all examples in the dataset
results in the set of all candidate rules that mirror patterns contained in the examples
w.r.t. the PBK. As such, all rules which are considered will always entail at least
one of the probabilistic examples in the dataset. SkILL improves on this approach
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by removing rules which are permutations of each other, for instance

co_authors(X, Y) :- student(X), professor(Y).

co_authors(X, Y) :- professor(Y), student(X).

are redundant and only one of these rules needs to be kept.

The aim of the SkILL tool is thus to find a theory in the valid search space which
minimizes a loss function w.r.t. the given PE. There is no parameter learning
performed during the construction of this theory and it cannot have disjunctive
literals in the head. Because the examples in this setting are probabilistic values
ranging from 0 to 1, the loss function can be defined in terms of the distance between
the predictions of a theory (also ranging between 0 and 1) and the example values,
as detailed in Chapter 3. SkILL supports both Mean Average Error (MAE) (or
Probabilistic Accuracy, PAcc) and Root Mean Square Error (RMSE), as detailed
in Chapter 2. The RMSE is the square root of the sum of the square di↵erences
between a theory’s predictions and example values, thus penalising theories whose
predictions are further from example values, when compared to PAcc. SkILL’s
outputs the FOL theory that minimizes the error between its predictions and the
training examples. This theory can be seen as a:

Model the human-readable FOL theory which describes the contributions and
dependencies between the most relevant literals for the given problem.

Classifier the theory can also be used for predicting probabilistic values for new
instances of the target predicate using probabilistic inference.

The SkILL system runs on top of the Yap Prolog system [14], uses TopLog [41] as
the basis rules generator and the ProbLog Yap library as its probabilistic inference
engine. It di↵ers from other PILP systems because it implements three pruning
strategies which can be used separately or in combination with each other: fitness
pruning, estimation pruning and prediction pruning. The SKILL system will
explore the search space exhaustively when no pruning strategy is used.

5.2 Main Algorithm and Parameters

Fully exploring the PILP search space is equivalent to evaluating each theory in
order to determine the best theory according to a given metric. This can be done
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in two steps: (i) exploring the AND search space, and (ii) exploring the OR search
space.

Rules in the PILP setting are composed of conjunctive logical literals, and the length
of a rule is equal to the number of literals present in its body. As such, a rule becomes
more specific as its length increases. Longer rules that contain the literals of shorter
rules cover equal or less probabilistic worlds. Theories in PILP can be formed either
by a single rule or by a set of disjunctive rules, and their length is equal to the
number of rules they contain. As such, all rules (of any length) are also theories of
length one. Unlike rules, the longer a theory is (containing more disjunctive rules),
the more general it is. Theories can thus be combined using either an AND or an
OR operation, which correspond to the logical conjunction and disjunction of the
rules in the theories, respectively. In the case of the AND operation, only single
rules (theories of length one) can be combined, and the result is another theory of
length one (e.g. combining theories t(X):– p(X) and t(X):– q(X,Y) using the AND
operation would result in theory t(X):– p(X), q(X,Y)). The unification of variables
between the literals is obtained from the specified language bias – and the length of
the resulting rule is equal to the number of unique literals it contains (if the same
literal is present in both of the combining rules, it only appears once in the resulting
rule). Conversely, theories of any length can be combined using the OR operation,
and the resulting theory’s length is equal to the sum of the lengths of the combined
theories (e.g. combining theories of length one t(X):–r(X) and t(X):– s(X,Y) using
the OR operation would result in theory t(X):– r(X) ; s(X,Y) of length 2).

Thus, SkILL’s algorithm is composed of two main steps: (i) building theories of
length one (single rules) using the AND operation to traverse the AND search
space, and (ii) building theories of length greater than one using the OR operation
to traverse the OR search space. In step (i), single rules of increasing number of
literals are built from the mode declarations using the AND operation. Once all
possible rules are built and evaluated, the algorithm proceeds to step (ii) using the
OR operation to combine single rules (theories of length one) into theories of greater
length, up to a maximum length.

Figure 5.1 depicts the search space traversal procedure in SkILL, and Algorithms 5.1
and 5.2 detail the procedure for traversing the AND and OR search spaces, re-
spectively. The ParameterList input contains a list of which pruning strategies are
enabled. For prediction and estimation pruning strategies, a PruneCriteria can be
given (can be hard, soft or safe), and for estimation pruning an Estimator can be pro-
vided. For fitness pruning, it is possible to select the PrimarySize and SecondarySize
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Figure 5.1: Search space traversal of SkILL algorithm

for the AND and OR operations separately, as well as the RankingMetric for each
set of candidates. If a pruning strategy is enabled but no options are specified,
SkILL uses soft as the pruning criterion, independence as the estimator, and 10/100
for primary and secondary set sizes and PAcc as the ranking metric, by default.
The ParameterList variable also contains the maximum length of rules and theories
RMaxLength and TMaxLength, which are 3 by default.

In Fig. 5.1, the set of rules of length one is depicted on the top left (corresponding to
line 1 in Alg. 5.1). This set is comprised of all rules of only one literal obtained from
TopLog and whose probabilistic evaluation will always be computed for e�ciency
reasons (lines 3–4 in Alg. 5.1). The AND search space algorithm receives as input
PBK and PE to generate ILP rules. It is optional to also provide a list of pruning
criteria and primary and secondary set sizes for fitness pruning. The first pruning
operation to be applied (if enabled) is prediction pruning, since this method only
requires the probabilistic evaluation of rules to be applied (lines 5–6 in Alg. 5.1).
Once some of the initial rules are pruned away, fitness pruning can then be applied to
the remaining set (lines 7–9 in Alg. 5.1). When fitness pruning is used, it determines
the complexity of the execution, since it limits the amount of rules that will be
combined to generate new candidate rules, which results in a polynomially bound
number of probabilistic evaluations for every iteration. In the first iteration, rules of
length one R1 are combined to generate rules of length 2 (depicted in the top center
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Algorithm 5.1 and search space(PBK,PE,ParameterList)
1: RILP = generate ilp rules in TopLog(PBK,PE)
2: RLength = 1
3: R1 = select ilp rules o f length(RLength,RILP)
4: T1 = R1 = RN = prob evaluation(R1,PBK,PE)
5: if enable(AND prediction pruning) then
6: R1 = RN = AND prediction pruning(R1,PruneCriteria)
7: if enable(AND f itness pruning) then
8: R1 = AND f itness pruning(R1,PrimarySize)
9: RN = AND f itness pruning(R1,SecondarySize)

10: RLength = RLength + 1
11: RN+1 = select ilp rules o f length(RLength,RILP) \ combine rules(R1,RN)
12: while RN+1 , ; do
13: if enable(AND estimation pruning) then
14: RN+1 = AND estimation pruning(RN+1,R1,RN,PruneCriteria)
15: RN+1 = prob evaluation(RN+1,PBK,PE)
16: T1 = T1 [ RN+1

17: if enable(AND prediction pruning) then
18: RN+1 = AND prediction pruning(RN+1,PruneCriteria)
19: if enable(AND f itness pruning) then
20: RN+1 = AND f itness pruning(RN+1,SecondarySize)
21: RN = RN+1

22: RLength = RLength + 1
23: RN+1 = select ilp rules o f length(RLength,RILP) \ combine rules(R1,RN)
24: return T1

of Fig. 5.1 and corresponding to lines 10–23 in Alg. 5.1). If estimation pruning is
enabled, candidate rules can be pruned away based on the probabilistic values of
the rules that were used to generate them (lines 13–14 in Alg. 5.1). After this point,
rules of length two RN+1 are evaluated exactly, and prediction and fitness pruning
are again applied to this set (arrows on top Fig. 5.1 and lines 15–20 in Alg. 5.1). If
there are still rules to be evaluated, then RN+1 becomes RN and a new iteration is
performed (loop on the top in Fig. 5.1 and lines 21–23 in Alg. 5.1). Only those rules
which are present in RILP and the combination of R1 and RN are kept for the next
iteration (line 23 in Alg. 5.1). The combination of R1 and RN is the product of the
sets, i.e. all members or R1 are combined with all members of RN. At the end, the
AND search space procedure returns the set of evaluated rules of all lengths, which
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is also the set of all theories of length one (line 24 in Alg. 5.1).

Algorithm 5.2 or search space(T1,PBK,PE,ParameterList)
1: TAll = TN = T1

2: if enable(OR prediction pruning) then
3: T1 = TN = OR prediction pruning(T1,PruneCriteria)
4: if enable(OR f itness pruning) then
5: T1 = OR f itness pruning(T1,PrimarySize)
6: TN = OR f itness pruning(T1,SecondarySize)
7: TLength = 1
8: TN+1 = combine theories(T1,TN)
9: while TLength < TMaxLength do

10: if enable(OR estimation pruning) then
11: TN+1 = OR estimation pruning(TN+1,T1,TN,PruneCriteria)
12: TN+1 = prob evaluation(TN+1,PBK,PE)
13: TAll = TAll [ TN+1

14: if enable(OR prediction pruning) then
15: TN+1 = OR prediction pruning(TN+1,PruneCriteria)
16: if enable(OR f itness pruning) then
17: TN+1 = OR f itness pruning(TN+1,SecondarySize)
18: TN = TN+1

19: TLength = TLength + 1
20: TN+1 = combine theories(T1,TN)
21: return TAll

The OR search space traversal procedure shown in Fig. 5.1 is similar to the AND
procedure except for the fact that it receives as input a set of theories of size one
(input parameter in Alg. 5.2). It also receives as input the maximum theory length
TMaxLength which is used in the stopping criterion condition for OR search space
exploration. The set of theories of length one T1 has already been computed during
the AND stage of the algorithm and is comprised of all theories of only one clause
(line 1 in Alg. 5.2). Similarly to the AND search space, prediction pruning and fitness
pruning are applied first to ensure that the search space is limited to user-defined
parameters (lines 2–6 in Alg. 5.2). In the first iteration of the OR stage, theories of
length one T1 are combined to generate theories of length 2. If estimation pruning is
enabled, candidate theories can be pruned away based on the probabilistic values
of the theories that were used to generate them. After this stage, theories of length
two TN+1 are evaluated exactly, and prediction and fitness pruning is again applied
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to this set (arrows in bottom Fig. 5.1 and lines 12–17 in Alg. 5.2). If the maximum
theory length is greater than two, then TN+1 becomes TN and a new iteration is
performed (lines 9–20 in in Algorithm 5.2). Once the stop criterion is met, the best
generated theory for all di↵erent lengths is then returned (line 21 in Alg. 5.2).

At the end of execution, the SkILL algorithm provides (i) the best theory; (ii) the N
best theories, with N selected from the user; and (iii) a list with the best theory of
each iteration.



Chapter 6

Experiments

This chapter contains the experimental assessment of the pruning strategies and
criteria developed during this thesis work. First, the PILP benchmarks used for as-
sessment are described. Then, for each pruning strategy, experiments are performed
using two PILP systems, SkILL and ProbFOIL+ [18], and several configurations are
tried. Finally, a study of the three pruning strategies combined is presented, and
the results are discussed.

6.1 Methodology and Benchmarks

The PILP SkILL system was used for most of the experiments presented in this
chapter, and it runs on top of the Yap Prolog system [14], uses TopLog [41] as
the basis rules generator and the ProbLog Yap library as its probabilistic inference
engine. The experiments using the SkILL system were run on a machine containing
4 AMD Opteron 6300 processors with 16 cores each and a total of 250GB of
RAM, unless otherwise indicated. The ProbFOIL+ system [18] is based on python
and it uses the Yap Prolog system for logical inference of theories. In these
experiments, ProbFOIL+ uses only the examples provided in the training data
(without generation of additional negative examples as used in the original paper)
and it uses negated literals in the theories. The experiments using ProbFOIL+were
run on a machine containing a Intel Core i7 processor with 4 cores and a total of
16GB of RAM.

The performance of the pruning strategies was analysed using three di↵erent
datasets: metabolism, athletes and breast cancer. All experiments use 5-fold cross

83
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Table 6.1: Dataset characteristics: number of examples; number of facts in the PBK
and proportion of probabilistic facts in brackets; number of examples in the train
set and proportion of the dataset in brackets; and number of examples in the test
set and proportion of the dataset in brackets.

Dataset Examples PBK Size train Size test

metabolism(met) 230 7000 (46%) 184 (70%) 46 (30%)
athletes (ath) 721 4294 (100%) 576 (70%) 144 (30%)

breast cancer (bc) 130 13400 (3%) 104 (80%) 26 (20%)

validation unless otherwise indicated.

Table 6.1 summarises the characteristics of these benchmarks.

The metabolism dataset consists of an adaptation of the dataset originally from the
2001 KDD Cup Challenge1. It is composed of 230 examples (half positive and half
negative) and approximately 7000 BK facts. To obtain probabilistic facts for the PBK,
the predicate interaction(gene1, gene2, type, strength) was adapted from
the original metabolismdataset. The fourth argument of this predicate indicates
the strength of the interaction between a pair of genes. This fact was converted to
the probabilistic fact pstrength::interaction(gene1, gene2, type), where pstrength

was calculated from strength interactions as follows:

pstrength =
strength �minstrength

maxstrength �minstrength
(6.1)

This resulted in about 3200 probabilistic facts in the PBK. 5 folds were generated
from this dataset, and each one of them is composed of 46 test examples selected
randomly from the main dataset (but keeping the same positive/negative ratio) and,
for each fold, the 184 remaining examples are used for training.

The athletes dataset consists of a subset of facts regarding athletes and the sports
they play collected by the never-ending language learner NELL2. NELL iteratively
reads the web, gathering knowledge, and for each fact that it comes across it assigns
a weight that can be used as a probability. As NELL iterates, the weights of the facts
in its database are updated, and the dataset used for this experiment contains the
facts and weights from iteration 850. The dataset is composed of 720 probabilistic
examples of athletes that play for a team, and 4294 probabilistic facts in the PBK

1http://www.cs.wisc.edu/˜dpage/kddcup2001
2http://rtw.ml.cmu.edu

http://www.cs.wisc.edu/~dpage/kddcup2001
http://rtw.ml.cmu.edu
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pertaining to the origin of the player, his/her gender, the city where a team plays, and
so on. 5 folds were generated from this dataset, and each one of them is composed
of 144 test examples selected randomly from the main dataset and the 576 remaining
examples are used for training. Because in this case examples do not clearly belong
to one of two classes but instead have probabilistic mass in both, the test examples
were randomly selected from the dataset without taking their expected value into
account.

The breast cancer dataset contains data from 130 biopsies dating from January
2006 to December 2011, which were prospectively given a non-definitive diagnosis
at radiologic-histologic correlation conferences. 21 cases were determined to be
malignant after surgery, and the remaining 109 proved to be benign. The probabil-
ities assigned to the examples represent the chance of malignancy for each patient.
A high probability indicates the team of physicians thinks the case is most likely
malignant, and conversely a low probability indicates the case is most likely benign.
This dataset is described in more detail in Chapter 7. 5 folds were generated from
this dataset, and each one of them is composed of 26 test examples selected randomly
from the main dataset (but keeping the same positive/negative ratio) and the 104
remaining examples are used for training.

6.2 Fitness Pruning

This section analyses the e↵ect of fitness pruning on probabilistic accuracy and
execution time using three di↵erent sizes for primary and secondary populations,
for both AND and OR search spaces (the same sizes are used for both search spaces):
25/5, 25/10 and 25/20. The second number (5 in 25/5) corresponds to the secondary
population, i.e. in each iteration five theories (or rules) of length N are chosen to
populate this set according to a ranking metric based on probabilistic accuracy. The
first number (25 in all cases) is the fixed number of rules and theories of length
one that are combined against the secondary set. This corresponds to using beam
sizes of 125, 250 and 500 candidates, respectively. The number of candidates for the
populations was arbitrarily selected.

Table 6.2 shows the results running time in seconds, total number of evaluations
performed and probabilistic accuracy for datasets metabolism(met), athletes (ath)
and breast cancer (bc) and a varying secondary population size (5, 10 or 20) for
both AND and OR operations. It also shows ProbFOIL+ results, which uses beam
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Table 6.2: Execution time in seconds, number of probabilistic evaluations performed
and probabilistic accuracy on the test set for varying population sizes (same sizes
used for AND and OR operation) and ProbFOIL+ results, for datasets metabolism,
athletes and breast cancer. Standard deviation is presented in brackets.

25/5 25/10 25/20 ProbFOIL+

Execution Time (s)
metabolism 2065 (111) 2552 (85) 3353 (228) 2008 (2254)

athletes 1715 (25) 3413 (469) 4610 (88) 57 (6)
breast cancer 779 (10) 1102 (76) 1449 (70) 3890 (379)

No. Evaluations
metabolism 1450 (43) 1683 (45) 2151 (49) 3734 (2603)

athletes 679 (6) 1142 (16) 1852 (28) 201 (48)
breast cancer 326 (38) 647 (66) 1235 (76) 24290 (951)

Probabilistic Accuracy
metabolism 0.67 (0.06) 0.67 (0.06) 0.67 (0.06) 0.51 (0.04)

athletes 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.80 (0.01)
breast cancer 0.85 (0.03) 0.85 (0.03) 0.86 (0.04) 0.85 (0.01)

search to find the best theory, as a baseline. Each value in Table 6.2 is the average of
the values for all five folds, and the standard deviation across folds is presented in
brackets.

Fitness pruning establishes a bound on the number of AND and OR evaluations
performed during PILP search space traversal, reducing them from an exponential
number to a polynomially bound one. There is always a constant component for
varying population sizes that is related to the number of rules of length one, which
must be evaluated regardless of any pruning settings (1181 rules for metabolism,
53 rules for athletes and 25 rules for breast cancer). The e↵ect of this component is
evident on the execution time and evaluation number presented in Table 6.2, since
they do not reduce linearly with the number of combinations. Furthermore, as
the number of combinations grows larger, there may be cases where there are not
enough rules or theories of a given length to fill the population sets. This is more
likely to happen during the AND search since the language bias may restrict the
rule search space from growing exponentially.

Even though fitness pruning only traverses part of the search space as shown by both
the execution time and the number of evaluations in Table 6.2, it does not sacrifice
probabilistic accuracy. This is due to the fact that rules and theories are ranked by a
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performance-related metric (probabilistic accuracy), and so combinations are made
from the more accurate members generated in each iteration (even though other
ranking metrics can be used to select theories, e.g. random selection to include
weaker candidates). This is not the same process as testing these members for
suitability for being combined using a given operation (as is done in prediction
pruning).

Nonetheless, as the probabilistic accuracy does not decrease when the population
sizes are reduced, it can be concluded that the ranking metric is e↵ective in keeping
a good population of candidate theories, and so the 25/5 pruning setting should be
used, since it presents a shorter execution time for every case.

This is a di↵erent procedure than is used in the ProbFOIL+ system, where a
greedy beam search is used. For that reason, there are cases in which ProbFOIL+
performs significantly more (or less) probabilistic evaluations than SkILL (more
evaluations for the breast cancer benchmark, less for the athletes benchmark).
However, ProbFOIL+’s probabilistic accuracy is significantly less in two of the
benchmarks (metabolismand athletes), as is to be expected from the reduced
number of evaluations, which in turn results in a shorter execution time.

6.3 Estimation Pruning

This section presents two sets of experiments concerning estimation pruning which
are aimed at assessing di↵erent aspects. Section 6.3.1 analyses the e↵ect of applying
estimation pruning to the benchmarks, using both SkILL and ProbFOIL+, for a given
estimator (independence). The independence estimator was used in this experiment
because it assumes there is no dependence between the probabilistic facts in the
program, which can often be the case. Next, Section 6.3.2 studies the e↵ect of using
di↵erent estimators for estimation pruning (only in the SkILL system). The average
time and probabilistic accuracy for di↵erent estimators, as well as for di↵erent
pruning criteria, are evaluated in detail.

6.3.1 Estimation Pruning Performance

This experiment compares the performance of the independence estimator in the
SkILL and ProbFOIL+ systems. For this experiment, five fold cross validation
is used for all datasets. The estimation pruning strategy with an independence
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estimator was added to the ProbFOIL+ system, but only for the AND operation,
since in ProbFOIL+ the OR search space forms a theory by adding the best rule
found in the AND search space and then adjusting the examples accordingly.

Table 6.3 shows the running time in seconds, total number of evaluations performed
and probabilistic accuracy (standard deviation is presented in brackets) for datasets
metabolism(met), athletes (ath) and breast cancer (bc) and varying estimation
pruning criteria (but always using independence estimator), using both SkILL
(using 25/5 fitness pruning) and ProbFOIL+ (beam size of 5).

Results in Table 6.3 indicate that the use of estimation pruning can reduce the
runtime of the experiments when compared to the results using no estimation
pruning (see Table 6.2), in most cases. In the cases where this does not happen
(for instance in the breast cancer benchmark using the ProbFOIL+ system), the
number of probabilistic evaluations is still reduced, only the theories that are being
evaluated using estimation pruning are more complex, and so it takes much longer
to evaluate them. Furthermore, there is no significant variation in accuracy when
applying estimation pruning for any of the settings presented in Table 6.3, using the
independence estimator.

6.3.2 Comparing Estimators

Di↵erent combinations of estimation pruning were tested in this section: only
pruning the AND operation, only pruning the OR operation, and pruning both
operations. The pruning settings are reported as a tuple where the first value is
the AND pruning option and the second is the OR pruning option. For estimation
pruning, pruning options can be soft pruning (S), hard pruning (H) or no pruning
(x). For example, using this codification, xS stands for no AND pruning and soft
OR pruning. For each configuration, several measurements were recorded for each
dataset: execution time, probabilistic accuracy on the test set, and number of rules
and theories pruned. Values reported are the average value across all folds. Next,
experiments with di↵erent estimators were performed in the SkILL system. Unlike
previous experiments, for the metabolism and athletes datasets, a number of n-
times hold-out sets were made and all measurements were averaged out over the
folds. In the breast cancer dataset, leave-one-out cross-validation was used.

Table 6.4 presents the speedups and ratio of probabilistic accuracy for the metabolism,
athletes and breast cancer datasets, respectively, for the experiments performed
using the SkILL system. All experiments in this section were performed using a
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Table 6.3: Execution time in seconds, number of probabilistic evaluations performed
and probabilistic accuracy on the test set for varying pruning criteria and
independence estimator, for datasets metabolism, athletes and breast cancer,
with standard deviation in brackets. Execution times between systems are not
comparable. The baselines are taken from Table 6.2, setting 25/20 for SkILL.

(a) SkILL

Baseline Sx Hx xS xH
Execution Time (s)

metabolism 3353 (204) 1719 (328) 1753 (319) 2873 (828) 1422 (194)
athletes 4610 (79) 339 (28) 337 (27) 536 (73) 520 (27)

breast cancer 1449 (63) 53 (8) 220 (20) 199 (8) 220 (20)
No. Evaluations

metabolism 2151 (44) 3312 (76) 3312 (76) 7053 (262) 5260 (280)
athletes 1852 (25) 1133 (90) 1133 (90) 2483 (271) 2414 (94)

breast cancer 1235 (68) 731 (0) 1919 (0) 1919 (0) 1919 (0)
Probabilistic Accuracy

metabolism 0.67 (0.05) 0.66 (0.05) 0.66 (0.05) 0.66 (0.05) 0.66 (0.05)
athletes 0.95 (0.01) 0.90 (0.12) 0.90 (0.12) 0.95 (0.00) 0.95 (0.00)

breast cancer 0.86 (0.04) 0.78 (0.31) 0.72 (0.36) 0.72 (0.36) 0.72 (0.36)

(b) ProbFOIL+

Baseline Sx Hx

Execution Time (s)
metabolism 2008 (2016) 1336 (798) 313 (83)

athletes 57 (5) 22 (18) 18 (1)
breast cancer 3890 (339) 6576 (1177) 4515 (431)

No. Evaluations
metabolism 3734 (2328) 3531 (2959) 304 (76)

athletes 201 (43) 29 (3) 20 (2)
breast cancer 24290 (851) 8325 (286) 699 (30)

Probabilistic Accuracy
metabolism 0.51 (0.04) 0.51 (0.04) 0.51 (0.01)

athletes 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)
breast cancer 0.85 (0.01) 0.87 (0.01) 0.87 (0.02)
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Table 6.4: Speedup and probabilistic accuracy ratio for three datasets
(a) metabolism

Speedup
Est Sx Hx xS xH SS HH

min 1.45 1.47 -1.03 1.36 1.47 2.52
max 1.56 1.56 -1.09 1.94 1.61 5.66
ctr 1.57 1.58 1.03 1.95 1.61 5.65
ind 1.35 1.33 -1.23 1.64 1.46 5.37
exc 1.57 1.58 -1.04 1.95 1.58 5.69

Probabilistic Accuracy Ratio
Sx Hx xS xH SS HH

1.00 1.00 1.00 1.01 1.00 1.00
1.00 1.00 1.00 1.00 1.00 -1.01
1.00 1.00 1.00 1.00 -1.01 -1.01
1.00 1.00 1.00 1.00 1.00 -1.01
1.00 1.00 1.00 1.00 1.00 -1.01

(b) athletes

Speedup
Est Sx Hx xS xH SS HH

min 3.34 3.33 1.01 1.66 3.63 9.48
max 3.35 3.35 2.12 2.19 12.40 49.72
ctr 3.20 3.28 1.00 1.80 3.62 19.82
ind 3.33 3.34 2.10 2.17 12.34 50.36
exc 3.31 3.23 2.02 2.11 11.86 48.01

Probabilistic Accuracy Ratio
Sx Hx xS xH SS HH

-1.06 -1.06 1.00 1.00 -1.11 1.00
-1.06 -1.06 1.00 1.00 -1.15 1.00
-1.06 -1.06 1.00 1.00 -1.08 1.00
-1.06 -1.06 1.00 1.00 -1.15 1.00
-1.06 -1.06 1.00 1.00 -1.15 1.00

(c) breast cancer

Speedup
Est Sx Hx xS xH SS HH

min 7.09 7.18 1.42 1.41 22.44 21.46
max 7.16 7.06 1.65 1.63 25.24 23.49
ctr 7.04 6.98 1.63 1.63 25.25 24.80
ind 7.20 7.02 1.42 1.29 22.62 22.84
exc 7.19 7.19 1.63 1.62 25.00 24.80

Probabilistic Accuracy Ratio
Sx Hx xS xH SS HH

1.09 1.09 1.00 1.00 1.09 1.09
1.09 1.09 1.00 1.00 1.09 1.09
1.09 1.09 1.00 1.00 1.09 1.09
1.09 1.00 1.00 1.00 1.09 1.09
1.09 1.09 1.00 1.00 1.09 1.09

25/5 fitness pruning setting as the base case setting. The speedup Bt
Pt

is calculated
w.r.t. the Bt base case time (no pruning) for di↵erent Pt pruning options’ execution
time. If there is a slowdown, the inverse speedup Pt

Bt
is presented as a negative

number. The ratio of the probabilistic accuracy Pa
Ba

is calculated for each probabilistic
settings Pa w.r.t the probabilistic accuracy of the Ba base case. Similarly to the
speedup, when the probabilistic accuracy decreases, the inverse of the ratio is given
Ba
Pa

as a negative number. The absolute values for the independence estimator were
presented above in Table 6.3.

Figure 6.1 depicts the variation in execution time in minutes (left y-axis) and the
variation in probabilistic accuracy (right y-axis) for all estimators in the metabolism,
athletes and breast cancer datasets, respectively. The estimators analysed were the
base case (no estimation pruning performed, or nop), minimum (min), maximum
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(max), center (ctr), independence (ind), and exclusion (exc). Each dataset’s results will
be discussed next.

For the metabolism dataset, results in Table 6.4(a) show that the greatest reduction
in execution time is achieved by all estimators in the HH pruning setting. The xS
pruning setting shows the slowest execution times with all estimators, except center,
causing a slowdown. There is no significant reduction in probabilistic accuracy in
any setting. Figure 6.1(a) shows that, overall, the probabilistic accuracy of the
theories is unchanged and that the maximum, center and exclusion estimators can all
reduce execution time from 40 to less than 25 minutes.

In the athletes dataset, again the HH pruning setting can reduce most execution
time. However, the reduction using estimators minimum and center is much less than
that of estimators maximum, independence and exclusion, where the execution is about
50 times faster (Table 6.4(b)). Estimators minimum and center are consistently slower
in other pruning settings (xS, xH and SS), and the xS and xH settings present the
lowest reduction in execution time in this dataset, of 2 times on average. Similarly to
the other datasets, Table 6.4(b) shows that the probabilistic accuracy in the athletes
dataset presents no significant reduction and, in particular, in the xS, xH and HH
settings it is not reduced at all. Estimators maximum, independence and exclusion
present the greatest overall reduction in execution time (Fig. 6.1(b)), from 20 to
about 5 minutes, on average.

Results in Table 6.4(c) show that, in the breast cancer dataset, the greatest reduction
in execution time can be achieved by using pruning in both the AND and the OR
operations (SS and HH settings). The pruning settings that use only OR pruning (xS
and xH) present more modest reductions of execution time (about 1.5 times) when
compared to the settings that use only AND pruning (about 7 times). Although
the OR operation has the potential to increase the probabilistic accuracy of true
positives, it may also increase the accuracy of false positives. On the other hand,
the AND operation, for this domain, works better, since it maintains the accuracy
of true positives while decreasing the accuracy of false positives, when combining
literals in a theory. The predictive accuracy of the best theory in this dataset never
decreases, and in some settings (Sx, Hx, SS and HH in Table 6.4(c)) even increases
slightly. This e↵ect is due to a reduction in overfitting caused by the exclusion of
some theories that are better on the training set but perform worse on the test set.
Figure 6.1(c) shows that, on average, the maximum, center and exclusion datasets can
reduce execution time from over 4 minutes to about 1 minute.

Finally, Table 6.5 presents the number of probabilistic evaluations performed for
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Figure 6.1: Average time (in minutes) and probabilistic accuracy in all three datasets,
for the base case (nop) and the five estimators. Values for each estimator are the
average of its result over the pruning options.
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Table 6.5: Number of single rules/theories evaluated for all datasets
(a) metabolism

Est xx Sx Hx xS xH SS HH

min 5262/1982 1327/1986 1327/1986 5261/1983 5262/1186 1327/1985 1327/1229
max 5262/1982 1327/1986 1327/1986 5262/1758 5262/0 1327/1865 1327/104
ctr 5262/1982 1327/1986 1327/1986 5261/1957 5262/0 1327/1965 1327/104
ind 5262/1982 1327/1985 1327/1985 5261/1792 5261/0 1327/1866 1327/106
exc 5262/1982 1327/1985 1327/1985 5261/1759 5261/0 1327/1865 1327/106

(b) athletes

Est xx Sx Hx xS xH SS HH

min 2414/1989 164/968 164/968 2414/1981 2414/604 164/913 164/361
max 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0
ctr 2414/1989 164/968 164/968 2414/1974 2414/381 164/907 164/128
ind 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0
exc 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0

(c) breast cancer

Est xx Sx Hx xS xH SS HH

min 1919/1988 181/550 181/550 1919/0 1919/0 181/0 181/0
max 1919/1988 181/550 181/550 1919/0 1919/0 181/0 181/0
ctr 1919/1988 181/550 181/550 1919/0 1919/0 181/0 181/0
ind 1919/1988 181/550 1919/0 1919/0 1919/0 181/0 181/0
exc 1919/1988 181/550 181/550 1919/0 1919/0 181/0 181/0

each pruning setting and estimator. The first number corresponds to single rules
(theories of length one) evaluated, and thus the reduction is caused by AND
pruning. Similarly, the second number in each cell is the number of theories of
length greater than one, and its reduction is caused by OR pruning. The greatest
reductions correspond to the HH setting, and are consistent with the settings in
Table 6.4 that presents the greatest speedups. For the athletes, the three fastest
estimators (in average) from Fig. 6.1(b) are also the estimators that in Table 6.5(b)
prune away most theories. In particular, the number of theories pruned away during
OR pruning is significantly lower for estimators max, ind and exc when compared
to estimators min and ctr. The same trend can be observed in the metabolism and
breast cancer whose results are presented in Tables 6.5(a) and 6.5(c), respectively.
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6.4 Prediction Pruning

Each theory in the PILP search space can be thought of as a predictor, and for this
reason its predictive quality can be assessed using the area under the ROC curve.
Since prediction pruning removes theories from the search space based upon the
operation that is being performed (AND or OR), the distribution of the remaining
candidate theories can change (there may be cases where no candidate theories
are left for the next iteration). As such, comparing the two search spaces using
the AUCs of the theories they contain shows how the predictive quality of their
candidates compares.

Because exploring the search space exhaustively is computationally taxing, the
quality of candidate theories was assessed in a limited resource setting. Resources
can be limited in two ways: either a timeout is imposed or a maximum number
of evaluations is defined, which corresponds to using beam search (fitness pruning
setting in the SkILL PILP system). To this e↵ect, the impact of prediction pruning
was assessed by comparing the AND and OR search spaces that are evaluated
without pruning with those which are evaluated in a pruning setting, given the same
limitation of resources. All experiments use five-fold stratified cross validation and
results presented are the average values for all folds (Sa stands for safe pruning
criterion).

Prediction pruning results in Table 6.6 show that applying the Soft or Hard strategies
(in the AND search space) leads to clear improvements in probabilistic accuracy for
ProbFOIL+ and does not lead to degradation in SkILL when compared to the fitness
pruning results in Table 6.2. The e↵ect of prediction pruning is more evident for
ProbFOIL+ because it selects fewer candidates in each iteration, when compared to
the SkILL’s primary and secondary populations. It is therefore more important that
bad candidates are pruned such that the limited beam is filled with better candidates.
The prediction pruning strategy is thus particularly useful when traversing the
search space with a narrow beam, so that the candidates selected to populate it are
of greater predictive value when compared to using no prediction pruning. Safe
pruning has no e↵ect on these datasets because it’s pruning power is too limited.

Table 6.6 also shows that applying prediction pruning does not necessarily reduce
the search space. It can actually increase the number of rules evaluated during
the execution, and even the execution time in some cases. This happens because
prediction pruning provides a type of lookahead, that is, it makes an assessment of
the predictive power of a rule in future iterations. When no prediction pruning is
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Table 6.6: Execution time in seconds, number of probabilistic evaluations performed
and probabilistic accuracy for datasets metabolism, athletes and breast cancer
using the SkILL and ProbFOIL+ systems with prediction pruning for the AND
search space. Standard deviation is presented in brackets. Execution times between
systems are not comparable. The baselines are taken from Table 6.2, setting 25/20
for SkILL.

(a) SkILL

Baseline Safe Soft Hard

Execution Time (s)
metabolism 3353 (204) 2286 (185) 3216 (472) 1791 (37)

athletes 4610 (79) 4230 (582) 2322 (164) 2358 (73)
breast cancer 1449 (63) 616 (50) 636 (26) 353 (42)

No. Evaluations
metabolism 2151 (44) 2150 (44) 3234 (90) 2103 (37)

athletes 1852 (25) 1896 (18) 994 (3) 994 (3)
breast cancer 1235 (68) 1234 (67) 1306 (43) 941 (70)

Probabilistic Accuracy
metabolism 0.67 (0.05) 0.67 (0.05) 0.67 (0.05) 0.67 (0.05)

athletes 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)
breast cancer 0.86 (0.04) 0.86 (0.04) 0.84 (0.08) 0.86 (0.03)

(b) ProbFOIL+

Baseline Safe Soft Hard

Execution Time (s)
metabolism 2008 (2016) 1999 (2019) 752 (215) 464 (71)

athletes 57 (5) 57 (5) 55 (4) 14 (0)
breast cancer 3890 (339) 3828 (302) 8093 (2101) 725 (38)

No. Evaluations
metabolism 3734 (2328) 4549 (3734) 4518 (1493) 2452 (492)

athletes 201 (43) 201 (43) 171 (21) 0 (0)
breast cancer 24290 (851) 24267 (828) 26495 (3542) 3532 (231)

Probabilistic Accuracy
metabolism 0.51 (0.04) 0.51 (0.03) 0.63 (0.11) 0.58 (0.07)

athletes 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)
breast cancer 0.85 (0.01) 0.85 (0.01) 0.85 (0.03) 0.87 (0.01)
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Figure 6.2: Boxplots showing the distribution of theories’ AUCs for the AND search
space for three datasets (baseline in grey).
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Figure 6.3: Boxplots showing the distribution of theories’ AUCs for the OR search
space, for three datasets (baseline in grey).

used, the algorithms have a strong bias toward rules that show good performance
early on and the best rule (in the limited search space) is found after a few iterations.
Prediction pruning counteracts this bias, and also allows candidates that only reach
their full predictive accuracy after a higher number of iterations to be explored.
However, since the algorithm may take more iterations, this can lead to more
evaluations and longer rules that are harder to evaluate.

For the SkILL experiments, the AUC of all rules containing more than one literal
(AND search space) and all theories (OR search space) was calculated. The AUC of
rules composed of only one literal was not considered because prediction pruning
has no e↵ect on these rules, which must always be explored. Analysing the
distribution of the AUC values is relevant because if the upper quartiles of the
distribution are improved, this shows that there are better candidate members



6.4. PREDICTION PRUNING 97

selected to be explored given limited resources. Lower quartiles will naturally
be discarded by the PILP algorithm’s metric to select the best final theory. The
distribution of these values for each setting and search space are presented in
Figs. 6.2 and 6.3 for the AND and OR search spaces, respectively. Each box depicts
percentiles 0 and 100 (the lower and upper whiskers, respectively), percentiles
25 and 75 (lower and upper box boundaries, respectively), and the percentile 50
(median) using a bold line. In cases where a search space is not generated for any
fold there is no boxplot in Figs. 6.2 and 6.3.

Figures 6.2 and 6.3 present the combined distribution of the AUCs of theories
produced in all folds for the AND and OR search spaces, respectively. The higher
the AUC value (y-axis), the greater the predictive power of a theory. Each boxplot
corresponds to a pruning setting in the AND or OR search space: the boxes labelled
with only one pruning criterion refer to the AND search space, whilst the boxes
labelled with two pruning criteria refer to the OR search space.

For the AUC distributions, statistical significance is also calculated (using non-
paired two-tailed t-test where the null hypothesis is that the distributions are the
same) by comparing the distribution of AUCs fold to fold (e.g. fold 1 using soft
OR prediction pruning against fold 1 without pruning). An upaired test was used
because, even though the comparison is made fold to fold, the same fold can have
a di↵erent number of candidate theories in di↵erent pruning settings.

Table 6.7 reports the number of folds where the results were statistically significant
for both the AND and the OR search spaces, and all benchmarks. In some cases,
some folds do not produce an AND or OR search space because all theories are
pruned away, and this is the cause for not always reporting five folds in comparison.
Table 6.7 shows that the safe pruning criterion causes no significant di↵erence is
candidate theory predictive quality, both for the AND and the OR operation (lines
1–2 in Table 6.7(a) and lines 1–4 in Table 6.7(b)). This is due to the fact that the safe
pruning criterion is the least aggressive criterion and therefore the proportion of
candidates that are pruned in this setting is limited. On the other hand, both soft
and hard pruning criteria cause a significant di↵erence in the AUC distribution of
candidates, in particular for the OR operation, where most folds present a significant
di↵erence (lines 5–12 in Table 6.7(b)). Aggressive criteria coupled with the AND
pruning operation do not cause such a significant di↵erence in the distribution, in
particular for the athletes dataset. This happens because the predictive power of
rules in this benchmark is similar among candidates, and so even though di↵erent
rules can be selected, this is not reflected in the distribution of AUC values. In cases
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Table 6.7: Number of significant di↵erences (left) for the number of tested folds
(right) in the AND and OR AUC distributions for di↵erent prediction pruning
settings and benchmarks metabolism, athletes and breast cancer

(a) AND search space

Setting metabolism athletes breast cancer

x 0/4 0/5 0/5
Sa 0/4 0/5 0/5

S 4/4 0/5 3/5
H – 0/5 1/4

(b) OR search space

Setting metabolism athletes breast cancer

xx 0/5 0/5 0/5
xSa 0/5 2/5 0/5
Sax 0/5 2/5 0/5

SaSa 0/5 2/5 0/5

xS 4/4 4/5 0/5
xH 4/4 4/5 –
Sx 2/5 3/5 2/5
SS 5/5 3/5 3/5
SH 5/5 4/5 –
Hx 5/5 3/5 5/5
HS 3/4 4/5 4/4
HH 1/1 4/5 –

where a search space is not generated for any fold there is no boxplot in Figs. 6.2
and 6.3, and no value reported in Table 6.7.

Quality of the AND search space (Fig. 6.2) is only significantly improved in the
breast cancer benchmark, using soft prediction pruning. However, the candidate
rules that are selected for the AND search space impact the OR search space, since
candidate theories will be selected from the rules that were previously explored.
As such, even though the AND search space only shows direct impact from us-
ing prediction pruning in the breast cancer benchmark, it indirectly impacts the
candidate theories available for the OR search space in the other benchmarks.
This is particularly relevant for the athletes dataset, where the quality of the OR
search space is a↵ected by soft and hard AND pruning. For instance, setting SS
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performs significantly better when compared to setting xS, and setting Hx’s 50 and
100 percentiles are higher than its counterpart setting xx. This e↵ect is also visible in
the breast cancer benchmark, where the settings using soft or hard AND prediction
pruning present the greatest improvement. In most cases where the quality of the
OR search space increased, AND prediction pruning had previously been applied
to the AND search space.

In Fig. 6.3 it is visible that prediction pruning can improve the quality of the
OR search space, particularly in the case of the breast cancer and the athletes
benchmarks. In the breast cancer benchmark the two upper quartiles of the
AUC distribution are clearly improved in three settings. This trend is also clear
in the athletes dataset, where again prediction pruning significantly increases the
predictive quality of the evaluated theories in three cases (and slightly in two other
settings). On the metabolismdataset, the improvement due to prediction pruning
is not as evident, but it is noteworthy that there is in fact a slight increase in the
maximum AUC value for the case of no OR pruning and hard AND pruning, as
well as in all safe pruning settings. The boxplots with range zero indicate that in
those settings the candidates that populate the beam do not have any predictive
power in the test set. However, this does not imply a loss in predictive accuracy of
the optimal model since rules of only one literal are not included in these boxplots
because they are not a↵ected by prediction pruning.

Prediction pruning thus impacts the quality of the search space positively, allowing
for limited resources to be targeted towards better candidate theories. Furthermore,
even though in some cases the quality of the search space decreases (for instance
the quality of the AND search space using hard prediction pruning in the breast
cancer benchmark), the accuracy of the best final theory found never decreases
significantly, thus showing that prediction pruning can be applied to better select
candidate theories without risk of impacting the final test accuracy.

These results show that prediction pruning maintains the predictive quality of the
generated models. Prediction pruning impacts the distribution of the predictive
quality of theories and that the use of prediction pruning can shift the maximum
value and upper quartile of the distribution upwards, thus indicating improved
candidate theory quality.
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6.5 Combining Pruning Strategies

Fitness pruning focuses on limiting the number of candidates. Estimation pruning
is aimed at reducing the execution time since it eliminates probabilistic evaluations,
which is where the greatest amount of time during execution is spent. Conversely,
prediction pruning focuses on ensuring that all rules or theories that proceed to
the next iteration are viable candidates for combination using that operation, thus
focusing on the quality of the theories combined.

Pruning options for prediction and estimation pruning allow parameters to be set
for one operation only, which results in 81 possible combinations for those settings.
Since the aim of this experimental section is to showcase the combined e↵ect of
the pruning operations, results are only presented for the cases where pruning
is set for at least two operations (e.g. soft prediction pruning in both AND and
OR operations), and cases where both estimation and prediction pruning are used
(e.g. soft prediction pruning and hard estimation pruning using the independence
estimator). This results in 9 combinations for each fitness pruning size selection,
where several measurements were recorded for each of the folds: number of rules
pruned, number of theories pruned, accuracy on the test set, and execution time.
For each dataset, all measurements were averaged out over the folds and standard
deviation is presented in brackets. As before, in what follows, only the 25/5 fitness
pruning setting is reported.

Table 6.8 presents the pruning configurations for each setting, as well as the av-
erage predictive accuracy on the test set. Table 6.9 presents the average number
of probabilistic evaluations performed and the execution time (in seconds), fol-
lowed by the standard deviation in brackets. All settings were tested for datasets
metabolism(met), athletes (ath) and breast cancer (bc), using 25/5 fitness pruning
for both the AND and OR operation.

Results in Table 6.8 show that the proposed pruning strategies can maintain (and
in the case of the medical dataset increase) the probabilistic accuracy of the best
theory found, on the test set, even though the number of evaluations performed
(columns 2–4 on Table 6.9) is greatly reduced, especially in the case of the athletes
and medical benchmarks. Despite the fact that probabilistic accuracies in the test
set are similar in most cases, the best theory may di↵er, and thus the information
content of di↵erent pruning settings w.r.t. the logic literals is di↵erent for each
scenario.

Similarly to fitness pruning, the reduction in the number of evaluations correlates
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Table 6.8: Pruning configuration for each setting (EA, PA, EO and PO stand for
AND estimation pruning, AND prediction pruning, OR estimation pruning and
OR prediction pruning, respectively) and average probabilistic accuracy on test
set for datasets metabolism(met), athletes (ath) and breast cancer (bc), using 25/5
fitness pruning.

Configuration Accuracy
Setting EA PA EO PO met ath bc

base case (xx) o o o o 0.67 (0.06) 0.95 (0.01) 0.85 (0.03)
(E=x, P=S) x S x S 0.67 (0.07) 0.95 (0.01) 0.84 (0.03)
(E=x, P=H) x H x H 0.67 (0.06) 0.95 (0.01) 0.86 (0.04)
(E=S, P=x) S x S x 0.67 (0.07) 0.95 (0.01) 0.86 (0.03)
(E=S, P=S) S S S S 0.67 (0.07) 0.95 (0.01) 0.86 (0.03)
(E=S, P=H) S S S S 0.67 (0.07) 0.95 (0.01) 0.86 (0.04)
(E=H, P=x) H x H x 0.67 (0.07) 0.95 (0.01) 0.86 (0.04)
(E=H, P=S) S S S S 0.67 (0.07) 0.95 (0.01) 0.86 (0.04)
(E=H, P=H) S H H H 0.67 (0.07) 0.95 (0.01) 0.86 (0.04)

Table 6.9: Average number of evaluations and average execution time (in seconds)
for datasets metabolism(met), athletes (ath) and breast cancer (bc), using 25/5
fitness pruning.

Setting
No. Evaluations Execution Time

met ath bc met ath bc
base case (xx) 1450 (43) 679 (6) 326 (38) 2065 (111) 1715 (25) 779 (10)

(E=x, P=S) 1321 (107) 309 (3) 333 (26) 7867 (590) 794 (10) 516 (173)
(E=x, P=H) 1227 (142) 292 (24) 36 (7) 2518 (817) 749 (57) 86 (3)
(E=S, P=x) 1412 (45) 287 (3) 84 (38) 1917 (57) 753 (10) 170 (109)
(E=S, P=S) 1358 (96) 288 (3) 67 (35) 2012 (37) 741 (8) 159 (111)
(E=S, P=H) 1227 (142) 247 (32) 25 (4) 2172 (489) 639 (75) 82 (2)
(E=H, P=x) 1181 (47) 92 (7) 26 (6) 1476 (61) 281 (16) 95 (4)
(E=H, P=S) 1181 (47) 105 (7) 26 (6) 1490 (90) 299 (16) 92 (4)
(E=H, P=H) 1228 (142) 194 (23) 25 (5) 1955 (77) 510 (53) 82 (1)
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with the shorter execution time for all settings where only estimation pruning
is used (lines 4 and 7 in Table 6.9). This is to be expected, since estimation
pruning only prevents probabilistic evaluations from being performed and has
no e↵ect on the theories that are combined to traverse the search space. Introducing
prediction pruning, however, can have a negative e↵ect both on the execution
time and on the number of evaluations performed. This is particularly evident for
the metabolismbenchmark in the soft prediction pruning setting (second line and
fourth column in Table 6.9).

The fact that prediction pruning is introduced alters the candidate theories for the
next iteration, meaning that when fitness pruning selects populations, the selected
theories are a di↵erent set than they would be if there was no prediction pruning.
This selection leads to an earlier collection of more complex to compute theories and
less likely to be discarded from estimation pruning. This e↵ect is also visible in the
metabolism and athletes benchmark, when there is a transition from soft to hard
prediction pruning while using hard estimation pruning (lines 8 and 9 in Table 6.9).

Table 6.10 presents the number of rules and theories pruned during the estimation
and evaluation pruning for varying pruning settings. This table presents only
results for the athletes benchmark and 25/5 fitness pruning. Other benchmarks and
fitness pruning options present a similar relation between pruning values.

Table 6.10: Number of rules and theories pruned during estimation and prediction
pruning for each pruning setting in athletes (ath) dataset.

Setting
No. Pruned Rules No. Pruned Theories

Estimation Prediction Estimation Prediction
base case (xx) – – – –

(E=x, P=S) – 73 (3) – 32 (4)
(E=x, P=H) – 73 (3) – 43 (3)
(E=S, P=x) 597 (9) – 0 (0) –
(E=S, P=S) 24 (0) 52 (3) 0 (0) 14 (2)
(E=S, P=H) 24 (0) 52 (3) 0 (0) 29 (2)
(E=H, P=x) 598 (8) – 194 (7) –
(E=H, P=S) 24 (0) 52 (3) 181 (7) 3 (0)
(E=H, P=H) 24 (0) 52 (3) 54 (27) 29 (2)

Results in Table 6.10 show that there is a trade-o↵ between estimation and prediction
pruning: as the amount of prediction pruning increases, estimation pruning is not
able to prune away as many combinations, since the candidate theories composing
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those populations are better suited for combination (this is visible in lines 5, 6, 8
and 9 in Table 6.10). Because fitness pruning limits the amount of theories which
are selected for combination at each iteration, the fact that better candidates are
selected each time (caused by prediction pruning) has an impact on the estimation
pruning’s ability to avoid probabilistic evaluations.

The dependency between estimation and prediction pruning does not impact the
quality of the final theory obtained, and so the decision about the best estimation
configuration will depend on the execution time alone. Figure 6.4 shows average
execution time (speedup) compared to the base case (of using no pruning), in
logarithmic scale for the three benchmarks using 25/5 fitness pruning.

Results in Fig. 6.4 show that the two fastest pruning settings are obtained when
hard estimation pruning is coupled with o↵ or soft prediction pruning (blue
and yellow lines). Settings with only prediction pruning enabled underperform
timewise when compared to other settings (grey and pink lines). The second
fastest pruning configuration is to use hard estimation and prediction pruning
(violet line), which is even slightly faster in breast cancer and a close second in
metabolism. These results indicate that the best compromise regarding estimation
and prediction pruning is to use a combination of both in order to obtain a faster
execution time and the maximum potential benefit out of combining relatively small
fitness pruning populations.
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Figure 6.4: Average execution time ratio w.r.t. the base case o↵ for datasets
metabolism (met), athletes (ath), and breast cancer (bc), using 25/5 fitness pruning,
grouped by setting (o↵ in black, other settings in colour). Execution time ratio is
plotted using a logarithmic y axis.



Chapter 7

Real World Application

Breast cancer is one of the most common forms of cancer and mammograms
are the most commonly used technique to detect patients at risk. Image-guided
core needle biopsy of the breast is then performed to decide on surgery. Biopsy
is a necessary, but also aggressive, high-stakes procedure. The assessment of
malignancy risk following breast core biopsy is imperfect and biopsies can be non-
definitive in 5-15% of cases [5]. In particular, the dataset used in this work consists
of demographic-related variables and information about the biopsy procedure and
BI-RADS (Breast Imaging Reporting and Data System) [6] annotations, as well as
domain knowledge annotated both prospectively and retrospectively by experts of
three di↵erent areas: mammography, biopsy surgery and biopsy pathology. Using
an automated decision support system is conducive to rigorous and accurate risk
estimation of rare events and has the potential to enhance clinician decision-making
and provide the opportunity for shared decision making with patients in order to
personalize and strategically target health care interventions.

Relational learning in the form of ILP (without probabilities) has been successfully
used in the field of breast cancer. Burnside et al. [16] uncovered rules that showed
high breast mass density as an important adjunct predictor of malignancy in
mammograms. Later, using a similar dataset, Woods et al. [58] validated these
findings performing cross-validation. In another work, Davis et al. [15] used SAYU,
an ILP system that could evaluate rules according to their score in a Bayesian
network, in order to classify new cases as benign or malignant. Results for a dataset
of around 65,000 mammograms consisting of malignant and benign cases showed
ROC areas slightly above 70% for recall values greater than 50%. Dutra et al. [23]
showed that the integration of physician’s knowledge in the ILP learning process

105



106 CHAPTER 7. REAL WORLD APPLICATION

yielded better results than building models using only raw data.

This chapter extends this work by applying PILP to create a decision support
system targeted to this breast cancer setting. Contrary to other decision support
systems well-known in the literature (for example, Bayesian-based or SVM-based),
PILP combines probabilistic data with first order logic in order to produce both
probabilistic outputs and human interpretable rules. The proposed setting includes
experts’ domain knowledge as (i) probabilistic rules in the background and (ii)
probabilistic target values for examples.

7.1 Methodology

The dataset used for this experiment contains data from 130 biopsies dating from
January 2006 to December 2011, collected from the School of Medicine and Public
Health of the University of Wisconsin-Madison. The data was prospectively given
a non-definitive diagnosis at radiologic-histologic correlation conferences. 21 cases
were determined to be malignant after surgery, and the remaining 109 proved to be
benign. For all of these cases, several sources of variables were systematically col-
lected including variables related to demographic and historical patient information
(age, personal history, family history, etc), mammographic BI-RADS descriptors
(like mass shape, mass margins or calcifications), pathological information after
biopsy (type of disease, if it is incidental or not, number of foci, and so on), biopsy
procedure information (such as needle gauge, type of procedure), and other relevant
facts about the patient.

Probabilistic data was then added to (i) the Probabilistic Examples (PE) and (ii) the
Probabilistic Background Knowledge (PBK). In the first instance, the confidence in
malignancy for each case (before excision) is associated with the target predicate
is_malignant/1. The chance of malignancy is an empirical confidence value
assigned by a multidisciplinary group of physicians who meet to discuss and reach
an agreement about each case. Thus, the target probabilities of examples represent
the perceived chance of malignancy for each patient. A high probability indicates
the team of physicians thinks the case is most likely malignant, and conversely a
low probability indicates the case is most likely benign. This probabilistic value
was then added to the probabilistic examples and a sample of the PE is presented
next:

Each example is a patient case and the three examples in Fig. 7.1 are part of the PE
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0.10::is_malignant(case1).

0.15::is_malignant(case2).

0.01::is_malignant(case3).

Figure 7.1: Probability annotations for Probabilistic Examples

used in this experiment (one per line). The argument for each example corresponds
to a particular case (case1, case2, or case3) and the probability annotated in the
beginning of the line represents the chance of malignancy for this case (10% for
case1, 15% for case2, and 1% for case3).

Regarding the domain knowledge incorporated in the PBK, breast cancer literature
values were used to complement the information on the characteristics of masses,
since physicians rely on these values to perform a diagnosis. For example, it is well
known among radiology experts in mammography that if a mass has a spiculated
margin, the probability that the associated finding is malignant is around 90%. The
same kind of information is available in the literature for mass shape or mass density
(all part of the BIRADS terms [6]). Figures 7.2, 7.3, and 7.4 show how these variables
are encoded in the PBK, (the notation is probability_value::relation(...)...).
Figure 7.2 encodes the probabilistic information regarding mass shape obtained
from the literature. There are three possible rules, each one applicable to a particular
kind of shape (oval, round, or irregular). A rule of this type can be read as IF this
Case has a Mass AND the Mass is of type Shape THEN this feature exists with probability
P. The probability value annotated in each rule is the frequency with which a
mass whose shape is of that type is malignant. Independent rules such as the
ones presented in Fig. 7.2 are not mutually exclusive. This means that a finding
may have simultaneously an oval and round mass shape, for instance. Given
that possible world semantics is used to encode these rules, the probability of two
rules occurring simultaneously is given by the product of their probabilities. For
instance, the probability that a mass has both an oval and round shape is equal to
0.05 ⇥ 0.50 = 0.025.

Similarly, Fig. 7.3 also encodes independent rules, each for a characteristic of the
mass margin. In this case it becomes obvious that both the microlobulated and
spiculated margins have a high correlation with malignancy in the literature, given
their high probability of malignancy (70% and 90% respectively).

Figure 7.4 di↵ers from Fig. 7.2 and Fig. 7.3 in that it encodes three mutually exclusive
possibilities for the mass density: low, equal, or high (note the new operator “;” for
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0.05::feature_shape(Case) :-

mass(Case, Mass),

mass_shape(Mass, oval).

0.50::feature_shape(Case) :-

mass(Case, Mass),

mass_shape(Mass, round).

0.50::feature_shape(Case) :-

mass(Case, Mass),

mass_shape(Mass, irregular).

Figure 7.2: Probabilistic information from the literature regarding mass shape

disjunction). The probability of malignancy from the literature is encoded in the
top three lines, which can be read as IF the density of Mass is low, the probability of
malignancy is 5%; ELSE IF the density of the Mass is equal, the probability of malignancy
is 10%; ELSE IF the density of the Mass is high, the probability of malignancy is 50%. The
density rule is then constructed based on the mutual exclusivity introduced by the
density/1 fact above.

PILP models produce classifiers which are composed by a set of FOL rules, learnt
automatically from the data, that represent a disjunctive explanation to the target
predicate being learned. Figure 7.5 presents an example of a PILP model for the
target predicate is_malignant/1, which explains malignancy in terms of margin
OR mass shape and density. Since the rules in this explanation are composed of
probabilistic literals (feature_margin/1, feature_shape/1, and feature_density
/1), the target predicate is_malignant/1 will also predict a probabilistic value
ranging from 0 to 1, even though this is not made explicit in the PILP model. This
probability output is computed using the possible world semantics [35], and it takes
into account the mutual dependency between all the probabilistic literals in the
model.

The experiment presented in this work aims at demonstrating that it is possible to
use the probabilistic data to build a model that not only obtains good predictive
accuracy, but also presents a human-interpretable explanation of the factors that
a↵ect the system in study. This model is learnt automatically from the data. In the
medical domain it is crucial to represent data in a way that experts can understand
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0.02::feature_margin(Case) :-

mass(Case, Mass),

mass_margin(Mass, circumscribed).

0.20::feature_margin(Case) :-

mass(Case, Mass),

mass_margin(Mass, indistinct).

0.70::feature_margin(Case) :-

mass(Case, Mass),

mass_margin(Mass, microlobulated).

0.90::feature_margin(Case) :-

mass(Case, Mass),

mass_margin(Mass, spiculated).

Figure 7.3: Probabilistic information from the literature regarding mass margin

and reason about, and as such ILP can successfully be used to produce such models.
Furthermore, PILP allows for incorporating in the PBK the confidence of physicians
in observations and known values from the literature.

7.2 Experiments

The PILP SkILL system [13] was used for these experiments. It runs on top of the
Yap Prolog system [14] and uses TopLog [41] as the basis rules generator and the
ProbLog Yap library as its probabilistic inference engine. This system was selected
because it can perform exhaustive search over the theory search space. Since this is
a small dataset, exhaustive search is possible. However, if the dataset were larger
there might be scalability issues in using exhaustive search, and so either SkILL with
pruning strategies [12] or another PILP system whose search engine is greedy could
be used instead (such as ProbFOIL+ [18] or SLIPCOVER [3]). In this experiment,
130 train and tune sets were used to perform leave-one-out cross validation on the
dataset, and the predicted values for the test examples were recorded.

In addition to the PILP model described earlier, three other methods were used to
compare against PILP in terms of predictive accuracy, using default parameters: a



110 CHAPTER 7. REAL WORLD APPLICATION

0.05::density(low);

0.10::density(equal);

0.50::density(high).

feature_density(Case) :-

mass(Case, Mass),

mass_density(Mass, MassDensity),

density(MassDensity).

Figure 7.4: Probabilistic information from the literature regarding mass density

is_malignant(Case) :-

feature_margin(Case).

is_malignant(Case) :-

feature_shape(Case),

feature_density(Case).

Figure 7.5: A PILP model for the target predicate is_malignant/1

Support Vector Machine (SVM), a Linear Regression (LREG), and a Naive Bayes
classifier (NB). The scikit-learn python library [42] was used to perform the pre-
processing of these experiments for the three non-relational methods. Since these
data contain several categorical features, it was necessary to transform them into
numerical features to be able to apply these methods. As such, each possible label
was first encoded as an integer. Once this was done, each feature was transformed
in several auxiliary features, each one of them binary and regarding only one of the
labels. This methodology was used to prevent the integer values corresponding to
the labels of a feature from being interpreted as being ordered, which would not
represent the independence between the labels accurately. Once these operations
were performed over all categorical features, a scaler (standardization) was applied
so as to reduce all features to mean 0 and unit variance. The predictions for each
method were then obtained.

Figure 7.6 presents the ROC curves for the malignant class and four methods tested:
PILP, SVM, LREG and NB. Each sub-figure shows the ROC of the physicians’
predictions (blue dashed line) and the ROC of a method (brown solid line), both
against the ground truth (confirmed malignancy or benignity of a tumour after
excision). Each figure also presents the respective AUCs and the p-value found
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using DeLong’s test for comparing both curves plotted.

The ROC curves presented in Fig. 7.6 were compared using DeLong’s test for two
correlated ROC curves and the di↵erence between them was found to be statistically
not significant, thus implying that all methods are statistically indistinguishable
from a physician when predicting the degree of malignancy of a patient in this
dataset. This experiment established that both PILP and other non-relational
methods can successfully mimic the mental model of physicians in what concerns
the probabilities of each case in this dataset.

Next, the absolute error of the predictions was analysed. The absolute error is
calculated by finding the absolute value of the di↵erence between the prediction
and the physicians’ score, for a given case. It is relevant to consider the absolute error
of predictions because these are the points where the classifiers’ predictions disagree
with the physicians’ mental model, and more information about the performance
of the classifier can be obtained from them. Figure 7.7 shows a plot of the classifiers
prediction values (x-axis) against the physicians’ prediction values (y-axis), for
points where the absolute error was greater than 10%. Points in green (round
markers) are cases where the tumour was found to be benign after excision, and
conversely points in red (square markers) are cases where the tumour was found to
be malignant.

Ideally, malignant prediction by both physician and the classifier should agree and
appear on the top right of the plot. Conversely, benign predictions would appear
on the bottom left. Points that are plotted below the diagonal line have higher
classifier scores than physician scores, and conversely points which are plotted
above the diagonal line have higher physician scores than classifier scores.

From the plots in Fig. 7.7, it is clear to see that the PILP classifier assigns higher
malignancy values than physicians do to the confirmed malignancy cases (red
points under the diagonal line). This is the case for 8 of the 9 malignant cases, and
in the single case where this does not happen, PILP still predicts a reasonably high
probability of malignancy (60%). Furthermore, for a malignancy threshold of 0.8,
PILP still classifies five malignant cases correctly, whilst this only happens for one
case using the physicians’ scores. When PILP is compared to the other methods
tested, it becomes clear that, in most cases, the other methods do not assign higher
scores to malignant points than physicians do (few red points beneath the diagonal
line), therefore not being of as much use to physicians as PILP, to aid in the diagnosis
of malignant tumours. The ability to identify malignant cases is desirable in medical
data since a false negative corresponds to assigning a benign label to a patient who
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Figure 7.6: ROC curves, AUCs and p-values for PILP, SVM, LREG and NB methods
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Figure 7.7: Plot of benign (green) and malignant (red) cases for the PILP, SVM,
LREG and NB methods, for errors greater than 0.1, using a negligible amount of
jittering
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in fact has a malignant tumour.

Since the aim of decision support systems is to aid the process of medical diagnoses,
two more models were built based on the results obtained previously. These two
models are combined human and machine models, meaning that they take into
account both the physicians’ and the classifiers scores. The PILP classifier was
selected as the machine model since it proved to be best at identifying malignant
cases that the physicians had di�culty with. For this reason, two models were
analysed: calculating the average of physician and the PILP scores, and calculating
the maximum of the physician and the PILP scores. Figure 7.8 presents the ROCs,
AUCs and p-values using DeLong’s test for both these models.
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Figure 7.8: ROC curves, AUCs and p-values for the average of physician and PILP
scores and for the maximum of physicians and PILP scores

The ROC curves plotted in Fig. 7.8 show no significant di↵erence to the physicians
predictive power, similarly to all other classifiers tested. Figure 7.9 performs the
absolute error analysis, plotting the points where these models’ predictions and
physician’s predictions di↵er by a value greater than 10%.

The scatter plots in Fig. 7.9 show that the maximum model can now predict higher
scores for all malignant points (all red points below the diagonal line). This is to
be expected since the model’s scores are in e↵ect the maximum score of the PILP
and the Physician’s model. However, both these models predict higher values for
the benign cases as well, which is particularly evident in the case of the maximum
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Figure 7.9: Plot of benign and malignant cases for the average and maximum of
physician and PILP models, for errors greater than 0.1, using a negligible amount
of jittering

model, where there are no points above the diagonal line. Whilst a high recall is a
desirable feature in a medical decision support system, the ability to discriminate
between malignant and benign cases is also important. The PILP model performs
better in this area (Figure 7.7), since there is a vertical cluster of benign points which
are clearly identified by the PILP model as being benign (score of 0.1 or less), and
which are no longer present in the combined models analysed here.

Next, the full dataset was used to extract non-trivial knowledge regarding the
physician’s mental model that is being mimicked and the final theories found are
reported in Fig. 7.10.

From the rules shown in Fig. 7.10, the first one contains a probabilistic fact related to
one mammography descriptor: the shape of a mass. In medical literature, irregular
shapes or spiculated margins indicate higher risk of malignancy. This is captured by
the system, as well as other features such as no observed increase in mass size and an
ultrasound core needle biopsy type. Similarly, the other two rules present features
that are evidence of higher risk of malignancy, such as asymmetry, the gauge of the
needle and a possible displacement of the needle (o↵set) during biopsy which can
contribute as a confounding factor.
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is_malignant(Case):-

biopsyProcedure(Case,usCore),

changes_Sizeinc(Case,missing),

feature_shape(Case).

is_malignant(Case):-

assoFinding(Case,asymmetry),

breastDensity(Case,scatteredFDensities),

vacuumAssisted(Case,yes).

is_malignant(Case):-

needleGauge(Case,9),

offset(Case ,14),

vacuumAssisted(Case,yes).

Figure 7.10: Theory extracted for physician’s mental models.

7.3 Related Work

Relational learning in the form of ILP (without probabilities) has been successfully
used in the field of breast cancer. Burnside et al. [16] uncovered rules that showed
high breast mass density as an important adjunct predictor of malignancy in mam-
mograms. Later, using a similar dataset, Woods et al. validated these findings [58]
performing cross-validation. In another work, Davis et al. used SAYU, an ILP
system that could evaluate rules according to their score in a Bayesian network, in
order to classify new cases as benign or malignant. Results for a dataset of around
65,000 mammograms consisting of malignant and benign cases showed ROC areas
slightly above 70% for Recall values greater than 50% [15]. Dutra et al. showed
that the integration of physician’s knowledge in the ILP learning process yielded
better results than building models using only raw data [23]. The model we use
in this paper was presented in more detail in [13] and [12]. One of the datasets
used in those works is the same used in this paper, but only for comparing system’s
execution times. To the best of our knowledge, this is the first work that applies
PILP to the area of breast cancer, and illustrates how a probabilistic knowledge
representation can be linked with a logic representation to learn more expressive
data models.



Chapter 8

Conclusion

Probabilistic Inductive Logic Programming is an important and hot research topic
which has been attracting many communities and fostering events and journals
special issues. We believe we contributed to the advance to the state-of-the-art
in the field by allowing the e�cient modelling and processing of probabilistic
knowledge as well as extraction of relevant new (probabilistic) knowledge from
the data without compromising (probabilistic) accuracy. This chapter concludes the
work by summarising the main contributions it presents, as well as by discussing
some directions of future work.

8.1 Main Contributions

The work described in this thesis consisted of the design, implementation and
evaluation of a set of three pruning strategies for the PILP search space. To the best
of the author’s knowledge, the pruning strategies presented in this work are the first
pruning strategies designed specifically for the PILP probabilistic logic search space,
and which make use of the probabilistic information of candidate theories. Because
the probabilistic information of candidate PILP theories can be used in di↵erent
ways, three pruning criteria were studied, for each pruning strategy. Furthermore,
the SkILL PILP system, also implemented as part of this work, allows for the
exhaustive traversal of the PILP search space (when using no pruning), which in
turn makes it possible to thoroughly assess the impact of pruning strategies in
PILP candidate theories evaluated. Next, the main contributions of this work are
described in more detail.

117
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PILP Search Space Description An important contribution of this work in the
systematic description of the PILP search space. The PILP search space can
be divided in the AND search space (which explores rules) and the OR search
space (which explores theories). In the AND search space, rules are combined
using logic conjunction, and therefore they become more specific the greater
the number of literals in their body. Specifying a rule has an impact in the
probabilistic mass is covers (i.e. the proportion of worlds in which it is true),
and this relation is what makes pruning the search space possible, using
probabilistic information. This is a characteristic which is unique to PILP
search spaces, since it does not occur in the deterministic version of the ILP
algorithm. The behaviour of the OR search space is analogous to that of the
AND search space, but in this case logical disjunction is used. This means that,
unlike rules, theories which are composed of more rules are more general. The
joint exploration of both the AND and the OR search spaces represents the
full PILP search space.

Pruning Strategies Based on a thorough PILP search space understanding, three
pruning strategies were developed in this work. Di↵erent pruning strategies
target di↵erent characteristics of the PILP search space traversal, but their
main purpose is to make the exploration of the PILP search space as e�cient
as possible. The pruning strategies can be used separately or in combination
with each other, and they can each use di↵erent pruning criteria, for either
search space. The proposed pruning strategies are:

• Fitness pruning: this pruning strategy aims at making the exponential
explosion of the PILP search space polynomially bound. This is akin to
using beam search, only the candidate members which transition to the
following iteration are generated from two separate populations. These
populations are termed the Primary and Secondary populations. The
number of members of these populations are user specified (though a
default is build in the SkILL system) and they are what determines the
polynomial bound of explored candidates (the beam size). The members
of these populations can be selected using di↵erent ranking metrics for
each population and each search space this pruning strategy is applied to.
The SkILL system supports the use of MAE and RMSE as ranking metrics,
as well as an option for random candidates which aims at diversifying
the search space. The e↵ect of this pruning strategy is especially visible
in the OR search space, since the AND search space is limited by the
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number of literals present in the PBK.

• Estimation pruning: unlike the fitness pruning strategy, estimation prun-
ing prunes candidate theories one by one, and so there is no clear
boundary on the number of explored theories during an execution. The
aim of this pruning strategy is to avoid the computationally taxing exact
probabilistic evaluation of candidate rules and theories. To achieve
this, estimation pruning generates an estimate of the predictions of a
candidate theory which is based on previously gathered probabilistic
information. This work proposed five possible estimators for this prun-
ing strategy: maximum, minimum, center, independence and mutual
exclusion. Each of these estimators produces di↵erent estimations for
candidate theories, and their behaviour also depends on which search
space is being traversed. Once the estimation process is complete, the
decision to prune away a candidate can be made based on one of the three
pruning criteria. This pruning strategy can greatly reduce execution time
since estimated bad candidates are never evaluated, and therefore they
do not transition to the next iteration of the algorithm, in particular
the independence estimator. However, this pruning strategy cannot
guarantee that the optimal candidate theory is not pruned away due
to an inaccurate estimation of its predictions.

• Prediction pruning: this pruning strategy di↵ers from the two previous
pruning strategies in that, under certain conditions, it is a safe pruning
strategy, meaning that it can guarantee that the optimal candidate model
is never pruned away. Unlike estimation pruning, prediction pruning
prunes candidates after the exact probabilistic evaluation process takes
place, and so this only impacts the candidates which transition to the
next iteration of the algorithm. As such, the aim of prediction pruning
is to allow only good candidates to transition to the next iteration. This
is particularly important when there are limited resources available, for
instance a maximum amount of running time, as is the case in most real
world applications of PILP. The use of prediction pruning increases the
quality of the explored fraction of the search space by e↵ectively removing
bad candidates from transitioning to the next iteration.

Pruning Criteria In estimation and prediction pruning, the decision to prune a
candidate theory away can be made based on di↵erent pruning criteria. This
work presents three pruning criteria with varying degrees of aggression: hard,
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soft and safe pruning criteria. All of the pruning criteria take into account the
predictions of a candidate theory, and how they are positioned w.r.t. the
example (target) values. In the case of estimation pruning, the estimates of a
candidate theory are used in lieu of the actual predictions computed through
exact probabilistic evaluation. The three pruning criteria are described next.

• Safe pruning criterion: this pruning criterion is the less aggressive prun-
ing criterion presented in this work, and it only prunes away candidates
which present a bad predictive performance for every example. When
this pruning criterion is coupled with the prediction pruning strategy,
the resulting pruning operation is guaranteed to never prune away the
optimal model.

• Soft pruning criterion: this criterion is more aggressive than the safe prun-
ing criterion but less so than the hard pruning criterion. The soft pruning
criterion takes into account the overall positioning of the predictions
w.r.t. the examples. If the candidate theory is performing badly on most
examples, it will be pruned away; otherwise, it is kept. This is computed
by taking into account the absolute error between the predictions and the
examples, calculated for every example point.

• Hard pruning criterion: this is the most aggressive pruning criterion
introduced in this work, and it pruned away candidate theories which
perform worse in at least one example point (performance is again
assessed based on average error). Even though this is an aggressive
approach, this criterion can reduce execution time while maintaining
predictive quality of the final model is most cases.

The SkILL System Unlike other systems in the literature, the SkILL system allows
for exhaustive traversal of the search space (when using no pruning), con-
ducted in separate stages so as to make the individual impact of pruning strate-
gies more evident. SkILL runs on the Yap Prolog system [14], uses TopLog [41]
as the basis rules generator and the ProbLog Yap library as its probabilistic
inference engine. It is publicly available at bitbucket.org/joanacortereal/skill/. The
SkILL system supports all the combinations of pruning strategies and criteria
presented in this work. Furthermore, due to its modular code, user defined
criteria can easily be added, as well as di↵erent ranking metrics and evaluation
metrics.

Performance Evaluation This work presents a performance study for all pruning
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strategies and criteria, assessed both individually and combined with each
other. The performance of the pruning strategies introduced in this work
takes into account the execution time of the program, as well as the predictive
accuracy of the final optimal model chosen, always calculated in a test set.
This performance is also assessed using two PILP systems: the SkILL system,
and another system from the literature (ProbFOIL+).

Real World Application this contribution consisted of building a PILP breast can-
cer benchmark using data from non-definitive biopsies and performing an
exploratory study of these data. This study built a PILP model for the breast
cancer data which predicts malignancy of the tumours and is statistically
indistinguishable from the medical doctor’s predictions. The cases where
the model and the medical doctors’ predictions disagree (i.e. present an error
greater than 10%) were analysed in more detail. In these cases, the PILP model
was shown to predict consistently higher values for malignancy of tumours,
which is a desirable feature in medical decision support systems.

8.2 Future Work

The author hopes that the work resulting from this thesis can be a basis for further
research in this area. Even though the goal of designing, implementing and
testing pruning strategies for the increased e�ciency of PILP engines was achieved,
there are several future directions which can be explored. The pruning strategies
introduced in this work weigh equally all misclassification costs, which may not be
desirable in many cases. Furthermore, the parameters for the search must be set by
the user (the SkILL system implements a default value), which is not ideal if the user
is not familiarise with the behaviour of the pruning strategies and pruning criteria.
Finally, the pruning strategies introduced here consider a specific flow for search
space traversal: first traverse the AND search space and then the OR search space.
Whilst this strategy better showcases the e↵ects of pruning, it might be interesting
to develop a search strategy which can, at every point in the algorithm, decide
whether to specify or to generalise a theory, based on some of the criteria developed
in this thesis (however, this was out of the scope of this work). These directions for
future research are detailed below.

Di↵erent Misclassification Costs By using distance (or square distance) as a metric
in the PILP evaluation of theories, it is not possible to di↵erentiate whether a
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prediction is higher or lower than an example value. In real world applications
(such as the medical field, for instance), a false positive (prediction greater
than example value) may be more important than a false negative (example
value greater than prediction value), and so the PILP model should reflect this
preference. This could be done in two ways:

• Pruning criterion: develop a pruning criterion which weights either
positive or negative distance more heavily than the opposite distance.

• Evaluation metric: chose the best model based on a metric which weighs
positive and negative distance di↵erent.

Automatic Selection of Parameters this work introduced three di↵erent pruning
strategies, each with a set of parameters which can be tuned. Fitness pruning
parameters are two population sizes and two population ranking metrics,
estimation pruning parameters are an estimator and a pruning criterion and
prediction pruning only requires the choice of a pruning criterion, all of these
for the AND and OR operations. A future research direction could be to
develop a heuristic on how to select these parameters automatically and/or
dynamically during the evaluation process, instead of having them set by the
user. There are three di↵erent types of parameters that could be automatically
selected:

• Pruning criterion: for both AND and OR operation, and for both estima-
tion and prediction pruning.

• Estimator: if estimation pruning is used, for both operations.

• Population size: if fitness pruning is used, for both operations. Also, this
size could adjust for each iteration, for instance allowing for more less
complex (shorter) candidates, but less more complex (longer) candidates.

Search Space Traversal the pruning criterion presented here are aimed at pruning
away parts of the PILP search space lattice so that it does not have to be
explored. However, it might be possible to adapt them so that the search
algorithm can be guided by them, i.e. develop a greedy search algorithm
instead of pruning away parts of the search space. This could be done by
using the specificity/generality of theories, possibly combined in sequential
steps. A naive approach to this would be: (i) select a (good) theory; (ii) specify
the theory according to some criterion until it is too specific; (iii) generalise
the theory according to some criterion until it is to general (iv) repeat steps (ii)
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and (iii) until the final theory can no longer be improved by performing either
operation.
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