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Acute  life-threatening  situations  are  particularly  critical  when  superimposed  on  chronic  diseases.  The
objective  of  this  study  was  the  assessment  of  heart  rate  (HR)  dynamics  during  episodes  of  acute  anoxia
superimposed  on  a  rat model  of  chronic  pulmonary  hypertension.  In 10  adult  Wistar  rats,  five  weeks
after  pulmonary  hypertension  induction  with  Monocrotaline,  we  analysed  eight  1-min  HR segments,
during  episodes  of  baseline,  mechanical  ventilation  and  acute  anoxia,  using  linear  indices,  approximate
eart rate variability (HRV)
ime and frequency domain analysis
ntropy
noxia

entropy  (ApEn),  sample  entropy  (SampEn)  and multiscale  entropy  (MSE).  The transition  from  baseline
or  mechanical  ventilation  to  early  anoxia  was  identified  through  almost  all indices,  but  SampEn(2,0.6)
was  the  index  that  better  identified  all the  transitions.  MSE  presented  limited  performance,  possibly  due
to the  non-stationary  nature  and  short  duration  of  the acute  anoxia  episodes.  A  systematic  evaluation  of
all computed  HR  indices  may  help  to  identify  which  indices  or combination  of  indices  more  adequately
discriminates  and  monitors  critical  acute  events  superimposed  on  chronic  clinical  conditions.
. Introduction

Clinicians are often confronted with acute life-threatening sit-
ations superimposed on chronic diseases, both during pre and
ostnatal life, such as acute anoxia during labour superimposed
n a severely growth retarded fetus or acute myocardial infarction
uperimposed on a chronic heart failure condition. Accordingly,
ntensive monitoring of patients with severe chronic conditions is

andatory when they suffer, or are at high risk of suffering, an acute
nsult, namely during labour, surgery or intensive care treatment.
n this setting, heart rate (HR) analysis remains as one of the most
sed and useful monitoring tools.

Linear methods for HR variability (HRV) analysis, in both time
nd frequency domains, have been applied in human studies and
tandard guidelines were established [41]. Spectral analysis, in

articular, allows the identification of two distinct peaks, linked to
he activities of the two branches of the autonomic nervous system
41]. However, the application of these methods to animal studies,
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needs to be adapted to every situation [2],  considering results
heralded from previous research, that may  be used as guidelines,
although it should be noted that different experimental settings
may  lead to significant differences in HRV parameters.

Nonlinear methods have also been applied to HRV analysis [1,2].
The two main categories of these methods are: (i) indices that
describe the scaling behaviour of a system; (ii) indices that describe
the complexity of a system. The scaling behaviour of a system may
be evaluated through fractal dimension (FD), 1/f  slope or detrended
fluctuation analysis (DFA). The analysis of a system in the phase
space enables the assessment of its complexity. The correlation
dimension indicates the dimension of the phase space, Lyapunov
exponents provide the sensitivity of the system to initial condi-
tions and approximate entropy (ApEn) is a measure of the system
complexity [2].

ApEn [34,36] has been widely applied in both human
[17,18,23,40] and animal studies [19,20,32].  Nevertheless, the
selection of ApEn parameters may  significantly influence the anal-
ysis between normal and heart failure human groups [29]. Indeed,

although reference values for the embedding dimension m and the
threshold r have been proposed [36], recent work underline the
critical role of parameter choice, particularly the threshold r [7,30].
Therefore, research on this topic is required, namely pertaining to

d.
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he application of ApEn to animal studies. Moreover, traditional
ntropy-based measures yield higher values for systems exhibit-
ng long-range correlations than for random systems, such as in the
ase of white noise and for 1/f  noise. These contradictory results led
osta et al. to propose the multiscale entropy (MSE) analysis, a new
ntropy-based method which incorporates both entropy and scale
6,8,11]. This method may  be more appropriate for a correct estima-
ion of system complexity and also enables the distinction between
ynthetic and physiological time series [9],  since synthetic time
eries are simpler than physiologic time series, which under healthy
onditions, present a complex temporal structure with multiscale
orrelations. However, little is known about the applicability of MSE
nalysis to animal studies [5,43].

The objective of this study was the assessment of HR dynamics
ith linear and nonlinear methods during episodes of acute anoxia

uperimposed in a rat model of chronic pulmonary hypertension,
ith particular emphasis on common and novel entropy-based
ethods.

. Methods

.1. Animal model

Pulmonary hypertension was induced, with a single sub-
utaneous 60 mg/kg Monocrotaline injection (Sigma, Barcelona,
pain), in 10 adult female Wistar rats (Charles River Laboratories;
arcelona, Spain), weighing 215–260 g, with ages ranging between

 and 8 weeks, previously used in another study [20], were housed
n groups of 5 rats/cage, in a controlled environment, under a 12:12-

 light–dark cycle, at a room temperature of 22 ◦C, with a free
upply of food and water. All rats initially had ECG monitoring
uring 20 min  (week 0) under ketamine anaesthesia (50 mg/kg,

ntraperitonealy) and were subsequently monitored in a similar

ay weekly for 5 weeks (weeks 1–5). By the end of the third week,

ne rat died and the other rats presented signs of overt heart fail-
re, namely lethargy, laboured breathing, cachexia, vein and liver
ngorgement, pleural effusion and ascites, as well as significant

ig. 1. Typical HR record of a rat model of chronic pulmonary hypertension, during 20 b
f  induced anoxia. In the top the complete record is shown, and below eight selected seg
elected  segments represented in the lower plots.
g & Physics 35 (2013) 559– 568

changes in linear and nonlinear HR indices [20]. In the last week
(week 5), after 20 min  of acquisition, they were also mechanically
ventilated with 100% O2 at a respiratory rate of 1.25 Hz and a tidal
volume of 2 mL, during 1 min  and then with 5% CO2 and 95% N2
during 5 min  of induced anoxia. All animal experiments were per-
formed according to the Portuguese law on animal welfare and the
National Institutes of Health Guide for the Care and Use of Labora-
tory Animals (NIH Pub. No. 85-23, Revised 1996).

2.2. Heart-rate acquisition and pre-processing

HR acquisition and pre-processing was performed as described
elsewhere [19,20]. Shortly, one electrode was placed subcuta-
neously in each leg, to acquire the ECG signal at a sampling rate of
500 Hz, according to a standardized procedure [19]. The tachogram
obtained after automatic R wave detection and expert validation
was subsequently resampled at a frequency of 8 Hz – in order to
provide a correct coverage of the considered spectral bands in HR
analysis – and then converted to the HR signal, in beats per minute
(bpm), using cubic spline interpolation. Due to experimental dif-
ficulties already mentioned in Section 2.1 and to some periods of
signal loss, only some segments were available for analysis: 8 in
the baseline period, 6 during mechanical ventilation and 7, 6 and 7
segments in the first, second and third minutes of induced anoxia,
respectively. In order to provide some insight on the occurrence
rate of ectopic beats, HR values which are 10% above or below
from their previous HR value were considered as potentially being
associated with an ectopic beat. Accordingly, the average of this
occurrence rate was found to be 0.0% in the baseline, 0.4% during
mechanical ventilation and around 2.2% in the anoxia period.

2.3. Heart rate analysis
Eight 1-min segments (each segment corresponding to 480
points) without signal loss (signal loss was  manually identified)
were analysed: the first 4 min  during baseline recording (exclud-
ing the first 2 min  in order to ensure a stable tracing) assigned

aseline minutes, followed by 1 min of mechanical ventilation at 1.25 Hz and 5 min
ments. The dashed vertical lines in the upper plot represent the limits of the eight
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espectively B1, B2, B3 and B4; 1 min  during mechanical ventilation
ssigned MV;  and the first 3 min  of induced anoxia assigned respec-
ively A1, A2 and A3. An example of a full HR signal and its respective
ight segments is presented in Fig. 1. The spikes visible in Fig. 1 cor-
espond to ectopic beats, since errors motivated by the automatic
etection of the R wave were manually corrected as mentioned

n Section 2.2.  The ectopic beats were not eliminated, particularly
ecause they may  represent a ‘typical’ pattern in anoxia periods

 rather than isolated points present in normal recordings of HRV
animal or adult) – avoiding the loss of important information.

HR variability analysis was based on both linear (time- and
requency domain) and nonlinear (entropy) indices. Particular
ttention is devoted to nonlinear entropy-based analysis. The con-
idered indices are described in the following sections.

.3.1. Time- and frequency domain (linear) indices
Time- and frequency-domain measure analysis was carried

ut as previously described [16]. Time-domain measures included
ean HR (mHR) and respective standard deviation (sdHR), long-

erm irregularity (LTI), mean amplitude between maximum and
inimum in each minute (�), short-term variability (STV) and

nterval index (II). All these indices with the exception of II index
eflect gross changes in FHR average and variability, whereas the
I index assesses short-term FHR variability taking into account
ong-term variability. Further details may  be found in [16].

For spectral data characterization, non-parametric (Welch)
pectrum estimation was performed [22], considering a Hanning
indow of 256 points and 62.5% of superposition. Several spec-

ral bands have been described and analysed for rat HR [3,26].
he decomposition of HRV allows the identification of a very low
requency component (VLF), below 0.04 Hz, and two components
ssociated to the low and high frequencies (LF and HF), centred
pproximately at 0.1 Hz (0.04–1.00 Hz) and at the respiratory fre-
uency (1.00–3.00 Hz), respectively [26]. These spectral bands were
reviously validated [20].

.3.2. Entropy analysis
Entropy is a concept that addresses system randomness or pre-

ictability, with greater entropy reflecting higher randomness and
ower system order [35]. In addition, entropy has been shown to
e a parameter that characterizes chaotic behaviour [39]. There
re several distinct entropy formulations. The classical Shannon’s
ntropy [38], H(X), of a given signal X, is defined as

(X) = −
∑

xi

p(xi) log p(xi) = −E [log p(xi)] (1)

here X represents a single discrete random variable a set of val-
es � and probability mass function p(xi) = Pr{X = xi}, xi ∈ � and E
epresents the expectation operator. The Kolmogorov–Sinai (K–S)
ntropy, developed by Kolmogorov [25] and later expanded by
inai, was the basis of the development of some entropy algorithms,
uch as those given by Grassberger and Procaccia [21] and by Eck-
ann and Ruelle [13]. However, the KS entropy was not developed

or statistical applications, presenting several limitations in this
egard.

.3.2.1. Approximate entropy (ApEn) and sample entropy (SampEn).
n order to provide a wide applicability of an entropy measure,
incus [34] proposed approximate entropy (ApEn), which was con-
tructed along thematically similar lines to the K–S entropy. It
llows for addressing data length constraints commonly encoun-

ered in several applications such as in the analysis of the HR
ignal, and is potentially applicable to noisy time-series data [36].
iven N data points {x(i)} from a HR signal, a sequence of N − m + 1
ectors {u(i)} is formed by u(i) = [x(i), . . . , x(i + m − 1)], where m
g & Physics 35 (2013) 559– 568 561

corresponds to each vector length. Based on the distance
d[u(i), u(j)], defined as the maximum difference between vectors
u(i) and u(j) respective scalar components (i.e., the distance is the
L∞-norm), the quantity

Cm
i (r) = number of j ≤ N − m + 1 such that d[u(i), u(j)] ≤ r

N − m + 1
(2)

measures the frequency of patterns similar to a given pattern of
window length m within a tolerance r. The average of the natural
logarithm of the Cm

i
(r) values is defined as

�m(r) = 1
N − m + 1

N−m+1∑

i=1

ln(Cm
i (r)) (3)

Then ApEn(m,r)  is defined as

ApEn(m, r) = limN→∞[�m(r) − �m+1(r)] (4)

and based on a finite number of N data points it can be estimated
by the family of statistics

ApEn(m, r, N) = �m(r) − �m+1(r) (5)

Pincus and Goldberger [35] have stated that ApEn decrease often
correlates with standard deviation (SD) decrease. However, they
suggest that it may  be possible to decorrelate ApEn from SD, by
specifying r in ApEn(m,r,N) as a fixed percentage of the sample SD of
the individual subject data set. They call this normalized regularity.
Based on calculations that included both theoretical analysis and
clinical applications, m = 1 or 2 and r between 0.1 and 0.25×SD of
the x(i) data produce good statistical validity of ApEn(m,r,N) [36].
Based on previous works [19,20], m was considered as 2 and the
set of values 0.1 SD, 0.15 SD, 0.2 SD, 0.6 SD,  0.9 SD and 1.2 SD was
considered for parameter r. A fast algorithm for ApEn computation
is proposed in [14]. Despite the ApEn(m,r) algorithm similarities,
ApEn(m,r,N) is not intended to be an approximate value of the K–S
entropy [34,35].  ApEn has several technical advantages in compar-
ison to K–S entropy for statistical usage: it is nearly unaffected by
noise of magnitude below r, the filter level; it is robust to occasional
artifacts, either large or small; it gives meaningful information with
a reasonable number of data points; and it is finite for both stochas-
tic and deterministic processes. Therefore, ApEn is applicable to
noisy, medium-sized data sets, such as those typically encountered
in HR data analysis [35].

ApEn(m,r,N) is a biased statistic of ApEn(m,r),  as the expected
value of ApEn(m,r,N) is less than the parameter ApEn(m,r). This
is mainly due to the fact that ApEn counts self-matching’s. Sam-
ple entropy (SampEn), proposed by Richman and Moorman [37],
is an entropy measure which is computed in a similar manner as
ApEn, with the major difference that SampEn does not count self-
matches, having reduced bias when compared to ApEn. Despite the
advantages of SampEn over ApEn, in some cases ApEn has shown to
provide better discrimination ability than SampEn, and thus both
measures were considered in the present work. The same set of val-
ues for parameters m and r was considered for ApEn and SampEn.

For the sake of simplicity, hereafter ApEn(m,r,N) and Sam-
pEn(m,r,N) will be merely assigned as ApEn(m,r)  and SampEn(m,r),
as all the analysed segments are composed by 480 points (as pre-
viously described).

2.3.2.2. Errors in the estimation of ApEn and SampEn due to the finite
resolution of the RR time series. The quantification errors in the

discrete RR time series produce considerable errors in the ApEn
estimation (bias and variance) when the signal variability or the
sampling frequency is low [15]. García-González et al. [15] pro-
posed a figure of merit of the RR time series [signal to resolution
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Fig. 2. Example of the 1-min baseline segment showed in Fig. 1 in scales 1–6 an

f the neighbourhood ratio (SRN)] in the computation of ApEn (or
ny other quantification of the recurrence plot) defined as

RN = SDNN × fs × r = εfs (6)

here SDNN is the standard deviation of the RR sequence, fs is the
ampling frequency of the ECG and r corresponds to the thresh-
ld parameter previously described. This figure of merit allows for
elating SRN with the errors associated with ApEn computation in
wo ways:

It is expected that a time series with SRN near an integer number
will have greater errors than those with SRN near n + 1/2 (n ∈ ℵ);
The greater the SRN, the lower the error (not monotonically).

Further details supporting these observations are found else-
here [15]. Based on their results, it could be roughly inferred that

n order to achieve an error less than 0.1 in ApEn computation, the
RN measure should be approximately greater than 3 regardless
f its fluctuations around integer numbers [15]. In this work the
R signal is analysed instead of the RR sequence, followed by a

esampling procedure. We  evaluated the figure of merit SRN prior
o the conversion of the RR sequence to HR signal. This allows for
valuating whether the sampling frequency of the ECG leads to
acceptable” errors in ApEn computation.

.3.2.3. Criteria for the selection of the threshold parameter r. The
election of the threshold parameter r in ApEn and SampEn is con-
roversial and still a subject of research [7,29,30]. Lu et al. showed
hat one should use the parameter r corresponding to the maximum
pEn value, in order to discriminate time series with different lev-
ls of complexity [30]. However, the search for such parameter is a
omputationally costly task. Therefore, they proposed general for-
ulas for the selection of parameter r for each individual, instead of

 fixed percentage. The equations for embedding dimension m = 2
roposed by Lu et al. [30] and Chon et al. [7],  which relies on the
election of the threshold r, are respectively
Lu = −0.02 + 0.23
√

sd1/sd2

4
√

N/1000
(7)
responding SampEn(2,0.15) values of each scale according to the MSE analysis.

rChon = −0.036 + 0.26
√

sd1/sd2

4
√

N/1000
(8)

The quantity sd1 corresponds to the short-time variability and is
computed as the standard deviation of the successive differences
of {x(i)}, whereas sd2 is associated to long-term variability of the
signal and is computed as the standard deviation of {x(i)}. These
two formulas for the selection of parameter r were considered in
addition to the previously referred set of values for r.

2.3.2.4. Multiscale entropy (MSE) analysis. Costa et al. proposed a
new entropy-based method, multiscale entropy (MSE) analysis,
which incorporates entropy and scale [8,11].  Given a one-
dimensional discrete time series, {x1, . . . , xi, . . . xN}, coarse-grained
time-series are constructed as

y(�)
j

= 1
�

j�∑

i=(j−1)�+1

xi, 1 ≤ j ≤ N

�
(9)

where � stands for the scale factor. It consists on dividing the origi-
nal time series into nonoverlapping windows of length �, following
by the averaging of the data points inside each window. Finally, an
entropy measure (usually SampEn) is calculated for each coarse-
grained time series plotted as a function of the scale factor �. This
procedure is called MSE  analysis. Since in this work 1-min seg-
ments are considered, which are composed by 480 points, and ApEn
should be computed in segments with at least 75 points [36], the
MSE  analysis is performed on scales 1–6. An example of a 1-min
baseline segment in scales 1–6 is provided in Fig. 2, together with
the MSE  analysis for SampEn(2,0.15).

2.4. Statistical analysis

The first four 1-min segments from the baseline period, the 1-
min  segment of mechanical ventilation and the first three 1-min
segments from the anoxia period (totalizing eight 1-min segments),
were compared regarding each of the considered HRV indices. The

measurement of the same individual at different time instants
requires the use of paired approaches for hypothesis testing. How-
ever, due to signal loss in some segments of different rats and
other factors previously mentioned in Sections 2.1 and 2.2,  there
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Table 1
Bootstrap percentile 95% confidence intervals for the linear HR indices described in Section 2.3.1, for the first 1-min segment from baseline (B1), mechanical ventilation
period (MV), and the first (A1), second (A2) and third (A3) 1-min segments of the anoxia period. The units for mHR, sdHR, LTI, � and STV are bpm, whereas the units for TP,
LF  and HF are bpm2. (a) p < 0.05 B1 versus MV;  (b) p < 0.05 B1 versus A1; (c) p < 0.05 MV versus A1; (d) p < 0.05 A1 versus A2.

B1 MV A1 A2 A3 p

mHR 416.8–464.5 243.8–411.8 196.5–274.7 131.1–157.9 109.9–180.7 a,b,d
sdHR  4.9–8.0 5.9–18.7 41.4–81.1 7.2–71.4 7.4–56.2 b,c
LTI  7.8–12.5 4.2–13.7 74.0–214.6 11.6–55.9 15.9–149.5 b,c,d
�  29.0–44.4 52.7–405.9 242.2–514.0 25.4–1654.0 24.9–355.3 a,b
STV  4.5–5.4 1.9–7.4 6.6–14.1 1.9–11.2 1.3–29.1 b,c
II 0.71–1.01 0.47–0.96 0.17–0.31 0.23–0.56 0.15–0.53 b,c,d
TP 23.4–40.7  5.2–65.5 177.0–1054.0 12.6–10747.0 3.9–2480.0 b,c
LF 2.6–7.2  1.6–7.9 58.5–564.3 9.7–1988.0 1.5–1907.0 b,c
HF  9.4–16.3 2.6–44.0 13.7–146.0 0.1–3500.0 0.0–355.3
LF/HF 0.2–0.8 0.1–0.9 0.7–34.3 1.4–93.3 5.4–179.4 b

Table 2
Bootstrap percentile 95% confidence intervals for the nonlinear HR indices described in Section 2.3.2, for the first 1-min segment from baseline (B1), mechanical ventilation
period  (MV), and the first (A1), second (A2) and third (A3) 1-min segments of the anoxia period. The units for mHR, sdHR, LTI, � and STV are bpm, whereas the units for TP,
LF  and HF are bpm2. (a) p < 0.05 B1 versus MV;  (b) p < 0.05 B1 versus A1; (c) p < 0.05 MV versus A1; (d) p < 0.05 A1 versus A2.

B1 MV A1 A2 A3 p

ApEn(2,0.1) 0.75–0.81 0.79–1.06 0.17–0.44 0.29–0.51 0.19–0.36 b,c
ApEn(2,0.15) 0.98–1.07 0.76–1.06 0.10–0.35 0.22–0.42 0.12–0.29 b,c
ApEn(2,0.2) 1.05–1.21 0.59–1.18 0.09–0.25 0.18–0.35 0.08–0.23 b,c
SampEn(2,0.1) 1.37–1.69 0.74–1.81 0.14–0.36 0.13–0.40 0.14–0.28 b,c
SampEn(2,0.15) 1.31–1.61 0.67–1.64 0.09–0.25 0.11–0.31 0.09–0.17 b,c
SampEn(2,0.2) 1.27–1.47 0.55–1.49 0.07–0.17 0.09–0.27 0.07–0.13 b,c
ApEn(2,0.6) 1.02–1.13 0.04–0.85 0.03–0.06 0.05–0.10 0.02–0.08 a,b
ApEn(2,0.9) 0.61–0.84 0.00–0.58 0.02–0.05 0.03–0.07 0.01–0.06 a,b
ApEn(2,1.2) 0.38–0.54 0.00–0.41 0.01–0.05 0.02–0.05 0.01–0.05 b
SampEn(2,0.6) 0.93–1.13 0.03–0.82 0.02–0.04 0.04–0.09 0.01–0.05 a,b,c,d
SampEn(2,0.9) 0.52–0.77 0.00–0.53 0.01–0.03 0.02–0.05 0.01–0.04 a,b,d
SampEn(2,1.2) 0.33–0.49 0.00–0.37 0.01–0.03 0.02–0.03 0.01–0.03 b

0.05
0.33
0.17
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As previously reported [19], the 0.6, 0.9 and 1.2 r parame-
ter values, along with mHR  and � were the only HR parameters
that allowed the distinction between baseline and mechanical
rLu 0.16–0.20 0.13–0.20 

ApEnLu 1.03–1.16 0.71–1.16
SampEnLu 1.26–1.51 0.65–1.56 

re non-systematic absences of recordings for certain segments,
hich does not allow for performing a consistent paired analysis.

herefore, the confidence intervals and hypothesis were performed
ithout considering pairing. Given the small size of the dataset,

ootstrap percentile 95% confidence intervals for the median [31]
ere computed for the eight considered segments. The differences

etween these segments were evaluated through the nonparamet-
ic Mann–Whitney and Kruskal–Wallis statistical tests [12].

. Results

In order to evaluate whether the baseline may  be consid-
red a stable segment, the first four 1-min segments from the
aseline period were compared regarding each of the consid-
red HRV indices. For all of them, no significant differences were
ound between the four 1-min baseline segments (  ̨ = 0.05). There-
ore, only the results regarding the first 1-min segment from the
aseline period are provided in Tables 1 and 2. No significant dif-
erences were found between the second and third minutes of the
noxia period regarding both linear and nonlinear indices (  ̨ = 0.05),
nd thus only the results for the first two 1-min segments from
he anoxia period are compared through hypothesis testing in
ables 1 and 2.

The mean ± SD for SRN regarding the eight considered HR
egments for the threshold r value of 0.2, is provided in Fig. 3. It
an be observed that considerable low SRN values were obtained,
articularly for the HR baseline segments. The higher SRN values
or the anoxia segments may  be explained by two  reasons: a

ecrease in the mean heart rate observed in these segments –
hus higher values of RR intervals – for which a sampling period
f 0.002 (500 Hz) of the ECG becomes a relative better resolution
n these segments; and a higher standard deviation, motivated by
–0.09 0.04–0.18 0.02–0.10 b,c
–0.49 0.22–0.55 0.34–0.47 b,c
–0.48 0.13–0.67 0.34–0.47 b,c

changes in the baseline. For the other considered higher r values
of 0.6, 0.9 and 1.2, the figure of merit SRN will clearly be higher
as expected according to Eq. (6).  Despite the extremely low SRN
values for the baseline segments, the RR sequence which was used
for the computation of the HR indices passed through a cubic spline
interpolation procedure, at a sampling frequency of 8 Hz, which
artificially minimized the quantization effects (Fig. 4). Moreover,
the analysis of the SRN values was  not performed considering
their absolute values, as human and animal HR recordings present
completely different mean and standard deviation measures.
Fig. 3. Mean ± SD for the SRN figure of merit regarding the eight considered HR
segments, considering the threshold r as 0.2.
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Fig. 4. RR time series (left plots, with their mean ± SD provided in the title) and corresponding return maps (right plots) from (a) the 1st-min of the baseline and (b) the
1st-min anoxia of a recording. In (a) and (b), the first row of plots correspond to the original beat-to-beat time series, whereas the second row of plots is the same time
s ues fo
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f
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eries  after being resampled through cubic spline interpolation at 8 Hz. The SRN val
ampling, respectively. The SRN values for the anoxia segment and r = 0.2 are 9.118

entilation (  ̨ = 0.05). This supports the idea that the formulas for
he selection of parameter r proposed by Lu et al. [30] and Chon
t al. [7] may  not be adequate for the analysis of animal HR record-
ngs. In addition, similar results were found using both Eqs. (7) and
8), and so only results considering Eq. (7) are presented in Table 2.

Significant differences between the different segments were
ound within linear time-domain indices, with each index repre-

enting different evolutions throughout the baseline, mechanical
entilation and anoxia periods (Table 1). On the other hand,
requency-domain indices showed limited ability to discriminate
etween different HR segments (Table 1), which may  be related to
r the baseline segment and r = 0.2 are 0.233 and 0.221 for the beat-to-beat and 8 Hz
.917 for the beat-to-beat and 8 Hz sampling, respectively.

the non-stationary nature of the recordings, as well as to outliers.
These difficulties may  be partly solved by a pre-processing algo-
rithm, but such an algorithm might influence other HR parameters
and thus its definition would require a study strictly devoted to the
matter.

The HR index that better discriminated baseline (B1) and
mechanical ventilation from anoxia was SampEn(2.0.6) (Table 2

and Fig. 5), despite its considerable inter-individual variation in the
second (B2), third (B3) and fourth (B4) baseline segments (Fig. 5). A
closer inspection of the relation between the SampEn(2,0.6) and the
corresponding SRN values did not suggest any direct relation that
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ig. 5. ApEn(2,0.15) and SampEn(2,0.6) values for each rat in the segments: 1st-m
echanical ventilation (MV), 1st-min anoxia (A1), 2nd-min anoxia (A2) and 3rd-mi

egments with respect to SampEn(2,0.6), the later index provides a better separatio

ould justify the increased inter-individual variation. ApEn(2,0.15)
resented lower inter-individual variation than SampEn(2,0.6), but

t also achieved lower statistical discrimination of the HR segments
Fig. 5 and Table 2). Nevertheless, despite the inter-individual varia-
ion in baseline and mechanical ventilation segments, the bootstrap
ercentile 95% confidence intervals presented in Tables 1 and 2
llowed for discriminating the different periods of the experimental
rotocol.

The loss of discriminating ability between baseline and anoxia
eriods as the scale increased in the MSE  analysis, suggests that
SE  may  be less appropriate for the analysis of HR recordings

hat comprise rapid transitions between different acute pathologi-
al conditions (Fig. 6), and thus more suitable for the analysis of
onger and stable segments. It can also be observed that as the
cale increases, and consequently smaller segments are consid-
red, there is an increase of the error bars motivated by the reduced
ength of the sequences associated with the higher scales.

. Discussion

Linear and nonlinear HR analysis has been previously per-
ormed in a rat model of acute anoxia imposed on normal

nimals [19], as well as in a rat model of chronic pulmonary
ypertension [20]. In this study, a far more critical situation, of
cute anoxia superimposed on a model of chronic pulmonary
ypertension was explored, with a particular attention devoted
seline (B1), 2nd-min baseline (B2), 3rd-min baseline (B3), 4th-min baseline (B4),
ia (A3). Despite the lower inter-individual variation of ApEn(2,0.15) in the baseline
een B1 and MV.

to novel entropy-based measures. Hopefully, this may  help to
further understand and develop HR monitoring systems for critical
chronic patients during surgery or in intensive care units, as well
as for compromised foetuses during labour.

In a previous work of our research group [20], we have compared
the computed HRV indices obtained from the chronic pulmonary
hypertension rats with those obtained from a normal group, in the
range between weeks 0 and 4 of the experimental protocol. The
acute anoxia event was  imposed on week 5 of the chronic pul-
monary hypertension rats, whereas it was  performed on week 4
of the normal group [19]. Therefore, for this reason, and other fac-
tors previously addressed in [20], a direct comparison between the
two acute anoxia events may  not be adequate. Nevertheless, it was
observed that the transition from baseline (and mechanical venti-
lation) to the first minute of anoxia is associated with a decrease in
entropy indices in both groups. However, the normal group exhib-
ited a slight increase of entropy indices in the third minute of anoxia
[19], whereas the chronic pulmonary hypertension rats did not
exhibit this type of “recovery” behaviour.

Female young adult rats were preferred at our laboratory –
although they are prone to estrous cycle variations – because they
seem to be more sensitive to MCT  than males [20]. Another impor-

tant factor to mention relies on the type of instrumentation used to
record HR, which implied anesthesia with Ketamine and rat manip-
ulation, already addressed in our previous work [20]. Although we
were aware of the disadvantages of this approach compared with
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egments, mechanical ventilation and first three 1-min segments of the anoxia peri

elemetry monitoring, for the particular objectives of our study,
e did not have access to telemetry. Nevertheless, the labora-

ory conditions used in this study remain a standard procedure in
any other animal experiments on heart research. Hopefully, in

uture studies this should be substituted by telemetric HR record-
ng avoiding anesthesia and minimizing artificial rat manipulation
nd instrumentation.

As the quantification errors in the discrete RR time series may
roduce considerable errors in the ApEn estimation (bias and vari-
nce) when the signal variability or the sampling frequency is low
15], the influence of the quantization error on the computation
f ApEn was analysed through the figure of merit SRN proposed
y García-González et al. [15], which is a function of SDNN (SD of
he RR sequence), the sampling frequency and the entropy thresh-
ld r. The resampling procedure may  contribute to errors in ApEn
stimation, namely by introducing bias. However, it is also associ-
ted with a monotonic decrease of error as SRN increases [15]. A
roper comparison of ApEn indices, by taking into account similar
xperimental settings, may  allow for controlling the error associ-
ted with resampling. Given the marked differences in mean and
D of HR signals between human and animal recordings, a reformu-
ation of SRN according to the experimental settings may comprise
he use of a different scattering measure such as the coefficient of
ariation.

In general, the results obtained in this study, regarding the
etection of the effects of acute anoxia on the HR of rats with

nduced pulmonary hypertension, compared with the results
btained in a similar study with normal rats, suggest a similar
erformance of the entropy methods of HR analysis, but a worse
erformance of the linear methods [19]. The limited performance
f frequency-domain indices in the discrimination of different HR
pisodes may  be related to the non-stationary nature of HR. This
roblem may  be elucidated by an adequate pre-processing algo-
ithm – such as the algorithm proposed by Wessel et al. [42] – an
ypothesis that certainly deserves further testing. Such an algo-
ithm should also consider the removal of trends present in the

ignal, but this may  also lead to an underestimation of entropy
ndices [27].

Obtaining accurate complexity measurement of the signal is
specially desirable under circumstances in which a comparison
.15) as a function of the eight considered HR segments: first four 1-min baseline

is made between a baseline biological system state and a patholog-
ical condition or pharmacological manipulation [30]. Moreover, it
was pointed out that further studies were needed to examine how
the calculation of the maximum entropy value can help in improv-
ing classification and quantitative data analysis between normal
and pathological states. In this work, some achievements regarding
these considerations were obtained, with application to the HRV
analysis in an animal model.

Lake et al. [27] have used a search strategy in order to select the
most suitable values of parameters m and r in SampEn. They devel-
oped a systematic general approach to picking m and r based on a
new metric of the efficiency of the entropy estimate. However, as
assumed by the authors, the obtained values for a particular dataset
may  not be universally applicable to all datasets. Moreover, the
proposed approach is computationally expensive. Nevertheless, it
is known that ApEn is less sensitive to the choice of m than r [30],
and thus the use of m = 2 in our work was  not a critical issue.

In previous studies, it was  also found that it might be necessary
to adequate the threshold r in animal HRV studies, and additional
values were proposed based on the coefficient of variation of ani-
mal  HRV [19,20].  Recently, a set of formulas were developed for an
automatic selection of the threshold value r for ApEn [7,30],  and
were evaluated in the characterization of heart failure and healthy
control groups [29]. To our knowledge, the present study is the first
where those formulas were tested regarding its application to ani-
mal  HRV data. One of the main advantages of this procedure is the
fact that it avoids the highly time consuming task of searching for
the r parameter which maximizes the entropy measure. The similar
conclusions obtained with formulas both from [7] and [30] support
that their differences are due to random number generator.

Another limitation of ApEn and SampEn is the possibility of
indicating higher entropy measures for white noise than for sig-
nals presenting some long-range dependence [7,8,30]. In the work
of Lu et al. [30] and Chon et al. [7],  they argued that it is due to
the wrong selection of ApEn parameters, in particular due to the
choice of the threshold r, and they propose equations for obtain-

ing the most adequate parameter r, with respect to the embedding
dimension m.  On the other hand, Costa et al. [8] state that the
paradox related to entropy measures is due to the fact of the tradi-
tional approach focus on a single scale. Accordingly, they proposed
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he multiscale entropy (MSE), where entropy is computed for sev-
ral coarse-grained time series. Recently, a different viewpoint
ed to the development of a new entropy measure called Fuzzy
ntropy (FuzzyEn), which replaces the 0–1 judgment of Heaviside
unction associated with ApEn and SampEn by a fuzzy function
ith defined properties, and also comprises the removal of the

ocal baseline [4].  The removal of the local baseline may  allow for
inimizing the effect of non-stationarity in the time series. An

lternative definition called Fuzzy Measure Entropy (FuzzyMEn)
hich accounts for both local and global baselines has also been
roposed [28]. All these ideas deserve careful attention in HRV
tudies.

To our knowledge, MSE  analysis has only been performed once
n an acute animal model, with good results in the characteriza-
ion of the respiratory response to the acute stimulation of the
rimary locus for respiratory rhythm generation [5].  However, in
ur study, there was a loss of discriminating ability between base-
ine and anoxia periods as the scale increased in the MSE  analysis,
uggesting that MSE  may  be less appropriate for the analysis of HR
ecordings that involve rapid transitions between different acute
athological conditions, related to anoxia (Fig. 6), as might occur,

n clinical practice, during labour or surgery. Indeed, as the scale
ncreased, an increase of the variance of the SampEn(2,0.15) mea-
ures was observed for all the HR segments (Fig. 6), explained by
he non-stationary nature of the HR recordings but mostly by the
elatively small length of the time series associated with the higher
cales.

It is also important to put in evidence the difference between the
oncepts of complexity and regularity, since there is no straight-
orward correspondence between regularity and complexity [11].
egularity is associated with the occurrence of repeated patterns,
nd can be measured by entropy-based algorithms, such as approx-
mate and sample entropy measures [34,37]. On the other hand,
omplexity may  be defined as a meaningful intricate arrangement
f several parts of a system. Therefore, the concepts of regularity
nd complexity should not be mixed. For instance, considering the
xample of white noise measured with ApEn, it is associated with
igh irregularity and low complexity, whereas 1/f  noise (which con-
ains complex structures) is associated with a lower irregularity

easure. This reinforces the importance of a proper use of entropy
easures when measuring the complexity of a system. In partic-

lar, the MSE  approach allows for accounting for these issues in a
elatively small number of time scales.

The MSE  analysis is based on the computation of SampEn, con-
idering the threshold value r of scale 1 for all the other scales.
his aspect was already object of discussion [10,33] and will
eserve further attention in the future, namely under the scope
f a wider evaluation of nonlinear methods for HR analysis. Other
ssue which will also deserve attention in the future is related to

 sensitivity analysis of MSE  analysis on the selection of threshold
arameter r.

It is also known that the time delay may  significantly influence
he results obtained with ApEn and SampEn indices, due to the
resence of long range correlation in HR signals [24]. A time delay
qual to the first zero crossing or minimum of the autocorrelation
unction may  provide consistent results, accounting for the pres-
nce of short or long range correlations present in the HR signal.
his is of particular interest in situations associated with a slowly
ecaying autocorrelation function, such as those observed for the
orenz and Rössler systems [24]. Therefore, this issue will deserve
urther research in the future.

Another factor that influences the computation of the entropy

ndices ApEn and SampEn is the presence of ectopic beats. Both
ntropy measures evaluate the irregularity of a sequence based
n the distance between vectors, taking into account a threshold
hich relies on fixed parameter (r) multiplied by the SD of the
g & Physics 35 (2013) 559– 568 567

signal. Therefore, the presence of ectopic beats such as an extrasys-
tole increases the SD of the signal, and consequently will lead to
lower entropy values. However, their occurrence was estimated
to be quite low, accomplished by relatively low amplitude, and
thus its influence in the computation of entropy indices was mini-
mal. Moreover, since ectopic beats may  represent a ‘typical’ pattern
in anoxia periods, their elimination may  be controversial. These
considerations support the interest on studying the effect of a pre-
processing algorithm in this context.

The present work emphasizes the importance of an adequate
selection of the entropy methods, as this may  significantly influence
the results. However, it is not possible at this point to indicate which
is the best method – if there is one at all – as different combinations
of measures/parameters may  be associated with different physio-
logical conditions. As shown in [11], the discrimination between
healthy, congestive heart failure and atrial fibrillation groups is
strongly influenced by the scale factor of the MSE. In particular, it
is shown that scale 20 allows the distinction between the healthy
and pathologic groups, and higher complexity values associated
with the healthy group. However, at this scale the two patho-
logic groups overlap. On the other hand, other scales allow other
discriminations. This reinforces the need of combining not only spe-
cific values of the entropy measure with the time scale, as well as
the combination of different (linear and nonlinear) HR parameters.
Classification procedures such as neural networks or decision trees
may  be adequate for this purpose, aiming to support the interest in
further translational research.

This study has several limitations. The number of included cases
was relatively small, limited by the availability of resources and eth-
ical issues. Moreover, HR analysis was  performed in anesthetized
animals. This was  an appropriate choice to study acute conditions
arising in surgical or intensive care situations and allows sounder
comparisons with other studies using similar methods [19,20],  but
needs to be critically considered when extrapolating results to situ-
ations where anaesthesia was not used. Another possible limitation
of the present work, already expressed in a previous paragraph, is
related with the fact that ectopic beats have not been removed from
the HR signal. Last but not least, although the results of this study
may  help to understand and manage similar clinical situations, any
attempt of translation to human scenarios should be performed
very carefully and confirmed in clinical studies.

Finally, the research works regarding the study of the optimum
threshold r for ApEn raise the question: what is actually more
appropriate to discriminate signals with different characteristics,
the r value, the ApEn value or both? A systematic evaluation of all
linear and nonlinear computed measures is certainly warranted, in
order to identify which indices or combination of indices is more
appropriate for HR analysis of different physiopathological condi-
tions.

In conclusion, it was  shown that methods of heart rate entropy
analysis were able to identify the transition between different
states of acute anoxia superimposed on a chronic rat model of pul-
monary hypertension. The transition from baseline to acute anoxia
was accompanied by a significant decrease of entropy indices,
which remained extremely low during the anoxia period. More-
over, there were no signs of recovery to the previous baseline values
in chronically diseased pulmonary hypertensive rats. Our results
may  provide some clues on how to evaluate heart rate variabil-
ity under hypoxic conditions in chronic human disease and may
assist the development of mathematical tools for early identifica-
tion of hypoxia, one of the main mechanisms of acute deterioration
in chronic disease that commonly leads to devastating and even

fatal outcomes. Still, the application to clinical scenarios such as
critical care, anaesthesia, surgical procedures and foetal peripartum
monitoring will require further critical analysis of human data. An
important finding is that issues such as sampling rate and entropy
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arameters should be well accounted for during the application of
ntropy methods.
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19] Gonç alves H, Henriques-Coelho T, Bernardes J, Rocha AP, Nogueira A, Leite-
Moreira A. Linear and nonlinear heart rate analysis in a rat model of acute
anoxia. Physiol Meas 2008;29:1133–43.
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