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Ĺıgia Henriques-Rodrigues

Universidade de São Paulo, IME, Brasil, and CEAUL

Dinis Pestana

CEAUL, FCUL, Universidade de Lisboa

Abstract

The value-at-risk (VaR) at a small level q, 0 < q < 1, is the size of the loss that occurs with

a probability q. Semi-parametric partially reduced-bias (PRB) VaR-estimation procedures based on

the mean-of-order-p of a set of k quotients of upper order statistics, with p any real number, are put

forward. After the study of their asymptotic behaviour, these PRB VaR-estimators are altogether

compared with the classical ones for finite samples, through a large-scale Monte-Carlo simulation

study. A brief application to financial log-returns is provided, as well as some final remarks.
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1 Introduction, preliminaries and scope of the article

Let us consider the common notation (X1, . . . , Xn) for an available sample of either independent, iden-

tically distributed (IID) or possibly weakly dependent and stationary random variables (RVs), from an
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CroNos, and National Funds through FCT—Fundação para a Ciência e a Tecnologia, projects UID/MAT/UI0006/2013
(CEA/UL) and UID/MAT/0297/2013 (CMA/UNL).
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underlying cumulative distribution function (CDF) F . Let us denote by (X1:n ≤ · · · ≤ Xn:n) the sam-

ple of associated ascending order statistics. The main theoretical result in the field of extreme value

theory (EVT) is due to Gnedenko (1943): If there exist attraction coefficients (an, bn), with an > 0 and

bn ∈ R, such that the sequence of linearly normalized maxima, {(Xn:n − bn)/an}n≥1, converges to a

non-degenerate RV, such an RV is compulsory of the type of a general extreme value (EV) CDF,

EVξ(x) =

 exp(−(1 + ξx)−1/ξ), 1 + ξx > 0, if ξ 6= 0,

exp(− exp(−x)), x ∈ R, if ξ = 0.
(1.1)

The CDF F is then said to be in the max-domain of attraction of EVξ and the notation F ∈ DM(EVξ)

is used. The parameter ξ is the so-called extreme value index (EVI), one of the crucial parameters in

the field of statistical EVT.

For heavy or Paretian right tails, i.e. for F ∈ DM(EVξ), ξ > 0, our interest lies in the semi-

parametric estimation of the value-at-risk (VaR) at the level q, the size of the loss that occurred with

a small probability q. We are thus dealing with a high quantile of F (·), with probability 1− q,

χ1−q ≡ VaRq := F←(1− q), (1.2)

with F←(y) = inf {x : F (x) ≥ y} denoting the generalized inverse function of F . As usual, let us denote

by U(t) the reciprocal right tail quantile function, i.e. the generalized inverse function of 1/(1−F ). We

thus use the notation

U(t) :=
(
1/(1− F )

)←
(t) = F←(1− 1/t), t ≥ 1.

For small values of q, i.e. when q = qn → 0 as n → ∞, being often nqn ≤ 1, we want to extrap-

olate beyond the sample, estimating the parameter VaRq = U (1/q) , possibly working in the whole

DM(EVξ>0) =: D+
M. To work in D+

M is equivalent to say that U ∈ Rξ (de Haan, 1984), where Ra

denotes the class of regularly varying functions at infinity with an index of regular variation equal to a,

any real number (Seneta, 1978; Bingham et al., 1987). Slightly more restrictively, and with the usual

notation a(t) ∼ b(t) meaning that a(t)/b(t)→ 1, as t→∞, it is often assumed that U(t) ∼ Ctξ, as
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t→∞. We are then working in Hall-Welsh class of models (Hall and Welsh, 1985), where, as t→∞,

U(t) = Ctξ
(
1 +A(t)/ρ+ o (tρ)

)
, A(t) = ξ β tρ, C, ξ > 0, β 6= 0. (1.3)

The class in (1.3) is a wide class of models, which contains most of the heavy-tailed parents useful

in applications, like the EVξ, in (1.1), if ξ > 0, the associated generalized Pareto (GP), given by

GPξ(x) = 1 + ln EVξ(x), x ≥ 0, and the Student-tν parents, ν > 0.

Weissman (1978) proposed the semi-parametric VaRq-estimators,

Q
(q)

ξ̂
(k) := Xn−k:n r

ξ̂
n, rn ≡ rn(k; q) :=

k

nq
, 1 ≤ k < n, (1.4)

where ξ̂ can be any consistent estimator for ξ and Q stands for quantile. For ξ > 0, the classical

EVI-estimator, usually the one which is used in (1.4) for a semi-parametric quantile estimation, is the

Hill (H) estimator ξ̂ = ξ̂(k) =: H(k) (Hill, 1975), with the functional expression,

H(k) :=
1

k

k∑
i=1

ln
Xn−i+1:n

Xn−k:n
, 1 ≤ k < n. (1.5)

If we plug in (1.4) the H EVI-estimator, H(k), we get the so-called Weissman-Hill quantile or VaRq-

estimator, with the obvious notation, Q(q)
H

(k).

The H EVI-estimators in (1.5) can often have a high asymptotic bias, and bias reduction has recently

been a vivid topic of research in the area of statistical EVT (see the recent overviews by Beirlant et

al., 2012, and Gomes and Guillou, 2015). Working just for technical simplicity in the particular class

of models in (1.3), the asymptotic distributional representation of H(k), given by

H(k)
d
= ξ

(
1 +
N (0, 1)√

k
+
β(n/k)ρ

1− ρ

)
+ oP

(
(n/k)ρ

)
,

withN (0, 1) standing for a standard normal RV, led Caeiro et al. (2005) to directly remove the dominant

component of the bias of the H EVI-estimators, considering the reduced-bias (RB) corrected-Hill (CH)

EVI-estimators,

CH(k) ≡ CHβ̂,ρ̂(k) := H(k)
(

1− β̂

1− ρ̂

(n
k

)ρ̂ )
, 1 ≤ k < n, (1.6)
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which can be minimum-variance reduced-bias (MVRB) EVI-estimators for adequate second-order pa-

rameters’ estimators, (β̂, ρ̂). If we plug in (1.4) the CH EVI-estimator, CH(k), in (1.6), we get the

so-called CH quantile or VaRq-estimator, with the obvious notation, Q(q)
CH

(k), introduced and studied in

Gomes and Pestana (2007), where an adequate algorithm for the (β, ρ)-estimation can be found.

Note next that we can write

H(k) =
k∑
i=1

ln

(
Xn−i+1:n

Xn−k:n

)1/k

= ln

(
k∏
i=1

Xn−i+1:n

Xn−k:n

)1/k

, 1 ≤ k < n.

The H EVI-estimator is thus the logarithm of the geometric mean (or mean-of-order-0) of

U := {Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n} . (1.7)

More generally, Brilhante et al. (2013), and almost at the same time and independently, Paulauskas

and Vaičiulis (2013) and Beran et al. (2014), considered as basic statistics the mean-of-order-p (MOp)

of U, in (1.7), with p ≥ 0. Those same statistics were used in Gomes and Caeiro (2014) and Caeiro et

al. (2016) for any real p. We are thus thinking on the class of EVI-estimators,

Hp(k) :=


1−A−pp (k)

p , if p < 1/ξ, p 6= 0,

lnA0(k), if p = 0,
Ap(k) =


(

1
k

k∑
i=1

Upik

)1/p

, if p 6= 0,(
k∏
i=1

Uik

)1/k

, if p = 0,

(1.8)

with H0(k) ≡ H(k), given in (1.5) (see also Paulauskas and Vaičiulis, 2017). The class of MOp EVI-

estimators in (1.8) depends now on this tuning parameter p ∈ R, and was shown to be consistent for

any p < 1/ξ, whenever k = kn is an intermediate sequence, i.e.

k = kn, 1 ≤ k < n, kn →∞ and kn = o(n), as n→∞. (1.9)

If we plug in (1.4) the MOp EVI-estimator, Hp(k), in (1.8), we get the so-called MOp quantile or VaRq-

estimator, with the obvious notation, Q(q)
Hp

(k)
[
Q(q)

H0
(k) ≡ Q(q)

H
(k)
]
, studied asymptotically and for finite

samples in Gomes et al. (2015b).

Just like happens with the H EVI-estimators, the MOp EVI-estimators in (1.8) can often have a
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high asymptotic bias. Brilhante et al. (2014) noticed that for p ≥ 0, there is an optimal value

p ≡ pM = ϕρ/ξ, with ϕρ = 1− ρ/2−
√

(1− ρ/2)2 − 1/2, (1.10)

which maximises the asymptotic efficiency of the class of EVI-estimators in (1.8) with respect to the H

EVI-estimator. And the same result holds if we more generally consider any real p. It is thus sensible to

consider the optimal RV, H∗(k) := Hp
M

(k), with Hp(k) and pM given in (1.8) and (1.10), respectively.

The asymptotic behaviour of H∗(k) has led Gomes et al. (2015a) to introduce a partially reduced-bias

(PRB) class of MOp EVI-estimators based on Hp(k), in (1.8), with the functional expression

PRBp(k) ≡ PRBp(k; β̂, ρ̂) := Hp(k)
(

1−
β̂(1− ϕρ̂)
1− ρ̂− ϕρ̂

(n
k

)ρ̂ )
, 1 ≤ k < n, (1.11)

still dependent on a tuning parameter p and with ϕρ defined in (1.10). On the basis of a large-scale

simulation study, it was shown in the aforementioned article that the PRB EVI-estimators, in (1.11),

are able to outperform the CH EVI-estimators, in (1.6), for a large variety of models. Moreover, just

as done in Gomes et al. (2016a), we also consider

PRB∗(k) := PRB
p̂∗
M

(k; β̂, ρ̂), where p̂∗
M

= ϕρ̂/ξ
∗, ξ∗ = CH

(
k̂0|H

)
, (1.12)

with bxc denoting the integer part of x and

k̂0|H := min

(
n− 1,

⌊(
(1− ρ̂)2n−2ρ̂/

(
− 2ρ̂β̂2

))1/(1−2ρ̂)⌋
+ 1

)
,

the k-estimate of k0|H := arg mink MSE(H(k)) suggested in Hall (1982). And we provide the option in

(1.12) because we are sure that CH
(
k̂0|H

)
outperforms H

(
k̂0|H

)
.

It is thus sensible to work with the VaRq-estimators Q(q)
PRBp

(k) and the particular case Q(q)
PRB∗

(k) with

the obvious functional forms

Q(q)
PRBp

(k) := Xn−k:n

(
k

nq

)PRBp(k)

, Q(q)
PRB∗

(k) := Xn−k:n

(
k

nq

)PRB∗(k)

, 1 ≤ k < n, (1.13)

and where PRBp(k) and PRB∗(k) have been respectively given in (1.11) and (1.12). The asymptotic

behaviour of the classes of EVI and VaR-estimators under study is discussed in Section 2. The small-
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scale simulation performed in Gomes et al. (2015c) led us to enlarge such a Monte-Carlo simulation, as

described in Section 3. Such a simulation shows indeed the potentiality of the VaRq semi-parametric

estimators in (1.13), particularly when we consider the dependence on the tuning parameter p. In Section

4 and relying on a simple sample path stability criterion, we provide an application to a financial data

set. Finally, in Section 5 we provide a few general conclusions.

2 Asymptotic behaviour of EVI and VaR-estimators

In Section 2.1 we refer the asymptotic behaviour of the EVI-estimators under consideration. A parallel

exposition is performed in Section 2.2 for the VaR-estimators.

2.1 The EVI-estimators

Just as proved in Brilhante et al. (2013) and Gomes and Caeiro (2014), the result obtained in de Haan

and Peng (1998) for the H EVI-estimator in (1.5), i.e. for p = 0 in (1.8), can be generalized for any

adequate real p, as indicated below. In Hall-Welsh class of models in (1.3), for intermediate k-values,

i.e. if (1.9) holds, for p < 1/(2ξ), and with Hp(k) given in (1.8),

√
k
(
Hp(k)− ξ

) d
=

ξ(1− pξ)√
1− 2pξ

N (0, 1) +
ξβ
√
k (n/k)ρ(1− pξ)
1− ρ− pξ

(1 + oP(1)), (2.1)

where the bias ξβ
√
k (n/k)ρ(1−pξ)/(1−ρ−pξ) can be small, moderate or large, i.e. go to zero, a constant

or infinity, as n→∞. Straightforwardly from (2.1), if we further assume that
√
k A(n/k)→ λA , finite,

there is a non-null bias if λA 6= 0, i.e.

√
k
(
Hp(k)− ξ

) d−→
n→∞

ξ(1− pξ)√
1− 2pξ

N (0, 1) +
λA(1− pξ)
1− ρ− pξ

. (2.2)

For the same type of levels and the CH EVI-estimator in (1.6), if we work with a consistent estimator

(β̂, ρ̂) of (β, ρ), which additionally satisfies the condition, ρ̂− ρ = oP(1/ lnn), Theorem 3.1 in Caeiro et

al. (2005), enable us to say that for all finite λA ,

√
k
(
CH(k)− ξ

) d−→
n→∞

ξ N (0, 1).

6



For the EVI-estimators in (1.11), Theorem 2 in Gomes et al. (2015a) enable us to guarantee that

√
k
(
PRBp(k)− ξ

) d−→
n→∞

ξ(1− pξ)√
1− 2pξ

N (0, 1) +
λA(pξ − ϕρ)

(1− ρ− pξ)(1− ρ− ϕρ)
, (2.3)

with a null mean value only if pξ = ϕρ. For recent references on several second-order parameters’

estimation procedures, see Caeiro et al. (2016), where an asymptotic comparison at optimal levels of

the CH and PRBp classes of EVI-estimators is performed.

As can be seen above, the best value of p in PRBp depends on ξ and ρ, being given by p = ϕρ/ξ.

Let us consider p̂, a consistent estimator of p. We can then state the following:

Proposition 2.1. Let p̂ be a consistent estimator of p = ϕρ/ξ. In Hall-Welsh class of models in (1.3),

for intermediate k-values such that
√
k A(n/k)→ λA, finite, let us consider PRBp̂(k) ≡ PRBp̂(k; β̂, ρ̂),

with PRBp(k) defined in (1.11). Let us further assume that (β̂, ρ̂) is a consistent estimator of (β, ρ),

such that ρ̂− ρ = oP(1/ lnn). Then,

√
k
(
PRBp̂(k)− ξ

) d−→
n→∞

ξ(1− ϕρ)√
1− 2ϕρ

N (0, 1), (2.4)

and the same normal limit holds for
√
k
(
PRB∗(k)− ξ

)
, with PRB∗(k) given in (1.12).

Proof. If p is replaced by p̂, a consistent estimator of p, i.e. if p̂− p = oP(1), and with E denoting either

H or PRB, the use of the δ-method enables us to get

Ep̂(k)
d
= Ep(k) + (p̂− p) ∂Ep(k)

∂p
(1 + oP(1)).

and consequently,

√
k (Ep̂(k)− ξ) d

=
√
k (Ep(k)− ξ) +

√
k

(
(p̂− p) ∂Ep(k)

∂p

)
(1 + oP(1)). (2.5)

Note next that, with Sp(k) := A−pp (k) =
(
1
k

∑k
i=1 U

p
ik

)−1
, Hp(k) = (1− Sp(k))/p, and

∂Hp(k)

∂p
=
Sp(k)− 1− p∂Sp(k)/∂p

p2
. (2.6)
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Further note that

∂Sp(k)

∂p
= −

(
1

k

k∑
i=1

Upik lnUik

)
/

(
1

k

k∑
i=1

Upik

)2

.

Moreover, with Yi, i ≥ 1, independent unit Pareto RVs (with CDF FY (y) = 1 − 1/y, y ≥ 1), we can

write, for any real p,

Upik
d
= Y ξp

k−i+1:k(1 + oP(1)) and Upik lnUik
d
= ξY ξp

k−i+1:k lnYk−i+1:k(1 + oP(1)),

with the oP(1) uniformly in i, 1 ≤ i ≤ k (see, Caeiro et al., 2016, for details). Since E(Y a) = 1/(1− a)

and E(Y a lnY ) = 1/(1− a)2 if a < 1, the law of large numbers enables us to say that if p < 1/ξ,

Ap(k) P−→
n→∞

(
1

1− ξp

)1/p

, Sp(k) P−→
n→∞

1− ξp and
∂Sp(k)

∂p
P−→

n→∞
−ξ.

Consequently, and from (2.6),
∂Hp(k)

∂p
P−→

n→∞
0.

A similar result holds trivially for ∂PRBp(k)/∂p, with PRBp(k) = Hp(k)(1 + oP(1)) given in (1.11).

In Hall-Welsh class of models in (1.3), and with a proof close to the one that led to the asymptotic

distributional representations in (2.1), among similar ones for other EVI-estimators, it is thus possible

to show that there exists σE and bE such that

∂Ep(k)

∂p

d
=

σE√
k
N (0, 1) + bE(n/k)ρ(1 + oP(1)),

i.e. ∂Ep(k)/∂p = OP

(
1/
√
k
)

+ OP(A(n/k)) = oP(1), whenever k is intermediate, i.e. (1.9) holds. Con-

sequently, ∂Ep(k)/∂p = OP

(
1/
√
k
)

whenever
√
k A(n/k) → λA , finite. Under the aforementioned

conditions, with
√
kA(n/k) → λA , finite, and relying on (2.5), both (2.2) and (2.3) hold, with p re-

placed by p̂, and in particular (2.4) and the remaining of the proposition hold if p̂ = p̂∗
M

, the estimator

of ϕρ/ξ given in (1.12).

2.2 Extreme quantile or VaR-estimators

Under condition (1.3), the asymptotic behaviour of Q(q)
H

(k) is well-known (Weissman, 1978):

√
k

ln rn

Q(q)
H

(k)−VaRq

VaRq

d−→
n→∞

ξ N (0, 1) +
λA

1− ρ
,
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provided that lim
n→∞

√
k A(n/k) = λA ∈ R, finite, with rn defined in (1.4), A(·) the function in (1.3),

q = qn → 0 and lnnqn = o(
√
k). Under these same conditions, and an adequate estimation of (β, ρ), as

stated in Theorem 5.1 (Gomes and Pestana, 2007),

√
k

ln rn

Q(q)
CH

(k)−VaRq

VaRq

d−→
n→∞

ξN (0, 1).

If we consider the classes of VaRq-estimators Q(q)
PRBp

(k) and Q(q)
PRB∗

(k), in (1.13), adaptations of the

results in Gomes and Figueiredo (2006), Gomes and Pestana (2007) and Caeiro and Gomes (2009)

enable us to state:

Theorem 2.1. In Hall-Welsh class of models in (1.3), for intermediate k, i.e. k-values such that (1.9)

holds, if
√
k A(n/k)→ λA, finite, possibly non-null, and whenever

q = qn → 0, ln (n qn) = o
(√
k
)
, nqn = o

(√
k
)
, (2.7)

let us further consistently estimate the vector of second-order parameters (β, ρ), through (β̂, ρ̂), and in

a way such that ρ̂− ρ = oP(1/ lnn), as n→∞. Then, we can guarantee that

√
k

ln rn

Q(q)
PRBp

(k)−VaRq

VaRq

d−→
n→∞

ξ(1− pξ)√
1− 2pξ

N (0, 1) +
λA(pξ − ϕρ)

(1− ρ− pξ)(1− ρ− ϕρ)
(2.8)

for any real p < 1/(2ξ), and

√
k

ln rn

Q(q)
PRB∗

(k)−VaRq

VaRq

d−→
n→∞

ξ(1− ϕρ)√
1− 2ϕρ

N (0, 1), (2.9)

with VaRq, rn and
(
Q(q)

PRBp
(k), Q(q)

PRB∗
(k)
)

, respectively given in (1.2), (1.4) and (1.13).

Proof. Note first that under the validity of (2.7), ln rn = o
(√
k
)

and rn →∞. The use of the δ-method

enables us to write for any EVI-estimator ξ̂,

rξ̂n
d
= rξn + rξn ln rn

(
ξ̂ − ξ

)
(1 + oP(1)).

Then, since

VaRq = U(1/q) = U(nrn/k) = U(n/k)rξn (1−A(n/k)(1 + o(1))/ρ) ,
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with A(·) given in (1.3), and

Xn−k:n
d
= U(n/k)

(
1 + ξ Bk/

√
k + oP(A(n/k))

)
,

with Bk a sequence of standard normal RVs (de Haan and Ferreira, 2006), we can write

VaRq

Xn−k:n

d
= rξn

(
1−A(n/k)/ρ

)(
1− ξBk/

√
k + oP(A(n/k)

)
d
= rξn

(
1−A(n/k)/ρ− ξBk/

√
k + oP(A(n/k)

)
.

Consequently,

Q
(q)

ξ̂
−VaRq = Xn−k:n

(
rξ̂(k)n − VaRq

Xn−k:n

)
d
= U(n/k)rξn

(
ln rn(ξ̂ − ξ)(1 + oP(1)) +

ξBk√
k

+
A(n/k)

ρ
+ oP(A(n/k))

)
,

and
Q

(q)

ξ̂
−VaRq

VaRq

d
= ln rn(ξ̂ − ξ)(1 + oP(1)) +

ξBk√
k

+
A(n/k)

ρ
+ oP(A(n/k)). (2.10)

Since ln rn →∞, as n→∞, and ξ̂ − ξ = OP

(
1/
√
k
)
, the dominant term in (2.10) is, thus, of the order

of ln rn/
√
k, which must converge to zero, and, just as mentioned above this is true due to condition

(2.7). Consequently, if we choose an EVI-estimator such that

√
k
(
ξ̂ − ξ

)
d−→

n→∞
σ N (0, 1) + bλA ,

whenever
√
kA(n/k)→ λA , finite, we can further write

√
k
(
Q

(q)

ξ̂
(k)−VaRq

)
ln rn VaRq

d−→
n→∞

σ N (0, 1) + bλA ,

and the results in the theorem follow, i.e. (2.8) and (2.9) hold.

3 Monte-Carlo simulation experiments

We have implemented large-scale multi-sample Monte-Carlo simulation experiments of size 5000 × 20,

for the classes of VaR-estimators, Q
(q)
PRBp

(k) and Q
(q)
PRB∗(k), in (1.13). We have considered sample sizes
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n = 100(100)500, 1000(1000)5000, from the following models:

(1) The EVξ model, with CDF F (x) = EVξ(x), in (1.1), ξ = 0.1, 0.25, 0.5, 1 (ρ = −ξ);

(2) The associated GPξ model, with CDF F (x) =GPξ(x) = 1 + ln EVξ(x) = 1−
(
1 + ξx

)−1/ξ
, x ≥ 0,

1 + ξx > 0 (ρ = −ξ), and the same values of ξ, as in (1);

(3) The Burr(ξ, ρ) model, with CDF, F (x) = 1− (1 +x−ρ/ξ)1/ρ, x ≥ 0, for the aforementioned values

of ξ and ρ = −0.25,−0.5,−1;

(4) The Student-tν model with ν = 2, 3, 4 (ξ = 1/ν; ρ = −2/ν).

For details on multi-sample simulation, see Gomes and Oliveira (2001), among others.

3.1 Mean values and MSE patterns as functions of k/n

For each value of n and for each of the aforementioned models, we have first simulated the mean value (E)

and root MSE (RMSE) of the VaR-estimators under consideration, as functions of the sample fraction,

k/n, used in the estimation. Just as an illustration, we present Figures 1–4, associated with EV0.1,

GP0.1, Burr(0.5,−0.25) and Student t4 parents. In these figures, we show, for n = 1000, q = 1/n,

and on the basis of the first N = 5000 runs, the simulated patterns of normalized mean value and

RMSE of Q
(q)

ξ̂
(k)/VaRq, with Q

(q)

ξ̂
(k) defined in (1.4), respectively denoted ENQ [·]:=EQ[·]/VaRq and

RMSENQ [·]:=RMSEQ[·]/VaRq. For the EVI-estimation, we have considered PRBp(k), in (1.11), for a

wide region of non-negative values of p, p = p` = `/(16ξ), ` = 1(1)15, representing only some of these

`-values, and PRB∗(k), in (1.12). We have further considered the H and CH VaR-estimators.

Similar results have been obtained for other values of q and for the other simulated underlying parents,

mainly in the sense that for |ρ| < 0.5, even PRB∗, not optimally chosen among the PRBp class of

VaR-estimators, outperforms the MVRB CH class of VaR-estimators, regarding minimal RMSE, as can

be further seen in the following section.

3.2 Behaviour at optimal levels

We have further computed the Weissman-Hill VaR-estimator Q
(q)
H (k) ≡ Q

(q)
H0

(k) at the simulated value

of k
(q)
0|H0

:= arg mink RMSE
(
Q

(q)
H0

(k)
)
, the simulated optimal k in the sense of minimum RMSE, again

with Q
(q)

ξ̂
(k) defined in (1.4). Such a value provides an indication of the best possible performance

11



In the case of a Fréchet model, with a shift $s$:
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Figure 1: Normalized mean values (left) and RMSEs (right), for an underlying EV0.1 parent
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Figure 2: Normalized mean values (left) and RMSEs (right), for an underlying GP0.1

In the case of a Fréchet model, with a shift $s$:
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Figure 3: Normalized mean values (left) and RMSEs (right), for an underlying Burr parent with ξ = 0.5 and
ρ = −0.25
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In the case of a Fréchet model, with a shift $s$:
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Figure 4: Normalized mean values (left) and RMSEs (right), for an underlying Student parent with 4 degrees of
freedom (ξ = 0.25, ρ = −0.5)

of the Weissman-Hill VaR-estimator, difficult to achieve in practice. Such an estimator is denoted by

Q00. We have also computed Qp0 and Q∗0, the estimators in (1.13) at optimal levels, and the simulated

indicators,

REFFp|0 :=
RMSE (Q00)

RMSE (Qp0)
, REFF∗0 :=

RMSE (Q00)

RMSE (Q∗0)
. (3.1)

A similar REFF-indicator, REFFCH|0 has also been computed for the VaR-estimator based on CH

EVI-estimators, in (1.6).

Remark 3.1. The indicators in (3.1) have been conceived so that an indicator higher than one means

a better performance than the one of the Weissman-Hill VaR-estimator. Consequently, the higher these

indicators are, the better the associated VaR-estimators perform, compared to Q00.

As an illustration of the results obtained for the REFF-indicators of the different VaR-estimators

under consideration, we present Tables 1–4. In the first row, we provide the RMSE of Q00, denoted

by RMSE00, so that we can easily recover the RMSE of all other estimators. The subsequent rows

provide the REFF-indicators of the VaR-estimators under study, considering two different groups of

VaR-estimators, (CH, PRB∗) and PRBp, for a few values of p. In each group, the highest REFF-

indicator is written in bold. The highest REFF-indicator among them all is further double underlined.

REFF-indicators smaller than REFFCH|0 are written in italic. Note that for PRBp, and due to the

interesting and reliable behaviour of the EVI-estimators Hp(k) in (1.8) for large p, in a situation where

we can no longer guarantee asymptotic normality (see Brilhante et al., 2013), we have decided to

consider not only the region 1 ≤ ` ≤ 7, where we can guarantee asymptotic normality, but also the
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region 8 ≤ ` ≤ 15, where only consistency can be guaranteed. For the mean values of the normalized

VaR-estimators at optimal levels, see Tables 5–8. We present there, for the same values of n as before,

the simulated mean values at optimal levels of the normalized VaR-estimators under study. Now, and

among all estimators considered, the one providing the smallest squared bias is double underlined, and

written in bold. Information on 95% confidence intervals (CIs), computed on the basis of the 20

replicates with 5000 runs each, is also provided.

Table 1: Simulated RMSE of Q00, q = 1/n (first row) and REFF-indicators of Q(q)
CH|0

, Q(q)
PRB∗|0

and Q(q)
PRBp`

|0
, for

p` = `/(16ξ), ` = 1, 2, 4, 6, 10, 14, for EV0.1 parents, together with 95% CIs

EVξ parent, ξ = 0.1 (ρ = −0.1)
n 100 200 500 1000 2000 5000

RMSE00 0.329± 0.0036 0.273± 0.0027 0.225± 0.0016 0.200± 0.0014 0.179± 0.0011 0.157± 0.0008

CH 1.287± 0.0154 1.323± 0.0147 1.552± 0.0123 1.202± 0.0051 1.123± 0.0051 1.073± 0.0041

PRB∗ 1.487± 0.0181 1.490± 0.0119 1.572± 0.0101 1.496± 0.0123 1.635± 0.0109 2.276± 0.0188

` = 1 1.379± 0.0172 1.421± 0.0122 1 .532 ± 0.0135 1.660± 0.0121 2.101± 0.0231 3.601± 0.0412

` = 2 1.479± 0.0162 1.465± 0.0128 1.618± 0.0134 2.078± 0.0188 2.904± 0.0241 4.441± 0.0463

` = 4 1.505± 0.0179 1.493± 0.0114 1 .482 ± 0.0101 1.536± 0.0120 1.767± 0.0120 2.678± 0.0225

` = 6 1.381± 0.0173 1.432± 0.0132 1 .431 ± 0.0090 1.419± 0.0109 1.407± 0.0093 1.446± 0.0104

` = 10 1 .169 ± 0.0143 1 .208 ± 0.0124 1 .243 ± 0.0094 1.259± 0.0099 1.259± 0.0081 1.239± 0.0070

` = 14 1 .061 ± 0.0127 1 .071 ± 0.0112 1 .085 ± 0.0085 1 .096 ± 0.0087 1 .100 ± 0.0076 1.092± 0.0066

Table 2: Simulated RMSE of Q00, q = 1/n (first row) and REFF-indicators of Q(q)
CH|0

, Q(q)
PRB∗|0

and Q(q)
PRBp`

|0
, for

p` = `/(16ξ), ` = 1, 2, 4, 6, 10, 14, for GP0.1 parents, together with 95% CIs

GPξ parent, ξ = 0.1 (ρ = −0.1)
n 100 200 500 1000 2000 5000

RMSE00 0.320± 0.0024 0.269± 0.0023 0.224± 0.0020 0.199± 0.0013 0.179± 0.0010 0.157± 0.0008

CH 1.442± 0.0131 1.220± 0.0109 1.117± 0.0050 1.079± 0.0032 1.059± 0.0032 1.038± 0.0022

PRB∗ 1.581± 0.0107 1.542± 0.0108 1.537± 0.0150 1.621± 0.0105 1.938± 0.0121 3.058± 0.0240

` = 1 1.752± 0.116 1.801± 0.0159 2.241± 0.0262 3.223± 0.0254 4.301± 0.0275 6.021± 0.0477

` = 2 1.653± 0.0114 1.750± 0.0150 2.387± 0.0251 3.323± 0.0243 4.600± 0.0266 7.010± 0.0468

` = 4 1.593± 0.0100 1.556± 0.0119 1.577± 0.0152 1.751± 0.0114 2.251± 0.0130 3.751± 0.0281

` = 6 1.481± 0.0113 1.477± 0.0107 1.452± 0.0145 1.433± 0.0089 1.430± 0.0102 1.518± 0.0131

` = 10 1 .226 ± 0.0105 1.240± 0.0111 1.263± 0.0129 1.267± 0.0087 1.267± 0.0086 1.239± 0.0098

` = 14 1 .094 ± 0.0096 1 .089 ± 0.0103 1 .099 ± 0.0111 1.102± 0.0078 1.106± 0.0074 1.093± 0.0087
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Table 3: Simulated RMSE of Q00, q = 1/n (first row) and REFF-indicators of Q(q)
CH|0

, Q(q)
PRB∗|0

and Q(q)
PRBp`

|0
, for

p` = `/(16ξ), ` = 1, 2, 4, 6, 10, 14, for Burr(0.5,−0.25) parents, together with 95% CIs

Burr (0.5,−0.25) parent

n 100 200 500 1000 2000 5000

RMSE00 1.452± 0.0290 1.123± 0.0207 0.880± 0.0137 0.758± 0.0070 0.658± 0.0052 0.560± 0.0047

CH 2.970± 0.0653 2.310± 0.0493 1.448± 0.0216 1.287± 0.0062 1.199± 0.0062 1.133± 0.0057

PRB∗ 3.284± 0.0681 2.945± 0.0506 3.109± 0.0473 3.711± 0.0389 4.739± 0.0332 6.911± 0.0604

` = 1 3.421± 0.0723 3.094± 0.0547 3.536± 0.0512 4.565± 0.0499 6.283± 0.0593 7.102± 0.0614

` = 2 3.357± 0.0714 3.243± 0.0556 3.963± 0.0609 5.419± 0.0588 7.826± 0.0697 7.292± 0.0636

` = 4 3.284± 0.0681 2.945± 0.0506 3.109± 0.0473 3.711± 0.0389 4.739± 0.0332 6.911± 0.0604

` = 6 3.303± 0.0658 2.829± 0.0510 2.603± 0.0378 2.696± 0.0273 3.028± 0.0307 4.070± 0.0786

` = 10 3.209± 0.0624 2.753± 0.0454 2.409± 0.0378 2.219± 0.0210 2.045± 0.0176 1.925± 0.0203

` = 14 3.055± 0.0587 2.605± 0.0397 2.254± 0.0368 2.065± 0.0180 1.886± 0.0162 1.692± 0.0168

Table 4: Simulated RMSE of Q00, q = 1/n (first row) and REFF-indicators of Q(q)
CH|0

, Q(q)
PRB∗|0

and Q(q)
PRBp`

|0
, for

p` = `/(16ξ), ` = 1, 2, 4, 6, 10, 14, for Student t4 parents (ξ = 0.25, ρ = −0.5), together with 95% CIs

Student t4 parent (ξ = 0.25, ρ = −0.5)
n 100 200 500 1000 2000 5000

RMSE00 0.378± 0.0039 0.320± 0.0030 0.270± 0.0021 0.240± 0.0014 0.215± 0.0013 0.185± 0.0007

CH 1.211± 0.1316 1.310± 0.0129 1.480± 0.0134 1.881± 0.0156 1.820± 0.0156 1.531± 0.0095

PRB∗ 1.342± 0.1474 1.378± 0.0127 1 .459 ± 0.0111 1 .652 ± 0.0102 2.014± 0.0216 3.156± 0.0313

` = 1 1.230± 0.1431 1.351± 0.0128 1 .432 ± 0.0132 1 .800 ± 0.0157 2.302± 0.0361 1.803± 0.0632

` = 2 1.281± 0.1408 1.359± 0.0129 1.516± 0.0133 1.844 ± 0.0167 2.738± 0.0478 1.939± 0.0795

` = 4 1.364± 0.1496 1.390± 0.0125 1 .442 ± 0.0107 1 .603 ± 0.0093 1.895± 0.0182 2.821± 0.0284

` = 6 1.453± 0.1544 1.459± 0.0111 1 .411 ± 0.0112 1 .447 ± 0.0084 1 .547 ± 0.0117 1.856± 0.0144

` = 10 1.504± 0.1025 1.535± 0.0139 1 .464 ± 0.0108 1 .397 ± 0.0063 1 .320 ± 0.0080 1 .246 ± 0.0080

` = 14 1.441± 0.0263 1.487± 0.0149 1 .430 ± 0.0100 1 .356 ± 0.0064 1 .268 ± 0.0079 1 .134 ± 0.0076

Table 5: Simulated mean values (at optimal levels) of Q
(q)
00 , Q(q)

CH|0
, Q(q)

PRB∗|0
and Q(q)

PRBp`
|0

, for p` = `/(16ξ),

` = 1, 2, 4, 6, 10, 14, for q = 1/n and EV0.1 underlying parents, together with 95% CIs

EVξ parent, ξ = 0.1

n 100 200 500 1000 2000 5000

H 1.099± 0.0048 1.073± 0.0042 1.061± 0.0031 1.058± 0.0030 1.056± 0.0026 1.053± 0.0018

CH 0.905± 0.0081 0.930± 0.0049 0.983± 0.0073 1.038± 0.0035 1.038± 0.0028 1.033± 0.0025

PRB∗ 0.855± 0.0021 0.906± 0.0031 0.916± 0.002 0.920± 0.0013 0.931± 0.0008 0.966± 0.0005

` = 1 0.904± 0.0054 0.923± 0.0036 0.982± 0.0031 0.998± 0.0012 1.022± 0.0019 1.012± 0.0016

` = 2 0.903± 0.0059 0.914± 0.0025 0.932± 0.0010 0.966± 0.0009 0.989± 0.0007 0.997± 0.0003

` = 4 0.865± 0.0021 0.907± 0.0039 0.918± 0.0018 0.921± 0.0012 0.939± 0.0009 0.978± 0.0005

` = 6 0.816± 0.0018 0.874± 0.0010 0.915± 0.0019 0.919± 0.0022 0.922± 0.0019 0.922± 0.0008

` = 10 0.753± 0.0013 0.811± 0.0010 0.859± 0.0007 0.883± 0.0006 0.901± 0.0007 0.918± 0.0006

` = 14 0.718± 0.0011 0.774± 0.0009 0.821± 0.0007 0.847± 0.0005 0.866± 0.0006 0.886± 0.0006
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Table 6: Simulated mean values (at optimal levels) of Q
(q)
00 , Q(q)

CH|0
, Q(q)

PRB∗|0
and Q(q)

PRBp`
|0

, for p` = `/(16ξ),

` = 1, 2, 4, 6, 10, 14, for q = 1/n and GP0.1 underlying parents, together with 95% CIs

GPξ parent, ξ = 0.1

n 100 200 500 1000 2000 5000

H 1.085± 0.0030 1.070± 0.0041 1.064± 0.0036 1.058± 0.0035 1.054± 0.0033 1.053± 0.0030

CH 0.989± 0.0060 1.057± 0.0053 1.060± 0.0038 1.038± 0.0028 1.036± 0.0030 1.032± 0.0029

PRB∗ 0.892± 0.0009 0.907± 0.0027 0.913± 0.0015 0.919± 0.0008 0.944± 0.0006 0.983± 0.0003

` = 1 0.945± 0.0026 0.989± 0.0015 1.014± 0.0013 1.024± 0.010 1.023± 0.0008 1.020± 0.0006

` = 2 0.900± 0.0028 0.921± 0.0016 0.968± 0.0012 0.990± 0.0008 0.997± 0.0003 0.999± 0.0002

` = 4 0.897± 0.0048 0.905± 0.0024 0.911± 0.0012 0.928± 0.0009 0.959± 0.0006 0.991± 0.0003

` = 6 0.849± 0.0009 0.889± 0.0009 0.913± 0.0027 0.917± 0.0018 0.919± 0.0017 0.923± 0.0008

` = 10 0.777± 0.0008 0.822± 0.0008 0.864± 0.0008 0.885± 0.0007 0.902± 0.0008 0.918± 0.0008

` = 14 0.737± 0.0008 0.782± 0.0008 0.825± 0.0007 0.849± 0.0006 0.867± 0.0007 0.886± 0.0007

Table 7: Simulated mean values (at optimal levels) of Q
(q)
00 , Q(q)

CH|0
, Q(q)

CH∗|0
and Q(q)

CHp`
|0

, for p` = `/(16ξ),

` = 1, 2, 4, 6, 10, 14, for q = 1/n and Burr(0.5,−0.25) underlying parents, together with 95% CIs

Burr(0.5,−0.25) parent

n 100 200 500 1000 2000 5000

H 1.516± 0.0220 1.419± 0.0128 1.343± 0.0195 1.303± 0.0123 1.271± 0.0100 1.246± 0.0088

CH 0.799± 0.0058 1.079± 0.0041 1.267± 0.0129 1.263± 0.0103 1.259± 0.0093 1.235± 0.0076

PRB∗ 0.716± 0.0084 0.764± 0.0038 0.846± 0.0031 0.917± 0.0029 0.965± 0.0014 0.989± 0.0006

` = 1 0.722± 0.0076 0.821± 0.0041 0.925± 0.0031 1.024± 0.0033 1.100± 0.0015 1.016± 0.0012

` = 2 0.731± 0.0075 0.811± 0.0038 0.917± 0.0027 0.966± 0.0022 0.990± 0.0012 0.999± 0.0009

` = 4 0.716± 0.0084 0.764± 0.0038 0.846± 0.0031 0.917± 0.0029 0.965± 0.0014 0.989± 0.0006

` = 6 0.721± 0.0070 0.751± 0.0050 0.783± 0.0034 0.831± 0.0025 0.888± 0.0024 0.955± 0.0022

` = 10 0.696± 0.0073 0.724± 0.0072 0.754± 0.0040 0.769± 0.0038 0.775± 0.0025 0.789± 0.0016

` = 14 0.646± 0.0020 0.703± 0.0061 0.726± 0.0082 0.745± 0.0056 0.756± 0.0061 0.769± 0.0047

Table 8: Simulated mean values (at optimal levels) of Q
(q)
00 , Q(q)

CH|0
, Q(q)

PRB∗|0
and Q(q)

PRBp`
|0

, for p` = `/(16ξ),

` = 1, 2, 4, 6, 10, 14, for q = 1/n and Student t4 underlying parents, together with 95% CIs

Student t4 parent (ξ = 0.25)

n 100 200 500 1000 2000 5000

H 1.114± 0.0056 1.099± 0.0043 1.089± 0.0037 1.085± 0.0037 1.081± 0.0035 1.077± 0.0037

CH 0.905± 0.0351 0.903± 0.0053 0.922± 0.0030 0.978± 0.0028 1.034± 0.0014 1.056± 0.0015

PRB∗ 0.927± 0.0558 0.905± 0.0048 0.907± 0.0023 0.924± 0.0009 0.948± 0.0014 0.987± 0.0011

` = 1 0.929± 0.0071 0.903± 0.0041 0.908± 0.0026 0.930± 0.0014 0.960± 0.0012 1.014± 0.0041

` = 2 0.930± 0.0669 0.897± 0.0040 0.912± 0.0025 0.940± 0.0011 0.979± 0.0013 1.049± 0.0057

` = 4 0.927± 0.0428 0.908± 0.0039 0.904± 0.0024 0.919± 0.0014 0.941± 0.0014 0.978± 0.0011

` = 6 0.898± 0.0098 0.906± 0.0045 0.906± 0.0018 0.908± 0.0014 0.921± 0.0010 0.946± 0.0009

` = 10 0.839± 0.0016 0.890± 0.0046 0.899± 0.0019 0.905± 0.0024 0.904± 0.0017 0.907± 0.0012

` = 14 0.795± 0.0013 0.853± 0.0011 0.890± 0.0008 0.890± 0.0020 0.893± 0.0020 0.894± 0.0017
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For a better visualization of the Tables 1–8, we present Figures 5–8.
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Figure 5: Normalized mean values (left) and REFF-indicators (right) of the VaRq-estimators under study, at
optimal levels, for q = 1/n and EV0.1 parents
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optimal levels, for q = 1/n and GP0.1 parents
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Figure 7: Normalized mean values (left) and REFF-indicators (right) of the VaRq-estimators under study, at
optimal levels, for q = 1/n and BURR0.5,−0.25 parents
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Figure 8: Normalized mean values (left) and REFF-indicators (right) of the VaRq-estimators under study, at
optimal levels, for q = 1/n and Student t4 parents
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4 A case-study in the field of finance

We next exhibit the performance of the above mentioned estimators in the analysis of Euro-UK Pound

daily exchange rates from January 4, 1999, till December 14, 2004. We have worked with the n0 = 725

positive log-returns, and ln-VaR-estimates were considered. Being aware that the log-returns of any

financial time series are not IID and that the possible presence of clustered volatility is a question

of particular relevance to applied financial research (see McNeil and Frey, 2000, among others), we

also know that the semi-parametric behaviour of estimators of any parameter of rare events can be

generalized to weakly dependent data (see Drees, 2002, 2003, and references therein). Semi-parametric

estimators of extreme event parameters, devised for IID sequences of RVs, are usually based on the tail

empirical process, remaining consistent and asymptotically normal in a large class of weakly dependent

data. However, although financial returns series typically exhibit little correlation, the squared returns

often indicate significant correlation and persistence, an evidence of the presence of heteroscedasticity.

Engle’s ARCH test for detecting the presence of ARCH effects (see Engle, 1982; Box et al., 1994), and

the ARCH/GARCH model, a typical model for this type of empirical data, was not rejected for this

log-returns data set. Such a test has also shown significant evidence on support of GARCH effects, i.e.

heteroscedasticity, indicating that GARCH modeling is appropriate. In order to remove the observed

stock returns heteroscedasticity, we have fitted the volatility model GARCH(1,1) to the data set, and

have then applied the above mentioned estimators to the standardized log-returns, yst = yt/σt, where

yt are the log-returns and σt the standard deviation forecast. There was next no significant evidence in

support of GARCH effects for the standardized return series, and we have more confidently assumed a

stationary setup for the standardized log-returns.

The second-order estimates were computed at the level k1 = bn0.9990 c = 720 and are equal to

(ρ̂(k1), β̂(k1)) = (−0.673, 1.038). The H, CH and PRB∗ EVI-estimates were obtained heuristically and

on the basis of a sample-path stability algorithm similar to the one presented in Gomes et al. (2013). The

associated 95% asymptotic confidence intervals (CIs) were obtained taking into account Remarks 3.2

and 3.3. of Gomes and Pestana (2007). The sample paths of the H, CH and PRB∗ ln-VaR–estimators,

for q = 0.001, together with the estimated ln-VaRq, are pictured in Figure 9. The final estimate of

ln-VaRq was obtained heuristically again and on the basis of sample path stability. Indeed, when we

consider the three estimates with one decimal figure only and the first 50 values of k, the percentage
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of times that the value 1.6 appears is 28%, 54% and 64% respectively for the H, the CH and the

PRB∗ ln-VaR-estimates. Moreover, and when considering the first 200 values of k, 87% of the PRB∗

ln-VaR-estimates are equal to 1.6.

Figure 9: ln-VaRq-estimates provided through the different classes of VaR-estimators under consideration, for
the standardized daily log-returns on the Euro-UK Pound and q = 0.001

The largest value of k in the aforementioned stability regions leads then to estimates of k, denoted

by k̂Q•0 , and to the computation of the asymptotic confidence intervals (CIs) for the ln-VaRq estimates

as suggested in Gomes and Pestana (2007), Remark 5.3., both presented in Table 9.

Table 9: Heuristic choice of k, associated ln-VaR-estimates, asymptotic 95% CIs and respective CI size

• k̂Q•0 ln-Q•

(
k̂Q•0

)
(LCLQ• , UCLQ•) 95% CI size

H 26 1.645 (1.120, 2.016) 0.896
CH 206 1.644 (1.343, 1.944) 0.601

PRB∗ 500 1.553 (1.334, 1.771) 0.437

As expected, due to the larger value of k̂Q•0 , and despite the larger asymptotic variance for a similar

value of k, the estimated and non-optimal PRB∗ VaR-estimate leads to the shortest CI.
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5 Concluding remarks

— It is well-known that Weissman-Hill VaR-estimation leads to a strong over-estimation of VaR and

the PRB-MOp methodology can provide a more adequate VaR-estimation, being even able to beat

the MVRB VaR-estimators in a very large variety of situations.

— For all simulated models with |ρ| < 0.5, and regarding minimal RMSE, even the non-optimal

adaptive VaR-estimator PRB∗, dependent on the estimation of ξ and ρ, always beats the CH

VaR-estimator. The pattern is not so clear-cut regarding bias.

— The use of QPRBp
, with an adequate value of p, always enables a reduction in RMSE regarding the

the CH VaR-estimator, and consequently, regarding the Weissman-Hill VaR-estimator. Moreover,

the bias is also reduced. Such a reduction in squared bias is particularly high for values of ρ close

to zero.

— The reduction, both in squared bias and RMSE, frequently happens for p < 1/(2ξ) (` < 8).

However, for small n (n ≤ 200) and Student t4 parents, the highest efficiency is attained at

p > 1/(2ξ), and we thus cannot assure the asymptotic normality of the PRB VaR-estimators,

being such an asymptotic behaviour under current research.

— The patterns of the estimators’ sample paths are always of the same type, in the sense that for

all k the VaR-estimator, Q(q)
PRBp

, decreases as p increases.

— The choice of the tuning parameters (k, p) can be done on the basis of reliable heuristic procedures

related to sample path stability, in the line of the algorithms in Gomes et al. (2013) and Neves

et al. (2015), as performed in Gomes et al. (2015d) and in the case-study presented in Section 4.

Indeed, even a non-optimal choice of p associated with any simple rule of sample stability, will

lead us to an adaptive value of p, with a lot of gain in the estimation of VaR.

— We further think sensible to devise and study in the near future, and both theoretical and com-

putationally, an algorithm of the type of the double-bootstrap algorithms in Gomes et al. (2011,

2012, 2015e), among others, taking into account a possible dependence among data. Indeed,

double-bootstrapping procedures for sample fraction selection are quite common and reliable un-

der IID frameworks, but suffer an important caveat for dependent data since the bootstrapped

sample does not possess the same serial dependence structure as the original sample. Therefore,
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the estimators based on the bootstrapped samples do not share the same asymptotic behaviour

as the original estimator based on an original serial dependent sample. Consequently, the optimal

(k, p) that minimises the RMSE based on double-bootstrapped samples may not be optimal for

the original sample. Ignoring the serial dependence in double bootstrapping can be therefore mis-

leading. For further applications of the bootstrap methodology to the estimation of parameters

of extreme events under an IID framework, see also Caeiro and Gomes (2015) and Gomes et al.

(2016b), where R-scripts are provided.

— An application involving the model of heteroscedastic extremes in Einmahl et al. (2016), is feasible

and under development.
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