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tails, which leads us to conclude that in most of the cases, fitting a normal distri-
bution to the data is not the best option, despite of the simplicity and popularity of
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that include the normal distribution as a particular member. Some properties of the
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applications. To monitor industrial processes some control charts for skew-normal
and bivariate normal processes are developed, and their performance analysed. An
application to a real data set from a cork stopper’s process production is presented.
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1. Introduction

The most commonly used standard procedures of Statistical Quality Con-
trol (SQC), control charts and acceptance sampling plans, are often implemented
under the assumption of normal data, which rarely holds in practice. The anal-
ysis of several data sets from diverse areas of application, such as, statistical
process control (SPC), reliability, telecommunications, environment, climatology
and finance, among others, lead us to notice that this type of data usually ex-
hibit moderate to strong asymmetry as well as light or heavy tails. Thus, despite
of the simplicity and popularity of the Gaussian distribution, we conclude that
in most of the cases, fitting a normal distribution to the data is not the best
option. On another side, modeling real data sets, even when we have some po-
tential (as)symmetric models for the underlying data distribution, is always a
very difficult task due to some uncontrollable perturbation factors.

This paper focus on the parametric family of skew-normal distributions
introduced by O’Hagan and Leonard (1976), and then investigated with more
detail by Azzalini (1985, 1986, 2005), among others.

Definition 1.1. A random variable (rv) Y is said to have a location-
scale skew-normal distribution, with location λ, scale δ and shape parameter α,
being denoted Y ∼ SN(λ, δ2, α), if its probability density function (pdf) is given
by

(1.1) f(y;λ, δ, α) =
2

δ
φ

(
y − λ
δ

)
Φ

(
α
y − λ
δ

)
, y ∈ R (α, λ ∈ R, δ ∈ R+),

where φ and Φ denote, as usual, the pdf and the cumulative distribution function
(cdf) of the standard normal distribution, respectively. If λ = 0 and δ = 1, we
obtain the standard skew-normal distribution, denoted SN(α).

This class of distributions includes models with different levels of skewness
and kurtosis, apart from the normal distribution itself (α = 0). In this sense, it
can be considered an extension of the normal family. Allowing departures from
the normal model, by the introduction of the extra parameter α that controls
the skewness, its use in applications will provide more robustness in inferential
methods, and probably, better models to fit the data, for instance, when the
empirical distribution has a shape similar to the normal, but exhibits asymmetry.
Note that even in potential normal situations there is some possibility of having
disturbances in the data, and the skew-normal family of distributions can describe
the process data in a more reliable and robust way. In applications it is also
important to have the possibility of regulating the thickness of the tails, apart of
the skewness.

The cdf of the skew-normal rv Y defined in (1.1) is given by

(1.2) F (y;λ, δ, α) = Φ

(
y − λ
δ

)
− 2T

(
y − λ
δ

, α

)
, y ∈ R (α, λ ∈ R, δ ∈ R+),
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where T (h, b) is the Owen’s T function (integral of the standard normal bivariate
density, bounded by x = h, y = 0 and y = bx), tabulated in Owen (1956).

Although the pdf in (1.1) has a very simple expression the same does not
happen with the cdf in (1.2), but this is not a problem that lead us to avoid the use
of the skew-normal distribution. The R package ’sn’ (version 0.4-17), developed
by Azzalini (2011), is now available. In such a package, functions related to the
skew-normal distribution, like the density function, the distribution function, the
quantile function, random number generation and maximum likelihood estimates
are provided.

The moment generating function of the rv Y is given by

(1.3) MY (t) = 2 exp
(
λt+ δ2t2/2

)
Φ(θδt), ∀t ∈ R,

where θ = α/
√

1 + α2 ∈ (−1, 1), and there exist finite moments of all orders.

Other classes of skew normal distributions, for the univariate and the mul-
tivariate case, together with the related classes of skew-t distributions, have been
recently revisited and studied in the literature. For details see Fernandez and
Steel (1998), Abtahi et al. (2011) and Jamalizadeb et al. (2011), among others.

This paper is organised as follows. Section 2 provides some information
about the family of skew-normal distributions considered in this study, in what
concerns properties, random sample generation and inference. Section 3 presents
some control charts based on the skew-normal distribution. Bootstrap control
charts for skew-normal processes are developed and some simulation results about
their performance are presented. Control charts based on specific statistics with
skew normal distribution are considered to monitor bivariate normal processes,
and their properties evaluated. In Section 4, an application in the field of SPC
is provided.

2. The univariate skew-normal family of distributions

Without loss of generality, we are going to enhance some properties of this
family of distributions by considering a standard skew-normal rv X, with pdf

(2.1) f(x;α) = 2φ(x)Φ(αx), x ∈ R (α ∈ R).

Note that, if Y ∼ SN(λ, δ2, α) then X =
Y − λ
δ
∼ SN(α).



Monitoring industrial processes with robust control statistics 5

2.1. An overview of some properties

In Figure 1 we illustrate the shape of the pdf of X for several values of
α. We easily observe that the shape parameter α controls the direction and the
magnitude of the skewness exhibited by the pdf. As α→ ±∞ the asymmetry of
the pdf increases, and if the sign of α changes, the pdf is reflected on the opposite
side of the vertical axis. For α > 0 the pdf exhibits positive asymmetry, and for
α < 0 the asymmetry is negative.
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Figure 1: Density functions of standard skew-normal distributions with
shape parameter α.

Proposition 2.1. As α→ ±∞ the pdf of the rv X converges to a half-
normal distribution. If α→ +∞, the pdf converges to f(x) = 2φ(x), x ≥ 0, and
if α→ −∞, the pdf converges to f(x) = 2φ(x), x ≤ 0.

Proposition 2.2. IfX ∼ SN(α) then the rvW = |X| has a half-normal
distribution with pdf given by f(w) = 2φ(w), w ≥ 0, and the rv T = X2 has a
pdf given by f(t) = 1√

2π
t−1/2e−t/2, t ≥ 0, i.e., has a chi-square distribution with

1 degree of freedom.

Denoting the usual sign function by sign(.) and taking θ = α/
√

1 + α2, the
rv X with a standard skew-normal distribution SN(α) has a mean value given
by

E(X) =

√
2

π
θ →
α→±∞

sign(α)× 0.79788,

variance equal to

V(X) = 1− 2

π
θ2 →

α→±∞
0.36338,
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and the Fisher coefficient of skewness is given by

β1 =
(4− π)

√
2θ6/π3√

−8θ6/π3 + 12θ4/π2 − 6θ2/π + 1
→

α→±∞
sign(α)× 0.99527.

From these expressions we easily observe that the mean value and the
degree of skewness of the SN(α) distribution increases with |α| while the variance
decreases, but all of them converge to a finite value.

Taking into consideration the large asymmetry of the SN(α) distribution
when α→ ±∞, and the fact of the kurtosis coefficient express a balanced weight
of the two-tails, we shall here evaluate separately the right-tail weight and the left-
tail weight of the SN(α) distribution through the coefficients τR and τL defined
by

τR :=
(
F−1(0.99)−F−1(0.5)
F−1(0.75)−F−1(0.5)

)(
Φ−1(0.99)−Φ−1(0.5)
Φ−1(0.75)−Φ−1(0.5)

)−1

and

τL :=
(
F−1(0.5)−F−1(0.01)
F−1(0.5)−F−1(0.25)

)(
Φ−1(0.5)−Φ−1(0.01)
Φ−1(0.5)−Φ−1(0.25)

)−1
,

where F−1 and Φ−1 denote the inverse functions of the cdf of the SN(α) and
of the cdf of the standard normal distributions, respectively. These coefficients
are based on the tail-weight coefficient τ defined in Hoaglin et al. (1983) for
symmetric distributions. For the normal distribution, τL = τR = 1. If the
distribution F has a right (left) tail heavier than the normal tails, τR > 1 (τL > 1),
and if F has a right (left) tail thinner than the normal tails, τR < 1 (τL < 1).

Table 1 presents the mean value, the standard deviation, the median, the
skewness coefficient, the left-tail weight and the right-tail weight of the SN(α)
distribution for several values of α > 0. From the values of Table 1 we notice
that when α increases from 0 to +∞, the mean value, the median and the coeffi-
cient of skewness increases, but the variance decreases, as expected. The SN(α)
distribution has a right-tail heavier than the normal tail, and a left-tail thin-
ner than the normal tail. Moreover, the right tail-weight of the SN(α) quickly
converges to 1.1585, the right tail-weight of the half-normal distribution, while
the left tail-weight of the SN(α) converges more slowly to the left tail-weight of
the half-normal distribution, 0.5393, a value very smaller than the tail-weight of
the normal distribution. When α decreases from 0 to −∞ we easily obtain the
values of these parameters (coefficients) from the values of this table, taking into
consideration that if the sign of α changes, the pdf is reflected on the opposite
side of the vertical axis.
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Table 1: Mean value (µ), standard deviation (σ), median (µe), skewness
coefficient (β1), left-tail weight (τL) and right-tail weight (τR)
of the SN(α) distribution.

α µ σ µe β1 τL τR
0 0 1 0 0 1 1
0.3 0.2293 0.9734 0.2284 0.0056 0.9986 1.0017
0.5 0.3568 0.9342 0.3531 0.0239 0.9946 1.0077
1 0.5642 0.8256 0.5450 0.1369 0.9718 1.0457
2 0.7136 0.7005 0.6554 0.4538 0.9008 1.1284
3 0.7569 0.6535 0.6720 0.6670 0.8291 1.1540
5 0.7824 0.6228 0.6748 0.8510 0.7222 1.1584
10 0.7939 0.6080 0.6745 0.9556 0.6124 1.1585
+∞ 0.7979 0.6028 0.6745 0.9953 0.5393 1.1585

2.2. Inference

Regarding parameters’ estimation in the location-scale skew-normal family
of distributions, SN(λ, δ2, α), we are only able to obtain numerical maximum like-
lihood estimates (MLEs), and thus, a closed form for their sampling distribution
is not available.

Let (Y1, ..., Yn) be a sample of size n from a SN(λ, δ2, α) distribution. The
likelihood function is given by

(2.2) LSN (λ, δ, α) =
2n

δn

n∏
i=1

φ

(
yi − λ
δ

) n∏
i=1

Φ

(
α
yi − λ
δ

)
and the log-likelihood is given by

(2.3) lnLSN (λ, δ, α) = n ln 2− n ln δ +
n∑
i=1

lnφ

(
yi − λ
δ

)
+

n∑
i=1

ln Φ

(
α
yi − λ
δ

)
where ln(.) denotes the natural logarithm function.

The MLE of λ, δ and α, denoted λ̂, δ̂ and α̂, are the numerical solution of
the system of equations

(2.4)



δ2 =
1

n

n∑
i=1

(yi − λ)2

α
n∑
i=1

φ
(
αyi−λδ

)
Φ
(
αyi−λδ

) =
n∑
i=1

yi − λ
δ

n∑
i=1

yi−λ
δ φ

(
αyi−λδ

)
Φ
(
αyi−λδ

) = 0.
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We may have some problems to obtain these estimates in the case of small-
to-moderate values of the sample size n as well as for values of α close to zero.
Note that if all the values of the sample are positive (negative), for fixed values
of λ and δ, the log-likelihood function is an increasing (decreasing) function of
α, producing therefore boundary estimates, and for α = 0, the expected Fisher
information matrix is singular.

Several authors have given important suggestions to find these estimates.
For instance, for a fixed value of α, solve the last two equations of (2.4) for
obtaining λ and δ, taking into account the first equation, and then, repeat these
steps for a reasonable range of values of α. Another suggestion to get around
these problems of estimation is to consider another re-parametrization for the
skew-normal distributions SN(λ, δ2, α) in (1.1), in terms of the mean value µ,
the standard deviation σ and the asymmetry coefficient β1. For details on this
topic see, for instance, Azzalini (1985) and Azzalini and Capitanio (1999), among
others.

To decide between the use of a normal or a skew-normal distribution to fit
the available data, apart from the information given by the histogram associated
to the data sample and the fitted pdf estimated by maximum likelihood, we can
advance to the confirmatory phase with a likelihood ratio test.

To test the normal distribution against a skew-normal distribution, i.e., to
test the hypotheses H0 : X ∼ SN(λ, δ2, α = 0) versus H1 : X ∼ SN(λ, δ2, α 6= 0),
the likelihood ratio statistic Λ is given by

(2.5) Λ =
LSN (λ̂, δ̂, α = 0)

LSN (λ̂, δ̂, α̂)
,

where LSN (λ, δ, α) denotes the likelihood function for the SN(λ, δ2, α) distribu-
tion. Under the null hypothesis, −2 log Λ is distributed as a chi-square distribu-
tion with 1 degree of freedom. For a large observed value of −2 log Λ, we reject
the null hypothesis, i.e., there is a strong evidence that the SN(λ̂, δ̂2, α̂) distri-
bution presents a better fit to the data set under consideration than the normal
N(µ̂, σ̂2) distribution.

2.3. Other stochastic results

Among other results valid for the skew-normal distribution, we shall refer
the following ones:

Proposition 2.3. If Z1 and Z2 are independent rvs with standard nor-
mal distribution, then Z1|Z2≤αZ1 ∼ SN (α).

Proposition 2.3 allow us to write the following algorithm for the generation
of random samples, (Y1, ..., Yn), of size n, from a SN(λ, δ2, α) distribution.
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Algorithm 2.1. Repeat steps 1.-4. for i = 1 to n:

1. Generate two independent values, Z1 and Z2, from a N(0, 1) distribution;

2. Compute T = α Z2;

3. The value Xi =

{
Z2, if Z1 < T
−Z2, otherwise

comes from a SN (α);

4. The value Yi = λ+ δXi comes from a SN(λ, δ2, α).

Figure 2 presents four histograms associated to samples of size one thou-
sand generated from a SN(α) distribution with shape parameter α = 0, 1, 2, 3,
respectively, together with the pdf’s of a normal and of a skew normal distribu-
tion fitted to the data by maximum likelihood. From Figure 2 we easily observe
that as α increases the differences between the two estimated pdfs become larger,
and the normal fit is not the most appropriate to describe the data. Note that,
even in potential normal processes, real data are not exactly normal and usually
exhibit some level of asymmetry. Thus, in practice, we advise the use of the
skew-normal distribution to model the data.
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Figure 2: X1 ∼ SN(0), X2 ∼ SN(1), X3 ∼ SN(2), X4 ∼ SN(3). His-

tograms and estimated pdf, SN(λ̂, δ̂, α̂) and N(µ̂, σ̂).

Another result with high relevance for applications is the one presented in
Proposition 2.4.

Proposition 2.4. Let (Z1, Z2) be a bivariate normal variable, E(Z1) =
E(Z2) = 0, V (Z1) = V (Z2) = 1 and corr(Z1, Z2) = ρ. Let Tm = min(Z1, Z2)
and TM = max(Z1, Z2), where min(.) and max(.) denote the minimum and the
maximum operators, respectively.
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i. If ρ = 1, Tm and TM have a N(0, 1) distribution.

ii. If ρ = −1, Tm and TM have half-normal distributions, being Tm ≤ 0, ∀m
and TM ≥ 0, ∀M.

iii. If |ρ| 6= 1, Tm ∼ SN(−α) and TM ∼ SN(α), with α =

√
1− ρ
1 + ρ

.

In particular, if Z1 and Z2 are independent variables, ρ = 0, and then,
Tm ∼ SN(−1) and TM ∼ SN(1).

3. Control charts based on the skew-normal distribution

The most commonly used charts for monitoring industrial processes, or
more precisely, a quality characteristic X at the targets µ0 and σ0, the desired
mean value and standard deviation of X, respectively, are the Shewhart control
charts with 3-sigma control limits. More precisely, the sample mean chart (M -
chart), the sample standard deviation chart (S-chart) and the sample range chart
(R-chart), and are usually developed under the assumptions of independent and
normally distributed data. Additionally, the target values µ0 and σ0 are not
usually fixed given values, and we have to estimate them, in order to determine
the control limits of the chart.

The ability of a control chart to detect process changes is usually measured
by the expected number of samples taken before the chart signals, i.e., by its
ARL (Average Run Length), together with the standard deviation of the Run
Length distribution, SDRL.

Whenever implementing a control chart, a practical advice is that 3-sigma
control limits should be avoided whenever the distribution of the control statistic
is very asymmetric. In such a case, it is preferable to fix the control limits of
the chart at adequate probability quantiles of the control statistic distribution, in
order to obtain a fixed ARL when the process is in-control, usually 200, 370.4, 500
or 1000, or equivalently, the desired false alarm rate (FAR), i.e., the probability
that an observation is considered as out-of-control when the process is actually
in-control), usually 0.005, 0.0027, 0.002 or 0.001. General details about Shewhart
control charts can be found, for instance, in Montgomery (2005).

In the case of skew-normal processes we do not have explicit formulas for
the ML estimators of the location, scale and shape parameters, and thus, a closed-
form for their sampling distribution is not available. The same happens for other
statistics of interest, such as, the sample mean, the sample standard deviation,
the sample range and the sample percentiles, among others. Thus, to monitor
skew-normal processes, the bootstrap control charts are very useful, although
with the disadvantage of a highly time-consuming Phase I. Moreover, many pa-
pers, see for instance, Sepala et al. (1996), Liu and Tang (1996) and Jones and
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Woodall (1998), refer that for skewed distributions, bootstrap control charts have
on average a better performance than the Shewhart control charts. Other details
about the bootstrap methodology and bootstrap control charts can be found,
for instance, in Efron and Tibshirani (1993), Bai and Choi (1995), Nichols and
Padgett (2006) and Lio and Park (2008, 2010).

3.1. Bootstrap control charts for skew-normal processes

To construct a bootstrap control chart we only use the sample data to
estimate the sampling distribution of the parameter estimator, and then, to de-
termine appropriate control limits. Thus, only the usual assumptions of Phase II
of SPC are required: process stable and independent and identically distributed
subgroup observations. The following Algorithm 3.1., similar to the ones pro-
posed in Nichols and Padgett (2006) and Lio and Park (2008, 2010), can be used
to implement bootstrap control charts for subgroup samples of size n, that en-
able us to monitor the process mean value and the process standard deviation
of a skew-normal distribution. This algorithm can be easily modified in order to
implement bootstrap control charts for monitoring other parameters of interest.

Algorithm 3.1.

Phase I: Estimation and determination of the control limits

1. From an in-control and stable process, observe k, say 25 or 30, random
samples of size n, assuming that the observations are independent and come
from a skew-normal distribution, SN(λ, δ2, α).

2. Compute the MLEs of λ, δ and α, using the pooled sample of size k × n.

3. Generate a parametric bootstrap sample of size n, (x∗1, · · · , x∗n), from a
skew-normal distribution, using the MLEs obtained in Step 2. as the dis-
tribution parameters.

4. Select the step associated to the chart you want to implement:

i. Two-sided bootstrap M-chart to monitor the process mean value
µ: from the bootstrap subgroup sample obtained in Step 3., determine
the sample mean, µ̂∗ = x∗.

ii. Upper one-sided bootstrap S-chart to monitor the process stan-
dard deviation σ: from the bootstrap subgroup sample obtained in
Step 3., determine the sample standard deviation, σ̂∗ = s∗.

5. Repeat Steps 3-4, a large number of times, say B = 10000 times, obtaining
B bootstrap estimates of the parameter of interest, in our case, the process
mean value or the standard deviation.
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6. Let γ, the desired FAR of the chart. Using the B bootstrap estimates
obtained in Step 5.,

i. Find the 100(γ/2)th and 100(1-γ/2)th quantiles of the distribution of
µ̂∗, i.e., the lower control limit LCL and the upper control limit UCL
for the bootstrap M -chart of FAR=γ, respectively.

ii. Find the 100(1-γ)th quantile of the distribution of σ̂∗, i.e., the upper
control limit UCL for the bootstrap S-chart of FAR=γ. The lower
control limit LCL is placed at 0.

Phase II: Process monitoring

7. Take subgroup samples of size n from the process at regular time intervals.
For each subgroup, compute the estimate x and s.

8. Decision:

i. If x falls between LCL and UCL, the process is assumed to be in-control
(targeting the nominal mean value); otherwise, i.e., if the estimate falls
below the LCL or above the UCL, the chart signals that the process
may be out-of-control.

ii. If s falls below the UCL, the process is assumed to be in-control (tar-
geting the nominal standard deviation); otherwise, the chart signals
that the process may be out-of-control.

In order to get information about the robustness of the bootstrap control
limits, we must repeat the steps 1.-6. of Algorithm 3.1. a large number of times,
say r = 1000, and then, compute the average of the obtained control limits, UCL
and LCL, and their associated standard deviations. The simulations must be
carried out with different subgroup sample sizes, n, and different levels of FAR,
γ. From this simulation study one would expect that, when the subgroup sample
size n increases, the control limits get closer together, and when FAR decreases,
the limits become farther apart.

In this study, using Algorithm 3.1., we implemented M and S bootstrap
control charts for subgroups of size n = 5, to monitor the process mean value of
a skew-normal process at a target µ0, and the process standard deviation at a
target σ0. Without loss of generality we assumed µ0 = 0, σ0 = 1 and α = 0. The
main interest is to detect increases or decreases in µ and to detect increases in σ
(and not decreases in σ). The FAR of the charts is equal to γ = 0.0027, which
corresponds to an in-control average run length (ARL) of approximately 370.4.
In Phase I we considered k = 25 subgroups of size n = 5.

The performance of these bootstrap control charts to detect changes in
the process parameters is evaluated in terms of the ARL, for a few different
magnitude changes. When the process changes from the in-control state to an
out-of-control state we assume that µ = µ0 → µ1 = µ0 + δσ0, δ 6= 0 and/or
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σ = σ0 → σ1 = θσ0, θ > 0. In this paper we repeated steps 1.-6. of Algorithm
3.1. 30 times, and then, we have chosen a pair of control limits that allow us
to obtain an in-control ARL approximately equal to 370.4, discarding the most
extreme upper and lower control limits. Our goal, although out of the scope of
this paper, is to improve this algorithm in order to obtain more accurate control
limits without replication.

Table 2 presents the ARL values of the bootstrap M -chart and S-chart,
and the associated standard deviation SDRL. Indeed, as can be seen from Table
2, the bootstrap control charts present an interesting performance, even when
we consider small changes. As the magnitude of the change increases, the ARL
values decrease quickly. Despite of the fact that, in SPC, the classical M and S
control charts are much more popular, these charts are good competitors, even
for the case of normal data if we have to estimate the target process values.

Table 2: ARL and SDRL of the bootstrap M and S charts for subgroups
of size n = 5. In-control, µ0 = 0 and σ0 = 1; when the process
is out-of-control we assume or µ→ µ1 = δ or σ → σ1 = θ.

M -chart (µ→ µ1) S-chart (σ → σ1)
δ ARL SDRL θ ARL SDRL

0.0 370.5 (371.8) 1.0 370.6 (369.6)
0.1 371.7 (377.2) 1.1 322.7 (320.8)
0.3 168.3 (169.7) 1.2 109.7 (108.2)
0.5 61.5 (61.2) 1.3 48.4 (48.0)
1.0 8.4 (7.8) 1.4 25.4 (24.4)
1.5 2.4 (1.8) 1.5 15.1 (14.5)
2.0 1.3 (0.6) 1.6 10.0 (9.5)
2.5 1.0 (0.2) 1.7 7.2 (6.8)
−0.1 261.9 (261.4) 1.8 5.3 (4.8)
−0.3 90.7 (89.9) 1.9 4.2 (3.7)
−0.5 33.4 (32.4) 2.0 3.5 (2.9)
−1.0 5.0 (4.6) 2.5 1.9 (1.3)
−1.5 1.8 (1.2)
−2.0 1.1 (0.4)
−2.5 1.0 (0.1)

3.2. Control charts for bivariate normal processes

Let (X1, X2) be a bivariate normal process and, without loss of generality,
assume that the quality characteristics X1 and X2 are standard normal variables,
possibly correlated, denoting ρ the correlation coefficient. The result presented
in Proposition 2.4, allows us to design control charts based on the statistics
Tm = min(X1, X2) and TM = max(X1, X2) to monitor this bivariate normal
process.
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These univariate statistics enable the implementation of control charts, here
denoted Tm-chart and TM -chart, to monitor simultaneously two related qual-
ity characteristics, alternatives to the multivariate control charts based on the
Hotelling (1947) statistic and its variants.

Moreover, these charts can be used when in each time of sampling we only
have available one observation from each variable of interest, X1 and X2, but can
be extended to other situations. For instance, when the distributions of X1 and
X2 have different parameters, replacing X1 and X2 by standardized data, and
also when we have samples of size greater than one from each of the variables X1

and X2, replacing the observations of the samples by the standardized sample
means.

First we have implemented a two-sided TM chart to detect changes in µ,
from µ0 = 0 to µ1 = δ, δ 6= 0, assuming the standard deviation maintains at σ0 =
1. We considered different magnitude changes, and apart from independent data
we also considered correlated data with different levels of positive and negative
correlation. The obtained ARL values are presented in Table 3.

Table 3: ARL of the two-sided TM -chart, for Xi ∼ N(µ, σ), i = 1, 2,
corr(X1, X2) = ρ. In-control: µ = 0, σ = 1; When the process
is out-of-control, we assume that only µ→ µ1 = δ 6= 0.

µ1 = δ/ρ 0 0.1 0.25 0.5 0.9 1 -0.25 -0.5
0.0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4
0.1 361.6 359.5 357.1 354.2 352.7 352.9 368.4 379.6
0.3 249.7 248.6 247.4 247.0 251.0 253.1 253.5 258.7
0.5 144.1 144.0 144.4 145.9 152.5 155.2 144.7 145.5
1.0 36.7 36.9 37.3 38.6 42.5 43.9 36.5 36.4
1.5 11.6 11.7 12.0 12.7 14.4 15.0 11.4 11.3
2.0 4.6 4.7 4.9 5.2 6.0 6.3 4.5 4.4
2.5 2.4 2.4 2.5 2.7 3.1 3.2 2.2 2.2
−0.1 330.8 334.7 339.6 345.9 352.1 352.9 318.2 298.2
−0.3 196.1 204.6 215.9 231.6 249.9 253.1 170.6 135.9
−0.5 100.8 107.9 117.9 132.6 151.5 155.2 80.6 56.8
−1.0 21.7 24.1 27.7 33.5 42.0 43.9 15.7 9.7
−1.5 6.7 7.5 8.8 10.9 14.2 15.0 4.8 3.1
−2.0 2.9 3.2 3.7 4.6 6.0 6.3 2.2 1.7
−2.5 1.7 1.9 2.1 2.4 3.1 3.2 1.4 1.2

From these values we observe that as the magnitude changes increases, the
ARL decreases, as expected, and that reductions in µ are detected faster than
increases. We easily observe that the level of correlation ρ does not have a great
impact on the performance of the chart. However, if the quality characteristics,
X1 and X2, are positively correlated, the ARL’s become larger as the level of
correlation increases, i.e., the chart becomes less efficient to detect the change.
On the other hand, the best performance of the chart is obtained when there is a
decrease in the process mean value and the quality characteristics are negatively
correlated. This control chart is not unbiased, and maybe due to this fact that we
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have observed that this chart is not appropriate to detect simultaneous changes
in µ and σ. Then, we have implemented an upper one-sided TM -chart to detect
changes in µ and/or σ.

Table 4: ARL of the upper one-sided TM -chart, for Xi ∼ N(µ, σ), i =
1, 2, corr(X1, X2) = ρ. In-control: µ = 0, σ = 1; When the
process is out-of-control, µ→ µ1 > 0 and/or σ → σ1 > 1.

µ1 σ1 /ρ 0.0 0.1 0.25 0.5 0.9 1.0 -0.25 -0.5
0.0 1.0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

1.1 156.7 156.9 157.4 159.3 167.1 175.0 156.6 156.6
1.5 22.2 22.4 22.8 23.8 27.6 31.4 22.0 22.0
2.0 7.7 7.9 8.1 8.6 10.4 12.2 7.6 7.5
2.5 4.6 4.7 4.9 5.2 6.4 7.5 4.5 4.4

0.1 1.0 268.0 268.1 268.4 269.3 272.3 273.4 268.0 268.0
1.1 119.5 119.7 120.2 122.2 129.2 135.5 119.3 119.3
1.5 19.0 19.2 19.5 20.5 23.8 27.1 18.8 18.8
2.0 7.1 7.2 7.4 7.9 9.5 11.1 6.9 6.8
2.5 4.3 4.4 4.6 4.9 6.0 7.1 4.2 4.1

0.3 1.0 144.4 144.5 145.0 146.6 151.4 153.1 144.2 144.2
1.1 71.1 71.3 71.8 73.4 79.0 83.2 70.9 70.9
1.5 14.2 14.3 14.6 15.4 18.0 20.4 14.0 13.9
2.0 5.9 6.0 6.2 6.6 8.0 9.3 5.7 5.7
2.5 3.8 3.9 4.1 4.4 5.3 6.2 3.7 3.6

0.5 1.0 80.7 80.9 81.4 82.9 87.4 89.0 80.0 80.5
1.1 43.6 43.8 44.3 45.6 49.8 52.6 43.4 43.4
1.5 10.7 10.8 11.1 11.7 13.8 15.6 10.5 10.5
2.0 5.0 5.1 5.3 5.6 6.8 7.9 4.8 4.8
2.5 3.4 3.5 3.6 3.9 4.7 5.5 3.3 3.2

1.0 1.0 22.2 22.4 22.7 23.6 26.0 26.8 22.0 22.0
1.1 14.7 14.9 15.2 15.9 17.9 19.0 14.5 14.5
1.5 5.7 5.8 6.0 6.4 7.6 8.5 5.6 5.5
2.0 3.4 3.5 3.6 3.9 4.7 5.4 3.3 3.2
2.5 2.6 2.7 2.8 3.0 3.6 4.2 2.5 2.4

1.5 1.0 7.7 7.8 8.1 8.5 9.6 10.0 7.6 7.5
1.1 6.1 6.1 6.3 6.7 7.7 8.2 5.9 5.8
1.5 3.4 3.5 3.6 3.9 4.6 5.1 3.3 3.2
2.0 2.5 2.5 2.6 2.9 3.4 3.8 2.4 2.3
2.5 2.1 2.2 2.2 2.4 2.9 3.3 2.0 1.9

2.0 1.0 3.4 3.5 3.6 3.9 4.4 4.6 3.3 3.2
1.1 3.0 3.1 3.2 3.4 4.0 4.2 2.9 2.8
1.5 2.3 2.3 2.4 2.6 3.0 3.3 2.1 2.1
2.0 1.9 2.0 2.1 2.2 2.6 2.9 1.8 1.7
2.5 1.8 1.8 1.9 2.0 2.4 2.7 1.7 1.6

2.5 1.0 1.9 2.0 2.0 2.2 2.5 2.6 1.8 1.7
1.1 1.8 1.9 2.0 2.1 2.4 2.5 1.7 1.6
1.5 1.7 1.7 1.8 1.9 2.2 2.4 1.6 1.5
2.0 1.6 1.6 1.7 1.8 2.1 2.3 1.5 1.4
2.5 1.5 1.5 1.6 1.7 2.0 2.2 1.4 1.3
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From the ARL values presented in Table 4, we conclude that the upper
one-sided TM -chart presents an interesting performance to detect increases in
one of the process’ parameters, µ or σ, but also to detect simultaneous changes
in these parameters. We observe again that the level of correlation, ρ, between
the quality characteristics X1 and X2, has a small impact on the performance of
the chart. Finally, the lower one-sided Tm-chart will have a similar performance
to detect changes from µ→ µ1 < 0 and/or σ → σ1 > 1.

4. An application in the field of SPC

In this section we consider an application to real data from a cork stopper’s
process production. The objective is modeling and monitoring the data from this
process. We thus know that the corks must have the following characteristics:

Table 5: Technical specifications: cork stoppers caliber 45mm×24mm.

Physical quality characteristic (mm) Mean target Tolerance interval

Length 45 45± 1
Diameter 24 24± 0.5

For this purpose we have collected from the process production a sample, of
size n = 1000, of corks’ lengths and diameters. First, we have fitted a normal and
a skew-normal distribution to the data set. Looking to the histograms obtained
from the sample data, presented in Figure 3, we see that both fits seem to be
adequate, and that the differences between the two pdf’s are small.

Length

Length

D
en

si
ty

44.0 44.5 45.0 45.5

0.
0

0.
5

1.
0

1.
5

2.
0

Diameter

Diameter

D
en

si
ty

23.5 24.0 24.5 25.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 3: Histograms and estimated pdf’s of the normal and skew-normal
fit to the length and diameter data.
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Then, to test the underlying data distribution, we have used the Shapiro
test of normality and the Kolmogorov-Smirnov (K-S) for testing the skew-normal
distribution. Unexpectedly, although the fits seem to be similar, from these tests
of goodness-of-fit the conclusions are different: the normality for the length’s and
diameter’s data is rejected, for the usual levels of significance (5% and 1% ), while
the skew-normal distribution is not rejected. The p-values for the Shapiro and
K-S tests are presented in Table 6. Looking to the maximum likelihood estimates
of some parameters of interest of the fitted distributions, presented in Table 7,
we observe that there exist some differences between the estimates obtained for
the mean value and the location, as well as between the estimates obtained for
the standard deviation and the scale. Moreover, the data exhibit some skewness
and the estimate of the shape parameter is not very close to zero, as it should
happen in the case of normal data.

Table 6: P-value’s of the Shapiro test of normality and of the
Kolmogorov-Smirnov (K-S) for testing a skew-normal.

Length Diameter Decision

Shapiro 0.00175 0.00515 Normality rejected*
K-S 0.2376 0.2923 The skew-normal distribution is not rejected*

*conclusion for a level of significance of 5% and 1%

Table 7: Maximum likelihood estimates of some parameters of interest of
the fitted distributions, on the basis of a skew-normal model.

Data Location Scale Shape Mean Standard Skewness
deviation

Length 44.7329 0.2907 1.0720 44.9025 0.2361 0.1591
Diameter 23.9526 0.1830 1.1358 24.0622 0.1466 0.1795

To confirm the conclusions obtained by the previous tests of goodness-of-fit
we have used the likelihood ratio test presented in Section 2.2. As we obtained
an observed value −2 ln Λobs > 3.84 (for length’s and diameter’s data), there is
a strong evidence that the SN(λ̂, δ̂, α̂) distribution presents a better fit than the
normal N(µ̂, σ̂2) distribution, for a level of significance of 5%.

Finally, based on Algorithm 3.1., we illustrate the implementation of the
M and S bootstrap control charts for subgroups of size n = 10 to monitor the
process mean value and the process standard deviation of the corks’ diameter.
The Phase I data set consists of m = 25 subgroups of size n = 10, and we
were led to the following control limits: LCL=23.936484 and UCL=24.215071
for the M -chart, and UCL=0.249708 for the S-chart. From these subgroups
we have also estimated the control limits of the corresponding Shewhart charts,
assuming normality, here denoted, LCLsh and UCLsh, and the center line, CL. We
obtained LCLsh=23.947788, UCLsh=24.200532, LC=24.07416 for the M -chart,
and UCLsh=0.223152, CL=0.129573 for the S-chart.
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In Figure 4 we picture the M and S bootstrap control charts together with
the corresponding Shewhart charts with estimated control limits, to be used in
Phase II of the process monitoring. We immediately observe that the bootstrap
control limits, LCL and UCL, are set up farther apart than the control limits of
the Shewhart M and S charts, LCLsh and UCLsh.

The Phase II data set used in this illustration consists of m = 50 subgroups
of size n = 10, supposed to be in-control. We have computed the statistics x and
s associated to these 50 subgroups, and we have plotted them in the charts (here
denoted M and S). While the bootstrap charts do not signal changes in the
process parameters, the Shewhart charts indicates that the process is out-of-
control, due to changes in the process mean value and standard deviation.
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Figure 4: Bootstrap M and S charts together with the corresponding She-
whart charts with estimated control limits.
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