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Abstract. In many inspection processes it is not feasible to take more than one

observation at each sampling point to control the process. In such cases it is

common to use a control statistic that accumulates the information of past data in

order to improve the performance of the monitoring scheme. The most important

control schemes performance measures are related with the time of the first passage

of the control statistic over a given threshold, and are usually determined by Monte

Carlo simulations, because analytical expressions are, in general, very difficult or

even impossible, to obtain. In this paper we present some distributional results that

allow us to obtain one of the most important control chart performance measure, the

average run length (i.e., the average number of samples taken from the process until

the first time the control statistic over pass the control limits). We consider two

specific control schemes for monitoring industrial processes based on k-dependent

statistics, the moving maxima and the moving sum control charts, and under the

assumption of independent observations from normal or exponential processes, we

provide analytical expressions for the average run length.
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1 Introduction

In many production processes, in particular in the chemistry industry, it is not

possible to take more than one observation at each time of sampling. In such

cases a common practice is to consider a control chart for individuals (X) to

monitor the process mean value, and a moving range (MR) chart to monitor the

process variability. However, taking in account that the performance of the moni-

toring scheme is positively correlated with the sample size taken to inspection, the

drawback of having available only one new observation at each time of sampling

could be compensated using a control statistic that accumulates the information of

past data. Many practitioners began to use the moving average (MA), the cumu-

lative sum (CUSUM) and the exponentially weighted moving average (EWMA)

charts, as an alternative to the X chart for the individual observations. General

details about control charts may be found, for instance, in Ryan (2000) and in

Montgomery (2005).

The most common control schemes performance measures are related with the

time of the first passage of the control statistic over a given threshold. These

measures are usually determined by Monte Carlo simulations, because analytical

expressions are in general difficult, or even impossible, to be derived. For instance,

we note that consecutive values of the CUSUM and of the EWMA control statis-

tics share observations of different samples, and thus, to evaluate their performance,

we have to consider the structure of the data process together with the structure

of the dependence between consecutive values of the control statistic. Specifically

speaking, the ability of a control chart to detect changes in the process parame-

ters is analyzed in terms of the distribution of the run length (RL) variable. This

variable represents the number of samples taken until the chart signals, i.e., until

the control statistic over pass the control limits of the chart; in practice, we usually

compute its average run length, the ARL, and eventually, its standard deviation.

To compare different charts they must have the same in-control ARL, which is

in general a large, pre-fixed value, because it is the expected number of samples to

the occurrence of a false alarm; the out-of-control ARL must be small so that the

change is quickly detected; consequently, the most efficient chart is the one with the
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smallest out-of-control ARL for the shifts we want to detect. For specific details

about performance measures see, for instance, Nelson (1982), Rigdon et. al (1994),

Amin and Ethridge (1998), Roberts (2000) and Reynolds and Stoumbos (2001).

The importance of the ARL as a performance measure, but also to set the

control limits of the chart in order to obtain a control scheme with specific proper-

ties, lead us to find analytical expressions for the ARL of the charts usually used

in practice. In this paper we present, in section 2, some generic expressions that

allow us to obtain the ARL of a control chart based on a k-dependent statistic,

and to determine the control limits in order to have an unbiased control chart.

To motivate the use of the k-dependent moving maxima (MMk) and moving sum

(MSk) control charts, we advance in section 3 with some distributional properties

about these control statistics; we also present, for k ≤ 3, explicit expressions for

the probabilities that are used in the computation of the ARL of the MMk and of

the MSk charts, implemented under the assumption of independent observations

from normal or exponential processes.

2 Control chart based on k-dependent statistics: average run length

and control limits

Let us generally denote the control statistic associated to a given control chart at

time t by Wt, t ≥ 1. We say that we are in a presence of a k-dependent structure,

with k ≥ 1, if for all t ≥ 1 we have

Wt and Wt+i are dependent for i < k,

Wt and Wt+i are independent for i ≥ k.

In the particular case of k = 1, the variables Wt are independent for every t.

Most of the parametric control charts are used to detect changes in one or

more control parameters relatively to pre-fixed targets in both directions (i.e., are

two–sided control charts), and have the following decision rule: at each sampling

point time t, the values of the control statistic Wt are compared with the lower and

the upper control limits of the chart, here denoted by LCL and UCL. Whenever

Wt falls outside the interval C = [LCL, UCL] the chart signals, and the process is

supposed to be out-of-control; otherwise, the process is considered to be in-control.

Let us denote Ck the Cartesian product of the interval C = [LCL, UCL]
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iterated k times, i.e., C × ...× C, and pi, 0 ≤ i ≤ k, the following probabilities

pi = P
(
(Wt,Wt+1, ...,Wt+i−1) ∈ Ci

)
, t ≥ 1, 1 ≤ i ≤ k, (2.1)

with p0 = 1 and C0 denoting the sampling space, by convention.

For a k-dependent structure, with k ≥ 1, the distribution of the random variable

RL, number of samples to signal, is given by

f(r) = P (RL = r) =


pr−1 − pr if 1 ≤ r ≤ k − 1 ∧ k ≥ 2

(pk−1 − pk)
(

pk

pk−1

)r−k

if r ≥ k,

(2.2)

and the average number of samples to signal, ARL, is expressed by

ARL =
∞∑

r=1

rP (RL = r) =
k−2∑
i=0

pi +
p2

k−1

pk−1 − pk
, (2.3)

with
L∑

i=l

pi = 0 for L < l.

As previously mentioned, the ARL is the most common performance measure

of the chart, and at the same time it is used to determine its control limits in order

to obtain specific properties. When the process is in-control the ARL must be

equal to a pre-defined fixed value, say ARLin-control = ARL0, and when the process

is out-of-control the ARL must be smaller than this value whenever it is possible,

i.e., ARLout-of-control ≤ ARLin-control. A control chart with this property is called

an unbiased control chart.

If we generally denote the shift magnitude we want to detect in the control

parameter by ∆, and if we assume that under control ∆ = ∆0, for a k-dependent

structure the control limits of an unbiased two-sided control chart are determined

such that 

[
k−2∑
i=0

pi +
p2

k−1

pk−1 − pk

]
∆=∆0

= ARL0[
k−2∑
i=0

∂pi

∂∆
+ pk−1

(pk−1 − 2pk) ∂pk−1
∂∆ + pk−1

∂pk

∂∆

(pk−1 − pk)2

]
∆=∆0

= 0,

(2.4)

with
L∑

i=l

pi = 0 for L < l.

With little adjustments we obtain the ARL for a one-sided control chart, which

has only one control limit: an upper control limit if the chart is implemented to
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detect increases in the control parameter, or a lower control limit if it is implemented

to detect decreases; the decision rule associated to this chart is similar to the

previous one. To determine the control limit of the chart in order to obtain specific

properties, we only use, in this case, the first equation in (2.4). More details about

other measures to evaluate the properties of a control chart can be found, for

instance, in Crowder (1987), in Reynolds et al. (1988, 1990) and in Reynolds and

Stoumbos (2001).

3 Moving maxima and moving sum control charts

Suppose that X represents a process quality variable whose distribution is F , and

that it is not feasible to take more than one observation at each sampling point

to control the process. To implement the moving maxima and the moving sum

control charts in a k-dependent structure, here denoted by MMk and MSk, with

k ≥ 1 fixed, we must assume that in the start-up control phase and after the

chart signals, the (re)implementation of the chart occurs after the process has been

running for a reasonable period of time in order to have k observations available, and

to assume that the control statistic has already reached a stationary distribution

before the chart signals again. Moreover, we also assume that the sampling inter-

val is sufficiently large to admit that all the observations used to implement the

control charts are independent and identically distributed (i.i.d.), with cumulative

distribution function (cdf) F .

The MMk chart plots in each sampling point t the value of the statistic Mk
t ,

k ≥ 1, defined by

Mk
t = Max(Xt, Xt−1, ..., Xt−k+1), t ≥ 1, (3.1)

and the MSk chart plots in each sampling point t the value of the statistic Sk
t ,

k ≥ 1, defined by

Sk
t = Xt + Xt−1 + ... + Xt−k+1, t ≥ 1, (3.2)

where Xi, i < t denotes the extra observations taken in advance from the process.

For large values of k these extra observations may have some effect in the perfor-

mance of the charts to detect large shifts, but for small values of k this effect is

negligible. Considering k ≤ 3 we already obtain control charts more efficient than
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the traditional X chart for the individual observations, and the overall benefits in

terms of efficiency and difficulty of implementation of the charts for k > 3, may be

considered insignificant.

3.1 Distributional properties of the moving maxima statistic

The control statistic Mk
t , k ≥ 1, in (3.1), can be expressed in the form

Mk
t =

 Xt if k = 1

Max(Mk−1
t , Xt) if k > 1

, t ≥ 1, (3.3)

and the cdf of Mk
t , k ≥ 1, is given by

FMk
t
(m) = F k(m), t ≥ 1. (3.4)

The joint cdf of (Mk
t ,Mk

t+1, ...,M
k
t+r−1), 1 ≤ r ≤ k, k ≥ 1 and t ≥ 1, is given for

all admissible combinations (m1, ...,mr), by

F k
1,...,r(m1, ...,mr) =

=


F k(m1), r = 1
r−1∏
i=1

(
F ( min

1≤j≤i
mj)F ( min

k−i+1≤j≤k
mj)

)
F k−r+1( min

1≤j≤k
mj), r ≥ 2.

(3.5)

To derive this distribution we take in account the variables Xt that are presented

in each of the Mk
t , t ≥ 1 variables, as well as the number of times that Xt appears

in the vector (Mk
t ,Mk

t+1, ...,M
k
t+r−1). Thus, for admissible values (m1, ...,mr), the

condition

Mk
1 ≤ m1 ∩Mk

2 ≤ m2 ∩ ... ∩Mk
r ≤ mr

holds if and only if

X1 ≤ m1 ∩Xk+r−1 ≤ mr

X2 ≤ m1 ∩X2 ≤ m2 ∩Xk+r−2 ≤ mr ∩Xk+r−2 ≤ mr−1

....................

Xr−1 ≤ m1 ∩ ... ∩Xr−1 ≤ mr−1 ∩Xk+1 ≤ mr ∩ ... ∩Xk+1 ≤ m2

Xr ≤ m1 ∩ ... ∩Xr ≤ mr

....................

Xk ≤ m1 ∩ ... ∩Xk ≤ mr.
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Working with independent and identically distributed variables, Xt, with cdf F , we

get

F k
1,...,r(m1, ...,mr) =

= F (m1)F (mr)F (min(m1,m2))F (min(mr,mr−1))...

...F (min(m1, ...,mr−1))F (min(mr, ...,m2))F k+r−1(min(m1, ...,mr)).
(3.6)

We note that the variable (Mk
t ,Mk

t+1, ...,M
k
t+r−1) has a singular distribution with a

probability mass function for some values (m1, ...,mr). General results about order

statistics can be found in David (1980).

Taking in account these distributions we compute, for k ≤ 3, the probabilities

pi in (2.1), needed to compute the average run length of the chart. For the MM2

chart we have

p1 = F 2(UCL)− F 2(LCL),

p2 = F 3(LCL) + F 3(UCL)− 2F (UCL)F 2(LCL),
(3.7)

and for the MM3 chart, we have

p1 = F 3(UCL)− F 3(LCL),

p2 = F 4(LCL) + F 4(UCL)− 2F (UCL)F 3(LCL),

p3 = F 5(LCL) + 2F (UCL)F 4(LCL)− 3F 2(UCL)F 3(LCL).

(3.8)

3.2 Distributional properties of the moving sum statistic

The control statistic Sk
t , k ≥ 1, in (3.2), can also be expressed in the form

Sk
t =

 Xt if k = 1

Sk−1
t + Xt if k > 1

, t ≥ 1, (3.9)

and, for k ≥ 1, the distributions of the random variables Sk
t and (Sk

t , Sk
t+1, ..., S

k
t+r−1),

1 ≤ r ≤ k, and t ≥ 1, can be easily derived only for some particular models F and

some values of k. In the sequel, we present these distributions for a normal model

F and k ≥ 1, and for an exponential model F in the case of k ≤ 3, models that are

used in many applications of different areas of research.
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If the random variables Xt are independent and normally distributed with mean

value µ and variance σ2, the statistic Sk
t , k ≥ 1 and t ≥ 1, has a normal distribution

with mean value kµ and variance kσ2, and the probability density function (pdf)

is given by

fSk
t
(s) =

1
σ
√

2πk
exp

{
− 1

2kσ2
(s− kµ)

}
, s ∈ R. (3.10)

The random vector (Sk
t , Sk

t+1, ..., S
k
t+r−1), 1 ≤ r ≤ k, k ≥ 1 and t ≥ 1, has

a multivariate normal distribution, with vector of means µr×1 =


kµ

...

kµ

 and

covariance matrix Σr = [σij ]r×r, with σij = σ2(k − (j − i)), 1 ≤ i ≤ j ≤ r.

The joint pdf of (Sk
t , Sk

t+1, ..., S
k
t+r−1), 1 ≤ r ≤ k and t ≥ 1, is given by

f1,2,...r(s1, s2, ..., sr) =

=

√
|Σ−1

r |
(2π)

r
2

exp

{
− 1

2

r∑
i=1

r∑
j=1

σij(si − kµ)(sj − kµ)

}
,

(3.11)

where Σr = [σij ] , Σ−1
r =

[
σij

]
and |Σ−1

r | = 1
|Σr|

.

For the MS2 chart, the probabilities pi in (2.1) are given by

p1 = Φ
(

LSC−2µ√
2σ

)
− Φ

(
LIC−2µ√

2σ

)
,

p2 =
∫ LSC

LIC
1

2σ
√

π
e−

(s1−2µ)2

4σ2

[
Φ

(
LSC−(µ+

s1
2 )√

3
2 σ

)
− Φ

(
LIC−(µ+

s1
2 )√

3
2 σ

)]
ds1,

(3.12)

and for the MS3 chart, we have

p1 = Φ
(

LSC−3µ√
3σ

)
− Φ

(
LIC−3µ√

3σ

)
,

p2 =
∫ LSC

LIC
1

2σ
√

π
e−

(s1−2µ)2

4σ2

[
Φ

(
LSC−(µ+

2s1
3 )√

5
3 σ

)
− Φ

(
LIC−(µ+

2s1
3 )√

5
3 σ

)]
ds1,

p3 =
∫ LSC

LIC

∫ LSC

LIC
fS1,S2(s1,s2)

[
Φ
(

LSC− 6µ−s1+4s2
5√

8
5 σ

)
− Φ

(
LIC− 6µ−s1+4s2

5√
8
5 σ

)]
ds2ds1,

(3.13)

where Φ denotes the cdf of a standard normal distribution.

If the random variables Xt are independent and identically distributed to an

exponential random variable X with scale parameter δ, i.e., f(x) =
1
δ

e−
x
δ , x ≥ 0,

it is very difficult to obtain the previous distributions for k > 3. However, the pdf
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of the statistic S2
t , t ≥ 1, is given by

fS2
t
(s) =

s

δ2
e−

s
δ , s ≥ 0, (3.14)

and the joint pdf of (S2
t , S2

t+1), t ≥ 1, is given by

fS2
t ,S2

t+1
(s1, s2) =

1
δ2

e−
1
δ (s1+s2)

(
e

min(s1,s2)
δ − 1

)
. (3.15)

Taking in account these distributions, for the MS2 we have

p1 =
(

LCL
δ + 1

)
e−

LCL
δ −

(
UCL

δ + 1
)
e−

UCL
δ ,

p2 = 2
(

LCL
δ − UCL

δ

)
e−

UCL
δ +

(
e−

LCL
δ − e−

UCL
δ

) (
2 + e−

UCL
δ − e−

LCL
δ

)
.

(3.16)

The pdf of the statistic S3
t , t ≥ 1, is given by

fS3
t
(s) =

s2

2δ3
e−

s
δ , s ≥ 0, (3.17)

the joint pdf of (S3
t , S3

t+1) is given by

fS3
t ,S3

t+1
(s1, s2) =

=
1
δ3

e−
1
δ (s1+s2)

(
min(s1, s2)e

min(s1,s2)
δ − δe

min(s1,s2)
δ + δ

)
,

(3.18)

and the joint pdf of (S3
t , S3

t+1, S
3
t+2), for t ≥ 1, is given by

fS3
t ,S3

t+1,S
3
t+2

(s1, s2, s3) =

=



− 1
δ3

e−
s1+s3

δ (
s1

δ
+ 1) +

1
δ3

e−
s3
δ , 0 < s1 < s2 < s3

− 1
δ3

e−
s1+s3

δ

(s2

δ
+ 1− e

s2
δ

)
, 0 < s2 < s1 < s3 ∨ 0 < s2 < s3 < s1

− 1
δ3

e−
s1+s3

δ

(s3

δ
+ 1

)
+

1
δ3

e−
s1
δ , max{0, 2s2 − s1} < s3 < s2 < s1

− 1
δ3

e−
s1+s3

δ

(s3

δ
+ 1

)
+

1
δ3

e−
s1
δ ,

max{0, s2 − s1} < s3 < s2 < s1 < 2s2 − s3

− 1
δ3

e
−

s1 + s3

δ

(
s1 − s2 + s3

δ
+ 1

)
+

1
δ3

e
−

s2

δ ,

0 < min{s1, s3} < max{s1, s3} < s2 < s1 + s3

0, otherwise.
(3.19)
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