Rodrigues PMSM, Rodrigues C, Cruz N, Rios S and Viana da Fonseca A Seepage water quality of a soil treated with alkali-activated cement at room temperature. Environmental Geotechnics, https://doi.org/10.1680/jenge.17.00039

Quality of seepage water in a soil treated with alkali-activated cement at room temperature

Author 1

- Pedro M.S.M. Rodrigues, PhD, MSc, BSc
- Adjunct Professor, Polytechnic Institute of Guarda, Guarda, Portugal

Author 2

- Carlos Rodrigues, PhD, MSc, BSc
- Coordinator Professor, Polytechnic Institute of Guarda, Guarda, Portugal

Author 3

- Nuno Cruz, PhD, MSc, BSc
- Technical Director in Geotechnical Department of MOTA-ENGIL / Invited Professor in University of Aveiro, Portugal

Author 4

- Sara Rios, PhD, MSc, BSc, Post-Doc Research Fellow
- CONSTRUCT-GEO, Faculty of Engineering, University of Porto

Author 5

- António Viana da Fonseca, BSc, MSc. D.Eng, FIE (Port), Professor, Department of Civil Engineering
- CONSTRUCT-GEO, Faculty of Engineering, University of Porto

Abstract

Modern societies are great producers of waste because of their energy and natural resource needs. Many of these wastes are disposed of in landfills, which require a significantly-sized area of soil and special geotechnical conditions. The reaction between alumina-silicate, with an aqueous alkali hydroxide and silicate solution produces an Alkali-Activated Cement (AAC). The use of AAC, an inorganic material with a chemical structure of polymeric Si–O–Al bonds, can promote the stabilisation and immobilisation of a wide variety of waste sources containing hazardous materials. The purpose of this study is to evaluate the effect of curing conditions on the resistance, permeability and in the quality of the seepage water generated over time in transport infrastructure platforms built with soil stabilised with AAC. The strength results show that the material meets the requirements for use in building low cost roads. Permeability tests of AAC samples show a relatively low permeability (between 10⁻⁸ to 10⁻⁷ m/s), a positive factor for environmental and geotechnical considerations. However, this permeability still results in significant leachate water with quality and contaminant issues, especially in Cr, Cd, AI, Na, Si, and high pH.

Keywords chosen from ICE Publishing list

ash utilisation; fabric/structure of soils; strength & testing of materials;

1 Introduction

2 Since the middle of the last century, the growth of the world population has induced an increase 3 of waste production and a demand for energy and natural resources (Costa et al., 2010; Patrício 4 et al., 2016). As a consequence, industry and power plants face the problem of industrial wastes 5 and carbon dioxide emissions that are generated during manufacturing processes and the 6 production of energy. The quantities of industrial waste generated are enormous, many of them 7 classified as hazardous, which implies the use of large areas of land for the construction of 8 landfills. This solution is not environmental friendly and is quite expensive, not only in 9 construction but also in operation (Scheetz et al., 1999; Scharff, 2014; Camobreco et al., 1999). 10 Coal-firing power plants are one of the largest producers of fly ash (FA). FA is a hazardous 11 material which needs a disposal in industrial landfills, with the possibility of environmental 12 deterioration of waters and soils. In recent decades, efforts have been made for the application 13 of FA in civil engineering structures. For example, the application of this waste materials in 14 alkali-activated cement (AAC) can be a more environmentally sustainable solution, not only 15 because of increased recycling and use of wastes in the manufacture of new products, but also 16 because it increases the lifetime of landfills. AAC, an inorganic material with Si-O-Al links, can 17 be obtained from the chemical blend of alumina-silicate oxides with alkali and silicates at 18 temperatures under 100 °C (Davidovits, 1991; Mehta and Siddique, 2016; Yuan et al., 2016; 19 Salahuddina et al., 2015). AAC can also promote the solidification, stabilization and 20 immobilization of a wide variety of waste sources containing heavy metals. During the curing 21 time, the reactions inside the mixture include mineral dissolution, polycondensation and 22 structural re-organization of the chemical species that are present (Phair and Van Deventer, 23 2001; Sarkar et al., 2015). AAC can also contribute to stabilizing and immobilizing heavy metals 24 and radioactive waste, decreasing their bioavailability. The effective immobilization of heavy 25 metals and other harmful compounds allows the AAC to be used in the construction industry 26 and for paving roads (Van Jaarsveld et al., 1997; Santa et al., 2016; Komnitsas, 2011).

In recent decades, AAC based on FA has attracted the industrial interest of power plants
because environmental regulations promote the use of recycled materials to lower the
consumption of natural resources and the decrease of carbon dioxide emission (Davidovits,
2005; Turner and Collins, 2013; Heath et al., 2014). This solution has important advantages,

such as cost, flexibility and availability of the waste FA for use as raw material. AAC has other properties that make it attractive for cementation, such as long-term durability, high compressive strength, high acid resistance and fast hardening (Singh et al., 2015). A typical FA-based AAC blend consists, approximately, of 60% fly ash, 12% Al source and the rest alkali silicate solution by mass (Swanepoel and Strydom, 2002; Van Jaarsveld et al., 1999; Yun-Ming et al., 2016). The purpose of this study is to evaluate the effect of different curing conditions in the resistance and permeability of an AAC and in the quality of the seepage water generated over time.

38

39 2. Materials and Methods

40 2.1. Materials

The results presented in this paper concern the stabilization of a Colombian soil classified as a silty sand (SM), according to the unified classification system ASTM D2487 (2017). The soil was collected at a quarry site called "El Cajón de Copérnico", located in Soacha in the south of Bogotá, Colombia (4°33'14.5"N 74°12'21.9"W). It is a crushed sandstone mainly composed by quartz and a minor quantity of muscovite with the following grading characteristics: D₅₀=0.20 mm, Uniformity Coefficient C_u= 200, Curvature Coefficient C_c=8.6 and fines content (D<0.074 mm) = 27.9%.

48 The FA used in the alkaline activation was produced by a Portuguese coal-fired thermo-electric 49 power plant, Pegop - Energia Eléctrica SA (39°28'00.7"N 8°06'52.0"W), classified as Class F 50 due to its low calcium content, according to ASTM C618 (2017). The alkaline activator solution 51 was produced mixing a sodium silicate (SS) solution with a sodium hydroxide (SH) solution 52 prepared to the desired concentration by dissolving sodium hydroxide pellets in water. The SS 53 solution has a bulk density of 1.464 g/cm³ at 20 °C, a SiO₂/Na₂O weight ratio of 2.0 (molar ratio 54 of 2.063) and a Na₂O concentration in the solution of 13.0%. The SH pellets have a specific 55 gravity of 2.130 at 20 °C (99 wt %).

56

57 2.2. Testing procedures

For pH determinations, a pH meter (Tritralab TIM900, Radiometer) and a sensor (PHC3185-67,
Radiometer) were used and calibrated with standard solutions of pH 4.005±0.010, 7.000±0.010
and 10.012±0.010 (Radiometer analytical). Electrical conductivity was measured with a

61 conductivity meter (model 150, Orion) and a sensor (model 012210, Orion) calibrated with a 62 12.85±0.35% mS/cm conductivity standard (Radiometer analytical). Concentrations of major 63 and trace elements, in the soil, ash, percolation water and circulation water (tap water) were 64 determined by atomic absorption spectroscopy (906 model, GBC) with flame and electro-65 thermal (GF3000, GBC) atomizer systems. Standard solutions (Johson Mathey GmbH) were 66 used for calibration, with a concentration of 1000 µg/ml of each element at 5% HNO₃, with the 67 exception of aluminium, chromium and nickel solutions, which had 5% HCI.

Scanning Electron Microscopy (SEM) was performed on a Quanta SEM 400 (FEI, inc.) in low vacuum mode (1.3 mbar). The Energy Dispersive Spectroscopy (EDS) was acquired for about 10 minutes using an EDAX equipment. A dead time of 33%, with about 2,000 counts per second and a life span of 500 s was used. The quantitative analysis was carried out with the ZAF standardless model. The SEM/EDS analysis was carried out at the Electronic Microscopy Unit (UME) of the UTAD University in Vila Real, Portugal.

74

75 **2.3. Composition of the mixtures and specimen preparation**

The definition of the compaction properties of the mixtures was based on modified Proctor tests on specimens of soil, fly-ash and water. In this case, a fly-ash percentage of 10% of the mass of dry soil was considered because this was the selected amount used in the following mixtures. Since Proctor tests give compaction parameters of the treated soil immediately after mixing, i.e. without curing, it was considered that the presence of the activator was not very relevant and so the tests were performed with water.

Three types of mixtures were prepared as expressed in Table 1, where the water content and the dry unit weight correspond to the optimum pointed obtained in the Proctor test. Two ratios of sodium silicate/sodium hydroxide, in weight, were considered (0.5 and 1.0), as well as two different concentrations of sodium hydroxide (7.5 and 12.5 M). Each mixture was identified as follows: the letter A corresponds to the fly ash content; the number that follows the letter A, 0.5 or 1, corresponds to the SS/SH ratio, and the number following the letter C, 7 or 12, corresponds to the NaOH concentration (7.5 or 12.5 M).

89 The mixture was prepared by mixing the necessary quantities of soil, fly ash, sodium silicate90 solution, sodium hydroxide pellets and tap water, at room temperature. Since dissolution of SH

91 pellets in water is a highly exothermic reaction, the solution was prepared on the day before to 92 allow sufficient time to cool down to room temperature. On the moulding day, the soil and fly ash 93 were first mixed until the mixture reached completed homogenization, then the activator solution 94 (SS and SH) was added. Finally, the solids (soil and fly ash) were mixed with the alkaline 95 solution, in an electric mortar mixer, until a homogeneous paste was obtained (more or less 8 96 minutes).

97 The mixture was then statically compacted in a lubricated stainless-steel mould trying to 98 reproduce the results obtained from the Proctor test (γ_{dmax} =19.92 kN/m³ and w_{opt}=8.0%). The 99 final dimensions of the specimens were 100 mm in diameter and 37 mm in height. The standard 100 ASTM D1632 (2017) was used as a guide for the preparation of the specimens. At the end of 101 preparation, the specimens were removed from the mould and their weight, height and diameter 102 were carefully measured. Then the specimens were placed in a climatic chamber for curing for 103 28, 60 and 90 days. This chamber was used to simulate the environmental conditions of 104 Bogotá, provided by the Facultad de Ciencias Agropecuarias - Universidad de Ciencias 105 Aplicadas e Ambientales (AGROP-UDCA) University Climatological Station. Table 2 shows the 106 data recovered over 23 years (1989-2012), where each value corresponds to a monthly average 107 of relative humidity (R_H %) or temperature (T: °C). In that sense, environmental conditions 108 created in the climatic chamber for one day of curing correspond to a one-month average 109 climate. During one day in the chamber, the specimens were subjected, in the first 12 hours, to 110 the maximum temperature and minimum humidity and in the remaining 12 hours, to the 111 minimum temperature and maximum humidity. This means that values around 12-13 °C are 112 much lower than the curing temperatures generally reported in the literature as room 113 temperature (Sukmak et al., 2013; Zhang et al., 2013; Phummiphan et al., 2016). After curing, 114 the specimens were subjected to unconfined compression strength tests (UCS), permeability 115 tests in triaxial chamber (K) and chemical analysis. The seepage water from the permeability 116 tests was also used in the chemical analysis. The UCS test was done exactly in the day after 117 curing and it didn't take long (around 15 min), the permeability test was performed in the same 118 conditions of the UCS tests and it took around 7 hours. The chemical analysis took more or less 119 three weeks.

121 3. Results

122 3.1. SEM and EDS measurements

123 SEM photomicrograph and EDS microstructure of the fly ash and soil are shown in Figure 1. Fly 124 ash is composed of small particles with diameters between 3 and 40 µm. Many particles have a 125 random shape, distinguishing several spherical particles with diameters above 20 µm. Particle 126 size distribution analysis was carried out by measuring 126 particles, where the statistical 127 results show a minimum size of 3.72 µm, a maximum of 44.51 µm and a mean of 11.64 µm. The 128 distribution of the particle sizes in the fly ash is of bimodal type, with peaks at 7-9 µm and at 19 129 μm. The EDS analysis shows that the chemical composition of the fly ash (% by weight), on 130 average, is 53.7% Si, 19.9% AI and 11.8% Fe. The other chemical elements present are in a 131 concentration between 0.5% and 4.2%. This is similar to the typical class F Fly ash that includes 132 Si, Al and Fe over 70 wt.% and Ca less than 10 wt.%, in amorphous and crystalline oxide forms. 133 Chemical composition of the soil (% by weight) shows a predominance of Si (80.35%), Al 134 (11.4%), Fe (3.6%) and K (2.8%). Concentrations below 1% are found for Mg, P, Ti and Cu.

135 Figure 2 shows the SEM and EDS measurements of the mixtures A05C7, A05C12, and A1C7 136 (compositions in Table 1) after 1 year of curing time. The SEM images show the typical spheres 137 of the fly ash, attacked and presenting holes. At the same time, the surface of these spheres is 138 coated with some type of material that should be the AAC. Also visible are some more or less 139 elongated crystals which should correspond to hydrated crystals of sodium silicate. As reported 140 by Rios et al. (2017), the effect of cementation is clearly seen in the SEM images. The EDS 141 analyses were done, as much as possible, on the matrix zone, as far away as possible from the 142 added inert. The matrix is composed of fly ash, sodium silicate and sodium hydroxide in varying 143 proportions, according to the composition of the mixtures set out in Table 1. Thus, it is to be 144 expected that the values of the composition in this zone, in terms of values for the fly ash, 145 increase for sodium and silicon, and decrease for aluminium. This is the case for all samples.

146

147 **3.2.** Unconfined compression strength tests

Unconfined compression strength tests (UCS) were performed according to ASTM D1633
(2017). For that purpose, an automatic load frame with displacement control was used together
with a 25 kN capacity load cell.

151 The soil, with 10% of ash and the 3 mixtures specified in Table 1 were subjected to unconfined 152 compression strength tests at different curing times, namely, 0 days, 28 days, 60 days and 90 153 days, to evaluate the influence of composition and curing time in the specimens' strength. Each 154 test was repeated three times to have representative results for each case. In spite of some 155 variability, the results obtained in Figure 3 indicate that all specimens show a considerable 156 increase in strength compared to unbound soil specimens, in agreement with previous research 157 (Rios et al., 2016). The scatter in the UCS results may be due to the fact that alkaline 158 activations are highly susceptible to slightly variations in the curing conditions. The void ratios in 159 each specimen were around 0.3 and 0.4.

Based on Figure 3, it can be concluded that there is an improvement in strength with the curing time, far beyond the 28th day, usually taken as a reference period for cemented materials. Furthermore, the composition that showed the best results was A1C7. Considering the application of this soil stabilisation treatment in the construction of low cost roads, the results indicate that it is possible to obtain soils, after treatment, with great resistance, which can increase the soil strength up to ten times in the case of the best mixture.

166

167 3.3. Permeability tests

168 At the end of the curing time (28, 60 or 90 days) the dimensions and weight of the specimens 169 were determined. This allowed to evaluate their physical characteristics. It should be noted that 170 the degree of saturation of the specimens is not constant because this depended on the final 171 humidity cycle to which they were subjected. The main purpose of the test setup was to allow 172 the collection of water for the chemical analysis. For that reason, permeability tests were 173 performed in a triaxial chamber with 50 kPa of confining stress. The base of the specimens was 174 subjected to 10 kPa of back water pressure and the top was linked to the atmospheric pressure. 175 In the permeability tests tap water was used. The specimens had 100 mm in diameter and 40 176 mm in height. The seepage water was collected in a beaker and sent for chemical analysis. In 177 all specimens, only the first 150 ml of seepage water were collected. The permeability was 178 continued until it was observed that the laminar regime was installed, in other words, when a 179 linear relationship between discharge of water and time was observed. At these moment, the permeability coefficient was measured. The results of the permeability tests are presented inTable 3.

The specimens of compositions A1C7 and A05C12 with shorter curing time (28 days) have higher void ratios than the specimens with longer curing time, 90 days and 60 days, respectively. However, the specimens with higher void ratios and shorter curing time have lower permeability coefficients than the specimens with more curing time and lower void ratios. The results seem to indicate that the evolution of the polymerization in time must create chemical bonds that reduce the empty spaces occupied by the amorphous mixture of the binder, creating connection between voids which seems to lead an increase of the permeability.

189

190 **3.4. Chemical characterization of the starting materials**

191 The determination of the chemical composition of the soil, fly ash and treated soil was made 192 from an extraction with a solution of aqua regia (hydrochloric/nitric acid mixture), in accordance 193 with ISO standard 11466 (1995). After the extraction procedure, the determination of major and 194 trace ions concentrations was made by atomic absorption spectroscopy, as explained in ISO 195 standard 11047 (1998). The determination of pH and electric conductivity was performed in 196 accordance with ISO standards 10390 (2005) and 11265 (1994), respectively. The solution of 197 sodium hydroxide was prepared in the laboratory and the solution of sodium silicate was 198 purchased and both were analysed in accordance with the international standards previously 199 mentioned. The results for the natural soil, ash, sodium silicate and sodium hydroxide are 200 presented in Table 4.

The results show the presence of significant concentrations of K, Fe, Al and Si in the soil, while in the ash the concentration is more relevant for Mg, Na, Fe, Mn and Al. The sodium silicate solution has, as expected, a high concentration of Si and Na, while the sodium hydroxide solution has a high concentration of Na.

205

206 **3.5.** Physical and chemical characterisation of the soil treated with alkali-activated

207 cement

The chemical analyses were also performed on the soil treated with AAC by the methods explained previously, for all the compositions referred to in Table 1 and for the different curing periods shown in Table 5.

211 The analysis of the A05C12 results between 28 and 90 days show that, after 90 days of curing, 212 the extraction performed on the treated material produces, with exception of Mn and Cr, a lower 213 concentration of cations (alkali and alkaline-earth metals, transition and post-transition metals) 214 when compared with results obtained after 28 days curing time. A decrease in the pH value of 215 about two pH units and of the conductivity of the extraction solution are also evident. In the 216 other two mixture compositions, A1C7 and A05C7, the reduction was not so evident in all the 217 elements because the curing time was smaller (only up to 60 days). This is in agreement with 218 the UCS test results, which showed that the evolution is still relevant for a long period. 219 Nevertheless, in both mixtures, a decrease in electric conductivity was observed with increasing 220 curing time. For the pH value, the variation with the curing time was not significant. The results 221 seem to indicate that the most favourable mixture for fixing the metal ions is the composition of 222 A05C12 (with SS/SH equal to 0.5 and an SH concentration of 12.5M) and a curing time of 90 223 days. The main reason may be the greatest curing time and not the chemical composition of the 224 AAC mixture.

Taking into account the composition of each geopolymer produced and the chemical analyses of each component used in the production of those specimens, the theoretical concentration of each chemical element in the specimen was determined. The comparison between the theory and the concentrations really determined in each specimen is evidence that, for most chemical elements, the determined concentration is lower than the theoretical expectation. This fact highlights the formation of a structure capable of fixing most chemicals present in the components used to produce each specimen of AAC.

232

233 **3.6.** Chemical characterisation of the seepage water

For the application of AAC in some engineering work, such as road/pavement structures or landfills, it is important to verify the potential environmental impact of these materials. Table 6 presents the results of the chemical analysis of circulation water (tap water) and seepage waters, from the permeability tests, for the three different specimen compositions, with different

238 curing times. The tap water used in the tests has substantially lower concentrations than those 239 found in seepage water, especially for the transition and post-transition metals. For the alkaline-240 earth metals, namely for calcium and magnesium, the concentrations in the tap water are higher 241 than in the seepage water, which seems to indicate that these cations are retained in the matrix 242 of the soil treated. The results of the seepage water, in general, show that the concentration of 243 the chemical elements, as well as the pH and electrical conductivity, decrease with increasing 244 curing time. Similar results are obtained in the chemical characterization of the treated soil 245 presented above in section 3.5. A higher concentration of sodium in the seepage water of 246 A05C12, relative to the other compositions, is due to the fact that, in the first case a sodium 247 hydroxide solution with a concentration of 12.5 M was used, while in the others, a concentration 248 of 7.5 M was used. On the other hand, taking into account the silicate concentration in the 249 seepage water, the molar ratio of SS/SH equal to 0.5, used in the preparation of the AAC, 250 appears to be more favourable than the molar ratio of 1.

251 The same conclusions are obtained if the evolution of the metals concentration with curing time 252 is compared, as presented in Figure 4. For the majority of chemical parameters measured 253 during the tests, a decrease of the concentration with increasing curing time is observed, which 254 may also be attributed to the establishment of a larger number of chemical bonds in the AAC 255 structure, or to the effect of leaching between trials. Indeed, the aluminosilicate network 256 structure is formed when fly ash comes into contact with NaOH, Si, AI, and other species are 257 released and transfer. The transfer of AI and Si species and the condensation of aluminosilicate 258 oligomers have an effect on the growth and the charge density of the chain, the rate, and the 259 extent of polymerization. At room temperature this process is slower, and then the chemical 260 species, like Si or Al, are more available to become leachate. On the other hand, hazardous 261 elements, such as Zn, Mn, Cr, Cd, Ni, or Pb can be immobilized by physical encapsulation and 262 chemical stabilization in the three-dimensional structure of the geopolymer matrix. While this 263 network is still not formed, or stabilized, these elements can be easily removed.

From an environmental point of view, it is evident that the seepage water has very high amounts of sodium, aluminium and silica, as well as a high pH. These values can threaten the natural ecosystems. Since this is, to a large extent, a result of the addition of sodium hydroxide and sodium silicate, it may be possible to minimize the environmental impact by adjusting the

268 concentration of the different components at the time of AAC preparation. In particular, mixtures 269 that have shorter curing periods or that can achieve greater strength at an early age may have 270 better leaching behaviour. As noted earlier, it is highly unlikely that all the silica, sodium, 271 aluminium and other chemical elements of the mixtures analysed take part in the synthesis 272 reaction of the AAC. Since much better results have been found by other researchers working 273 with AAC without soil (Phair et al., 2004), it is possible that more AAC is necessary for the same 274 amount of soil. This will increase the bonding between particles, which may reduce permeability 275 and, consequently, leaching. Another important fact that may contribute to the contamination of 276 the seepage water is the inclusion of impurities in the chemical composition of AAC raw 277 materials. Calcium and iron from fly ash has the effect of adding reaction pathways during 278 polymerization. These side reactions can cause big changes in the material properties during 279 the synthesis and in the final product as pointed out by Duxson et al. (2007). Furthermore, it is 280 recognized that the properties of alkali-activated materials are highly dependent on the curing 281 conditions (Criado et al., 2005; Izquierdo et al., 2010), especially on the curing temperature 282 (Palomo et al., 1999; Andini et al., 2008). Considering that these tests were performed at a 283 relatively low temperature (around 13 °C) it is possible that the results were significantly affected 284 by this condition.

If the seepage water quality is compared with the emission limit value (ELV) for the wastewater in the Portuguese decree-law (DL No. 236/98) (Portuguese law, 1998), there are some values associated to elements such as cadmium, chromium and aluminium that go over the limit values.

289

290 4. Conclusions

291 The mixture compositions for soil stabilization in transport infrastructure platforms that were 292 analysed showed very significant strength improvements in comparison with the initial soil.

As might be expected, curing time promotes the improvement of these properties. However, comparing strength results of similar specimens (the same compositions and the curing time), but with different conditions of temperature and humidity, a significant influence of these parameters was found. This can be explained by the great sensitivity of alkaline activation reactions to temperature and humidity conditions during curing.

298 For this type of soil and water used in the experiments, the permeability tests showed relatively 299 low values (between 10⁻⁸ to 10⁻⁷ m/s). This is a positive factor for the treatment of landfills with 300 alkaline binders as it assures a better encapsulation of waste materials that constitute the 301 binder. However, this value is not null and the seepage water quality revealed a chemical 302 composition with an important environmental risk. In fact, the comparison between the emission 303 limit values, listed in Portuguese law No. 236/98 (see also Directive 2000/60/EC) (EU, 2000), 304 and the measured values in the seepage waters in the different samples indicate the existence 305 of prohibited concentrations, namely those relating to the elements cadmium, chromium, and 306 aluminium as well as pH level. High concentrations of sodium and silicon were also detected, 307 which can have an important effect in the balance of the natural ecosystems.

308 In summary, the application of a soil stabilization technique with wastes for transport 309 infrastructure platforms is a good technical and environmental solution, which necessarily 310 requires new studies to adapt the composition or the curing conditions in order to minimize the 311 environmental impact without reducing the geotechnical properties.

Finally, new studies will be developed to understand how the concentration of leached elementsbehaves in time and to determine the consequences to the mechanical structure.

314

315 Acknowledgements

316 The authors would like to acknowledge ANI (Agência Nacional de Inovação) for their support 317 through ECOSOLO project (FCOMP-01-0202-FEDER-038899) and the company Pegop -318 Energia Eléctrica SA, which runs the thermoelectric power plant in Pego, for the supply of fly 319 ash. This work was financially supported by Project POCI-01-0145-FEDER-007457 -320 CONSTRUCT – Institute of R&D in Structures and Construction, funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização 321 322 (POCI) – and by national funds from the FCT - Fundação para a Ciência e a Tecnologia; 323 Scholarship Reference: SFRH/BPD/85863/2012. We would also like to thank María del Carmen 324 Arau Ribeiro, at the Instituto Politécnico da Guarda, for her assistance in the linguistic correction 325 of this paper.

326

327 References

Andini S, Cioffi R, Colangelo F et al. (2008) Coal fly ash as raw material for the manufacture of
geopolymer-based products. Waste Management 28: 416-423,
https://doi.org/10.1016/j.wasman.2007.02.001.

ASTM (2017a) D2487-17, Standard Practice for Classification of Soils for Engineering Purposes
 (Unified Soil Classification System). ASTM International, West Conshohocken, PA, USA.

333 ASTM (2017b) C618-17a, Standard Specification for Coal Fly Ash and Raw or Calcined Natural

334 Pozzolan for Use in Concrete. ASTM International, West Conshohocken, PA, USA.

335 ASTM (2017c) D1632-17, Standard Practice for Making and Curing Soil-Cement Compression

and Flexure Test Specimens in the Laboratory. ASTM International, West Conshohocken,PA, USA.

ASTM (2017d) D1633-17, Standard Test Methods for Compressive Strength of Molded Soil Cement Cylinders. ASTM International, West Conshohocken, PA, USA.

Camobreco V, Ham R, Barlaz M et al. (1999) Life-cycle inventory of a modern municipal solid
waste landfill. Waste Management Research 17: 394-411, https://doi.org/10.1034/j.13993070.1999.00079.x.

Costa I, Massard G and Agarwal A (2010) Waste management policies for industrial symbiosis
development: case studies in European countries. Journal of Cleaner Production 18: 815822, http://dx.doi.org/10.1016/j.jclepro.2009.12.019.

346 Criado M, Palomo A and Fernández-Jiménez A (2005) Alkali activation of fly ashes. Part 1:
347 Effect of curing conditions on the carbonation of the reaction products. Fuel 84: 2048-2054,
348 http://dx.doi.org/10.1016/j.fuel.2005.03.030.

349 Davidovits J (1991) Geopolymers: inorganic polymeric new materials. Journal of Thermal
350 Analysis 37: 1633-1656, http://dx.doi.org/10.1007/BF01912193.

Davidovits J (2005) Geopolymer, Green chemistry and sustainable development Solutions. The
 poly(sialate) terminology: a very useful and simple model for the promotion and
 understanding of green-chemistry. In *Proceedings of the World Congress Geopolymer* (J.
 Davidovits (Ed.)). Saint-Quentin, France, pp. 9-15.

355 Duxson P, Fernández-Jiménez A, Provis J et al. (2007) Geopolymer technology: the current
356 state of the art. Journal of Materials Science 42: 2917-2933. https://doi.org/10.1007/s10853357 006-0637-z.

358 Heath A, Paine K and McManus M (2014) Minimising the global warming potential of clay based

359 geopolymers. Journal of Cleaner Production 78: 75-83,
360 https://doi.org/10.1016/j.jclepro.2014.04.046.

ISO (1994) 11265:1994. Soil quality – Determination of the specific electrical conductivity.
 International Organization for Standardization, Genève, Switzerland.

363 ISO (1995) 11466:1995. Soil quality – Extraction of trace elements soluble in aqua regia.
364 International Organization for Standardization, Genève, Switzerland.

ISO (1998) 11047:1998. Soil quality – Determination of cadmium, chromium, cobalt, copper,
lead, manganese, nickel and zinc – Flame and electrothermal atomic absorption
spectrometric methods. International Organization for Standardization, Genève, Switzerland.

368 ISO (2005) 10390:2005. Soil quality - Determination of pH. International Organization for
369 Standardization, Genève, Switzerland.

370 Izquierdo M, Querol X, Phillipart C et al. (2010) The role of open and closed curing conditions
371 on the leaching properties of fly ash-slag-based geopolymers. Journal of Hazardous
372 Materials 176: 623-628, https://doi.org/10.1016/j.jhazmat.2009.11.075.

373 Komnitsas K (2011) Potential of geopolymer technology towards green buildings and
374 sustainable cities. Procedia Engineering 21: 1023-1032,
375 https://doi.org/10.1016/j.proeng.2011.11.2108.

376 Mehta A and Siddique R (2016) An overview of geopolymers derived from industrial by377 products. Construction and Building Materials 127: 183-198,
378 http://dx.doi.org/10.1016/j.conbuildmat.2016.09.136.

Palomo A, Grutzeck M and Blanco M (1999). Alkali-activated fly ashes: A cement for the future.
Cement and Concrete Research 29: 1323-1329, https://doi.org/10.1016/S00088846(98)00243-9.

Patrício J, Costa I and Niza S (2016). Urban material cycle closing e assessment of industrial
waste management in Lisbon region. Journal of Cleaner Production 106: 389-399,
https://doi.org/10.1016/j.jclepro.2014.08.069.

Phair J and Van Deventer J (2001) Effect of silicate activator pH on the leaching and material
characteristics of waste-based inorganic polymers. Minerals Engineering 14: 289-304,
https://doi.org/10.1016/S0892-6875(01)00002-4.

- Phair J, Van Deventer J and Smith J (2004) Effect of Al source and alkali activation on Pb and
 Cu immobilisation in fly ash based geopolymers. Applied Geochemistry 19: 423-434,
 https://doi.org/10.1016/S0883-2927(03)00151-3.
- Phummiphan I, Horpibulsuk S, Sukmak P et al. (2016) Stabilisation of marginal lateritic soil
 using high calcium fly ash-based geopolymer. Road Materials and Pavement Design 17:

393 877-891, <u>https://doi.org/10.1080/14680629.2015.1132632</u>.

- 394 Portuguese law (1998) Decreto-Lei no 236/98. D.R. I Série. 176: 3676–3722.
- Rios S, Cristelo C, Viana da Fonseca A et al. (2016) Structural Performance of Alkali Activated
 Soil-Ash versus Soil-Cement. Journal of Materials in Civil Engineering 28: 1-11.
 https://doi.org/10.1061/(ASCE)MT.1943-5533.0001398.
- Rios S, Ramos C, Viana da Fonseca A et al. (2017) Mechanical and durability properties of a
 soil stabilized with an alkali-activated cement. European Journal of Environment and Civil
 Engineering, 1-23, http://dx.doi.org/10.1080/19648189.2016.1275987.
- 401 Salahuddina M, Norkhairunnisa M and Mustapha F (2015) A review on thermophysical
 402 evaluation of alkali-activated geopolymers. Ceramics International 41: 4272-4281,
 403 https://doi.org/10.1016/j.ceramint.2014.11.119.
- Santa R, Soares C and Riella H (2016) Geopolymers with a high percentage of bottom ash for
 solidification/immobilization of different toxic metals. Journal of Hazardous Materials 318:
 145-153, https://doi.org/10.1016/j.jhazmat.2016.06.059.
- Sarkar M, Dana K and Das S (2015) Microstructural and phase evolution in metakaolin
 geopolymers with different activators and added aluminosilicate fillers. Journal of Molecular
 Structure **1098**: 110-118, https://doi.org/10.1016/j.molstruc.2015.05.046.
- Scharff H (2014) Landfill reduction experience in The Netherlands. Waste Management 34:
 2218-224, https://doi.org/10.1016/j.wasman.2014.05.019.
- Scheetz B, Roy D and Grutzeck M (1999). Giga-scale disposal: a real frontier for ceramic
 research. Material Research Innovations 3: 55-64, https://doi.org/10.1007/s100190050125.
- 414 Singh B, Ishwarya G, Gupta M and Bhattacharyya S (2015) Geopolymer concrete: A review of
- 415 some recent developments. Construction and Building Materials **85**: 78-90,
- 416 https://doi.org/10.1016/j.conbuildmat.2015.03.036.

417 Sukmak P, Horpibulsuk S and Shen S (2013) Strength development in clay–fly ash geopolymer.

418 Construction and Building Materials
40: 566-574,
419 https://doi.org/10.1016/j.conbuildmat.2012.11.015.

420 Swanepoel J and Strydom C (2002) Utilisation of fly ash in a geopolymeric material. Applied
421 Geochemistry 17: 1143-1148, https://doi.org/10.1016/S0883-2927(02)00005-7.

422 Turner L and Collins F (2013) Carbon dioxide equivalent (CO₂-e) emissions: A comparison
 423 between geopolymer and OPC cement concrete. Construction and Building Materials 43:

424 125-130, https://doi.org/10.1016/j.conbuildmat.2013.01.023.

Van Jaarsveld J, Van Deventer J and Lorenzen L (1997) The potential use of geopolymeric
 materials to immobilize toxic metals: part 1. Theory and applications. Minerals Engineering

427 **10**: 659-669, https://doi.org/10.1016/S0892-6875(97)00046-0.

Van Jaarsveld J, Van Deventer J and Lorenzen L (1999). The potential use of geopolymeric
materials to immobilise toxic metals: part II. Material and leaching characteristics. Minerals
Engineering 12: 75-91, https://doi.org/10.1016/S0892-6875(98)00121-6.

Yuan J, He P, Jia D et al. (2016) Effect of curing temperature and SiO₂/K₂O molar ratio on the
performance of metakaolin-based geopolymers. Ceramics International 42: 16184-16190,

433 https://doi.org/10.1016/j.ceramint.2016.07.139.

Yun-Ming L, Cheng-Yong H, Bakri M et al. (2016) Structure and properties of clay-based
geopolymer cements: A review. Progress in Materials Science 83: 595-629,
https://doi.org/10.1016/j.pmatsci.2016.08.002.

Zhang M, Guo H, El-Korchi T et al. (2013) Experimental feasibility study of geopolymer as the
next-generation soil stabilizer. Construction and Building Materials 47: 1468-1478,
https://doi.org/10.1016/j.conbuildmat.2013.06.017.

440

441

442 Figure captions

Figure 1. SEM image and EDS of small particles of fly ash (a1) and random shape soil particlesfrom El Cajón de Copérnico (Soacha, Colombia) (b2).

Figure 2. SEM image and EDS of mixtures of AAC: A05C7 coated with fly ash (a1), A05C12

446 with crystals of sodium silicate (b2) and A1C7 with crystals of sodium silicate (c3).

- 447 Figure 3. Unconfined compression strength tests result at 0, 28, 60 and 90 days of cure for the
- soil, soil with 10% of ash and 3 mixtures of AAC.
- 449 Figure 4. Variation of Fe, Zn, Al, Si and Na in the seepage water of the following alkali-activated
- 450 specimens at different curing times: a) A05C12, b) A05C7 and c) A1C7.
- 451

452 Table captions

- 453 Table 1. Composition of the mixtures
- 454 Table 2. Environmental curing conditions from 21206260 C.UNIV. AGROP-UDCA, Bogotá
- 455 station.
- 456 Table 3. Results of the permeability tests.
- 457 Table 4. Results of chemical analyses of the extraction solutions of aqua regia for the soil, ash
- 458 and for the solutions of sodium silicate and sodium hydroxide (mg/kg).
- 459 Table 5. Results of chemical analyses in the soil treated with AAC for 3 different compositions
- 460 and different curing times.
- 461 Table 6. Chemical results of seepage waters from permeability tests for different compositions
- and curing times.
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474 FIGURES

495 TABLES

Name	% Fly ash	Dry unit weight (kN/m³)	Liquid content (%)	SS/SH (wt)	SH concentration (M)
A05C7	10	19.92	8.0	0.5	7.5
A05C12	10	19.92	8.0	0.5	12.5
A1C7	10	19.92	8.0	1	7.5

Table 1. Composition of the mixtures

Table 2. Environmental curing conditions from 21206260 C.UNIV. AGROP-UDCA, Bogotá

			station.			
Month	Time	T (°C)	RH (%)	Time	T (°C)	RH (%)
Jan	0-12h	14.3	71	12-24h	13.0	93
Feb	0-12h	15.2	73	12-24h	13.0	94
Mar	0-12h	15.0	74	12-24h	13.2	95
Apr	0-12h	14.7	79	12-24h	12.7	95
May	0-12h	14.7	80	12-24h	13.1	95
Jun	0-12h	14.5	76	12-24h	13.1	95
Jul	0-12h	14.5	79	12-24h	13.2	94
Aug	0-12h	14.4	77	12-24h	13.0	95
Sep	0-12h	14.2	74	12-24h	12.9	94
Oct	0-12h	14.4	79	12-24h	13.0	94
Nov	0-12h	14.4	80	12-24h	13.2	95
Dec	0-12h	14.3	74	12-24h	12.6	94

502 <u>Table 3. Results of the permeability tests.</u>

Specimen	Days of curing	Unit weight, γ (kN/m³)	Void ratio (e)	Initial degree of saturation (S)	Permeability K (m/s)	Recording time (min)
A05C7	28	17.57	0.485	50.90	2.94E-08	81.6
	60	17.32	0.506	59.34	2.26E-07	81.8
A1C7	28	16.09	0.622	62.78	3.77E-09	129.2
AICI	60	17.75	0.470	29.84	3.10E-07	47.2
A05C12	28	16.09	0.622	62.78	1.43E-07	188.0
	90	17.70	0.472	25.04	2.81E-07	37.7

•••

514	Table 4. Results of chemical analyses of the extraction solutions of aqua regia for the soil, ash
515	and for the solutions of sodium silicate and sodium hydroxide (mg/kg).

Element	Natural soil	ural soil Ash Na ₂		NaOH				
Element	 (mg/kg)							
К	1419	3867	17	4				
Ca	19	3449	1	1				
Mg	164	5051	-	2				
Na	57	4060	523017	618156				
Cu	19	33	6	2				
Fe	5062	40259	33	4				
Zn	26	79	4	3				
Mn	44	443	43	1				
Cr	8	47	1	3				
Cd	9	11	0	8				
Ni	1	131	16	22				
Pb	33	27	4	16				
AI	7051	31848	18	1				
Si	611	321	116644	50				
рН	5.3	9.5	12.8	13.2				
Cond. (mS/cm)	0.8	1.9	34.4	302				

517

519 Table 5. Results of chemical analyses in the soil treated with AAC for 3 different compositions and different curing times.

Element	A05C12-28d	A05C12-90d	A1C7-28d	A1C7-60d	A05C7-28d	A05C7-60d			
Liement		(mg/kg)							
K	880	663	708	901	815	1052			
Ca	83	76	60	83	72	40			
Mg	651	541	539	562	599	571			
Na	8555	7128	6935	5535	13840	9691			
Cu	7	7	10	7	7	10			
Fe	7385	7141	8085	6988	8410	7481			
Zn	153	70	96	37	29	30			
Mn	23	70	27	27	23	27			
Cr	49	56	41	87	44	6			
Cd	4	1	1	0.3	4	12			
Ni	13	7	10	17	7	10			
Pb	17	17	17	13	16	47			
AI	11126	9566	9588	13118	9434	10435			
Si	2047	1221	1383	954	1609	3153			
рН	12.4	10.9	12.2	12.1	12.2	11.6			
Cond.									
(mS/cm)	70.9	57.1	68.9	53.6	58.9	6.8			

and curing t	inico.							
Elements	DL nº 236/98 ELV	Circulation water	A05C12 -28d	A05C12- 90d	A05C7- 28d	A05C7- 60d	A1C7- 28d	A1C7- 60d
				mg/	L			
K	-	0.4	134	53	50	39.1	25	22
Ca	-	16	<0.1	2.6	0.5	0.1	0.1	0.9
Mg	-	1.5	<0.1	0.5	0.9	0.3	<0.1	0.1
Na	-	6.5	42308	8891	11604	20468	15925	11161
Cu	1.0	0.0001	4.7	0.4	1.2	0.6	1.6	0.3
Fe	2.0	0.017	1.0	0.041	2.0	0.7	0.141	0.541
Zn	-	0.2	12	0.2	1.2	0.3	0.3	0.2
Mn	2.0	0.002	0.09	0.020	0.066	0.1	0.028	0.033
Cr	2.0	0.004	5.0	2.6	1.7	0.18	1.7	1.9
Cd	0.2	0.0004	0.179	0.182	0.142	0.328	0.242	0.158
Ni	2.0	0.2	0.4	0.2	0.3	0.4	0.2	0.1
Pb	1.0	0.001	0.7	0.3	0.4	0.6	0.4	0.2
AI	10	0.3	310	16	293	1.3	1416	1.3
Si		2.4	6974	48	2132	39.7	8.1	730
pН	6.0-9.0	7.5	12.9	11.4	12.8	11.9	11.9	11.8
Cond. (mS/cm)	-	1.7	3740	695	1047	51.2	705	666

527 Table 6. Chemical results of seepage waters from permeability tests for different compositions 528 and curing times.