Wavel et-based detection of outliersin Poisson
INAR(1) time series’

Isabel Silva and Maria Eduarda Silva

Abstract The presence of outliers or discrepant observations hagative impact
in time series modelling. This paper considers the problémetecting outliers,
additive or innovational, single, multiple or in patches,count time series mod-
elled by first-order Poisson integer-valued autoregres$wINAR(1), models. To
address this problem, two wavelet-based approaches tbatthke identification of
the time points of outlier occurrence are proposed. Thegffeness of the proposed
methods is illustrated with synthetic as well as with an obese dataset.

1 Introduction

Time series, as any other data, may contain outliers whieblaservations that look
discordant from most of the observations in the datasetlddtgg the presence of
outliers in a time series hinders statistical inferencadlileg to model misspecifica-
tion and biased parameter estimation. Since the semin& @fdfox [7] two major

approaches for dealing with outliers in time series, mayibgngjuished. One ap-
proach advocates the use of robust estimators to reducdfént @& the outlying

observations. However, this approach often leads to iggoobservations hence
eventually masking the presence of important underlyingnpimena, precluding
risk analysis. Alternatively, several methodologies fetetting and estimating out-
liers and other intervention effects have been establiflieARMA models. The
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emphasis has been on iterative procedures and likelihoseldbstatistics, see for
instance Chang et al. [5], Chen and Liu [6] and Tsay [17]. Adsweral tailored
procedures have been proposed to some nonlinear time seoi@sls. However,
the problem of detection and estimation of outliers in tirages of counts has re-
ceived less attention in the literature. Count time serggsinin many areas such as
telecommunications, actuarial science, epidemiologgrtipgy and environmental
studies where the detection of outliers may be invaluableskassessment.

One of the most popular classes of models for time serieswoftsas the class of
INAR models proposed by Al-Osh and Alzaid [1] and McKenzi&][lextensively
studied in the literature and applied to many real-worldbpgms because of its
easiness of interpretation. These models are apparerttyeguessive models in
which the usual multiplication has been replaced by a randperation, called
thinning operation (for details see Scotto et al. [13]) drelihnovations are discrete-
valued random variables. Barczy et al. [2, 3] proposed Gmndil Least Squares
estimation of the INAR1) model parameters contaminated with outliers additive
and innovational, assuming that the time points of the exgtloccurrence are known,
but their sizes are unknown. Recently, Silva and Pereiradi§ggested a Bayesian
approach in order to detect additive outliers in POINAR(Ddels.

In this work, procedures to identify the times of outlier ooence in POINAR(1)
time series using wavelets are proposed. Wavelets arefoasisons that combine
properties such as localization in time and scale, orthoatty, different degrees of
smoothness, compact support and fast implementation etailsl see Percival and
Walden [12]. In particular, Discrete Wavelet Transform (DYMihich is a powerful
tool for a time-scale multi-resolution analysis, is apgliBWT can be considered as
filters of different cut-off frequencies used to analysegaal at different scales. In a
first approach, similar to that of Gramnd Veiga [8], the so called detail coefficients
derived from DWT, using the Haar wavelet, are compared withrashold. In a
second approach, the parametric resampling method of T84ys[used in order to
obtain the empirical distribution of these detail coeffittze

The remainder of this work is organized as follows. Sectigmekents the first-
order Poisson Integer-valued AutoRegressive model cantded with additive and
innovational outliers. A brief description of wavelets @D@/T is given in Section
3. The proposed wavelet-based procedures to detect timetltgraoccurrence are
explained in Section 4. The proposed procedures are #liestrand compared with
synthetic data in Section 5. Furthermore, the methods areaplied on an ob-
served dataset. Finally, Section 6 concludes the paper.

2 Poisson INAR(1) model contaminated with outliers

Motivated by the need of modelling correlated series of teuseveral models for
integer-valued time series were proposed in the litera@ne of them is the INteger
AutoRegressive model proposed by Al-Osh and Alzaid [1] am&Kkhzie [11]. This

model is based on the binomial thinning operation, propdse&teutel and Van
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Harn [16], which is defined on a non negative integer-valwaiom variableX by
aoX = z Yi, wherea € [0,1] and{Yk}, k=1,...,X,is asequence of independent

and |dent|cally distributed (i.i.d.) Bernoulli random iables, independent oX,
with P(Yx = 1) = 1— P(Yx = 0) = a. This sequence is called the counting series
of a o X. Note that,a o X|X ~ Bi(X, o). For an account of the properties of the
thinning operation see Silva and Oliveira [14].

Let {X} be a discrete time, positive integer-valued stochastices®. It is said
to be a PoINAR1) process if it satisfies the following equation,

X =aoX_1+8, (1)

whereg ~ PoissoriA), is the so called arrival process<0a < 1, and for each,
all counting series ofr o X1 are mutually independent and independen{&f.
Under these conditions, the process is strictly statioaadX; ~ Poissomlf—a) if
Xo ~ Poissoriz25).

Atime series is affected by an additive outlier (AO) if anextal error or exoge-
nous change occurs on a certain time point, affecting or¢yahservation and not
entering the dynamics of the process. Formally, a contaetihBoINAR 1) with
| € N additive outliers with magnitudey € N at time pointss e N,i=1,...,l can
be defined as follows

|
=X+ dsw,
t i; s

whereX; is a POINAR 1) model satisfying (1) andm = 1, if k=m; & m =0, if
k = m, is an indicator function.

On the other hand, an innovational outlier (I0) can be carsid as an internal
change or endogenous effect on the noise process, affeitisgbsequent obser-
vations. Thus, the observed time seifgs .., Y, is a POINAR 1) process contami-
nated withl € N innovational outliers with sizey at time pointss, i =1,...,1 ifit
satisfies the following equation

Yi=0aoY_1+ 1,

|
withny =g+ Z\é’sm, whereg ~ PoissoiiA) andl,s, w andd, are defined as
i=

before.
Note that in both cases, the underlying outlier free pro2gssunobserved.
3 Brief description of discrete wavelet transform

A wavelet is a function that can be considered as a small waiehagrows and
decays in a limited time period, for details see Percival Walden [12]. Simi-
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larly to Fourier analysis that uses sinusoidal function§irtd the frequency com-
ponents contained in a signal, wavelet analysis uses diftd scaled versions of
a so called wavelet mother to provide the time localizatibeaxh spectral com-
ponent. Formally, a (mother) wavelet is any real-valuectfiom () defined onR
2

satisfying[*,, ¢(u) du =0, [*, ¢?(u) du =1, and 0< J5° w df <o, where
W(f)=[* w(u) e 2" U du is the Fourier transform ap(-).

Following Percival and Walden [12], et = {X;,t =0,...,N—1} be a time se-
ries (or signal), witiN = 2’, J € N. The DWT coefficient8¥ = {Wh,n=0,...,N—
1} are defined by

W=7#X & [Wi.. WV = .. % %X,

where” is aN x N orthonormal matrix of dilations and translations of the hast

wavelety(-), defined asid 1] <u with dilationd and translation parameters

Vd d
taking dyadic values, i.ed = 21 andt = k2!, for j,k € Z. Note that, forj = 1,...,J,
W is a column vector wittN /2/ elements that contains all the DWT coefficients for
scalerj = 21-1 V; contains the scaling coefficientéy_1, associated with average
on scaledy = 27, #j has dimensiorN/Zj x Nand?jis 1x N.

The wavelet coefficients of white noise or Gaussian datatemselves white
noise or Gaussian random variables, respectively, seevReand Walden [12].
Furthermore, as referred by Bilen and Huzurbazar [4] andi®drand Walden [12],
wavelet coefficients ifW; are approximately uncorrelated even when the data is
highly correlated and they allow the reconstruction of theetseries. The synthesis
of X (inverse DWT) is given b)X = #TW = 37, #{TW; + 7TV = 51, 2 +
</, whereZ; is called thejth level wavelet detail and.e7; has all its elements equal
to the sample mean of the time series. Fer L< J— 1, the jthlevel wavel et smooth
is o = Zﬂ:jﬂ P+ <73, and can be considered as an approximation (smoother
version) ofX.

In practice, the discrete wavelet transform (DWT) mathixs computed through
a so called pyramid algorithm introduced by Mallat [9] thaes linear filtering
and downsampling operations. More specifically, for a evédfthwl, consider a
wavelet filter{h : | =0,...,L — 1}, which is a high-pass filter, and a scaling fil-
terg = (—1)'*th__1, that is a low-pass filter. In the first step of the pyramidal
algorithm, two sets of coefficients are produced by the clutiom of X with the
low-pass filter{g } (producing the first level approximation coefficiem#s;) and
with the high-pass filte{h } (deriving the first level detail coefficientD;), and
then a downsample is performed (retain every other filteeddey. The next step
divides the first level approximation coefficients in two sences using the same
procedure, replacink by cA; and computing:A, andcD,. Therefore, at leve],
the decomposition oX has the following structurgAj,cDj,cDj_1,...,cD1].

The detail coefficients capture certain features of the sprees, such as sudden
changes, peaks, or spikes, presenting large values in ésemqoe of these singu-
larities, and therefore they can be used to detect outliergeneral, the first level
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of decomposition is enough to analyse time series contdednaith outliers Bilen
and Huzurbazar [4] and Grarand Veiga [8].

There are many mother wavelets. In this work, the Haar wa(afeong the many
mother wavelets) is used. Since it can be considered as eesgqasge defined by

-1/v/2, -1<t<0
yt)=19 1/vV2, 0<t<1
0, otherwise.

the Haar wavelet is more suitable for count data. In this ,dasepass filters cor-
respond to moving averages of the observations and highfiiess correspond to
moving differences of the observations.

4 Proceduresto detect the time of outliers occurrence

In this section, two wavelet-based methods for detectiegithe of occurrence of
outliers in POINAR(1) processes are described. The pragesdian be summarised
in the following steps:

Step1 Given an observed time series of counts= {Y;,t =0,...,N}, fit a
PoINAR(1) model and compute the resulting Pearson restidal= {%,t =
Yi—(GYi—1+A)

VE(1—a)Y 1+ A

Step2 The DWT is applied to the Pearson residuals to obtain the évsi Hetail
coefficientscD1 = (dp,dy, ..., dN/z)-

Step 3a  Threshold approach:

1,...,N—1} given byZ =

(i) Set the threshol& (discussed in Subsection 4.1).

(i) The set of (ordered) indice§= {s1,...,S }, containing the positions of
the detail coefficients which are above the threshdlds obtained. As in
Graré and Veiga [8], the problem of maskthis avoided by searching the
outliers recursively. This means that for each outlier cket#, Z is recon-
structed applying the inverse discrete wavelet transfoBW\(I) to modified
detail coefficients where the largest (in absolute valugiteoefficient above
the threshold is set to zero. The procedure ends when no mtrers are de-
tected.

Step 3b  Parametric resampling approach:

(i) Compute the acceptance envelope (discussed in Subse@jon 4

35 _ %W-EMY 4
2= ar(v|v._1)

4 Masking occurs when one outlier prevents others from beinectted.
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(i) The set of (ordered) indice§= {s1,...,s }, containing the positions of
the detail coefficients which are outside of the acceptanuelepe is calcu-
lated.

Step 4  The exact position of the outlier in the residual series imivled as in
Grare and Veiga [8]: les be a generic element & compute the sample mean

of Z without the observationsszand Z— 1, given byzy_» = 1 2;

N-2 i#282s—1
the time of the outlier occurrence in the residual seriessiff 22,5 — zy_»| >
|Z2s-1 — Zn—2|, Oor equal to 8— 1 otherwise.

As noted by Bilen and Huzurbazar [4] and Geaand Veiga [8], the first level co-
efficients detect only the beginning of an outliers patch thiedefore, when search-
ing for patches of outliers it is necessary to use the seaaral tetail coefficients,
cD,. Thus, inStep 3a there are two thresholdg® andk5?, corresponding to the
first and second levels of detail coefficients, respectiv@ignilarly, there are two
acceptance envelopes, one ¢br; and one forcD,, in Step 3b.

4.1 Setting the threshold

In the non-Gaussian context of this work, there are no reswtilable for the distri-
bution of the detail coefficients. Thus Monte Carlo simwas are used to obtain the
empirical distribution of the maximum of the detail coeféiots (in absolute value)
for the Pearson residuals of POINAR(1) models. Then a tlotdsk computed as
follows. For eacha,A) inthe set{(a,A):a = (2k+1) x 101 k=0,...,4,A =
2k+1,k=0,...,14}, 20000 replications of the corresponding PoINAR(1) process
are generated for each sample ke 2’ + 1, for J=7,...,10. The model is fitted,
the Pearson residualg, fori = 1,...,N — 1, are computed and the maximum of
the first and second level detail coefficients are obtainké.tfireshold&? andk5?
are set as the 100— a)th percentiles of the corresponding empirical distribosio
for a= a or a= a&. The result8 indicate that the thresholds vary not only with the
sample sizeN but also with the specific combination of the parameterand A .
Therefore, adopting a conservative strategy, for each keasigeN the thresholds
are set to the minimum obtained for all the combinations o@peeters in each level
of decomposition. The obtained thresholds are shown ineTabl

4.2 Computing the acceptance envelope

Tsay [18] proposed to obtain the empirical distribution ehasen functional using
bootstrap samples generated from a fitted model, and theparenthe observed

5 Available from the authors.
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Table1l Empirical threshold values corresponding to 90th and 95thepgites of the maximum of
the detail coefficients (first and second level), in absoluteejdbr POINAR(1) Pearson residuals.

N 128 256 512 1024

K2.05 3.469 3.694 3.886 4.118
K91 3.182 3.450 3.657 3.840
k205 3.157 3.347 3.518 3.691
k3L 2.936 3.138 3.320 3.504

value for the series with this distribution. For this purppan acceptance envelope
is obtained from the 100 — a/2)th and 10@/2th percentiles of this empirical
distribution. If the fitted model is adequate, the functiaofanterest of the original
data should be within the envelope. In this work, the funwle of interest are
the first and second level detail coefficients of the Pearssiduals of POINAR(1)
model. Thus, for several sample si2é¢s= 27 +1,J = 7,8,9, and parameter values
{(a,A) 1 a € {0.1,0.5,0.9};A € {1,5,9,13}}, 20000 realizations of PoINAR(1)
process are generated and the corresponding Pearsonatesadel estimated. For
each series of Pearson residuals, the DWT is applied to othtaifirst and second
level detail coefficients;D1 andcD», and the acceptance envelopes are constructed
from the 0.01th and 99.99th percentflesf the empirical distribution oD, and
cDs, respectively. Once again, the reslishow that the acceptance envelopes vary
not only with the sample sizBl but also with the combination of the parameter
values(a,A). Therefore, assuming a conservative strategy, for eachlsasige,

an acceptance envelope with the minimum amplitude is choBe& acceptance
envelopes are available from the authors upon request.

5 Simulation study and illustration

This section presents the results of a simulation studygdesli to evaluate and
compare the performance of the procedures described almopkeinented in Mat-
lab [10]). For these purposes, the percentage of correettiens and the average
number of false outliers detected in 1000 repetitions arepeged. In each repe-
tition, a realization of a PoOINAR(1) process with parameter the set{(a,A) :

a € {0.1,0.5,0.8};A € {1,3,5}} is contaminated with single (1) or multiple (3)
outliers either additive or innovational, randomly placedith integer-valued mag-
nitudew = [50x |, [100x |, where[x] is the smallest integer greater than or equal
to x. The Pearson residual series are obtained and the procethsesbed in Sec-
tion 4 are applied. Several sample sizes are considéred 128 256512 Some

6 In the performed simulation study, the detail coefficients preadarge variability. Therefore,
as a compromise between correct and false detection of outligssfaund that a reasonable
acceptance envelope is constructed from the 0.01th andtB®28eme percentiles.

7 Available from the authors.
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of the results are shown in Tables 2 and 3 for the threskp¥d and the accep-
tance envelope constructed from the 0.01th and 99.99tkeples of the empirical
distribution ofcD;.

Table 2 Percentage of correct detections and average number of fatléer® detected, in 1000
repetitions of POINAR(1) models with sample si2¢s- 1 for some parameter values, contaminated
with 1 additive outlier or 1 innovational outlier, with magmile [50x | and[100x ].

1 Additive Oulier 1 Innovational Oulier
% Correct Average False % Correct Average False
(a,A) N Thresh. Env. Thresh. Env. Thresh. Env. Thresh. Env.

(0.1,1) 128 [50x| =6 81.8 725 0.088 0.05 69.9 63.4 0.092 0.069
[100x| =11 98.2 97.8 0.07 0.05 99.7 98.8 0.094 0.061

256 [50%x]| =6 64 818 0.114 0.128 67.4 63.6 0.168 0.147

[100x| =11 98.7 99.1 0.102 0.105 99.9 99 0.122 0.144

512 [50x| =6 78.1 91.8 0.185 0.268 60.3 66.7 0.163 0.293

[100x| =11 100 100 0.166 0.239 100 100 0.18 0.284

(0.5,3) 128 [50x] =13 73 99 0.047 0.03 73.6 63.4 0.096 0.046
[100x] =25 100 99.9 0.002 0.013 99.9 100 0.077 0.049
256 [50x| =13 64.7 99.6 0.064 0.059 67.4 84.2 0.098 0.086
[100x| =25 99.8 99.9 0.085 0.143 100 100 0.132 0.103
512 [50x| =13 98.5 99.3 0.095 0.152 64.9 86.1 0.123 0.26
[100x| =25 99.7 100 0.158 0.087 100 100 0.113 0.225

(0.8,5) 128 [50x] =25 97.9 97.7 0.023 0.026 98.1 95.7 0.049 0.04
[100x] =50 100 100 0.51 0 100 100 0.053 0.028
256 [50x| =25 915 944 0391 0.404 97.2 96.1 0.071 0.064

[100x| =50 100 100 O 0 100 100 0.059 0.067
512 [50x| =25 925 96.5 0.524 0.087 98.7 98.9 0.068 0.156

[100x| =50 100 100 0.001 0.004 100 100 0.077 0.2

For the case of contamination with 1 outlier (Table 2), theptete set of results
shows that the procedures are sensitive to the increasittgeahagnitude of the
outlier (AO or 10) but none of the approaches presents bpgpbrmance than the
other. The percentage of correct detection is similar foin hgpes of outliers. When
the outlier magnitude is equal {d0ox |, for the threshold approach the minimum
percentage of correct detections is 98.2 % and 99.1 % for AlJ@rcases, respec-
tively; while for the parametric resampling approach, thieimum values are 97.8
% for the AO case and 98.8 % for the 10 case. The average nurfifsse outlier
detection is slightly bigger for the AO cases, where the maxn average number
of false outliers detected is 0.794 for the threshold apgr@ad 0.985 for the para-
metric resampling approach. In the IO cases, the values. 284 @nd 0.379 for the
first and second approaches, respectively.

In the case of contamination with 3 outliers, the results@néed in Table 3 show
that the percentage of correct detections decreases rallygiith respect to Table
2. The analysis of the complete set of results for multipiéiens shows that in gen-
eral for 10 case the threshold approach seems preferalde giteads to a higher
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Table 3 Percentage of correct detections and average number of fatlser® detected, in 1000
repetitions of POINAR(1) models with sample si2¢s- 1 for some parameter values, contaminated
with 3 additive outlier or 3 innovational outlier, with madunile [50x | and[100 |.

3 Additive Ouliers 3 Innovational Ouliers
% Correct Average False % Correct Average False
(a,A) N w Thresh. Env. Thresh. Env. Thresh. Env. Thresh. Env.

(0.5,1) 128 [50x] =8 80.9 30.3 0.021 0.041 83.1 73.7 0.082 0.05
[100] =15 100 99.9 0.009 0.002 99.8 99.9 0.039 0.02

256 [50%x| =8 79.9 774 0.032 0.052 77.8 78.6 0.124 0.146

[100x| =15 66.1 100.0 0.078 0.011 99.9 99.9 0.09 0.096

512 [50%x]| =8 88.2 79.5 0.085 0.158 69.9 66.1 0.198 0.383

[100x| =15 99.9 99.9 0.031 0.055 99.6 100.0 0.171 0.282

(0.8,3) 128 [50x] =20 99.6 89.6 0.011 0.026 97.2 97.3 0.021 0.01
[100x| =39 100 100 0.011 0.006 100 100 0.011 0.003
256 [50x] =20 90.0 90.5 0.165 0.199 99.3 98.6 0.05 0.056
[100x] =39 100 100 0.087 0.077 100 100 0.028 0.022
512 [50x] =20 914 94.3 0.384 0.576 97.7 97.0 0.062 0.128
[100x] =39 100 100 0.833 O 100 100 0.063 0.083

(0.1,5) 128 [50x] =12 57.5 44.0 0.026 0.013 54.7 47.7 0.042 0.026
[100x| =24 99.6 99.5 0.034 0.021 99.8 99.8 0.027 0.012

256 [50x| =12 54.2 50.7 0.039 0.043 51.2 519 0.057 0.054

[100x] =24 99.9 99.9 0.027 0.025 99.9 99.8 0.058 0.062

512 [50x| =12 39.9 57.3 0.07 0.114 43.6 29.5 0.062 0.129

[100x| =24 99.8 99.9 0.028 0.098 99.9 99.8 0.057 0.112

percentage of correct detections while the mean numbeis# tetections is com-
parable to the parametric approach. On the other hand, foca&@ the parametric
approach leads to a higher percentage of correct detediigreso to an increase
of 70% in the mean number of false detections.

Finally, to examine the performance of the procedures tealgtatches of out-
liers, Table 4 presents the percentages of correct (coe)pletections and partial
detections and the average number of false patches det@ct®d00 repetitions.
As before, in each repetition, the Pearson residuals samgesbtained from a real-
ization of a POINAR(1) model, for several samples sizes amdlgnations of pa-
rameter values. In each realization, a patch with 3 additivers, with magnitude
equal to[100x 1, is placed randomly. The threshold approach has been appiied
the 90th percentiles of the empirical distribution of theximaum of the absolute
value ofcD; andcD,, respectivelyk?! andkd! (see Table 1). For each level of de-
composition, in the parametric resampling approach, tlee@tance envelopes are
constructed from the 0.01th and 99.99th percentiles of thygirécal distribution of
cD1 andcD,, respectively. The results indicates that the thresholdcegmh presents
a better performance. However, the percentage of the pdeiaction obtained in
the parametric resampling approach indicates that thdtsesan be improved by
tuning the acceptance envelope of the second level of dezsitign of DWT.
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Table4 Percentage of correct and partial detections and averagbenof false outliers detected,
in 1000 repetitions of POINAR(1) models with sample sikes 1 for some parameter values, with
a patch of 3 additive outliers, with magnitu@®0oy |.

% Correct % Partial Average False
(a,d) w N Thresh.  Enw. Thresh.  Enwv. Thresh.  Enwv.
(0.8,1) [100x] =23 128 100 63.9 0 34.7 0.001 1
256 100 713 0 0 0 0.779
512 100 99.9 0 0.1 0.001 0.986
(0.1,3) [100x] =19 128 69.1 60.8 0.1 38.5 0.077 1
256 98.8 100 0 0 0.053 0.313
512 995 99.9 0 0.1 0.02 0.616
(0.5,5) [100x] =32 128 100.0 99.9 0 0 0.023 0.999
256 100.0 99.7 0 0 0.011 0.012
512 99.8 100 0 0 0.01 0.167

Note that, since the outliers (single, multiple or patch§ placed randomly, if
they appear in the first observation, both approaches hawgergperformance. The
same happens when two outliers are placed in subsequemvatises, since it can
be considered as a patch.

As a final illustration of the described procedures, cordide real dataset with
2418 observations concerning the number of different IP adésegs periods of
2 minutes length) at the server of the Department of Stesistf the University of
Wirzburg on November 29th, 2005, between 10 a.m. and 6 p.pregented in
Figure 1 and studied by Silva and Pereira [15] and Weil3[18¢ alues of sample
mean (X = 1.32) and sample varianc&? = 1.39) and the analysis of the sam-
ple autocorrelation and partial autocorrelation funcidndicate that a POINAR(1)
model can be fitted to this dataset. By applying both appresath outlier occur-
rence time detection to this dataset, an outlier is deteaited 224 (corresponding
to S= {112}). Figure 2 represents the threshold and the acceptancéopevier
this illustration. The detection of the outlier at= 224 agrees with the results in
Weil3[19] and Silva and Pereira [15]. The former referenchcates as true value
X224 =1 while in the latter reference the authors use a Bayesiaroapp that de-
tects an outliers dt= 224 with probability 0.99 and estimatés= 0.27, A = 0.89
andw=17.

6 Final remarks

Parametric wavelet-based methods for the detection ofeouticcurrences are
described. The procedures use the Haar DWT of the Pearsatuaésiof the

8 Since 241 is not a power of two, by default Matlab extends tipeadiby using symmetric-padding
(symmetric boundary value replication).
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Fig. 1 Cronogram of the IP
dataset.
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Fig. 2 Results of threshold approach (left panel) and parametric rdsangpproach (right panel)
on the IP dataset.

PoINAR(1) model. In a first approach, a threshold based orethpirical distri-
bution of the maximum of the (first and second levels) detagffficients is used. In
a second approach, an acceptance envelope constructeth@mpirical distribu-
tion of these detail coefficients is obtained through patamesampling methods.
The procedures do not require previous knowledge on the auwofboutliers and
are adequate to detect one or multiple outliers, of diffetygres, additive or innova-
tional and patches of additive outliers. However, an opsundss the discrimination
of the two types of outliers.

DWT can only be applied when the sample size of the time sesi@sgower
of two. To overcome this limitation, the proposed approadeoutlier detection
can use the modified version of DWT, designated by Maximum @peDWT
(MODWT), introduced by Percival and Walden [12], since MODWahde applied
for a time series of any length.

The performance of the proposed procedures is illustraitid synthetic and
real count data. The results show that the methods are effigiel reliable. As far
as it is known, this is the first work that treats patches ofiengt in the counting
time series context. Improvements are still possible byprating the percentiles of
the empirical distributions used to detect the time of eutliccurrence, either in the
threshold approach or in the parametric resampling apprazifferent applications
may need different significance levels.
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The procedures proposed can be applied in other contextsamdlso be ex-
tended to detect changes in the structure and dynamics pfolcesses.
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