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Recently, it has been proposed that sequence learning engages a combination of modality-specific oper-
ating networks and modality-independent computational principles. In the present study, we compared
the behavioural and EEG outcomes of implicit artificial grammar learning in the visual vs. auditory
modality. We controlled for the influence of surface characteristics of sequences (Associative Chunk
Strength), thus focusing on the strictly structural aspects of sequence learning, and we adapted the para-
digms to compensate for known frailties of the visual modality compared to audition (temporal presen-
tation, fast presentation rate). The behavioural outcomes were similar across modalities. Favouring the
idea of modality-specificity, ERPs in response to grammar violations differed in topography and latency
(earlier and more anterior component in the visual modality), and ERPs in response to surface features
emerged only in the auditory modality. In favour of modality-independence, we observed three common
functional properties in the late ERPs of the two grammars: both were free of interactions between struc-
tural and surface influences, both were more extended in a grammaticality classification test than in a
preference classification test, and both correlated positively and strongly with theta event-related-
synchronization during baseline testing. Our findings support the idea of modality-specificity combined
with modality-independence, and suggest that memory for visual vs. auditory sequences may largely
contribute to cross-modal differences.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Humans are capable of apprehending the regularities of sequen-
tial input after being exposed to it, even without any intention to
do so. Two different research traditions have focused on this
human ability: research on implicit learning dealt mainly with
the learning of structural, all-or-none, rule-based regularities as
it is probed in Artificial Grammar Learning (AGL) paradigms
(Pothos, 2007; Reber, 1967, 1989), while research on statistical
learning dealt mainly with distributional, frequency-related prop-
erties of the input, such as transitional probabilities subtending
word segmentation (Saffran et al., 1996). Although different in
some aspects, both traditions emphasized the acquisition of impli-
cit knowledge (i.e., learning without awareness) from passive
exposure, and how this affords managing the complexities of the
world. Therefore, they are often viewed as two sides of the same
coin (Batterink et al., 2015; Perruchet and Pacton, 2006), and they
raise common questions.
A prominent question in both implicit learning and statistical
learning – which we will refer to as sequence learning from now
on – is whether learning is modality-specific, modality-
independent, or both. Sequence learning – at least statistical
learning – has been approached as a domain-general (hence
modality-independent) ability (Baker et al., 2004; Goujon and
Fagot, 2013, Saffran et al., 1996), but evidence against a purely
amodal learning system is already abundant. First, it is known that
learning is tied to perception: sequence learning unfolds in parallel
in different perceptual dimensions (Conway and Christiansen,
2006), and stimulus-specific knowledge increases with prolonged
exposure (Johansson, 2009). Second, stimulus modality seems to
impact the efficiency of the learning process. Initial studies found
a quantitative advantage of the auditory modality in sequence
learning (Conway and Christiansen, 2005; Conway et al., 2009).
Recent studies found that it is not necessarily so, but modalities
are still subjected to different constraints, such as the presentation
rate of sequence items (i.e., syllables, letters), or the temporal vs.
spatial format of sequence presentation (item-by-item vs. whole
sequence, see Conway and Christiansen, 2009, Emberson et al.,
2011). In an effort to make sense of these results, Frost and col-
leagues (Frost et al., 2015) proposed a distinction between the
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mechanisms for learning, representing and processing the input,
and the neural networks in which these principles would be
instantiated. The former would be modality-independent, the lat-
ter subjected to modality constraints. While statistical learning is
clearly based on an assumption of modality-independence (Frost
et al., 2015), this is not so well-established within implicit learning
paradigms, and thus the hypothesis of modality-specificity plus
independence is lacking empirical evidence.

In the present study, we investigated the hypothesis of
modality-independent mechanisms coupled with modality-
specific networks in the context of implicit Artificial Grammar
Learning (AGL), where participants are exposed to examples of a
grammar and tested for grammar knowledge before and after
exposure. AGL paradigms capture the structural, rule-like aspects
engaged in natural language learning, namely those of natural syn-
tax (Christiansen et al., 2012; Zimmerer et al., 2014). This explains
why an analogue of the natural-syntax-related P600 component
(Hagoort et al., 1993; Osterhout and Holcomb, 1992) has been
found in EEG AGL studies in response to violations of the artificial
grammar, in humans (Christiansen et al., 2012; Lelekov-Boissard
and Dominey, 2002; Tabullo et al., 2013) and even in primates
(Attaheri et al., 2015). We saw that component in a previous AGL
study of ours (Silva et al., 2017), where we examined the beha-
vioural and EEG outcomes of learning an artificial auditory gram-
mar. In the present study, we did a direct comparison of our
previous results on the auditory grammar (Silva et al., 2017) with
those from a new experiment, using a matched sample and an
analogous visual grammar. Thus, we compared behavioural and
EEG learning indices across modalities in order to examine the
similarities and differences indicating modality-independence vs.
modality-specificity.

Concerning the EEG, we predicted that learning indices would
differ in morphology (i.e., latency and/or topography) across
modalities, but they would show similar underlying computational
principles and thus the ERP components would be functionally
equivalent. We tested for the functional equivalence of ERPs across
modalities by focusing on the late (post 400 ms) component, and
we considered three levels of comparison. First, we checked
whether the visual ERP was free from the influence of the surface
characteristics of sequences (free from Associative Chunk Strength,
ACS influences, see Knowlton and Squire, 1996; Meulemans and
Van der Linden, 1997), just as it was in the auditory modality: in
Silva et al. (2017), we analysed both the effects of grammatical sta-
tus (grammatical vs. non-grammatical sequences) and of the sur-
face characteristics of sequences (low- vs. high ACS) on
participants’ post-exposure EEG responses, and we found that the
late (500–700 ms) posterior component only depended on gram-
matical status, no effects from, or interactions with ACS being
observed. Here, we examined whether the same happened in the
visual modality. Second, we analysed ERP differences between
two post-exposure tests of grammar knowledge (preference and
grammaticality classification) in both modalities, and checked
whether the difference profile was similar: in the auditory modal-
ity, we saw more expanded latencies for the late positive compo-
nent in grammaticality classification (500–900 ms) than in
preference classification (500–700 ms), and we wanted to see if
the same went for the visual grammar. Our third approach to the
functional equivalence of ERPs across modalities was to correlate
subject-level learning-related ERPs (i.e., increase in ERP amplitude
from pre-exposure to post-exposure testing) with a subject-level
measure of general engagement with sequential input. We chose
to measure event-related synchronization or desynchronization
(ERS/ERD, see Pfurtscheller and Lopes da Silva, 1999) of low-
frequency (1–12 Hz) brain oscillations time-locked to the onset
of pre-exposure sequences, assuming that this could provide either
an index of entrainment to the presentation rate of sequence items,
leading to improved sequence learning (Riecke et al., 2015;
Selchenkova et al., 2014a,b), or an index of more general brain pro-
cesses (e.g., attention) triggered by sequence presentation and
leading to the same result. Entrainment would be indicated by
the dominance of brain oscillations matching the presentation rate
of sequence items (1.72 Hz for visual, 3.03 Hz for auditory), but we
were uncertain about having this kind of evidence with short stim-
ulation periods (see Nozaradan et al., 2015; Nozaradan, 2014;
Nozaradan et al., 2011). Even if we did not find evidence of entrain-
ment, we expected to find indices of processes such as working
memory maintenance or sustained attention following the onset
of sequence presentation, which have been associated with syn-
chronization in the theta (4–8 Hz) band (working memory:
Gevins et al., 1997, 1998; Gevins and Smith, 2000; Grunwald
et al., 1999; Jensen and Tesche, 2002; Klimesch, 1999;
Mecklinger et al., 1992; attention: Aftanas and Golocheikine,
2001; Asada et al., 1999; Griesmayr et al., 2010; Kubota et al.,
2001). We reasoned that, if the two modalities showed similar
subject-level correlations between learning-related ERPs and
engagement with sequence input (entrainment and/or theta ERS),
this would support the idea that the respective learning-related
ERPs are functionally equivalent.

Concerning behavioural indices of learning, we predicted that
these would be similar, provided that we control for known con-
straints, such as the deleterious effects of temporal (vs. spatial)
presentation on the visual modality, particularly when the presen-
tation rate is fast (Conway and Christiansen, 2009; Emberson et al.,
2011). Therefore, we chose to use a temporal presentation format
for both the visual and the auditory grammar, but we used a slower
presentation rate (1.72 Hz) in the visual grammar than in the audi-
tory one (3.03 Hz), and we decreased the memory load in the visual
exposure task, by asking participants to do serial recall (retype) of
only one sequence, instead of doing same-different judgements on
two sequences, as we had done in the auditory version. Although
less loading in terms of memory, the serial recall task is potentially
more akin to the use of memorization strategies, and this may
enhance explicit learning when there is a predisposition to do so.
In order to grant that the serial recall task we used in the visual
modality did not facilitate participants’ attempts to learn explicitly,
we complemented our questionnaire measures of awareness with
the results of a control study. In this complementary study, we pro-
vided instructions for explicit learning (Witt et al., 2013) in a
matched sample (visual/serial recall vs. auditory/same-different).
If there were no differences in awareness between groups, this
would mean that the visual/serial recall task did not potentiate
any predisposition for explicit learning, we would be dealing with
similar learning processes across the two modalities, and thus dif-
ferences in EEG indices could not be imputed to different learning
processes concerning awareness.
2. Results

2.1. Behavioural results

Accuracy was at chance levels on TEST1 (Mean ± SD: 47% ± 8%; t
(21) = �2.05, p = .053) and rose above chance in TEST2 (Mean ± SD:
58% ± 12%; t(21) = 3.15, p = .005) and TEST3 (Mean ± SD: 74% ± 14%;
t(21) = 8.16, p < .001). Results did not differ from the auditory ver-
sion (Silva et al., 2017) in any of the three tests (ps > .27).

The analysis of endorsement rates (Fig. 1) for TEST1 vs. TEST2
showed a significant interaction between Test and Gram (F(1,21)
= 17.83, p < .001, g2p = .459): on TEST1, G and NG sequences were
equally endorsed (F(1,21) = 4.24, p = .052, g2p = .168). On TEST2,
the endorsement rates for G sequences were higher than for NG
(F(1,21) = 9.94, p = .005, g2p = .321). Comparisons with the audi-



Fig. 1. Left: Endorsement rates as a function of grammatical status � ACS (HG = High-ACS grammatical, HNG = High-ACS non-grammatical, LG = Low-ACS grammatical, LNG
= Low-ACS non-grammatical). Right: Results for auditory stimuli (Silva et al., 2017). Error bars represent the standard error of the mean.
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tory modality (Silva et al., 2017) showed no differences (Gram �
Modality, TEST1: p = .32; TEST2: p = .28). Both the Test � ACS
(p = .27) and the Test� Gram� ACS interactions (p = .11) were non-
significant. Neither of these interactions differed from the ones
previously obtained for auditory stimuli (comparison with Silva
et al., 2017; Test � Gram �Modality: p = .11; Test � ACS �Modal
ity: p = .49; Test � Gram � ACS �Modality: p = .29). On TEST3, G
sequences were significantly more endorsed than NG (F(1,21) =
66.59, p < .001, g2p = .760), paralleling the results for the auditory
modality (p > .64). Neither ACS effects nor ACS � Gram interactions
differed across modalities (ACS �Modality, p = .196; ACS � Gram
�Modality, p = .599). Comparisons between TEST2 and TEST3
showed a significant Test � Gram interaction (F(1,21) = 19.04, p <
.001, g2p = .476) and non-significant Test � ACS (p > .37) or Test
� Gram � ACS interactions (p > .31). The results were similar to
those obtained for the auditory modality (Test � Gram �Modality:
p > .71; Test � ACS �Modality: p > .11; Test � Gram � ACS �Mod
ality: p > .73).

Consistent with the endorsement rates analysis, the d-prime
increased from TEST1 over TEST2 (t(21) = �4.16; p < .001) and
from TEST2 over TEST3 (t(21) = �4.34; p < .001), similar to auditory
stimuli (ps > .11). The ACS d-prime did not change significantly
across tests (ps > .27). Changes did not differ from the ones
observed for auditory stimuli (ps > .11).
2.2. Explicit knowledge: Questionnaires and control study

Questionnaires showed no evidence of explicit knowledge.
Since these did not provide a quantitative measure of explicit
knowledge, but rather a qualitative one, we conducted a control
study to make sure that the two experiments were equivalent in
this respect. Specifically, the goal of this control study was to see
whether the serial recall (retype) task, which was used for acquisi-
tion in the current visual study, fostered explicit learning, when
compared to the same-different-judgement task of our previous
auditory experiment (Silva et al., 2017).

In the control study, 44 participants did an explicit analogue of
the visual and auditory implicit AGL experiments. In a single ses-
sion, they did one acquisition task (80 Grammatical items) under
the explicit orientation to learn the grammar, followed by one
grammaticality test (96 items, 48 grammatical + 48 non-
grammatical). Twenty-two participants were assigned to the
visual/serial recall group. As in the current study, they were asked
to rewrite the sequences after viewing them during acquisition.
The other 22 were assigned to the auditory/same-different group,
and they were asked to judge whether the sequences were equal
or different, as in Silva et al. (2017). Before acquisition, all partici-
pants were asked to pay attention to the structure of the
sequences, namely which letters/syllables were at the beginning,
which ones were at the end, and how the letters/syllables followed
one another. After acquisition, they did the grammaticality classi-
fication test and, finally, they were given a questionnaire. They
were asked three open questions (which letters/syllables at the
beginning, at the end, and which could take part in adjacent repe-
titions), and they were given eight sequencing rules to classify as
true or false.

We analysed questionnaire data to test whether explicit knowl-
edge was higher in the visual/serial recall group compared to the
auditory/same-different group. Correct responses to all questions
would lead to a total maximum score of 17, and this score would
index the amount of explicit knowledge. Errors in open questions
(e.g., providing a letter/syllable as initial when it was not) were dis-
counted. Comparisons between the two groups showed no differ-
ences in explicit knowledge (t(44) = 1.38, p > .17, Fig. 2),
providing no evidence that explicit rule-acquisition is favoured
under visual/serial recall settings compared to auditory/same-
different settings.

In addition, we saw that accuracy did not differ between groups
(t(42) = .315, p > .55, Fig. 2) and it was below chance levels for both
groups (t(21) = �2.69, p = .014; auditory: t(21) = �4.18, p < .001).
This indicates that an explicit orientation to learn is not enough
to grant above-chance levels of performance, at least with a one-
day acquisition session.
2.3. Event-related potentials

2.3.1. Effects of grammatical status
2.3.1.1. No effects between 100 and 300 ms. Only TEST2 showed
Gram effects, which were seen at the central region (F(1,21) =
6.92, p = .016, g2p = .248). Neither TEST1 nor TEST3 showed Gram
effects at any region (ps > .31). There were no significant Gram �
ACS interactions in any test (ps > .06, Fig. 3). Despite the Gram
effects in TEST2, direct cross-test comparisons (Fig. 4A) showed
no significant changes in Gram effects from TEST1 over TEST2 (Te



Fig. 2. Control study: explicit knowledge (scores from 0 to 17) and accuracy in grammaticality classification after a 1-day exposure with explicit instructions to learn.
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st � Gram: ps > .09) or TEST3 (ps > .63), neither from TEST2 over
TEST3 (ps > .24). Test � Gram � ACS interactions were not signifi-
cant (ps > .10). Thus, according to a strict proper-learning approach
(Petersson et al., 1999), there were no grammatical-status-related
changes in ERPs in this time window.

2.3.1.2. No effects between 300 and 400 ms. There were no gram
effects (TEST1: ps > .52; TEST2: ps > .19; TEST3: ps > .39) and no
Gram � ACS interactions (TEST1: ps > .06, TEST2: ps > .11; TEST3:
ps > .60, Fig. 3). Cross-test comparisons (Fig. 4A) showed no signif-
icant Test � Gram interactions (TEST1&2: ps > .18; TEST1&3: ps >
.30; TEST2&3: ps > .73) or Test � Gram � ACS interactions
(TEST1&2: ps > .17; TEST1&3: ps > .35; TEST2&3: ps > .40). Again,
no grammatical-status-related changes in ERPs were seen, leaving
no early ERP markers of learning.

2.3.1.3. Effects between 400 and 600 ms for TEST2 and TEST3. TEST2
and TEST3 showed Gram effects at anterior (TEST2: F(1,21) =
4.57, p = .045, g2p = .179; TEST3: F(1,21) = 9.97, p = .005, g2p =
.322) and central (TEST2: F(1,21) = 4.82, p = .040, g2p = .187;
TEST3: F(1,21) = 8.94, p = .007, g2p = .299) regions. TEST1 showed
no Gram effects (ps > .23). There were no Gram � ACS interactions
at any test (TEST1: ps > .08; TEST2: ps > .33; TEST3: ps > .13). Cross-
test comparisons (Fig. 4A) showed changes in Gram effects from
TEST1 over TEST2 at central ROIs (F(1,21) = 6.52, p = .019, g2p =
.237), but not at anterior (p > .11) or posterior regions (p > .34). Dif-
ferently, changes in Gram effects from TEST1 over TEST3 extended
to all regions (anterior: F(1,21) = 6.92, p = .016, g2p = .248; central:
F(1,21) = 9.61, p = .005, g2p = .314; posterior: F(1,21) = 5.36, p =
.031, g2p = .203). Changes from TEST2 over TEST3 were non-
significant (anterior: p > .06; central: p > .08; posterior: p > .18). T
est � Gram � ACS interactions were non-significant (TEST1&2: p
> .23; TEST1&3: p > .07; TEST2&3: ps > .26). Thus, both TEST2 and
TEST3 showed learning-related changes, which were most obvious
in anterior-central regions. This topography differs from the one
we saw is Silva et al. (2017), which was clearly posterior (Fig. 4 B).

2.3.1.4. Effects between 600 and 900 ms for TEST3. There were no
Gram effects at TEST1 (ps > .29) or TEST2 (ps > .07), but TEST3
showed GRAM effects at all regions (anterior: F(1,21) = 6.61, p =
.018, g2p = .239; central: F(1,21) = 10.60, p = .004, g2p = .335; pos-
terior: F(1,21) = 8.04, p = .010, g2p = .277). Gram � ACS interac-
tions were non-significant in all tests (TEST1: ps > .08, TEST 2: ps
> .17, TEST3: ps > .24, Fig. 3). Consistent with this, there were no
changes in GRAM effects from TEST1 over TEST2 (Test � Gram:
ps > .20, Fig. 4A). TEST3 showed increased Gram effects compared
to TEST1 (F(1,21) = 7.81, p = .011, g2p = .271) and TEST2 (F(1,21)
= 5.12, p = .034, g2p = .196) at central regions. There were no Tes
t � Gram � ACS interactions for any cross-test comparison (TEST1:
ps > .26, TEST2: ps > .16, TEST3: ps > .08). Thus, TEST3 but not
TEST2 showed an extended late component, located at the central
region.
2.3.2. Effects of ACS
Although we found ACS effects in the test-by-test analysis,

cross-test comparisons showed no differences in any time window
(Fig. 4A, 100–300 ms: Test � ACS: ps > .24; 100–400 ms: Test � A
CS: ps > .24; 400–600 ms: Test � ACS: ps > .51; 400–600 ms: Test
� ACS: ps > .51; 600–900 ms: Test � ACS: ps > .73). This contrasts
with the auditory experiment (Silva et al., 2017), where we saw
a decrease in ACS effects from baseline to grammaticality classifi-
cation, showing some sensitivity to surface characteristics
(although not the expected one, which would be an increase in
ACS effects, rather than a decrease). In sum, the auditory modality
seemed more prone to surface influences.
2.4. ERD/ERS at baseline preference

We did a first analysis over fine-grained frequency bins (steps of
0.25 Hz) in order to look for possible indices of entrainment to the
presentation rates of visual (1.72 Hz) and auditory (3.03 Hz)
sequences. We saw no evidence that these target frequencies were
enhanced relative to the remaining spectrum and, therefore, we
did not find evidence of entrainment. This might be due to the
short time window used in the analysis.

We then averaged frequency bins into the delta (1–4 Hz), theta
(4–8 Hz) and alpha (8–12) bands. We found Event-Related Syn-
chronization (positive values) for the two modalities in all fre-
quency bands. In the visual grammar, delta and theta bands
showed increased ERS values compared to the auditory grammar
(delta: t(42) = -2.18, p = .034; theta: t(42) = �5.84, p < .001), but
the alpha band did not (p > .24).

Correlations between learning-related changes from TEST1 over
TEST3 and ERS at TEST1 showed strong, positive and significant
values for the theta band (Table 1). Theta ERS correlated with
ERP changes at central and anterior sites in the visual modality,
and with changes at posterior sites in the auditory one. These were
the sites where ERP changes related to structural (grammatical-
status based) learning were significant. Thus, increased baseline



Fig. 3. Topographic maps (top) of early (100–400 ms) effects of grammatical status (NG-G) in each classification test (TEST1 = baseline preference; TEST2 = final preference;
TEST3 = grammaticality classification) and illustrative ERP waveforms (down) for each level of grammatical status � ACS effects (HG, high-ACS grammatical; HNG, high-ACS
non-grammatical; LG, low-ACS grammatical; LNG, low-ACS non-grammatical). The waveforms show the signal at the marked electrodes.
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theta-ERS seems to relate to the EEG indices of learning an artificial
grammar, whether visual or auditory.

3. Discussion

We tested the hypothesis that modality-specific networks coex-
ist with modality-independent processing mechanisms in implicit
artificial grammar learning (AGL). We examined learning-related
changes (post- vs. pre-exposure) in behavioural and ERP responses
to visual and auditory grammars, and we found evidence in sup-
port of the hypothesis in question.

Specifically, we found similar behavioural responses in both
grammars after compensating for known modality constraints on
behavioural responses (demands of presentation format and pre-
sentation rate). This suggests that these modality-specific influ-
ences were cancelled, and thus that they may be real.
Concerning ERP responses to grammar violations, we saw dif-
ferences across modalities in both the topography and the latency
of the late component (earlier and more frontal in the visual
modality), indicating modality-specific networks. These differ-
ences could not be attributed to different levels of explicit learning,
as both our questionnaires and our control study suggested. Criti-
cal to the hypothesis being tested, indices of modality-specific net-
works concurred with modality-independent (shared) features:
both the visual and the auditory late ERPs were free from ACS
influences, both were more extended in the grammaticality classi-
fication test (400–900 ms visual, 500–900 ms auditory) than it is in
the final preference test (400–600 ms visual, 500–700 ms audi-
tory), and, in both, learning-related changes correlated with theta
event-related-synchronization (ERS) during pre-exposure.

Finding themeaning of the correlation between learning-related
ERP changes and ERS at the pre-exposure phase was not central to



Fig. 4. Learning-related ERPs in visual and auditory (Silva et al., 2017) grammars. Top A and Top B: Average difference waves at the six regions of interest (ROIs) for
grammatical status (grammatical status) and ACS effects across the three tests (NG, non-grammatical; G, grammatical; L, low ACS; H, high-ACS; LA, left anterior; LC, left
central; LP, left posterior; RA, right anterior; RC, right central; RP, right posterior). Bottom A and bottom B: topographic maps comparing grammatical status/ACS effects
across TEST1 and TEST2 and across TEST1 and TEST3.

Table 1
Correlation between learning-related ERP changes and ERS (Delta, Theta, Alpha) at the onset of baseline (TEST1) sequences (Ns = non-significant).

Visual ERP
400–600 ms

Auditory ERP
500–700 ms

Anterior Central Posterior Anterior Central Posterior

ERPs
TEST 1–3 a

Yes Yes Yes No No Yes

Delta with ERPs Ns Ns Ns Ns Ns Ns

Theta with ERPs r = .640
p = .001
(.003)b

r = .653
p = .001
(.003) b

Ns Ns Ns r = .514
p = .014
(.042) b

Alpha with ERPs Ns Ns Ns Ns Ns Ns

a Yes = significant changes in late ERPs from TEST1 over TEST3; No = non-significant changes.
b Significance of the correlation when correcting for multiple comparisons (3 frequency bands).
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Fig. 5. The five-letter (M, R, X, V, S) grammar used in the visual experiment.
MSVRXR is a grammatical sequence, which can be obtained by following the
arrows. MSVMXR is a non-grammatical sequence, since there is no path creating
this particular sequence. The letters within circular arrows can be repeated, such as
S and R: MSSVRXR would be grammatical too.
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our goal, since our focus was on whether the ERPs of both modal-
ities would correlate with the same variable. In any case, our find-
ings support our initial hypothesis and suggest that individual
levels of working memory maintenance and/or attention towards
experimental sequences increase EEG indices of learning. The pos-
terior topography of theta ERS in our study favours a working
memory interpretation, since attention has been more related to
frontal theta (Deiber et al., 2007). The fact that we saw increased
theta synchronization in the visual modality may indicate
increased working memory demands for visual temporal com-
pared to auditory presentation, strengthening the idea of non-
overlapping working memory networks subtending structural
learning in the two modalities.

Adding to the latency and topography differences we saw
between the late components of visual vs. auditory grammars (ear-
lier and more anterior component for visual), ERP waveforms
showed two other modality effects. First, the visual modality did
not show any early posterior negativity (100–450 ms), analogous
to the one we found in the auditory experiment (Silva et al.,
2017). This early negativity was then affected by interactions
between grammatical status and ACS, and we raised the hypothe-
sis that it could be a marker of non-structural processes in AGL,
preceding but not competing with structural processes indexed
by the P600 (see Bahlmann et al., 2006; Friederici et al., 2002).
The fact that we did not see this early negativity in response to
the learning of the visual grammar suggests that this ERP is not
an essential component of the response to structural violations,
thus strengthening our previous interpretation. Second, we did
not see any cross-test ACS effects in the ERP waveforms (see
Fig. 4A). In the auditory experiment, we saw baseline ACS effects
that were cancelled after exposure. This was an atypical response
to ACS features, since effects should come after exposure, but it
nevertheless indicated some sensitivity to surface features. The
fact that we did not see any change in ACS effects in the visual
modality is possibly related to the heavier memory constraints that
temporal presentation formats pose on the visual modality,
impairing memory for bigrams and trigrams. This would be consis-
tent with the increased theta synchronization we saw in the visual
modality, possibly signalling increased working memory demands.

Overall, neither the absence of an early negativity, nor the
absence of cross-test ACS effects in the visual modality threaten
the core finding of structural learning of visual grammars.
Therefore, these additional differences do not seem to indicate
the presence of different computational principles for implicit
structured-sequence learning across modalities. Rather, these dif-
ferences seem to reflect more superficial influences, and thus they
reinforce the idea of modality-specific networks that instantiate
shared computational principles.

Ourmain goal was to characterize the domain of sequence learn-
ing in terms of modality effects, and this is why we focused on the
subdomain of implicit structured-sequence learning. Given that
implicit structured-sequence learning captures syntax-learning
mechanisms, abstracted from the phonological, lexico-semantic or
pragmatic components of natural language, our findings may also
have implications for psycholinguistic approaches. First, they indi-
cate that syntactic processing per se engages mechanisms that are
shared across modalities, thus strengthening previous findings on
natural language (Hagoort and Brown, 2000). Second, we did not
observe an analogue of the left anterior negativity found in
natural-syntax experiments (LAN: Hagoort and Brown, 2000;
Kutas et al., 2006, ELAN: Friederici et al., 1996) in any of the two
modalities. This raises the possibility that this negative ERP reflects
processes related to the interaction between syntax and other lin-
guistic dimensions. In alternative, it is possible that it requires a high
level of syntactic proficiency, or the explicit processing of syntactic
materials (see Silva et al., 2017).
4. Conclusion

The coexistence of modality-independence with modality-
specificity has been widely noted in the field of statistical learning.
The findings of our implicit AGL study showed that this coexistence
is valid for structural, rule-based learning. In addition, the present
results indicate that differences in memory systems supporting
structural learning may be key to explain modality-specific
outcomes.
5. Methods and materials

5.1. Participants

Twenty-two healthy, right-handed participants (9 male; mean
age ± SD = 22 + 3.6; mean years of education ± SD = 15 ± 2) took
part in the experiment. They were age- and schooling-matched
with the 22 participants of Silva et al.’s (2017) experiment, and
had normal or corrected-to-normal vision. None was taking medi-
cation. All participants signed informed consent according to the
declaration of Helsinki.
5.2. Stimuli

We used the same right-linear artificial grammar as in our audi-
tory experiment (Silva et al., 2017), with 5 letters (Fig. 5) replacing
for the 5 CV syllables. Although using printed CV syllables in
the visual modality could seem like a better solution to grant the
equivalence of items across modalities, each visual CV syllable
might be processed as a group of two items, and we did not want
that to happen. Since our visual letters vs. auditory syllables were
functionally equivalent – they represent fundamental units in the
linguistic domain, and the combinations made with each item type
would lead to meaningless patterns - this seemed like the optimal
choice. From the structural viewpoint, our grammar generated
right-linear dependencies and allowed for contiguous repetition
of some items (e.g., S and R in the visual format, see Fig. 5). We con-
trolled for the amount of repetitions across Grammaticality (Gram-
matical vs. Non-grammatical) and ACS (High- vs- low) levels when
generating test sequences (see below). Details on this control pro-
cedure are presented in Silva et al. (2017).

Sequences generated by the grammar ranged between 5 and 12
items in length. For the exposure phase, we generated 100 (Gram-
matical, G) sequences. Test sequences (n = 360) were manipulated
for both grammatical status (grammatical vs. non-grammatical)
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and Associative Chunk Strength (ACS). The ACS of a test sequence is
the average frequency of its composing bi- and trigrams in the
exposure stimulus set, and it indicates how often participants were
confronted with the surface characteristics of a given sequence
(different from structural, rule-related characteristics) during
exposure. We started with grammatical sequences: 60 � 3 G
sequences were generated for the 3 test phases. Half these
sequences had low ACS, and the other half had high ACS. Using
these 3 sets of 60 sequences, we generated 60 � 3 Non-
Grammatical sequences (NG), by replacing 2 letters with a violat-
ing letter. We first did a random replacement, and we later checked
whether there were actual violations at those points. Overall, vio-
lations were inserted in all positions except terminal (i.e., from sec-
ond to eleventh position, balanced across Grammaticality and ACS
levels). We ended up with 3 sets for the 3 test phases (baseline
preference, final preference, grammaticality classification), each
set comprising 30 grammatical, high ACS sequences (HG), 30 gram-
matical, low ACS (LG), 30 non-grammatical, high ACS (HNG) and 30
non-grammatical, low ACS (LNG), with a total of 120 � 3 (360) test
sequences. Sequence length ranged between 5 and 12 letters. For
further details on the stimulus design, see Silva et al. (2017).

5.3. Procedure

Participants were exposed to the grammar for 5 days (one ses-
sion a day). They were asked to look at the sequences, try to mem-
orize them and then retype them using the computer keyboard.
The task was self-paced. On day 1, right before exposure, they
did the baseline preference test (TEST1), containing both G and
NG sequences, and where they were asked to indicate whether
they liked or disliked each sequence. On day 5, after the last expo-
sure session, they did another preference test (final preference,
TEST2) with a different stimulus set. After they completed the pref-
erence test, they were informed that all exposure sequences
obeyed the same rules, and were asked to classify a new set of G
+ NG sequences according to grammatical status (grammaticality
classification: ‘correct’/grammatical vs. ‘incorrect’/non-grammati
cal sequences, TEST3). In the 3 tests, response time was limited
to 4 s, and participants were encouraged to respond as fast as they
could. In all tasks, letters were presented one-by-one (visuo-
temporal presentation) with an inter-onset-interval of 580 ms
(290 ms presentation time + 290 ms inter-letter interval). This pre-
sentation rate was made slower than the one used in the auditory
modality (330 ms) so as to cancel the advantage of the auditory
modality in fast presentation rates (see introduction). The EEG
was recorded during the three tests.

5.4. EEG recording and processing

The EEG was recorded at 512 Hz, with a 64-channel Brainvision
system (Brain Products UK, London). Electrodes were mounted on
an elastic cap with an equidistant triangular arrangement. An elec-
trode was placed under the left eye, to measure vertical electro-
oculographic (EOG) activity from a bipolar derivation between this
and a left prefrontal channel. Bipolar derivations between two
bilateral temporal channels provided the horizontal EOG, and mus-
cular activity was monitored with two bilateral posterior channels.
The EEG was referenced to the average of the two mastoids. Impe-
dances were kept below 5 KX. We processed the EEG data in
MatLab with the FieldTrip toolbox (Oostenveld et al., 2011), both
for ERPs and frequency analysis.

The ERPs for the three tests (TEST1, baseline preference, TEST2,
final preference, TEST3, grammaticality classification) were com-
puted in relation to the onset of the first violation letter and its
non-grammatical counterpart. Epochs ranging from – 300 ms to
900 ms around the trigger point were extracted and scanned for
ocular or muscular artefacts. Trials with artefacts were rejected.
Baseline correction was performed using the 100 ms interval pre-
ceding the trigger point (violating letter), and data were band-
pass filtered from 0.016 Hz to 30 Hz. For further details, see Silva
et al. (2017).

For frequency analysis, we considered only TEST1 (baseline)
and we locked the EEG to the onset of each sequence. We defined
new epochs - from -500 to 1650 ms around this trigger point -
because we needed longer baselines for analysing low frequencies,
and because we were interested in capturing the activity related to
the whole sequence. Our shortest sequence was 5-items long, and
it was shorter in the auditory modality (330 ms � 5 = 1650 ms), so
1650 ms was the largest time frame for trial segmentation we
could use. Artefact rejection was done again for these longer
epochs, and frequency analysis was done trial-by-trial. We anal-
ysed the frequency spectrum of each trial from 1 to 12 Hz, in steps
of 0.25 Hz and 50 ms. We used Morlet wavelets for the analysis,
since these provide the necessary increased temporal resolution
for higher frequencies (Demiralp et al., 1999). The power spectrum
was averaged across all trials of each subject, regardless of condi-
tion. We were thus left with one power spectrum per subject (44
frequency bins � 61 channels � 33 post-baseline time bins), char-
acterizing his/her ERD/ERS locked to sequence onset during TEST1.
We first looked for evidence of entrainment following the
approach of Saupe and colleagues (Saupe et al., 2009), who looked
for steady-state responses matching the target frequency in
induced (single-trial) activity. Since we found no evidence of
entrainment, we investigated ERS/ERD in wider frequency bands.
To that end, frequency bins were averaged such that we remained
with 3 frequency bands: 1–4 Hz (delta) band, 4–8 Hz (theta) and
8–12 Hz (alpha). All channels were averaged, and so were time
bins from 0 to 1650 ms. We were left with 3 ERD/ERS values per
subject, characterizing delta, theta and alpha activity time-locked
to sequence presentation.

5.5. Statistical analysis

We analysed behavioural data for accuracy, endorsement rates
and d-prime. Accuracy per test was compared to chance levels
(50%) with one-sample t-tests. Endorsement rates – the amount
of sequences classified as liked (in TESTS 1 and 2) or correct (in
TEST3) – were analysed with repeated measures ANOVAs with Test
(TEST1, TEST2, TEST3), grammatical status (Gram: G vs. NG
sequences) and ACS as within-subject factors. The key comparison
was made between TEST1 and TEST2, where we looked for signif-
icant Test � Gram interactions (structure-based learning) as well
as possible Test � ACS interactions (surface-based learning) or Te
st � Gram � ACS interactions (structure-based learning modulated
by surface characteristics). In case of interactions, we analysed
Gram and ACS effects per test. For TEST3, we started by analysing
Gram and ACS effects, and then examined differences between
TEST2 and TEST3. Finally, we computed the grammatical status
d-prime (discrimination between G and NG). For each analysis of
behavioural data, we did direct comparisons with the results from
our previous auditory AGL experiment (Silva et al., 2017). Thus, we
examined the effects of Modality (visual vs. auditory) on accuracy,
endorsement rates and d-prime using independent-samples t-tests
(visual vs. auditory) as well as mixed ANOVAs with Modality as
between-subjects factor.

For the analysis of event-related potentials, we did not rely on
direct comparisons between auditory and visual grammars, given
that waveforms differed considerably across modalities, and the
relevant time windows did not overlap. This already suggested
some level of modality-specificity. Thus, mean voltages per subject
were computed at time windows 100–300, 300–400, 400–600, and
600–900 ms, instead of 100–300, 300–450, 500–700, and 700–900
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ms of Silva et al. (2017). As in the auditory experiment, we ran
repeated-measures ANOVAs, with comparisons of interest based
on the factors grammatical status (two levels, G vs. NG) and local
subsequence familiarity (ACS, two levels, H and L). We used the
same six regions of interest as in Silva et al. (2017, Fig. 4): caudality
(Caud) entered the analysis with three levels (Anterior, Central,
Posterior) and laterality (Lat) with two (Left, Right). We analysed
the main effects of grammatical status, ACS, and grammatical sta
tus � ACS interactions one test at a time (TEST1, TEST2, TEST3).
Additional comparisons (Test � grammatical status, Test � ACS, T
est � grammatical status � ACS) were done across tests.
Greenhouse-Geisser corrections were applied in case of non-
sphericity. Unless otherwise specified, a significance level of .05
was adopted.

For both modalities, subject-level ERD/ERS delta, theta and
alpha values on TEST1 were correlated with the learning-related
changes in the late (post 400 ms) ERP components, with different
topographic areas being considered (correlation with anterior, cen-
tral and posterior). In addition, we compared delta, theta and alpha
ERD/ERS values across modalities. Bonferroni corrections were
applied to all multiple comparisons.
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